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ABSTRACT

Sensor-based remote healthcare monitoring can be used for the timely detection
of adverse health events in people living with long-term health conditions, and
help reduce preventable hospitalization. Current anomaly detection approaches
in a real-world setting are challenged by noisy data and unreliable event anno-
tation. Inspired by the conceptual simplicity and recent applications of negative
sample-free contrastive learning in computer vision, we propose a lightweight,
self-supervised model to extract noise-adaptive representations from multidimen-
sional sensor data. We use the contrastive loss between the more granular observa-
tion data and a corresponding learnable, lower temporal resolution augmentation,
and use the learned representations for anomaly detection. Learning to adjust this
“contrast factor” enables the model to identify and leverage the most informative
temporal features at different scales, enhancing its ability to discern underlying
patterns amidst noise. Our model outperformed comparable representation learn-
ing algorithms in detecting agitation and fall events across three distinct partici-
pant cohorts in a real-world study of people living with dementia in their homes.
We further used the representations to create a “spatiotemporal attention map” to
focus on the source of anomaly and offer explainability. Our approach is domain-
agnostic and can be used in wider healthcare, industrial and urban sensor settings.

1 INTRODUCTION

Insights from sensor-based remote health monitoring data can be used to analyze temporal patterns
and detect adverse conditions, with minimal intrusion and low cost. A real-world monitoring set-
ting, however, poses a unique set of challenges. It is characterized by absence of reliable labeling
(annotation can be resource-intensive or self-reported), data drift, noise and lack of regular patterns.
An anomaly detection (AD) algorithm in this context must address these issues while also achieving
high sensitivity, low alert rate, and explainability to a monitoring team. To achieve this, it is crucial
to obtain discriminative, noise-resilient representations from sensor data.
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A variety of deep learning approaches have been used for multivariate time series representation
learning in unsupervised settings. Autoencoders and temporal convolutional networks are used
in Franceschi et al. (2019) to capture patterns and dynamics inherent in time series data via triplet
loss. Ma et al. (2019) integrate the temporal reconstruction and K-means objective to generate
cluster-specific temporal representations. Some works have applied graph representation learning
to time series data (Zheng et al., 2019; Zhao et al., 2019; Li & Jung, 2021; Bijlani et al., 2022).
Recently, Li et al. (2023) used vision transformers on line graph images generated from irregu-
larly sampled time series for time series classification. However, ViTs and Swin Transformers are
inherently complex models, making them prone to overfitting and impacting their interpretability.

In recent years, the computer vision field has pioneered advancements in negative sample-free con-
trastive learning for obtaining high-quality representations of images using different augmentations
of the underlying data, simplifying the learning process, reducing computational overhead, and
achieving robust benchmark performances in downstream tasks. Negative sample-free contrastive
learning is now being applied in various domains including NLP and audio processing (Niizumi
et al., 2021; Elbanna et al., 2022; Sarkar et al., 2023; Xu et al., 2024).

In this work, we propose a lightweight, self-supervised model to extract noise-adaptive, discrim-
inative representations from multidimensional data collected via real-world sensor-based remote
health monitoring. Our key contribution is leveraging vision-inspired contrastive loss together with
a learnable temporal augmentation to extract noise-adaptive embeddings directly from sensor data.
We demonstrate the efficacy of this approach in a real-world study of 65 home-living people with
dementia, achieving 84% average recall and 92% generalizability in detecting adverse events. In
addition, we demonstrate how the model can be used to gain insight into the source of anomaly
by combining temporal attention with sensor importance to create a spatiotemporal attention map.
Our work could open up new possibilities to utilize computer vision techniques in sensor-based
monitoring and the wider time series domain in a data-driven way.

2 METHOD

Model overview. Figure 1 illustrates our contrastive learning model. The raw sensor data is prepro-
cessed and input into a Transformer encoder network. The Gumbel-Softmax distribution (Jang et al.,
2016) performs a soft selection over a predefined set of “contrast factors”, which refers to the gran-
ularity of temporal aggregation, e.g. 3, 4, 6 hours. The contrast factor is used to dynamically adjust
the temporal aggregation of input features, influencing the embeddings and the model’s sensitivity to
anomalies. In this way, the model learns the optimal parameters for feature extraction, together with
the optimal temporal resolution for processing the input data. The original data is downsampled to
the learned resolution, and the two versions are fed to identical Transformer encoders. The network
is trained using a self-supervised vision-inspired contrastive loss, e.g. DINO (Caron et al., 2021),
SimSiam (Chen & He, 2021), BYOL (Grill et al., 2020) or Barlow Twins (Zbontar et al., 2021).

Learned augmentation. In order to mitigate the need for prior understanding of the data, we
integrate the learning of augmentation into the training pipeline. By learning to adjust the contrast
factor dynamically, the model can identify and leverage the most informative temporal features at
different scales, enhancing its ability to discern discriminative patterns amidst noise. In computer
vision, there exist commonly used operations, such as rotation, cutout, flip or crop that can be learned
via AutoAugment (Cubuk et al., 2019) and related strategies (Hataya et al., 2020; Zheng et al., 2022),
but there are no standard augmentations for sensor-received data. We use the Gumbel-Softmax
distribution (Jang et al., 2016) to select contrast factors for data augmentation. For each contrast
factor, we associate a learnable logit, representing the unnormalized log probabilities of selecting
that particular factor. We apply the Gumbel-Softmax operation to these logits, incorporating Gumbel
noise to simulate the sampling process. This operation is parameterized by a temperature τ , which
controls the smoothness of the approximation to the discrete distribution. Its output is a differentiable
approximation of a one-hot encoded vector, indicating the selected contrast factor.

Transformer encoder. The Transformer encoder, proposed in Vaswani et al. (2017), consists of
identical layers of multi-head self-attention and a position-wise fully connected feed-forward net-
work. The Transformer encoder produces a representation that assigns different weights to different
temporal segments, which is particularly useful for continuous health monitoring as unusual activ-
ity in certain parts of the day can be more significant in informing anomaly detection than activity
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Figure 1: Contrastive learning-based anomaly detection pipeline. The model takes as input hourly-
aggregated daily sensor data X . The Gumbel-Softmax distribution is used to perform a soft selection
over “contrast factors” for adaptive learning of the optimal temporal aggregation. The original data
is accordingly downsampled and augmented to X ′. The network is trained using a vision-inspired
contrastive loss, and L2 regularization. During inference, the daily delta of embeddings, or anomaly
score, is conditioned by sliding window thresholding using the personalized threshold to raise alerts.

mixed with noise at other times. Our model uses a single layer Transformer encoder with two atten-
tion heads (Figure 2).

Contrastive loss. The network is trained via a vision-inspired contrastive loss, e.g. DINO, with
optional regularization. The total loss is given by Ltotal = LDINO+λ||w||22, where LDINO is the DINO
loss, the second term represents L2 regularization, and λ is the loss-balancing hyperparameter.

Inference. The raw daily sensor data are preprocessed and translated to a corresponding day-level
embedding. Then, the cosine difference between successive daily embeddings, the “anomaly score”
is calculated. It quantifies the consistency in day-to-day activity. The personalized alerting threshold
ρ is computed for each individual based on their 7-day moving average and standard deviation of
anomaly scores, and the target alert rate. Finally, an alert is raised if the anomaly score lies above ρ.

Explainability. We use the attention weights from the Transformer encoder to discover the most
influential hour indicative of anomaly on a flagged day. We utilize Layer-wise Relevance Propaga-
tion (LRP) (Bach et al., 2015) to find the most important sensor that contributed to the anomaly. To
embed LRP within our Transformer architecture, we make two adaptations. The feedforward layers
in the Transformer encoder and projection layers are re-engineered to compute the relevance scores,
and the calculation of LRP scores for the attention and LayerNorm components of the Transformer
is refined to ensure accurate feature attribution, in line with Ali et al. (2022). Finally, we merge
the temporal attention weights with the global relevance score, to obtain a “spatiotemporal attention
map”. The spatiotemporal attention map visualizes the weights assigned by the model to different
spatial locations and temporal intervals the model deems most influential for making predictions.
It highlights areas within the multivariate sensor data from the participant’s household that signifi-
cantly deviate from typical patterns, thereby pinpointing specific times and sensors that contributed
to the anomaly decision for that day. This allows for a targeted investigation into the participant’s
activity and health status, facilitating early intervention by the monitoring team.

3 EXPERIMENTS AND RESULTS

Data. This work utilizes data from an active remote health monitoring program collected between
August 2019 and April 2022, for 80 home-living individuals with dementia or mild cognitive im-

3



Accepted as a Workshop Paper at TS4H@ICLR2024

pairment. Participants, who consented in writing, have passive infrared sensors installed in the
hallway, bathroom, bedroom, lounge and kitchen to track daily movement. The clinical team labels
adverse health events such as falls, UTI (urinary tract infection) or agitation episodes via preset
alerts, weekly check-in, or participant self-reports, within a 7-14 day window. We aggregated data
for each household location hourly, log-transformed and normalized it to enable cross-sensor and
cross-participant standardization. Multiple signals from the same sensor in quick succession were
combined into a single signal.

Experimental setup. We evaluated each model on three distinct participant cohorts - two with
agitation and one with fall events (Table 2), and tuned the experimental parameters on a validation
set with confirmed UTI events. 500 days of cross-participant data were kept aside for training.
Table 3 provides details of experimental parameters. The adaptive personalized alerting threshold
for different participant households was computed using a clinician-specified target alert rate of 7%.
Each model was evaluated with 5 different seeds, and executed on a 64-bit Intel i7-8700K CPU, 3.7
GHz Windows 10 machine with 32 GB RAM, using the Pytorch framework (Paszke et al., 2019).

Evaluation. We benchmark the efficacy of our self-supervised Transformer-based feature extraction
model against SOTA models suitable for the AD pipeline. This includes (1) Advanced pretrained
image feature extractors such as ConvNeXt Tiny (Liu et al., 2022), Xception Net (Chollet, 2017),
and MobileNet V2 (Sandler et al., 2018) applied to images of hourly-aggregated sensor data, (2)
self-supervised 1D Conv (convolutional) encoder models, and (3) the leading Graph Barlow Twins-
based model on this dataset (Bijlani et al., 2024). We run our experiments with four vision-inspired
contrastive loss functions - DINO (Caron et al., 2021), SimSiam (Chen & He, 2021), BYOL (Grill
et al., 2020) and Barlow Twins (Zbontar et al., 2021), with both, fixed and adaptive temporal aug-
mentation. Note that 1D Conv networks encounter compatibility issues with DINO and BYOL
because the frameworks require precise alignment in data structure and network architecture, par-
ticularly kernel sizes. For fixed contrast models, we use the best contrast factor based on validation
set recall. We report two evaluation metrics: average recall and generalizability, given a target alert
rate. Generalizability is the percentage of participants for which the model yields sensitivity greater
than 50%. This metric underscores the cross-participant applicability of the model. Due to limited
and noisy annotation of anomalous events, accurate identification of false positives is challenging.
Therefore precision would be a misleading metric here.

Table 1: Model performance, average (SD), with alert rate within ±1% of the target alert rate of 7%

Model Contrast Recall% Generalizability% Parameters
Pretrained ConvNeXt Tiny (image) Fixed 80.11 88.83 28 M
Pretrained Xception Net (image) Fixed 80.16 86.27 22.9 M
Pretrained MobileNet V2 (image) Fixed 82.48 91.36 3.5 M
G-BT (Bijlani et al., 2024) (graph) Fixed 81.03 (7.61) 87.96 (6.12) 40 K
1D Conv AE Fixed 79.22 (5.3) 85.14 (5.66) 6.5 K
1D Conv (SimSiam) Fixed 81.67 (4.74) 88.42 (5.86) 44 K
1D Conv (Barlow Twins) Fixed 82.04 (5.89) 87.83 (6.1) 44 K
Transformer (BYOL) Fixed 80.83 (2.55) 88.13 (2.66) 44 K
Transformer (Barlow Twins) Fixed 81.85 (3.02) 87.93 (3.18) 88 K
Transformer (SimSiam) Fixed 83.06 (4.7) 92.22 (4.44) 220 K
Transformer (DINO) Fixed 83.96 (5.02) 90.03 (4.68) 44 K
Transformer (BYOL) Adaptive 81.04 (5.28) 88.87 (5.43) 44 K
Transformer (Barlow Twins) Adaptive 82.31 (4.37) 88.39 (4.36) 88 K
Transformer (SimSiam) Adaptive 84.3 (3.15) 90.61 (3.52) 220 K
Transformer (DINO) Adaptive 84.64 (2.36) 92.16 (2.33) 44 K

Results. Table 1 reports the average recall and generalizability on the anomaly detection task for
the three participant cohorts, given a clinician-specified target alert rate of 7%. Cohort-wise results
are detailed in Tables 4, 5 and 6. Pretrained image-based SOTA models show good out-of-the-box
performance on sensor data visualized as heatmaps, but comprise millions of parameters. Custom
convolutional encoders for non-image data achieve better recall and lower variance relative to pre-
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vious work using Graph Barlow Twins, at a fraction of the size of image models. The Transformer-
based model trained with DINO contrastive loss achieves top performance. While backbone models
like SimSiam and BYOL exhibit superior performance in specific cohorts, the Transformer-based
model utilizing DINO contrastive loss delivers a more balanced performance in terms of recall and
generalizability. Importantly, we observe that on the whole, adaptive contrast models show superior
performance compared to fixed temporal resolution models despite no prior knowledge of optimal
augmentation. We use the temporal attention map and feature importance (Figure 3) and the merged
spatiotemporal attention map (Figure 4) to provide insight into routine vs. anomaly, discovering
the most influential sensor and hour on a given day. In the example shown, the bathroom sensor
is the most significant contributor towards the model outcome during the identified hours. For this
correctly flagged agitation event day, the participant’s agitated state may be inferred from irregular
patterns of bathroom use relative to the established baseline pattern of the previous week, without
the need for direct comparison to the activities of the preceding days. We also note that lounge and
hallway activity are contra-indicative of the model outcome, which aligns with our understanding
that these areas reflect more communal, transitory or highly variable activity in the home, and are
generally noisy or non-discriminative factors.

4 CONCLUSION

In this paper, we proposed a lightweight, computer-vision inspired contrastive learning model to
extract salient, noise-adaptive features from sensor-based remote health monitoring data, and used it
to detect anomalous home activity that might signal an adverse health event. The temporal contrast
factor was dynamically learned through an end-to-end trainable framework, together with the param-
eters for feature extraction. The ability to adjust focus across temporal scales offers a form of noise
adaptation and enables the model to learn stable, discriminative temporal patterns. We evaluated
the model’s performance in detecting adverse health events in individuals with dementia, achieving
higher detection accuracy and cross-participant generalizability than comparable models. The model
was used to generate a daily spatiotemporal map which can identify the time of day and sensor that
most significantly influences the model’s outcome. Our proposed approach, while framed in the
context of healthcare monitoring, is domain-agnostic and applicable in other monitoring settings.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750–15758, 2021.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 113–123, 2019.

Gasser Elbanna, Neil Scheidwasser-Clow, Mikolaj Kegler, Pierre Beckmann, Karl El Hajal, and
Milos Cernak. Byol-s: Learning self-supervised speech representations by bootstrapping. In
HEAR: Holistic Evaluation of Audio Representations, pp. 25–47. PMLR, 2022.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. Advances in neural information processing systems, 32,
2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster autoaugment:
Learning augmentation strategies using backpropagation. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16, pp. 1–16.
Springer, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Gen Li and Jason J Jung. Entropy-based dynamic graph embedding for anomaly detection on mul-
tiple climate time series. Scientific Reports, 11(1):13819, 2021.

Zekun Li, Shiyang Li, and Xifeng Yan. Time series as images: Vision transformer for irregularly
sampled time series. arXiv preprint arXiv:2303.12799, 2023.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Qianli Ma, Jiawei Zheng, Sen Li, and Gary W Cottrell. Learning representations for time series
clustering. Advances in neural information processing systems, 32, 2019.

Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and Kunio Kashino. Byol for
audio: Self-supervised learning for general-purpose audio representation. In 2021 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

6

https://bmvc2022.mpi-inf.mpg.de/0854.pdf
https://bmvc2022.mpi-inf.mpg.de/0854.pdf


Accepted as a Workshop Paper at TS4H@ICLR2024

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Balaram Sarkar, Chandresh K Maurya, and Anshuman Agrahri. Direct speech to text translation:
Bridging the modality gap using simsiam. In Proceedings of the 6th International Conference on
Natural Language and Speech Processing (ICNLSP 2023), pp. 250–255, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jiahao Xu, Charlie Soh Zhanyi, Liwen Xu, and Lihui Chen. Blendcse: Blend contrastive learnings
for sentence embeddings with rich semantics and transferability. Expert Systems with Applica-
tions, 238:121909, 2024.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
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A APPENDIX

A.1 PARTICIPANT CHARACTERISTICS

Table 2: Participant cohort characteristics (M-Male, F-Female).

Cohort Participants Average age
(years)

Total
days

Total observations Event
type

Event
count

Training and Validation
8(M) 85.13 9363 3780922 UTI 31
7(F) 82.86

Test 1
11(M) 82.64 8015 3580451 Agitation 71
7(F) 85.86

Test 2
19(M) 81.74 5411 2704927 Agitation 74
5(F) 83.2

Test 3
15(M) 83.73 5284 2319328 Fall 38
8(F) 85.88
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A.2 EXPERIMENTAL PARAMETERS

Table 3: Experimental parameters

Model/Setting Parameter Value

Global
Target alert rate 7%
Sliding window for thresholding 7 days
Soft margin for label validation (agitation, UTI) -10, +7 days
Soft margin for label validation (fall) ± 7 days
Default learning rate 0.001
Default batch size 32
Maximum epochs 500
Default dropout rate 0.1
Output dim 128

Transformer
Patience 20
Dropout 0.1
Layers 1
Attention heads 2
Forward expansion 32
Projection layer size 128, 256
Gumbel-softmax temperature 0.1
L2 loss weight 0.01
Weight decay (BYOL) 1e-4
Momentum coefficient β (BYOL) 0.99
Momentum coefficient β (DINO) 0.996
Batch size (DINO, SimSiam) 32
Batch size (BYOL, Barlow Twins) 256

G-BT
λ (for Barlow Twins loss) 0.005
Masking aggregation factor 12 hours
Default threshold 1.8

Conv1D AE (data)
Layers 3
Padding 1
Kernel size (1, 4)
Channels 32-16-8
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A.3 COHORT-WISE MODEL PERFORMANCE

Table 4: Model performance for cohort Test 1, average (SD), alert rate within ±1% of 7% target
alert rate

Model Contrast Recall% Generalizability%
Pretrained ConvNeXt Tiny (image) Fixed 86.06 100
Pretrained Xception Net (image) Fixed 87.12 88.89
Pretrained MobileNet V2 (image) Fixed 93.15 100
G-BT Bijlani et al. (2024) (graph) Fixed 84.55 (5.02) 92.22 (4.97)
1D Conv AE Fixed 75.25 (5.46) 82.22 (5.44)
1D Conv (SimSiam) Fixed 81.24 (1.69) 90.00 (4.65)
1D Conv (Barlow Twins) Fixed 81.36 (5.52) 90.00 (4.65)
Transformer (BYOL) Fixed 84.95 (2.56) 93.33 (2.22)
Transformer (Barlow Twins) Fixed 80.45 (1.12) 87.78 (2.22)
Transformer (SimSiam) Fixed 84.62 (4.7) 92.22 (4.44)
Transformer (DINO) Fixed 83.95 (2.52) 92.22 (3.04)
Transformer (BYOL) Adaptive 84.68 (5.27) 93.33 (5.44)
Transformer (Barlow Twins) Adaptive 81.24 (4.07) 90.00 (2.22)
Transformer (SimSiam) Adaptive 84.29 (1.95) 92.22 (2.72)
Transformer (DINO) Adaptive 86.58 (2.31) 94.44 (0)

Table 5: Model performance for cohort Test 2, average (SD), alert rate within ±1% of 7% target
alert rate

Model Contrast Recall% Generalizability%
Pretrained ConvNeXt Tiny (image) Fixed 61.53 70.83
Pretrained Xception Net (image) Fixed 80.89 91.67
Pretrained MobileNet V2 (image) Fixed 81.84 95.83
G-BT Bijlani et al. (2024) (graph) Fixed 81.15 (8.46) 91.67 (5.89)
1D Conv AE Fixed 83.06 (4.89) 90.83 (3.12)
1D Conv (SimSiam) Fixed 81.24 (1.69) 90.00 (4.65)
1D Conv (Barlow Twins) Fixed 81.36 (5.52) 90.00 (4.65)
Transformer (BYOL) Fixed 76.09 (2.21) 85.83 (2.04)
Transformer (Barlow Twins) Fixed 81.92 (4.37) 91.67 (4.56)
Transformer (SimSiam) Fixed 81.66 (4.39) 91.67 (2.63)
Transformer (DINO) Fixed 82.14 (5.03) 89.17 (4.25)
Transformer (BYOL) Adaptive 84.81 (3.77) 94.17 (4.25)
Transformer (Barlow Twins) Adaptive 82.65 (3.71) 90.83 (3.12)
Transformer (SimSiam) Adaptive 79.92 (1.78) 89.17 (2.04)
Transformer (DINO) Adaptive 83.73 (2.08) 93.33 (2.04)
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Table 6: Model performance for cohort Test 3, average (SD), alert rate within ±1% of 7% target
alert rate

Model Contrast Recall% Generalizability%
Pretrained ConvNeXt Tiny (image) Fixed 92.75 95.65
Pretrained Xception Net (image) Fixed 72.46 78.26
Pretrained MobileNet V2 (image) Fixed 72.46 78.26
G-BT Bijlani et al. (2024) (graph) Fixed 77.39 (8.78) 80.00 (7.28)
1D Conv AE Fixed 78.84 (4.92) 80.87 (5.22)
1D Conv (SimSiam) Fixed 81.89 (5.71) 86.09 (6.45)
1D Conv (Barlow Twins) Fixed 80.00 (6.05) 83.48 (6.45)
Transformer (BYOL) Fixed 81.45 (2.85) 85.22 (3.48)
Transformer (Barlow Twins) Fixed 83.19 (2.65) 84.35 (2.13)
Transformer (SimSiam) Fixed 82.9 (4.8) 86.96 (4.76)
Transformer (DINO) Fixed 85.8 (5.49) 88.69 (5.22)
Transformer (BYOL) Adaptive 73.62 (6.44) 79.13 (6.39)
Transformer (Barlow Twins) Adaptive 83.04 (5.2) 84.35 (6.51)
Transformer (SimSiam) Adaptive 88.7 (4.77) 90.43 (5.07)
Transformer (DINO) Adaptive 83.62 (2.65) 88.69 (3.48)

A.4 TRANSFORMER ENCODER

Transformer encoder layer

Hours

Daily sensor data

......P0 P1 P2 P23

......

Hour 0 Hour 1 Hour 2 Hour 23

Projection
Daily embedding

Embedding layer

Positional

head

encoding

Figure 2: Transformer Encoder applied to temporal sensor data. Hourly data is fed into an embed-
ding layer and position-encoded in time order. The Transformer encoder layer employs self-attention
and position-wise feedforward layers, followed by a projection head to produce the daily embedding.
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A.5 ATTENTION MAPS

Figure 3: Temporal attention map (left) and feature importance (right) for a participant day flagged
as anomalous. The peak attention scores are observed around 2-3 PM. The bathroom sensor had the
most significant impact on the model outcome.

Figure 4: Visualization of the spatiotemporal “signature map” for a specific participant day, merging
temporal attention with sensor importance. The bathroom sensor input had the most significant
impact on the model outcome, with peak attention scores observed at 7 AM, 12 PM, 2 PM, and 8
PM. Lounge and hallway activity were contra-indicative of the model’s decision.
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