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ABSTRACT

Large Vision-Language Models (LVLMs) have demonstrated outstanding per-
formance in various general multimodal applications such as image recogni-
tion and visual reasoning, and have also shown promising potential in special-
ized domains. However, the application potential of LVLMs in the insurance
domain—characterized by rich application scenarios and abundant multimodal
data—has not been effectively explored. There is no systematic review of multi-
modal tasks in the insurance domain, nor a benchmark specifically designed to
evaluate the capabilities of LVLMs in insurance. This gap hinders the development
of LVLMs within the insurance domain. In this paper, we systematically review and
distill multimodal tasks for four representative types of insurance: auto insurance,
property insurance, health insurance, and agricultural insurance. We propose INS-
MMBench, the first comprehensive LVLMs benchmark tailored for the insurance
domain. INS-MMBench comprises a total of 8,856 thoroughly designed multiple-
choice questions, covering 12 meta-tasks and 22 fundamental tasks. Furthermore,
we evaluate multiple representative LVLMs, including closed-source models such
as GPT-4o0 and open-source models like BLIP-2. Our evaluation not only validates
the effectiveness of our benchmark but also provides an in-depth performance
analysis of current LVLMs on various multimodal tasks in the insurance domain.
We hope that INS-MMBench will facilitate the further application of LVLMs in
the insurance domain and inspire interdisciplinary development. We will release
our dataset and evaluation code.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have demonstrated remarkably powerful semantic
understanding and conversational capabilities (Wei et al., 2022} |Kasneci et al., 2023; Zhao et al.,
2023a;|Shen et al.||2023;Zhang et al., 2022), profoundly impacting human work and life. Building
on this foundation, Large Visual Language Models (LVLMs) have taken a further step by mapping
and aligning visual and textual features, enabling the processing and interaction with multimodal
data (Bat et al.,[2023; Zhu et al.| |2023} [Wang et al., 2024c; |Yin et al., 2023)). Researchers have found
that LVLMs exhibit exceptional performance in general tasks such as image recognition, document
parsing, and OCR processing (Yang et al.,|2023; |L1 et al., 2023b; [Xu et al., [2023). Beyond exploring
general capabilities, researchers have also begun to apply LVLM:s to various specialized domains such
as healthcare (Hu et al., 2024; [Wang et al., 20244a)), autonomous driving (Dewangan et al., 2023; L1
et al.,[2024b) and social media content analysis (Lyu et al.l 2023; Zhang et al.,2024b). By exploring
the capabilities of LVLMs in specialized domains through qualitative and quantitative methods, these
studies have demonstrated various application potentials.

Insurance, as a discipline encompassing numerous multimodal application scenarios, involves ex-
tensive use of multimodal data and computer vision algorithms in its actual operations (Fernando
et al.,[2022;|Sahni et al., 2020; Zhang et al.|[2020; [Li et al.| [2018). This offers vast potential for the
integration of LVLMs with the insurance industry. For instance, in auto insurance, analyzing images
of damaged vehicles can enable quick assessments and accurate estimations of damage (Mallios
et al.| 2023). Similarly, in property insurance, analyzing images of buildings can help evaluate
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Figure 1: Overview of INS-MMBench. INS-MMBench constructs 12 meta-tasks (represented in the
inner circle) and 22 fundamental tasks (represented in the outer circle) across four types of insurance,
distinguished by four primary colors: blue, red, , and green. For each fundamental task, we
provide an example of image-question pair.

potential risks (Xu et al.,[2021)). However, existing research (Lin et al.| [2024) has only qualitatively

analyzed the application of LVLMs in the insurance domain, without systematically organizing
related multimodal tasks or constructing domain-specific benchmarks. This has hindered the in-depth
evaluation and promotion of LVLMs’ capabilities within the insurance domain.

To address this challenge, we introduce INS-MMBench, the first comprehensive LVLMs benchmark
for the insurance domain (Figure [I). In our work, we first systematically organize and refine a
multimodal task framework across four representative types of insurance: auto, property, health, and
agricultural insurance, using a bottom-up hierarchical task definition methodology. Next, we execute
a benchmark construction pipeline, including data search, data processing, and question/answer
construction. Finally, we propose INS-MMBench, which includes a total of 8,856 thoroughly
designed multiple-choice visual questions and images, comprehensively covering 12 meta-tasks and
22 fundamental tasks, spanning key insurance stages such as underwriting, and claim processing.

Furthermore, we select 10 LVLMs for evaluation and conduct a comprehensive analysis of the
results. The key findings from the evaluation are as follows: (1) Overall, none of the selected
LVLMs score over 70, and LVLMs’ performance is not superior to the human baseline results in
many tasks, reflecting the complexity and challenge of insurance multimodal tasks; (2) There are
significant differences in LVLMs’ performance across different insurance types, with better results
in auto insurance and health insurance compared to property insurance and agricultural insurance,
which indicates that the application of LVLM:s in the insurance domain might benefit from a gradual
approach; (3) LVLMs exhibit marked differences in performance across different meta-tasks, closely
related to the task type and the image type; (4) The gap between open-source and closed-source
LVLMs is narrowing, with some open-source models now approaching or even surpassing the
capabilities of closed-source models in some tasks; (5) The primary reasons for LVLMs’ errors on
the INS-MMBench are lack of knowledge and reasoning skills in the insurance field. Although
prompt engineering can partially mitigate this issue, further research and optimization specifically for
insurance-related tasks are still needed.

In summary, our main contributions are as follow: (1) We introduce INS-MMBench, the first
systematic benchmark designed to evaluate LVLMs in the insurance domain; (2) We conduct a



Under review as a conference paper at ICLR 2025

thorough review and distillation of multimodal tasks specific to selected insurance types, using a
bottom-up hierarchical task definition methodology; (3) We perform a comprehensive evaluation of
representative LVLMs using INS-MMBench, offering insights that guide future advancements of
LVLMs in the insurance sector.

2 RELATED WORKS

2.1 LARGE VISION-LANGUAGE MODELS

With the rapid development of Large Language Models (LLMs) (Chang et al., 2024; |Wei et al.|
2022; |[Huang et al., 2022), researchers are leveraging the powerful generalization capabilities of
these pre-trained LLMs for processing and understanding multimodal data (Ye et al.| 2023; Zhao
et al., [2023b; |Deshmukh et al., 2023). A key area of focus is the use of Large Vision-Language
Models (LVLMs) for visual inputs. LVLMs employ visual encoders and visual-to-language adapters
to encode the visual features from image data and align these features with textual features. The
combined features are then processed by pre-trained LLMs, leading to significant advancements in
visual recognition and understanding (Yin et al.| {2023} |Wu et al.| 2023).

Various open-source and closed-source LVLMs are continuously emerging. In the realm of open-
source models, notable examples include LLaMA-Adapter (Zhang et al.,[2023), LLaVA (Liu et al.,
2024), BLIP-2 (Li et al., [2023c), MiniGPT-4 (Zhu et al.,2023), and InternVL (Chen et al., [2023).
These models have successfully integrated visual and textual modalities, achieving commendable
results. In the closed-source domain, representative models include GPT-40 (OpenAl, |2024), GPT-
4V (Achiam et al.||2023), Gemini (Google, |2024), and Qwen-VL (Team,|2024), all of which have
demonstrated outstanding performance in numerous tests and evaluations (Yang et al., 2023; [Fu et al.|
2023;|L1 et al., [20231). We intend to evalute both open-source and closed-source LVLMs to verify the
capability of different models in the insurance domain.

2.2 BENCHMARKS FOR LARGE VISION-LANGUAGE MODELS

As research into LVLMs intensifies, an increasing number of researchers are proposing benchmarks
to evaluate the capabilities of models (Ye et al.,2023;|Zhang et al.,|2024a; |Liu et al.,2023a; |Chen
et al.,|2024b). Based on the scope of capability evaluation, these studies can be categorized into three
types: task-specific benchmarks, comprehensive benchmarks, and domain-specific benchmarks.

Comprehensive benchmarks are characterized by their breadth and generality. Researchers
construct these benchmarks by defining and categorizing the general capabilities and tasks of LVLMs,
resulting in a comprehensive and wide-ranging evaluation. Representative studies include LVLM-
eHub (Xu et al.,|[2023), SEED-Bench (Li et al., 2023bta), MMBench (Liu et al.,[2023c), MME, and
MMT-Bench (Ying et al., [2024)).

Task-specific benchmarks focus on particular tasks and types of visual data, providing detailed
task definitions. Examples include SciFIBench (Roberts et al., [2024) for scientific images, MMC-
Benchmark (Liu et al.,2023b) for charts, MVBench (Li et al., [2023d) (using video frames as input)
for videos and SEED-Bench-2-Plus (Li et al.| | 2024a) for web pages, charts and maps.

Domain-specific benchmarks are designed for visual tasks within specific professional domain.
Due to the specialized knowledge and unique tasks of these domains, general benchmark cannot
fully meet the needs of evaluating LVLMSs in these areas. As a result, researchers have begun
proposing specialized benchmarks for domains such as healthcare (OmniMedVQA (Hu et al.; [2024)),
mathematics (Lu et al.| 2023;|Wang et al., 2024b), autonomous driving (Talk2ZBEV-Bench (Dewangan
et al.,2023)), and geography (Roberts et al.,|2023). However, as mentioned previously, the insurance
domain and even the finance domain currently lack corresponding domain-specific benchmarks for
LVLMs (Chen et al.| [2024a; |Li et al.| 2023¢e; [Lin et al., 2024). Our work introduces INS-MMBench to
address this gap, aiming for a significant advancements in the application of LVLMs in the insurance
domain.

As shown in Table[I] a thorough comparison is conducted based on the three benchmark categories
defined above. Six relevant benchmarks are identified and compared in terms of benchmark type,
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Table 1: Comparison of Different Benchmark Datasets.

Dataset Type Size Models Potential Overlap
INS-MMBench (Ours) Domain-specific: insurance 8,856 10 -
SEED-Bench (Li et al.|[2024a) Comprehensive 19,242 18 No
MMBench (Liu et al. c Comprehensive 2,974 14 No
SciFIBench [Roberts et al. (2024) Task-specific: scientific images 1,000 29 No
MMC-Benchmark |Liu et al.|(2023b Task-specific: charts 2,000 6 No
OmniMedVQA (Hu et al. Domain-specific: math 127,995 12 Yes
Mathvista (ILu et al. Domain-specific: medical 5,487 9 No
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Figure 2: An illustration of our bottom-up hierarchical task definition method. First, we identify and
categorize different insurance stages. Next, we enumerate the key visual elements required at each
stage. Based on these key visual elements, we define the fundamental tasks. Finally, we cluster the
fundamental tasks to form meta-tasks.

dataset size, the number of evaluated models, and potential overlap with our benchmark. This
comparison highlights the distinct nature of our benchmark and underscores its contribution to the
insurance domain, while also providing context in relation to existing benchmarks across other
domains.

3 INS-MMBENCH

3.1 TASKS

Given the differences in workflows among various types of insurance in practical operations, we
select four core types for building this benchmark: auto insurance, commercial/household property
insurance, health insurance, and agricultural insurance. Our selection is based on a comprehensive
consideration of both the wide coverage these types offer across personal and general insurance,
as well as the unique visual tasks associated with each. On the one hand, These categories cover
both life and property insurance, which are the most prevalent in the insurance market and highly
representative (Weedige et al.,[2019; Driver et al.,[2018). On the other hand, these insurance types
are chosen for their distinct multimodal tasks that are closely aligned with practical applications in
the field. For instance, auto insurance involves the assessment of vehicle damage through visual
inspection, while property insurance covers evaluations of damaged buildings or personal property.

To ensure that our evaluation tasks closely align with real-world applications in the insurance domain
and fully demonstrate the capabilities of LVLMs in this context, we have developed a bottom-
up hierarchical task definition methodology. Using this methodology, we construct a systematic
visual task framework specifically tailored for the insurance sector. As an example, we discuss the
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Figure 3: An illustration of our data collection and benchmark construction process. First, we collect
datasets from multiple public sources. Next, we perform manual filtering and random sampling of
the datasets, followed by the necessary data processing. Finally, both manual effort and GPT-40
are utilized to construct task questions and multiple-choice options, creating a multi-choice visual
question dataset.

detailed task construction process for auto insurance (see Figure ). Initially, based on the insurance
value chain theory (Eling & Lehmann, [2018; |[Eling et al., [2022), we select three key stages rich
in multimodal data and tasks: vehicle underwriting, vehicle risk monitoring, and vehicle claim
processing. At each stage, we identify the key visual elements that insurance operators need to extract.
For instance, during the vehicle underwriting stage, operators must confirm elements such as license
plate information, vehicle model, dashboard readings, and vehicle condition, which are crucial for
information collection, condition verification, and underwriting decision-making. Further, based
on these key visual elements, we define the fundamental tasks. For example, the need to extract
license plate information led to the definition of the License Plate Recognition task, while the need to
monitor risky driving behavior resulted in the In-car Driving Driving Behavior Detection task. By
following this process, we define a total of nine fundamental tasks for auto insurance. Finally, we
cluster these fundamental tasks based on their characteristics, forming four meta-tasks. Through this
approach, we have constructed a comprehensive set of 12 meta-tasks and 22 fundamental tasks across
the four types of insurance.

3.2 DATASET COLLECTION

Once the task definition is complete, we start collecting data and constructing the multi-choice visual
questions. Our data collection and benchmark construction process (see Figure [3) is as follows:

Data sources. We search for datasets using keywords related to the fundamental tasks in several
popular data sources, including Google, Kaggle, Github, and Roboflow. For tasks where multiple
public datasets are available, we compare and select these datasets according to usage metrics and
user reviews. We select datasets with high adaptability and usability for insurance scenarios, as
detailed in Table 2l

Data processing. This stage involves two key subtasks: data sampling and data structuring.

» Sampling: We employ a carefully considered sampling methodology. For classification
tasks such as Vehicle Damage Severity Detection and Crop Type Identification, where the
dataset contains a limited number of labels, we use stratified sampling to ensure balanced
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Table 2: An overview of the datasets used in INS-MMBench.

Insurance type Meta-tasks Fundamental tasks Dataset Size
CCPD (Xu et al..2018),

Auto insurance Vehicle information extraction License plate recognition . fructa ) 250
mjdfodf-gmbuf (workspace|2023)

Vehicle mileage reading TRODO (Mouheb et al.}[2021) 500

Vehicle warning indicator recognition dataset_dashboard (Dashboarddataset|[2024) 500

Vehicle appearance recognition Vehicle make and model identification Stanford Cars (Krause et al.,[2013) 500

Vehicle modification detection tuning-car-detection (f-rid nagiyev|[2023) 100

Driver-Distraction-Dataset
Driving behavior detection Incar driving behavior detection - 500
(Ezzouhri et al.|[2021)

Vehicle damage detection Vehicle damage part detection car_dent_scratch_detection-1 (Sindhu|2022) 500
Vehicle damage type detection Cardd (Wang et al.,|2023) 500
car-crash-severity-detection

Vehicle damage severity detection 8 308
(ansonlau1325@gmail.com|[2022)
Property insurance Property risk assessment Roof condition assessment damages-svll3 (Capstone2,12022) 500
Workplace risk assessment worker-safety (computer vision,|2022) 100
Property anomaly detection House fire detection fire-detection-cta61 (College![2023) 498
Property damage detection House damage type detection damage-type (Agyemang.|2022) 469
House damage level detection damage-level (Agyemang|2021) 409
Fall Detection Dataset
Health insurance Health risk monitoring Fall detection L Soohion _alee 374
(KANDAGATLA|2022)
Health device reading blood-pressure-monitor-display (Project}2024) 100
Medical image recognition Medical image organ recognition VQA-Med 2019 (Abacha et al.;[2019) 500
Medical image abnormality recognition VQA-Med 2019 (Abacha et al.;[2019) 500
icultural i
Agricultural insurance Crop type identification Field image crop type identification Fpi e CrOp TEEes 250
(AMAN2000JAISWAL, 2021)
Drone Imagery Classification
Satellite image crop type identification Training Dataset for Crop Types 498
in Rwanda (Chew et al.,|2020)
Crop growth status identification crop growth stage recognition wheat-growth-stage-challenge (DUTTA|2023) 500
Farmland damage detection Farmland damage type detection agriculture-vision (Chiu et al.,|2020) 500

representation across labels, minimizing bias. For tasks with more varied outputs, such as
Vehicle Plate Recognition, we adopt a random sampling strategy to capture a broad spectrum
of responses. Considering the balance of samples and the costs associated with LVLM
testing, we set our sample size as the larger of 500 or the maximum number that can be
sampled from each fundamental task dataset based on the sampling methodology proposed
above. The sample size of each task is shown in Table[2]

» Structuring: Label extraction varies depending on the dataset, generally falling into three
categories: (1) labels stored in a JSON file, (2) images categorized into folders by label, and
(3) labels embedded within image filenames. We process these accordingly, producing a
CSV file containing image filenames and their corresponding labels for further use.

Question and answer construction. We craft questions for each task, drawing on our designed
insurance scenarios. For datasets with up to four labels, the options correspond directly to the dataset’s
categories (e.g., the four levels of Vehicle Damage Severity: no accident, minor damage, moderate
damage, and severe damage). For datasets with more complex or freeform responses, we use GPT-40
to generate plausible incorrect options, thus completing our multiple-choice question format.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Selected LVLMs. We select a representative set of 10 LVLMs for our evaluation. This set includes
seven closed-source LVLMs: GPT-40, GPT-4V, GPT-40-mini, Gemini 1.5 Flash, QwenVLPlus,
QwenVLMax, and Claude3V_Haiku as well as three open-source LVLMs including LLaVA, BLIP-2,
and Qwen-VL-Chat.
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Table 3: Evaluation results of the LVLMs across different insurance types. The values in the table
represent the average accuracy. The highest and second-highest results are highlighted in bold and
underlined, respectively.

Auto Household/commercial Health Agricultural
Model Overall . . . A
insurance property insurance insurance insurance

GPT-40 69.70 86.00 63.77 76.73 36.38
Qwen-VL-Max 65.33 80.86 61.99 70.60 33.18
Gemini 1.5 Flash 64.21 79.40 60.18 70.31 32.84
GPT-4V 62.79 77.35 60.55 70.82 29.23
GPT-40-mini 60.66 77.77 58.53 63.61 25.80
Qwen-VL-Plus 54.94 71.42 48.51 64.92 20.48
Claude3V_Haiku 48.95 59.95 49.63 59.02 17.91
Qwen-VL-Chat 48.85 57.64 45.90 65.14 21.34
LLaVA 46.99 45.47 56.82 65.25 26.26
Human baseline 60.45 62.22 60.00 75.00 42.50

Evaluation methods. We employ VLMEvalKit, an open-source evaluation toolkit for LVLMs
developed by Duan et al.|(2024)), to conduct our evaluations. This toolkit supports integrated testing
of both closed-source and open-source LVLMs and is adaptable to custom benchmark datasets.
VLMEvalKit provides two methods for evaluating responses to multi-choice visual questions: exact
matching (finding "A", "B", "C", "D" in the output strings) and LLM-based answer extraction which
analyzes the answer outputs using a Large Language Model (we use GPT-40 here). These methods
help mitigate the issue of uncontrolled free-form content generation by LVLMs. The accuracy metric
is used as the evaluation criterion. Additionally, we conduct a human baseline experiment with three
graduate students specializing in Insurance. They are asked to answer a subset of 220 questions (10
from each fundamental task) from the benchmark of 8,856 questions.

4.2 MAIN RESULTS

Tables [3]and ] present the evaluation results of LVLMS across various insurance types and meta-tasks,
respectively, using random guessing as the baseline. The results are organized into three sections: the
first seven rows present the evaluation results of closed-source models, the middle three rows show
the evaluation results of open-source models, and the last row provides the human baseline. Based on
the results shown in Tables [3|and 4} the following observations can be made.

GPT-40 leads in performance but highlights the challenges for LVLMs in insurance tasks.
Overall, GPT-40 outperforms all other models, emerging as the top-performing LVLM on the INS-
MMBench with a score of 69.70. When compared to the human baseline, most LVLMs do not
significantly outperform humans across many insurance types and tasks, underscoring the challenging
nature of insurance-related tasks. These observations indicate significant potential for improvement
in applying LVLMs within the insurance domain.

LVLM:s show significant variance across different types of insurance. Experimental results reveal
that both open-source and proprietary LVLMs perform better in tasks related to auto insurance and
health insurance compared to those involving property and agricultural insurance. For instance,
GPT-40, which exhibits the best performance, scores 86.00 and 76.73 in auto and health insurance
tasks respectively; however, its scores drop to 63.77 and 36.38 in property and agricultural insurance
tasks, indicating a gap from practical application. Based on these observations, we suggest that
the future deployment of LVLMs in the insurance sector should be a progressive process, initially
focusing on areas like auto and health insurance where they are most effective.

LVLMs show significant variance across different meta-tasks. Experimental results reveal that
LVLMs demonstrate considerable performance variability across various meta-tasks, likely influenced
by the capability requirements and image characteristics corresponding to each task. Most models
excel in tasks like vehicle information extraction (VAE), vehicle appearance recognition (VAR),
and health risk monitoring (HRA), which primarily depend on visual element perception and object
detection. In contrast, performance dips in more complex tasks such as household/commercial
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Table 4: Evaluation results of the LVLM:s across different meta-tasks. The values in the table represent
the average accuracy. Specifically, VIE denotes vehicle information extraction, VAR denotes
vehicle appearance recognition, DBD denotes driving behavior detection, VDD denotes vehicle
damage detection, HPAD denotes household/commercial property anomaly detection, HPDD denotes
household/commercial property damage detection, HPRA denotes household/commercial property
risk assessment, HRM denotes health risk monitoring, MIR denotes medical image recognition,
CGSI denotes crop growth stage identification, CTI denotes crop type identification, FDD denotes
farmland damage detection. The highest and second-highest results are highlighted in bold and
underlined, respectively.
Model VIE VAR DBD VDD HPAD HPDD HPRA HRM MIR CGSI CTI FDD

GPT-40 81.12 9850 88.60 8394 9116 47.04 6550 95.72 66.50 30.80 41.31 34.60
Qwen-VL-Max 7528 9820 7480 81.88 80.72 4579  71.80 8824 64.00 29.60 40.37 26.00
Gemini 1.5 Flash  67.28 96.80 7920 84.40 7430 4636 7040 81.82 66.00 36.60 38.10 21.20
GPT-4V 72.16  93.60 6620 80.35 8835 41.80 6580 9412 62.10 23.60 39.17 20.00
GPT-40-mini 7024 9520 8580 7523 89.56  39.75 60.60 9439 5210 23.80 3436 15.00
Qwen-VL-Plus 63.84 9620 69.60 69.88 57.03 39.18 5640 86.10 57.00 1540 2540 18.20
Claude3V_Haiku 45.76  86.8 5240 66.13 7510 2790 6240 84.49 4950 19.80 23,53 7.60

Qwen-VL-Chat 4432 9460 59.60 5550 59.04 3041 60.00 80.75 5930 15.80 30.62 13.00
LLaVA 32.64 6020 51.80 49.69 8735 3485 65.00 83.69 57.54 2140 3757 1420

Human baseline 76.67 45.00 100.00 46.67 70.00 46.67 60.00 8500 65.00 60.00 35.00 40.00

Table 5: Comparison of Different LVLMs. VE, LLM and ToP indicate the visual encoder, backbone
large language model and number of total parameters, respectively.
Model VE LLM ToP  Pre-training data Size Visual instruction data Size

Stagel: LAION-en, LAION-zh, LAION-
COCO, DataComp, Coyo, CC12M, CC3M,
Coco
Stage2: LAION-en &zh, DataComp,
Coyo, CCI2M &3M, SBU, COCO,
Qwen-VL-Chat  ViT-bigG/14 Qwen-7B 9.6B In-house Data, GRIT, Visual Genome, 1.4B Self Instruction dataset 350K
RefCOCO, RefCOCO+, RefCOCOg, GQA,
VGQA, VQAv2, DVQA, OCR-VQA,
DocVQA, TextVQA, ChartQA, AI2D,
SynthDoG-en & zh, Common Crawl pdf&

HTML
LLaVA ViT-L/14 Vicuna 7B CC3M 595K LLaVA-Instruction 158K
BLIP-2 ViT-g/14 FlanT5-XL 4B COCO, Visual Genome, CC3M, CC12M, SBU, 129M - -
LAION400M

property damage detection (HPDD) and crop growth stage identification (CGSI), which demand
additional domain-specific knowledge or reasoning abilities. Furthermore, LVLMs generally struggle
with tasks involving satellite or drone aerial imagery, including household/commercial property risk
assessment (HPRA), crop type identification (CTI), and farmland damage detection (FDD), where
unique imaging perspectives and data complexities pose additional challenges.

Narrowing gap between open-source and closed-source LVLMs. A comparison of the overall
performance of open-source and closed-source LVLMs on INS-MMBench indicates that, while
there is still a notable gap between the two, some open-source LVLMs are nearing the performance
levels of their closed-source counterparts. This trend suggests that as open-source models grow
stronger and domain-specific data becomes more abundant, focusing on training high-performance,
domain-specific LVLMs could become a key development strategy in the application of LVLMs
within the insurance domain.

Closed-source LVLMs’ performance varies by training data size and methods. Our analysis
(shown in Table[5) reveals that both the scale of training data and the methodologies employed are
key factors influencing LVLM performance. Qwen-VL-Chat, trained on a massive dataset (over
1.4 billion images in Stage 1 and more in Stage 2), consistently outperforms models like LLaVA
and BLIP-2, which are trained on smaller datasets. Moreover, training methods significantly impact
versatility. BLIP-2, lacking instruction fine-tuning, struggles with diverse tasks, while LLaVA’s
emphasis on fine-tuning with its instruction dataset improves performance in specific tasks but limits
broader generalization. Qwen-VL-Chat’s balanced approach to pre-training and fine-tuning allows it
to excel across a wider range of tasks. This demonstrates that both extensive data and well-structured
training are essential for strong, generalizable model performance.
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4.3 ERROR ANALYSIS AND MITIGATION

To provide further insights into the limitations of LVLMs in the insurance domain, we conduct an
in-depth analysis of the errors made by selected models on the INS-MMBench. We examine the error
patterns of three models: GPT-40, Gemini 1.5 Flash, and Qwen-VL-Max, categorizing the errors into
four types: perception errors (where LVLMs do not recognize or detect objects or content within the
image), lack of insurance knowledge or reasoning ability (where LVLMs can recognize and perceive
visual content but lack the necessary insurance knowledge or reasoning skills to correctly answer the
question), refusal to answer (where LVLMs decline to respond to questions they deem sensitive or
illegal), and failure to follow instructions (where LVLMs do not adhere to the provided instructions,
resulting in irrelevant responses).

GPT-40 Gemini 1.5 Flash Qwen-VL-Max

59.5% 57.2%

63.6%

I Perception error
Lack of insurance knowledge or reasoning skill
Refuse to answer

Il Fail to follow instruct

Figure 4: The distribution of error types for GPT-40, Gemini 1.5 Flash, and Qwen-VL-Chat.

The error analysis results for these models are illustrated in Figure ] The most common error type is
the lack of insurance knowledge or reasoning ability, which accounts for 59.5%, 63.6%, and 57.2%
of the errors in GPT-40, Gemini 1.5 Flash, and Qwen-VL-Max, respectively. Due to insufficient
specialized knowledge and analytical skills in the insurance field, LVLMs struggle to accurately
assess and judge factors such as risk conditions and the extent of damage. Therefore, optimizing
LVLMs for the insurance domain should primarily focus on enriching domain-specific knowledge
and enhancing professional capabilities. Perception errors are the second most significant error
type. Limited by the capabilities of the visual encoder, LVLMs often fail to fully recognize and
capture detailed content in images, leading to misinterpretations. For instance, GPT-40 misidentifies a
damaged farmland image as ‘an abstract or close-up view of a textured surface with blue and purple
hues’. This type of error is common across LVLMs. Additionally, due to built-in safety monitoring
functions, GPT-40 and Gemini 1.5 Flash sometimes incorrectly flag images as illegal and refuse
to respond. Qwen-VL-Max, on the other hand, struggles with following instructions, occasionally
outputting content in Chinese, which compromises result accuracy.

To address the challenge of insufficient specialized knowledge and analytical skills in the insurance
field, we employ prompt engineering as a mitigation method. Specifically, we integrate additional
insurance-related information into the original prompts, such as detailed explanations of damage type
and severity assessment criteria, to supplement the model’s knowledge and support its analytical
reasoning. To validate the effectiveness of this approach, we select five models and evaluate them on
three tasks that require significant domain expertise in insurance: House Damage Type Detection,
Crop Growth Stage Detection, and Vehicle Damage Severity Detection. For each task, we randomly
sample 100 instances to create a test set.

As shown in Table [6, the results demonstrate that model performance significantly improves in
most cases when enhanced prompts are used. However, in some instances, particularly in the
vehicle damage detection tasks for Qwen-VL-Max and Qwen-VL-Plus, the inclusion of additional
information leads to confusion when it conflicts with the model’s existing reasoning, causing a
decline in accuracy. This finding highlights both the effectiveness of prompt engineering as a simple
and generalizable method and underscores the need to focus on enhancing LVLMs’ specialized
knowledge and analytical skills in the insurance domain for further performance improvements.
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Table 6: Results of enhanced insurance-related prompts on LVLMs performance across selected

tasks. The values represent accuracy (%), and changes in performance are highlighted in for
improvements and red for declines.
Model House Damage Type Detection Crop Growth Stage Detection Vehicle Damage Severity Detection
GPT-40 48.00/57.00 (+9) 32.00/51.00 (+19) 68.00/80.00 ( )
GPT-4V 33.00/40.00 (+7) 22.00/52.00 (+30) 68.00/77.00 (+9)
Gemini 1.5 Flash 33.00/47.00 (+14) 28.00/57.00 (+29) 68.00/68.00 (-)
Qwen-VL-Max 27.00/42.00 (+15) 30.00/58.00 (+28) 72.00/61.00 (-11)
Qwen-VL-Plus 35.00/38.00 (+3) 22.00/60.00 (+38) 68.00/58.00 (-10)

5 DISCUSSIONS AND CONCLUSIONS

In this paper, we introduce INS-MMBench, a multimodal benchmark tailored for the insurance
domain. To the best of our knowledge, this is the first initiative to systematically review multimodal
tasks within this sector and establish a specialized benchmark specifically for it. INS-MMBench
comprises 8,856 multiple-choice visual questions, covering four types of insurance, 12 meta-tasks,
and 22 fundamental tasks, effectively supporting the assessment of LVLMs’ applications in insurance.
Additionally, we evaluate several mainstream LVLMs and provide a detailed analysis of the results,
offering an initial exploration into the feasibility of employing LVLMs in the insurance sector and
providing support for future applications and research directions of LVLMs in this field. We hope
our benchmark and findings will guide future research and promote interdisciplinary integration and
practical applications within the sector.

However, this study has some limitations. A constraint is the lack of open-source image datasets
specific to the insurance domain, primarily due to privacy concerns. The image data utilized in this
study, sourced from publicly available datasets, undergoes rigorous curation to ensure that it aligns
as closely as possible with real-world insurance application scenarios. Nevertheless, since these
images do not from actual insurance cases, there remains an inherent potential for some degree of
discrepancy. This issue underscores the need for collaborative efforts between insurance companies
and the academic community to develop dedicated open-source image datasets for the insurance
domain. Another limitation is that INS-MMBench disaggregates the tasks of LVLMs into various
fundamental tasks, assessing LVLM performance from a micro perspective based on task-specific
accuracy. In reality, visual tasks in insurance often entail complex integration of multiple capabilities
and comprehensive analysis. Addressing this, our next step is to construct a more complex, integrated
application benchmark to enable a deeper evaluation of LVLM applications in the insurance domain.
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