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ABSTRACT

Variant effect predictors (VEPs) are designed to predict the impact of protein vari-
ants on cellular function, traditionally using data from multiple sequence align-
ments (MSAs). This assumes that natural variants are fit, a premise challenged by
pharmacogenomics, where some pharmacogenes have low evolutionary pressure.
In this context, deep mutational scanning (DMS) datasets are of particular interest
since they provide quantitative fitness scores for variants. In this work, we propose
a transformer-based matrix variational auto-encoder architecture and evaluate its
performances on 33 DMS datasets corresponding to 26 drug target and absorption-
distribution-metabolism-excretion (ADME) proteins available in the ProteinGym
benchmark. Our model trained on MSAs (matVAE-MSA) outperforms a model
similar to the widely used VEPs in pharmacogenomics, and sets a new zero-shot
prediction benchmark for 2 proteins related to the Noonan syndrome. We compare
matVAE-MSA with matENC-DMS, a model with similar capacity, but trained on
DMS data in a 5-fold supervised cross-validation framework. matENC-DMS out-
performs matVAE-MSA for 15 out of 33 DMS datasets, including all ADME, and
certain drug target proteins. Although our models do not outperform the best base-
line models, our results help shed new light on the role of evolutionary pressure
for the validity of the premise of VEP design. In turn motivating the development
of DMS datasets to improve VEPs on pharmacogene-related proteins.

1 INTRODUCTION

Variant effect predictors (VEPs) are mathematical models aiming at predicting the effect of one or
multiple variants in a sequence of amino-acids (AAs). The effect of a protein variant is typically
defined as a loss or gain of function of a cell carrying the variant, compared to a cell carrying a
wild-type (WT) protein without variant. The accurate prediction of variant effect has many promis-
ing applications for personalized medicine, particularly in the field of pharmacogenomics, where
variants on drug targets or Absorption-Distribution-Metabolism-Excretion (ADME) proteins are of
particular interest (Huang et al., 2016). In this context, VEPs can be used to assess individual patient
response to chemotherapeutic treatments from their genetic background, thus eliminating the need
for multiple attempts at treatments. The most effective VEPs have been designed using data from
multiple sequence alignments (MSAs) and based on the conservation assumption: fit variants were
selected out by nature and thus, learning a distribution over variants found in nature implicitly cap-
tures the biochemical constraints that characterize fit variants. New sequencing techniques combined
with machine learning could lead to significant advances in variant effect prediction, by providing
quantitative data in region of the protein sequence space unexplored in existing MSA datasets. Deep
mutational scanning (DMS) has recently emerged as a way to yield large-scale datasets of protein
quantitative fitness scores (Fowler & Fields, 2014). The fitness scores can also be obtained with
different selection assays, allowing to quantify various effects, e.g. effect on phenotype or effect on
structure. DMS thus allows to challenge the conservation assumption of VEPs design from MSAs.
This is in turn is of particular importance in pharmacogenomics, since pharmacogenes are generally
under low evolutionary pressure (Zhou et al., 2022; Ingelman-Sundberg et al., 2018).

In this article, we design a VEP and use it to evaluate the validity of the conservation assumption for
pharmacogene-related proteins. Our architecture exploits the structure of variational auto-encoders
(VAEs) and allows models of similar capacity and designs to be trained on both MSA and DMS
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data. We also exploit a transformer architecture in order to improve upon existing VAE-based VEPs.
Both VAE and transformers are key components of the best performing models in the ProteinGym
benchmark (Notin et al., 2023a). We experiment with a VAE-based model exploiting multimodal
priors, and we derive a matrix encoding scheme inspired from linear matrix decomposition to replace
the input flattening operation found for instance in DeepSequence.

Contributions Our contributions are summarized as follows:

1. We design protein specific models combining a VAE and a transformer for variant ef-
fect prediction. We study their zero-shot prediction performances on 33 deep mutational
scanning (DMS) datasets of drug related and ADME proteins available in the ProteinGym
benchmark.

2. We study the impact on performances of using expressive latent prior distributions when
the models are trained on MSA data available in ProteinGym. We experiment with standard
mixture of Gaussian (MOG) and VampPrior.

3. We adapt our models to directly predict labels from DMS datasets using a prediction head
from the latent space, thus preserving our model capacity. In light of the comparison in
performances of the models trained unsupervised on MSA and supervised DMS label data,
we discuss the extent of the validity of the conservation assumption.

1.1 RELATED WORKS

Zero-shot predictors VEPs exploiting site-independent position-wise frequencies of AAs in
MSAs remain the methods of choice in pharmacology, e.g. SIFT or Polyphen-2 (Ng & Henikoff,
2003; Adzhubei et al., 2010; Durbin, 1998). However, other models can achieve much better zero-
shot prediction performances on at least one pharmacogene-related protein DMS dataset (Details in
Table A.6), according to the recent ProteinGym variant effect prediction benchmark (Notin et al.,
2023a). Many of these models compute the functional cellular effect of a variant v compared to a
wild-type sequence x(wt), via the log-likelihood ratio:

ŷ = ln
p(x(v))

p(x(wt))
, (1)

where p(.) is a generative probability density chosen to maximize p(x(v)), for sequences x(v) from
the MSA. For instance, the Evolutionary Scale modeling (ESM) approaches (Rives et al., 2021;
Lin et al., 2023), rely solely on a transformer-based protein language model (PLM) for modeling
the distribution over sequences in MSAs. Tranception (Notin et al., 2022a) additionally integrates
predictions using position-wise frequencies of AAs in MSAs. TranceptEVE (Notin et al., 2022b)
combines the Tranception model with a VAE-based model (Frazer et al., 2021) for AA sequence
modeling. Other methods such as Masked Inverse Folding (MIF) (Yang et al., 2023) learn to predict
protein sequences from a given structure. VESPA (Marquet et al., 2022) combines protein sequence
embedding from PLMs with known bio-mechanical properties of AAs to predict variant effect with
a linear regression model. Other model do not rely on the ratio in (1) to compute variant effect. MSA
Transformer (Rao et al., 2021) is based on ESM and uses axial attention to optimize a masking loss
over an entire MSA, rather than on individual sequences. It learns a representation of Hamming
distances in the MSA and the hamming distance to WT sequence is used as a proxy for variant
effect. GEMME (Laine et al., 2019) predicts variant effect via the distance to WT sequence in an
evolutionary tree. This approach shows very good performances and has several order of magni-
tude fewer parameters than transformer-based approaches. DeepSequence (Riesselman et al., 2018)
introduces a VAE and approximates the distribution of input data x (Eq. (1)) with the variational
evidence lower bound.

Supervised learning predictors Recently, several models combining DMS and MSA datasets
have been proposed Hsu et al. (2022). The general idea is to combine sequence embeddings, e.g.
sequence one-hot encoding, with evolutionary fitness scores from pretrained models such as ESM or
DeepSequence. ProteinNPT is a conditional pseudo-generative model designed for exploiting DMS
data, jointly with MSA data in a semi-supervised framework (Notin et al., 2023b). In addition to
their novel architecture, the authors introduce several baselines consisting in exploiting prediction

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

scores from zero-shot prediction models pretrained on MSA, including DeepSequence and MSA
Transformer. SPIRED is a recent framework able to predict fitness scores as well as protein structure
(Chen et al., 2024). A pretrained ESM model is used for sequence embedding, and graph attention
networks and multilayer perceptron are trained using DMS data in a supervised framework.

Multi-modal prior distributions for VAEs VAEs, e.g. DeepSequence, assume that the input data
x ∈ {0, 1}L×d are generated from a latent variable of a D-dimensional vector space: z ∈ RD. The
latent variable is assumed drawn from a Gaussian prior p(z), and the generative process is modeled
with a distribution pθ(x|z). The explicit modeling of the latent variable z is an interesting feature of
VAEs, because it allows to put a formal prior distribution on the latent space. The other mentioned
models do not impose such structure, although interestingly the learnt representations in ESM was
shown to correlate with known bio-mechanical properties of AAs (Rives et al., 2021). Multimodal
mixture of Gaussian (MOG) priors have been proposed as latent prior distributions for unsuper-
vised clustering tasks (Dilokthanakul et al., 2017) with VAE. The authors used trainable mean and
covariances in latent space and showed through data sampling that the learnt mixture components
corresponded to meaningful characteristics of the input data. This was shown to have potential im-
plications for model interpretability in biological contexts (Varolgüneş et al., 2020). Further, the
VampPrior has been designed so that the statistics of the mixture components explicitly depend on
input space prototypes Tomczak & Welling (2018). This provides meaningful variables to probe for
interpretability rather than using a sampling scheme. To the best of the authors knowledge, current
methods employing VAEs for VEP have only been designed with unimodal prior distributions.

2 METHODS

A detailed description of the matVAE-MSA architecture is provided in section 2.1. A reduction
of the architecture with similar capacity and that can be trained on DMS data: matENC-DMS, is
proposed in section 2.2. The datasets that are used to train and evaluate the models are introduced
in section A.1.

Input Transformer DwFC

CE(x, x̂) FCB

DwFCTransformerOutput

x ∈ RL×d x′ ∈ RL×d s ∈ RH×d

ŝ ∈ RH×dx̂′ ∈ RL×dx̂ ∈ RL×d

Matrix encoding

Figure 1: Model architecture of matVAE-MSA. DwFC: Dimensionwise fully connected layer. CE:
Cross-entropy loss. FCB: Fully connected bottleneck.

2.1 MODEL DESCRIPTION

2.1.1 MATRIX DECOMPOSITION AND ENCODING

Matrix decomposition is a set of methods in linear algebra consisting in decomposing a matrix x ∈
RL×d (here d < L), into two (or more) matrices with interesting structure, e.g. unitary, triangular,
diagonal. For instance, the QR decomposition of x ∈ RL×d is of the form x = Q[RT ,0T ]T ,
where Q ∈ RL×L is unitary, R ∈ Rd×d is upper triangular and 0 is a (L − d × d)-dimensional
matrix of zeros. We call matrix encoding the use of the low dimension factor, here the R matrix,
as a compressed representation of the input x. For QR decomposition, the matrix encoding can be
formulated:

[sT ,0T ]T = Wx ∈ RL×d, (2)

where W = Q−1 ∈ RL×L is a linear transform and s = R. Linear decomposition methods are
often related to singular value decomposition, for instance the diagonal elements of R in the QR
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decomposition are the singular values of x. However, for one-hot encoded sequences of AAs, the
singular values are counts of each AA in the sequence, and the singular vectors are a permutation
of Id determined by the ordering of the counts of the AAs. In other words, the encoding produced
with such linear methods does not account for the global or relative position of AAs in the sequence,
and in particular, randomly permuting the rows of x leads to the same encoding. To ensure that the
model is flexible enough to learn a useful encoding, we propose to learn a representation of x with a
transformer, prior to reducing the first dimension to a fixed H < L with a trainable linear transform.
This is formulated as follows:

x′ = Transformer(x) ∈ RL×d,

s = DwFC(x′) ∈ RH×d,

where Transformer(.) and DwFC(.) are specified in the paragraphs below.

Transformer Transformers are effective sequence models that can transfer information between
any two positions within a sequence. The model we use is similar to the multi-layer encoding
transformer in (Vaswani et al., 2017). Individual layers encode an input sequence x ∈ RL×d into a
sequence x′ ∈ RL×d as follows:

x1 = Norm(τ1x+ (1− τ1)Attn(x)),

x′ = Norm(τ ′x1 + (1− τ ′)FC(x1)),
(3)

where Norm(.) is a Layer Normalization (Ba et al., 2016), FC(.) is a fully connected (FC) network
with ReLU activations, and Attn(.) is the masked scaled dot product attention from (Vaswani et al.,
2017). We use trainable τ1, τ

′ ∈ [0, 1]2 to control the gradient flow in the gated skip connections
(He et al., 2016). Note that we do not use positional encoding since (Rives et al., 2021) showed that
PLMs did not necessarily benefit from it. Instead, structure information is encoded in the mask of
the attention layer (See section A.2).

Dimension-wise FC (DwFC) We call DwFC the FC linear layer inspired from Eq. 2. This layer
is similar to a flattening followed by a linear transform with bias, but requires less parameters since
the same linear transform is used across dimensions. This operation replaces the direct flattening of
the input in DeepSequence. x′ ∈ RL×d is encoded in a protein length independent representation
s ∈ RH×d as follows:

s = Ux′ + b, (4)

where U ∈ RH×L and b ∈ RH are trainable weight and bias parameters.

2.1.2 FULLY CONNECTED BOTTLENECK (FCB)

The FCB is similar to a classical VAE (Kingma & Welling, 2014). s ∈ RH×d is flattened and then
encoded into a latent representation of fixed dimension:

h = FC(Vec(s)) ∈ RD, (5)

where Vec(.) denotes the flattening operation. h is then used to compute the statistics of the latent
vector z ∈ RD:

qϕ(z|x) = N (z; fµ(h), fσ(h)) , (6)
where h is a function of x and fµ, respectively fσ , is a 1-layer fully connected network returning
a mean vector, respectively a diagonal covariance matrix. For training, we introduce robustness
by drawing the latent vector z ∼ qϕ(z|x) using the reparameterization trick. At test time, we use
z = fµ(h) to reduce stochasticity. The latent distribution qϕ(z|x) is learnt to be close to a prior
distribution p(z) with respect to the Kullback-Leibler divergence (KLD). The latent vector z ∈ RD

is then used as input to a decoder network that aims to reconstruct the input s. The output to the
decoder, and thus of the FCB, is denoted ŝ ∈ RH×d.

Mixture of Gaussian (MOG) Prior To extend the work carried out in DeepSequence, we choose
prior distributions formulated as a MOG:

p(z) =
1

M

M∑
k=1

pk(z;µk,Σk), (7)
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where for k = 1, · · · ,M , pk(z;µk,Σk) = N (z;µk,Σk) are multivariate Normal distributions
with diagonal covariance Σk ∈ RD×D and mean µk ∈ RD. As opposed to Gaussian distribution,
MOG are multimodal and add more structure in latent space. This in turn can lead to a more expres-
sive generative model, with a latent space able to important differences in input space in different
modes, and fully use individual modes to encode subtle differences.

VampPrior The VAMP prior (Tomczak & Welling, 2018) is a special case of MOG with means
and covariance that are functions of trainable prototypes in input space. That is, for k = 1, . . . ,M ,
prototypes uk ∈ {0, 1}L×d are used to compute

hk = FC (DwFC (Transformer (uk))) ,

where DwFC(.) and Transformer(.) are defined in 2.1.1, and FC(.) is the fully connected encoding
defined in (5). The mean and covariance of each mixture components are then computed with fµ
and fσ , similarly to 6. The prior distribution is finally expressed as:

p(z) =
1

M

M∑
k=1

N (z; fµ(hk), fσ(hk)),

where for k = 1, . . . ,M , hk depends upon the k-th trainable prototype uk. In addition to the
potential benefits of multi-modal priors mentioned before, the VampPrior could provide a way to
interpret the modes of the prior distribution, in light of prototypes in input space.

2.1.3 DECODING

The decoding process denoted pθ(x|z), is symmetrical to the encoder, i.e. consists of a decoding FC
layer, and a dimension wise FC layer followed by a transformer. One important difference is that
the decoding transformer includes a temperature softmax output operation to ensure that the rows of
the reconstructed x̂ ∈ RL×d define proper discrete distributions.

2.1.4 LOSS FUNCTION

Our loss function is directly derived from the negative evidence lower bound (ELBO) used in VAEs
(Kingma & Welling, 2014). In the ELBO, one term corresponds to an expected reconstruction loss
(defined in section A.3). The other term is the KLD between the approximated posterior distribution
qϕ, a Gaussian, and the prior p, a mixture of Gaussian distributions. The KLD between qϕ and p
has no closed form expression and is therefore approximated with an upper bound (Durrieu et al.,
2012):

DKL

(
q ||

M∑
k=1

wkpk

)
≤ − ln

M∑
k=1

wke
−DKL(q||pk), (8)

where q, p1, . . . , pM are distributions such that q is absolutely continuous with respect to
p1, . . . , pM , for k = 1, . . . ,M wk ≥ 0 and

∑M
k=1 wk = 1. A proof of the inequality can be

found in (Rodrı́guez Gálvez, 2024, Appendix 6.B). Here, q = qϕ(z|x), for k = 1, . . . ,M wk = 1
M

and pk are mixture components defined in (7). The negative ELBO loss function is finally written
using (8) as follows:

l(x; θ, ϕ) = −

(
ln

1

M

M∑
k=1

e−DKL(qϕ||pk) + Eqϕ(z|x) [ln pθ(x|z)]

)
. (9)

The complete encoding/decoding structure of the model depicted in Fig. 1 is trained on MSA data
to minimize (9). At test time, the ELBO in (9) is used as an approximation of the log-evidence to
compute the log-likelihood ratio in (1).

2.2 REDUCTION OF THE MODEL FOR DMS DATA

Our reduced model uses the encoding part of matVAE-MSA, and replaces the decoding part with a
FC network prediction head to predict the quantitative DMS score y ∈ R:

h = FC(Vec(DwFC(Transformer(x)))) ∈ RD,

ŷ = FC(h) ∈ R,

5
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where h ∈ RD is similar to (5). The reduced model depicted in Fig. 2 is referred to as “matENC-
DMS”. matENC-DMS has a capacity very close to that of matVAE-MSA since the encoder is iden-
tical in the two models, and the decoder of matVAE-MSA is symmetrical to the encoder and only
aims at reconstructing the input. We argue that this is an ideal setup to test the conservation assump-
tion often used when designing VEPs: unfit variants were selected out by nature and thus, learning
a distribution over these sequences implicitly captures the biochemical constraints that characterize
fit variants.

Label/Input Transformer DwFC

MSE(y, ŷ) FC

FCOutput

x ∈ RL×d x′ ∈ RL×d s ∈ RH×d

h ∈ RD
ŷ ∈ R

y ∈ R

Matrix encoding

Figure 2: Model architecture of matENC-DMS. DwFC: Dimensionwise fully connected layer. CE:
Cross-entropy loss. FC: Fully connected.

3 EXPERIMENTS

In this section we provide details on our experimental design choices. Our model comparison setup
with the choice of baselines and performance metrics is explained in 3.1. The model architecture
hyper-parameters are discussed in A.2, and the hyper-parameters used for training are detailed in
A.3.

3.1 MODEL COMPARISON

Performance metrics The performances of our protein specific models are measured and reported
on corresponding individual DMS datasets, both in terms of Spearman’s Rank Correlation coef-
ficient (SpearmanR) and area under receiver operating characteristic (AUROC). The SpearmanR
measures the correlation between the ranks of the predicted scores and the ranks of the target scores.
Additionally, the target score is binarized in order to compute the AUROC. To allow for a mean-
ingful comparison of the AUROC scores, we use the binarization threshold used in ProteinGym. In
brief, given a DMS dataset, a threshold on the scores is selected manually between modes in case the
distribution of scores is bimodal, and as the median in case the distribution of scores is unimodal. In
the rest of the paper we will primarily compare spearmanR performances.

For matENC-DMS, we train our model on DMS data with supervised learning in a 5-fold cross-
validation framework. This first ensures that no variant/label pair is used for both training and
testing. Secondly, this ensures that the evaluation framework is comparable to that of matVAE-
MSA, with all variants in the DMS dataset used exactly once for validation. When a protein has
multiple DMS datasets, both datasets were split in 5 folds and the training (resp. validation) subsets
were merged. The performances on individual DMS datasets are then reported as the average of the
5 models trained on independent training sets.

Model design choices We experimented with mixture of diagonal Gaussian (MOG) priors with
K = 1, 10, 100 mixture components. For K = 1, the mean and standard deviation of the prior
distribution are fixed to µ1 = 0 ∈ RD and Σ1 = diag(0.01) ∈ RD×D. For K = 5, 10, 100,
the trainable means are initialized randomly from a Normal distribution and for k = 1, . . . ,K,
Σk = diag(0.01) ∈ RD×D is fixed. We also experimented with a VAMP prior and K = 5, 10, 100
mixture components. The prototypes in input space were initialized randomly and all trainable.
In addition to experimenting with different prior distribution hyperparameters, we performed an
ablation study of our model trained on DMS data. We report the performances of models with and
without Transformer(.) and DwFC(.) layers. The different models are summarized in Table 1.
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Source Model Name Short Description
Our matVAE-MSA Matrix variational auto-encoder trained on MSA data (Fig. 1)
experiments VAMPk matVAE-MSA with a Vamp prior and k components

MOGk matVAE-MSA with a MOG prior and k components
Vec-DMS Encoder trained on DMS data, without Transformer or DwFC

DwFC-DMS Encoder with DwFC trained on DMS data, without Transformer
matENC-DMS Matrix encoder trained on DMS data (Fig. 2)

ProteinGym “Best Benchmark” Best performing model flavor on a given DMS dataset
DeepSequence VAE-based model

ESM PLM-based model
Tranception PLM and position-wise AA frequency-based model

TranceptEVE PLM, EVE and position-wise AA frequency-based model
MSA Transformer Position-wise transformer and PLM-based model

GEMME Evolutionary tree based model
VESPA Linear Ensemble of PLM, bio-mechanic features and position-

wise frequency models.
MIF PLM and inverse folding model

Site-Independent Position-wise entropy-based model

Table 1: Summary of baselines and experiments.

Baselines All models with zero-shot prediction performances reported in the ProteinGym bench-
mark were considered for inclusion as a baseline. Only those models that demonstrated the highest
SpearmanR zero-shot performances on at least one pharmacogene-related protein DMS dataset were
used as a baseline. These models fall into one of the following model families: DeepSequence (Ries-
selman et al., 2018), ESM (Rives et al., 2021), Tranception (Notin et al., 2022a), MIF (Laine et al.,
2019), GEMME (Laine et al., 2019), VESPA (Marquet et al., 2022), MSA Transformer (Rao et al.,
2021). Within each family, the top-performing models vary in configuration (e.g., different param-
eter counts), which we refer to as model ”flavors” (See Table A.6). For example ESM2 (150M),
ESM2 (15B) and ESM-1v (ensemble) are all distinct flavors within the ESM family. We report
the performances at the level of model families, by the average performances of the best performing
model flavors of that family on individual DMS datasets. The details of which model flavor performs
best on which DMS dataset are shown in Table A.5. We also compare with the “Site-Independent”
model of ProteinGym, which is similar to SIFT and Polyphen-2, both still widely used in pharma-
cogenomics. In addition, we add a difficult baseline referred to as “Best Benchmark”, which is the
best performing model flavor across all model families for each DMS dataset (See Table A.6).

To compare our models trained only on DMS data, we use the supervised learning baselines from
ProteinGym with 5 “Random” cross-validation splits. For this case the models belong to the follow-
ing families: ESM, TranceptEVE, Tranception, DeepSequence, MSA Transformer. To the best of
the authors knowledge, all these baselines consist of zero-shot prediction models trained on MSA
data, and used pretrained in a supervised learning framework with embeddings of the protein se-
quence (See (Notin et al., 2023a)). ProteinNPT is a slightly different architecture which jointly
trains on MSA and DMS data (Notin et al., 2023b). The details of the best performing model flavors
are in Table A.7.

The prediction baseline models are summarized in Table 1.

4 RESULTS & DISCUSSION

4.1 CHOICE OF THE PRIOR DISTRIBUTION

Our experiments on zero-shot prediction tasks show that all our models with MOG and Vamp prior
distributions have similar average SpearmanR and AUROC performances, regardless of the num-
ber of components (Fig. 3a & Table 2c). All the models we evaluated perform slightly better than
MIF, Site-Independent and VESPA, but worse than all other baselines we chose (Table 2c). The
standard deviation across proteins of our model is rather large, similarly to the rest of the baseline
models, which prevents us from drawing strong conclusions. Numerically, our two best performing
algorithms have a MOG prior with 1 and 10 components respectively, and similar reported average
SpearmanR of 0.401 and 0.400 respectively. At the dataset level, 2/26 proteins: TPOR and SCN5A,
have an increase of at least 10% in SpearmanR performances for at least one latent prior with more
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than one component (Table 3b). A 10% threshold for relative improvement compared to MOG1
effectively separates outliers (Fig. A.9). Overall the choice of priors did not bring the expected im-
provement in neither SpearmanR or AUROC performances. Numerically, the worst performing al-
gorithm has a MOG prior with 5 components and an average SpearmanR of 0.395. For the rest of the
analysis, we use the model with a MOG prior and 1 component and refer to it as “matVAE-MSA”.
We choose this model because it is the model with the lowest complexity and which performs best on
average among our models trained on MSA data. Notably, for zero-prediction tasks, matVAE-MSA
outperforms the best benchmark model for two drug target proteins: RAF1 and MK01 (Table 2b).
These are two proteins involved in multiple cellular pathways, with several variants associated with
the Noonan syndrome (Motta et al., 2020). Improved predictions of variant effect for these proteins
can improve diagnosis and management of this syndrome, by reducing the effects of congenital heart
defect and several deformities (Pandit et al., 2007).
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(a) Raw performances. One point denotes a DMS
dataset and the boxplots describe the distribution of
scores across DMS datasets.

MOGk VAMPk
UnitProt ID 5 10 100 5 10 100
TPOR (%) 10.3 32.6 16.8 22.7 24.4 1.2

SCN5A (%) 12.5 28.5 -0.8 -19.3 -23.4 32.5

(b) Relative increase compared to MOG1. We show
the 2 proteins for which the relative increase is greater
than +10% for at least one choice of prior/number of
components.

Figure 3: SpearmanR zero-shot performances for various choice of latent priors.

4.2 TRAINING ON DMS DATASETS

The protein specific models trained on DMS data (matENC-DMS) perform more than 25% better
than the similar model trained on MSA (matVAE-MSA) with respect to the average SpearmanR (Ta-
ble A.4). Overall, all models expect Vec-DMS perform better than their zero-shot prediction counter
parts (Table 2a and Table 2c). The relative increase in performances of matENC-DMS compared to
matVAE-MSA across protein categories is shown in Fig. 4c. All the ADME related DMS datasets
show an increase in performances with matENC-DMS. Among “Drug target” proteins, 8 (10 DMS
datasets) show an increase in performances of more than +50% compared to matVAE-MSA. Since
the two models have similar capacity, one explanation could be the invalidity of the conservation
assumption for these specific proteins. Among other potential confounders known by the authors
(e.g. quality and size of MSA or DMS, protein characteristics), none could individually explain the
differences in performances according to a correlation analysis (Fig. A.10).

Our supervised matENC-DMS model outperforms, for both average SpearmanR and AUROC
scores, all our chosen zero-shot prediction baselines, except “Best Benchmark”, which include mod-
els with a lot more trainable parameters (Table A.4). Our ablation study shows that our model with-
out both Transformer and DwFC layer (Vec-DMS) performs the worse overall (See also Fig. 4d).
Our model with DwFC layer and without Transformer performs much better, and slightly worse
than both ESM and matENC-DMS. This indicates that the transformer layer is not determinant
for the good results of matENC-DMS. This could be due to the design of transformer itself, or
the quality of the PDB structures predicted by AlphaFold which might put an inadequate induc-
tive bias on the attention mechanism. Also, the models trained on DMS datasets have a larger
standard deviation than the rest of the baselines for both metrics. Fig. 4b shows graphically that
matENC-DMS outperforms the current zero-shot prediction “Best Benchmark” model on about half
(15/33) of the DMS datasets. In terms of the protein categories, the median SpearmanR perfor-
mances of matENC-DMS are below “Best Benchmark” for both “Drug target” and “ADME-other”,
and above for “ADME-transporter” and “ADME-CYP” (Fig. 4a). Further, the relative performances
of matENC-DMS versus “Best Benchmark” varies roughly between +75% and −75% for “Drug
target” (Fig. 4b). This is likely explained by the diversity of proteins included in the “Drug Target”
category. The performances vary less than expected, roughly between +25% and −25%, for the
ADME related categories.
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(d) Relative increase of matENC-DMS compared to
Vec-MSA.

Figure 4: SpearmanR performances of matENC-DMS versus other zero-shot prediction models, per
protein category. One point denotes the score obtained on a DMS dataset and the boxplots describe
the distribution of scores across DMS datasets.

We show comparison with supervised learning baseline models in Table 2a. Vec-DMS performs the
worse against all supervised learning baselines, while both matENC-DMS and DwFC-DMS perform
better than DeepSequence on average, although the standard deviation is larger than other baselines.
Overall our model perform similarly to the One-hot encoding method, but arguably worse than
fine tuning approaches: TranceptEVE, MSA transformer, ESM, Tranception; and a joint training
approach: ProteinNPT.

Table 2: Numerical results for our models against baselines. The models trained by us are in bold
font.

Model name SpearmanR
Best Benchmark 0.689 ± 0.162
ProteinNPT 0.671 ± 0.195
Tranception 0.646 ± 0.173
ESM 0.586 ± 0.153
MSATransformer 0.579 ± 0.17
TranceptEVE 0.536 ± 0.156
One-Hot Encoding 0.528 ± 0.168
matENC-DMS 0.522 ± 0.24
DwFC-DMS 0.507 ± 0.242
DeepSequence 0.501 ± 0.148
Vec-DMS 0.356 ± 0.236

(a) Numerical SpearmanR and AUROC (µ ± σ)
for matENC-DMS with different architectures against
baselines on supervised prediction tasks.

UniProt ID matVAE-MSA Best Benchmark
MK01 0.256 0.241
RAF1 0.541 0.482

(b) SpearmanR for two proteins where matVAE-MSA
outperforms the Best Benchmark baseline for zero-
shot prediction tasks.

Model Name SpearmanR AUROC
Best Benchmark 0.529 ± 0.151 0.794 ± 0.076
ESM 0.508 ± 0.157 0.78 ± 0.079
TranceptEVE 0.485 ± 0.167 0.763 ± 0.088
Tranception 0.478 ± 0.165 0.761 ± 0.086
GEMME 0.461 ± 0.155 0.750 ± 0.085
MSA Transformer 0.452 ± 0.167 0.746 ± 0.089
DeepSequence 0.425 ± 0.151 0.729 ± 0.084
MOG1 0.401 ± 0.138 0.721 ± 0.083
MOG10 0.400 ± 0.136 0.721 ± 0.084
VAMP100 0.399 ± 0.137 0.720 ± 0.082
VAMP10 0.396 ± 0.146 0.718 ± 0.087
MOG100 0.395 ± 0.142 0.717 ± 0.085
VAMP5 0.395 ± 0.14 0.716 ± 0.083
MOG5 0.395 ± 0.137 0.718 ± 0.084
MIF 0.394 ± 0.185 0.718 ± 0.091
Site-Independent 0.390 ± 0.145 0.713 ± 0.078
VESPA 0.383 ± 0.147 0.712 ± 0.091

(c) Numerical SpearmanR and AUROC (µ ± σ) for
matVAE-MSA with different priors against baselines
on zero-shot prediction tasks. The table is sorted ver-
tically with respect to the SpearmanR score.
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4.3 FUTURE WORK

Our results experimenting with expressive multi-modal priors did not show improvements compared
to simple Gaussian prior. The investigations of the potential pitfalls of our current approach as well
as further biology-relevant interpretations of the latent prior modes are left for future works.

Next, the joint use of both DMS and MSA data for training is an important next step towards im-
proved model performances. In our work, our primary objective was to evaluate the information
provided by MSA and DMS data separately for variant effect prediction. DMS and MSA data could
nonetheless be used jointly for training, for instance in a fine tuning approach, where a VAE model
is first trained on MSA data, and the encoding part is fine tuned on DMS data. This might lead to
improved performances since both datasets would then contribute to the model performances. To-
gether with experimentation on a wider range of proteins, fine tuning on DMS data is an interesting
research direction that we leave as future work.

Lastly, the design of a model able to learn from multiple proteins is also an interesting next avenue
for research. Our current architecture can be extended to work for proteins of different lengths
L1, L2, . . . . This could be done by slightly modifying the DwFC layer (Eq. (4)). An idea would
be to first define LM = max(L1, L2, . . . ) and initialize U ∈ RH×LM . At run time, with an input
protein encoding x′ ∈ RL×d, the first L columns from matrix U ∈ RH×LM can be used, which
leads to: s = U(:,1:L)x

′ + b, where U(:,1:L) denotes the sub-matrix of U which includes all the
rows and the first L columns of U. The complexity of the function described in (4) depends on
the length of the protein under consideration, while the memory complexity scales linearly with the
length of the longest protein. This is the same as our current approach where one model is fit to
individual proteins. It differs in that the weights included up to a column l would be shared between
all the proteins of length at least l. This makes the transformer learn to organize information, by
placing what is relevant to all proteins in the first rows of the representation x′ ∈ RH×d. An issue
with this approach when training on DMS data is that the meaning, support and distributions of the
DMS scores vary largely across DMS datasets, thus requiring the fitness scores to be standardized
(Fig. A.11). An interesting future research direction is the quantification of similarities in selection
assays of DMS datasets, so that they can exploited in regression models.

5 CONCLUSION

We proposed a transformer-based matrix variational auto-encoder and evaluated its performances
on DMS datasets of drug target and ADME proteins. We showed that advanced priors such as
mixture of Gaussians and VampPrior did not provide improvement over a simple Gaussian prior
for the latent space when our model was trained on MSA data (matVAE-MSA). matVAE-MSA
nonetheless outperformed on average a model similar to widely used VEPs in pharmacogenomics.
Moreover, matVAE-MSA outperformed the best benchmark models in ProteinGym for 2 proteins
related to the Noonan syndrome. Our architecture allowed to compare performances with models
of similar capacity but trained on DMS datasets (matENC-DMS) instead of MSA. Although DMS
datasets were often much smaller, matENC-DMS outperformed matVAE-MSA for 15 out of 33
DMS datasets, including those of all ADME and certain drug target proteins. MSAs may thus be
limiting the performances of VEPs for some proteins for which the conservation assumption does not
hold. This in turn motivates the development of DMS datasets and the study of their relationships,
in order to further improve variant effect prediction.
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A APPENDIX

A.1 DATASETS

We train separate models on 26 pharmacogene-related proteins for which the DMS and MSA
datasets are readily available from the publicly available ProteinGym repository (Notin et al., 2023a).
The pharmacogene-related proteins were divided into four functional categories: Drug Targets
(n = 21) and Absorption-Distribution-Metabolism-Excretion (ADME) related proteins (n = 5).
The ADME category is further divided into Cytochrome (“CYP”), “transporter” and “other” ADME
proteins. In total we compare performances on 33 DMS datasets, some proteins having several DMS
datasets obtained under different selection assays (Table A.5).

A.1.1 PREPROCESSING OF MSA SEQUENCES

We followed the preprocessing steps proposed in DeepSequence for the MSA data (Riesselman
et al., 2018). Sequences are removed from MSAs if they include more than 50% gaps. Columns
are removed from a MSA if they contain more than 30% gaps across the MSA. For consistency, the
columns that are removed from the MSA are also removed from the DMS datasets of that protein.
When training on MSAs, each sequence is sampled with a probability proportional to the reciprocal
of the number of sequences within a given Hamming distance from that sequence (Riesselman et al.,
2018). A summary description of the datasets is provided in Table A.3.

Table A.3: Description of DMS and MSA datasets per protein category. The most extreme values
are in bold. L: Preprocessed sequence length; MSA Num Seq (resp. DMS Num Seq): number of
sequences in the MSA (resp. DMS) datasets. ADME trans.: ADME Transporter.

Category L MSA Num Seq DMS Num Seq
ADME CYP (n=2) µ± σ 490 ± 0 260849 ± 0 6256 ± 161

min/max 490 / 490 260849 / 260849 6142 / 6370
ADME other (n=2) µ± σ 204 ± 57 86361 ± 94716 3246 ± 569

min/max 164 / 245 19387 / 153335 2844 / 3648
ADME tran. (n=3) µ± σ 579 ± 44 144978 ± 90553 10491 ± 951

min/max 553 / 630 40416 / 197259 9803 / 11576
Drug target (n=26) µ± σ 498 ± 427 62331 ± 125352 3374 ± 3134

min/max 31 / 1863 911 / 611225 63 / 12464

A.2 MODEL ARCHITECTURES HYPER-PARAMETERS

The encoding and decoding transformers of matVAE-MSA are designed with 3 transformer layers
described in (3). The embedding dimensions of all the layers are identical and equal to d. The use of
3 layers allows to use information from neighbors up to order 3 according to the graph defined by the
attention mask. The attention mask is a thresholded distance matrix derived from the WT protein
structures predicted by Alphafold2 (Jumper et al., 2021). This means that queries are allowed to
attend to keys in the attention dot product if the predicted distance in 3d between the corresponding
AAs is ≤ c. We chose c = 7Å which had the best performances for 4 out of 5 graph neural
network-based models predicting variant effects in (Gelman et al., 2021, Table S3). The structures
are readily available in the ProteinGym repository as PDB files (Notin et al., 2023a). For DwFC,
we chose H = min(Hmin, L) with Hmin = 200. This means that the dimension is not reduced
for proteins with small enough sequence length L ≤ Hmin. Following the discussion in Section
2.1.1, we experimented with Hmin ≈ d on some proteins, but could not get good performances.
For FCB, we used a 2-layer ReLU network with 1000 and 300 neurons, and output latent space
dimension D = 50, this is similar to the design of DeepSequence (Riesselman et al., 2018). The
networks fµ and fσ are both 1-layer FC ReLU networks with D neurons and output dimension
D. For stable computation of the closed form KLD, fσ practically outputs lnσ2 using an output
pointwise operation: x 7→ ln (ln (ex + 1)). Symmetrical design choices were used for the decoding
part of matVAE-MSA.

For matENC-DMS, the D-dimensional latent vector in the FC bottleneck is passed into a prediction
head with a 2-layer fully connected ReLU network, with 50 and 25 neurons, and an output dimension
of 1. The decoding parts of matVAE-MSA are not used.
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A.3 MODEL TRAINING

For matVAE-MSA, the models are trained on protein specific MSAs to minimize the negative ELBO
in (9). The expected reconstruction error is approximated with a 1-sample Monte Carlo method. The
reconstruction error is the cross-entropy between the true x ∈ RL×d and the reconstructed x̂. For
matENC-DMS, no variational formulation is used. The loss function is the mean squared error
(MSE) between the true label y ∈ R and the reconstructed label ŷ.

For all our included proteins, the loss function for matVAE-MSA is optimized using the ADAM
optimizer, with a fixed learning rate λ = 8e− 5, a batch size of 256 and 300, 000 training steps. For
matENC-DMS, the loss function is optimized with a fixed learning rate λ = 1e− 4, a batch size of
512 and 100, 000 training steps. The learning rates were chosen similar to the optimal one reported
for a graph neural network model in (Gelman et al., 2021, Table S3). The batch sizes were chosen
to obtain the most efficient use of our hardware. In matVAE-MSA, the memory footprint is mainly
due to the attention matrices in the encoder and decoder transformer. We double the batch size for
matENC-DMS compared to matVAE-MSA since matENC-DMS only has an encoder transformer.

A.4 PROTEINGYM BEST PERFORMING MODELS FOR A ZERO-SHOT PREDICTION TASK,
VERSUS OUR MODELS FOR BOTH ZERO-SHOT PREDICTION AND SUPERVISED LEARNING
TASKS.

Model Name SpearmanR AUROC

Best Benchmark 0.529 ± 0.151 0.794 ± 0.076
matENC-DMS 0.522 ± 0.24 0.784 ± 0.124
ESM 0.508 ± 0.157 0.780 ± 0.079
DwFC-DMS 0.507 ± 0.242 0.772 ± 0.125
TranceptEVE 0.485 ± 0.167 0.763 ± 0.088
Tranception 0.478 ± 0.165 0.761 ± 0.086
GEMME 0.461 ± 0.155 0.750 ± 0.085
MSA Transformer 0.452 ± 0.167 0.746 ± 0.089
DeepSequence 0.425 ± 0.151 0.729 ± 0.084
matVAE-MSA 0.401 ± 0.138 0.721 ± 0.083
MIF 0.394 ± 0.185 0.718 ± 0.091
Site-Independent 0.390 ± 0.145 0.713 ± 0.078
VESPA 0.383 ± 0.147 0.712 ± 0.091
Vec-DMS 0.356 ± 0.236 0.695 ± 0.123

Table A.4: SpearmanR and AUROC performances (µ±σ). The table is sorted vertically with respect
to SpearmanR. The name of the models trained by us is in bold font. The baseline
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A.5 RAW SPEARMANR AND AUROC PERFORMANCES FOR ZERO-SHOT AND SUPERVISED
LEARNING TASKS
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Figure A.5: Raw Spearman Rank correlation coefficient performances on all DMS datasets for
zero-shot prediction task. We display the performances of our models against the best performing
models in ProteinGym for pharmacogene-related proteins. The datasets are sorted in decreasing
“best benchmark” performances.
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Figure A.6: AUROC performances on all DMS datasets for zero-shot prediction task. We display the
performances of our models against the best performing models in ProteinGym for pharmacogene-
related proteins. The datasets are sorted in decreasing “best benchmark” performances.
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Figure A.7: SpearmanR performances on all DMS datasets for a supervised learning task. We
display the performances of our models against the best performing models in ProteinGym for
pharmacogene-related proteins. The datasets are sorted in decreasing “best benchmark” perfor-
mances.

A.6 PERFORMANCES WITH ASSAY SELECTION TYPE CATEGORY
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Figure A.8: SpearmanR performances of matENC-DMS versus other models per Selection Type
sub-groups.
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Figure A.9: Raw performances relative to MOG1. One point denotes a DMS dataset and the box-
plots describe the distribution of scores across DMS datasets.

A.7 STUDYING CONFOUNDERS FOR RELATIVE INCREASE FROM MSA
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Figure A.10: Univariate correlation analysis for potential confounders of the relative increase of
matENC-DMS from matVAE-MSA. None of the considered confounders are significant to explain
the relative increase from MSA. A multivariate correlation analysis was performed and did not show
any significance (not shown). MSA Num Seqs: Number of variants in MSA; Probability of Loss of
Function Intolerance: Genes with a pLI close to 1 are often associated with haploinsufficiency and
dominant genetic diseases; Expected (resp. Observed) SNVs: Expected (resp. Observed) Single-
nucleotide variant in each gene; Observed/Expected (o/e): Constrained genes have fewer observed
variants than expected (low o/e) and are under a higher degree of selection than less constrained
genes. DMS Num Seqs: Number of variants in DMS data;

A.8 ADDITIONAL DATASET INFORMATION
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Figure A.11: Empirical kernel density estimates of the density function of DMS datasets target score.
The support and range of each density function are standardized to [0,1] for visualization. The true
support of the density functions is annotated on the right hand side. The densities are displayed with
an increment of 1 along the y-axis.
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Category UniProt
ID

L MSA
Num
Seq

DMS
Num
Seq

Selection
Type

Best Benchmark - Flavor

ADME
CYP

CP2C9 490 260849 6142 Binding ESM2 (150M)

6370 Expression ESM2 (650M)
ADME
other

NUD15 164 153335 2844 Expression MSA Transformer (ensemble)

TPMT 245 19387 3648 Expression ESM-1v (ensemble)
ADME
transporter

S22A1 553 197259 9803 Expression ESM-1v (ensemble)

10094 Activity ESM-1v (ensemble)
SC6A4 630 40416 11576 Activity MSA Transformer (ensemble)

Drug target ACE2 805 10865 2223 Binding MIF
ADRB2 413 201108 7800 Activity GEMME
BRCA1 1863 974 1837 Organismal

Fitness
VESPA

CCR5 352 611225 6137 Binding Tranception L
CD19 556 1171 3761 Binding MIF
FKBP3 69 3211 1237 Stability ESM-IF1
KCNE1 129 2104 2315 Activity TranceptEVE L

2339 Expression Tranception M no retrieval
KCNH2 31 13900 200 Activity Tranception M
MET 287 184827 5393 Activity MSA Transformer (ensemble)
MK01 360 123422 6809 Organismal

Fitness
DeepSequence (ensemble)

MTHR 656 4724 12464 Organismal
Fitness

ESM2 (150M)

NPC1 1278 6234 63 Activity Tranception S

637 Activity MSA Transformer (ensemble)
OTC 354 134484 1570 Activity ESM-IF1
PAI1 402 51792 5345 Activity MIF-ST
PPARG 505 39639 9576 Activity ESM2 (15B)
RAF1 648 9609 297 Organismal

Fitness
MSA Transformer (single)

SCN5A 32 49959 224 Organismal
Fitness

ESM-1v (single)

SRC 536 37311 3366 Organismal
Fitness

ESM-1v (ensemble)

3372 Activity ESM-1v (ensemble)
3637 Activity ESM-1v (ensemble)

TPK1 243 21338 3181 Organismal
Fitness

ESM2 (15B)

TPOR 635 911 562 Organismal
Fitness

MSA Transformer (single)

VKOR1 163 14425 697 Activity ESM-1v (ensemble)
2695 Expression Tranception L

Table A.5: Deep Mutation Scanning datasets details retrieved from ProteinGym. Uniprot ID: Uni-
versal protein identifier; L: Preprocessed sequence length; MSA Num Seq (resp. DMS Num Seq):
number of sequences in the MSA (resp. DMS) datasets. Selection Type: DMS assay selection type.
Best Benchmark - Flavor: best performing model flavor for zero-shot prediction tasks.
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Best Benchmark - Family Best Benchmark - Flavor
ESM (n=15) ESM2 (15B) x2

ESM-1v (ensemble) x7
ESM2 (150M) x2
ESM2 (650M) x1
ESM-IF1 x2
ESM-1v (single) x1

MSA Transformer (n=6) MSA Transformer (single) x2
MSA Transformer (ensemble) x4

Tranception (n=5) Tranception L x2
Tranception S x1
Tranception M x1
Tranception M no retrieval x1

MIF (n=3) MIF-ST x1
MIF x2

DeepSequence (n=1) DeepSequence (ensemble) x1
TranceptEVE (n=1) TranceptEVE L x1
GEMME (n=1) GEMME x1
VESPA (n=1) VESPA x1

Table A.6: Summary of best model flavors and families for zero-shot prediction tasks.

Best Benchmark - Family Best Benchmark - Flavor
ProteinNPT (n=23) ProteinNPT x23
Tranception (n=5) Tranception Embeddings x5
MSA Transformer (n=2) MSA Transformer Embeddings x2
ESM (n=1) ESM-1v + One-Hot Encodings x1
MSA Transformer + One-
Hot Encodings (n=1)

MSA Transformer + One-Hot Encodings x1

TranceptEVE (n=1) TranceptEVE + One-Hot Encodings x1

Table A.7: Summary of best model flavors and families for supervised prediction tasks.
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