
MISA: Memory-Efficient LLMs Optimization with
Module-wise Importance Sampling

Yuxi Liu∗

Peking University
yuxiliu666@stu.pku.edu.cn

Renjia Deng∗
Peking University

2501210078@stu.pku.edu.cn

Yutong He
Peking University

yutonghe@pku.edu.cn

Xue Wang
Alibaba DAMO Academy

xue.wang@alibaba-inc.com

Tao Yao
Shanghai Jiao Tong University

taoyao@sjtu.edu.cn

Kun Yuan†

Peking University
kunyuan@pku.edu.cn

Abstract

The substantial memory demands of pre-training and fine-tuning large language
models (LLMs) require memory-efficient optimization algorithms. One promising
approach is layer-wise optimization, which treats each transformer block as a
single layer and optimizes it sequentially, while freezing the other layers to save
optimizer states and activations. Although effective, these methods ignore the
varying importance of the modules within each layer, leading to suboptimal per-
formance. Moreover, layer-wise sampling provides only limited memory savings,
as at least one full layer must remain active during optimization. To overcome
these limitations, we propose Module-wise Importance SAmpling (MISA), a novel
method that divides each layer into smaller modules and assigns importance scores
to each module. MISA uses a weighted random sampling mechanism to activate
modules, provably reducing gradient variance compared to layer-wise sampling.
Additionally, we establish an O(1/

√
K) convergence rate under non-convex and

stochastic conditions, where K is the total number of block updates, and provide a
detailed memory analysis showcasing MISA’s superiority over existing baseline
methods. Experiments on diverse learning tasks validate the effectiveness of MISA.
Source code is available at: https://github.com/pkumelon/MISA.

1 Introduction

Large language models (LLMs) have emerged as a cornerstone of modern artificial intelligence,
driving groundbreaking advancements in diverse domains such as machine translation, commonsense
reasoning, and mathematical problem-solving. Despite their impressive capabilities, fine-tuning
these models for downstream tasks introduces significant challenges [45, 46, 49], primarily due
to the substantial memory overhead required to store optimizer states, gradients, and intermediate
activations. These memory footprints are particularly acute in resource-constrained environments,
where the full-parameter fine-tuning of billion-scale models often exceeds the available hardware
capacity, thereby impeding the practical deployment and scalability of LLMs [69, 60, 14].

∗Equal contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/pkumelon/MISA

To address these challenges, parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank
Adaptation (LoRA) [24] and its variants [35, 12], have gained considerable attention. These methods
freeze the majority of pre-trained parameters and optimize only small, low-rank matrices integrated
into transformer layers, leading to substantial reductions in memory usage. However, while these
approaches are highly memory-efficient, they inherently constrain the model’s adaptability. By
optimizing only a sparse subset of parameters, such methods often lead to suboptimal performance
compared to full-parameter fine-tuning, as task-specific features crucial to downstream performance
may reside within the frozen portions of the network [33, 66].

Recent research has explored block-coordinate descent (BCD) [55, 59, 62], a classical strategy
for high-dimensional optimization, as a promising alternative for fine-tuning LLMs, resulting in
the layer-wise optimization methods such as BAdam [37], HIFT [36], LIFT [75], LISA [41], and
BlockLLM [47]. Unlike LoRA, these layer-wise methods optimize transformer blocks sequentially
while keeping the remaining layers frozen. By iteratively updating all transformer blocks, layer-wise
optimization effectively enables full-parameter updates, thereby preserving the expressive capacity
of the original model. Empirical studies demonstrate that layer-wise optimization consistently
outperforms LoRA in performance [37, 41]. Furthermore, by skipping gradient computations for
frozen layers, layer-wise optimization eliminates the need to store their intermediate activations,
offering greater memory efficiency than LoRA.

Motivating questions. All existing layer-wise LLM approaches [37, 36, 75, 41, 47] adopt the
traditional BCD optimization paradigm, in which the model weights are divided into manageable
blocks and updated iteratively. Although BCD provides a structured framework for handling the high
dimensionality of LLM weights, fully realizing its potential in practical LLM fine-tuning requires
addressing the following fundamental open questions.

Q1. How to effectively partition the LLM’s weights into blocks for optimization?

The choice of partitioning strategy can significantly impact optimization efficiency and convergence.
Current methods [37, 36, 75, 41, 47] treat transformer layers as homogeneous units, overlooking
the differing significance of internal modules—such as multi-head attention, feed-forward networks,
and normalization layers—within each layer. By uniformly updating all parameters in a layer, these
methods risk over-adapting less impactful modules while under-training critical ones, resulting in
suboptimal optimization performance. Thus, more effective partitioning strategies must be explored.

Q2. How to effectively sample each block to achieve fast empirical convergence?

The performance of layer-wise methods is highly influenced by the block sampling strategies.
However, current approaches primarily rely on cyclic [37] or uniform [36] sampling patterns, which
overlook the varying importance across layers. LISA [41] keeps the Embedding and LLM head
layers active but assigns equal sampling probabilities to all transformer layers, ignoring their varying
significance. BlockLLM [47] prioritize more frequent updates to critical layers but ultimately focus
on a small set of fixed blocks, failing to adequately explore the remaining layers. An effective
sampling strategy should maintain a balance between thorough exploration of the parameter space
and efficient exploitation of the most promising optimization directions to ensure rapid convergence.

Q3. How to establish convergence guarantees under practical LLM settings, incorporating Adam
optimizer, stochastic gradients, and multiple updates per sampled block?

Theoretical convergence of layer-wise LLM optimization remains understudied. Traditional BCD
optimization literature typically focuses on block-wise GD/SGD convergence [59, 61, 22]. Recent
works [37, 74, 41] provide convergence guarantees under restrictive assumptions, such as noiseless
gradients or single updates per sampled block. These analyses fail to reflect practical layer-wise
LLM optimization, where Adam optimizer, stochastic gradients, and multiple updates per block are
standard practice. A rigorous convergence analysis under these realistic conditions is essential for
broader adoption of layer-wise optimization methods.

Main contributions. To address the aforementioned open questions, we propose a novel Module-
wise Importance SAmpling (MISA) method. MISA partitions the LLM’s weights into smaller
modules, which serve as blocks for optimization. Additionally, we assign importance scores to
each module and develop an effective strategy that dynamically samples modules based on real-time
importance metrics. Our main contributions are summarized as follows:

C1. Module-wise optimization. We define a module as a matrix parameter within a transformer
layer associated with weight gradients. Empirically, we observe that internal modules within

2

transformer layers exhibit heterogeneous importance. Theoretically, we demonstrate that
decomposing each layer into smaller modules preserves more information in gradient, thus
motivating module-wise optimization. This addresses Question 1. Furthermore, we find this
fine-grained update strategy eliminates the need to load a full layer into memory, making it
more memory-efficient than layer-wise LLM optimization approaches [37, 36, 75, 41, 47].

C2. Improved importance sampling. Traditional sampling strategies often rely on heuristics,
which can be suboptimal for LLM optimization. To improve this, we parameterize the
gradient variance as a function of the sampling probability for each module and maximize
it to optimize the sampling strategy. Additionally, we introduce a strategy to balance
importance and uniform distributions, ensuring both comprehensive exploration of all
modules and efficient exploitation of critical ones, addressing Question 2.

C3. Convergence guarantees. We demonstrate that MISA achieves a convergence rate of
O(1/

√
K), where K represents the total number of block updates. Our theoretical guaran-

tees are derived under practical LLMs training scenarios, incorporating Adam optimization,
stochastic gradients, and multiple updates per sampled block, thus addressing Question
3. Conventional BCD analysis relies on the assumption that block gradients are unbiased
estimators of the full gradient—an assumption that fails when performing multiple up-
dates within the same block. Our new analysis addresses this limitation by establishing
fundamental connections between block-level gradients and the full gradient.

Experimental results. MISA demonstrates strong empirical performance.

E1. Fine-tuning. We evaluated MISA on different LLMs across three benchmarks: Common-
sense Reasoning [25], Math Reasoning [25], and Instruction Following, encompassing a
total of 16 datasets. We compared MISA against PEFT and layer-wise optimization methods,
including LoRA [24], DoRA [35], BAdam [37], and LISA [41]. Under comparable memory
constraints, MISA outperformed all baselines. An illustration of MISA’s superiority in
fine-tuning tasks is provided in Table 1, with more detailed results presented in Section 4.

E2. Pre-training. We trained the LLaMA2 130M and 350M variant [32] on the C4 dataset [46].
In 350M model training, MISA achieved a perplexity of 22.11 after 2.7B training tokens,
significantly outperforming GaLore’s 24.34 [71] , and approaching Adam’s 21.3.

Table 1: Comparison of fine-tuning methods on LLaMA3-8B across eight commonsense reasoning tasks. The
“ChatGPT” row presents results from ChatGPT obtained using Zero-shot CoT [58] with the GPT-3.5-turbo API.
"Hella." refers to the HellaSwag dataset [65], and "Wino." refers to the Winogrande dataset [50]. Memory usage
is reported without the application of additional memory-saving techniques such as gradient checkpointing or
flash attention. The symbol δ denotes the proportion of parameters updated in each training iteration.

Model Method Mem.(GB) BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c OBQA Avg.↑
ChatGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA3-8B

FT 150.5 75.1 89.2 80.4 96.2 88.3 92.4 82.5 89.8 86.7
LoRA 35.7 70.8 85.2 79.7 92.5 84.9 88.9 78.7 84.4 82.5
DoRA 54.1 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
LISA 56.3 74.6 88.1 81.5 96 86.4 92.5 81.7 86.2 85.9
BAdam 34.1 74.2 87.1 81.6 95 84.6 91.2 79.8 84.8 84.8
MISA(δ = 1%) 30.7 74.1 88.6 80.7 95 85.6 92 81 86.2 85.4
MISA(δ = 3%) 34.4 75.4 90.5 81.4 95.9 88.2 92.2 82.4 87 86.6

2 Module-wise Importance Sampling

2.1 Problem Formulation

We consider the following problem:
min
θ∈Rd

Eξ[F (θ; ξ)] (1)

where F (θ; ξ) is a loss function that depends on a random variable ξ, and θ represents the set of d
trainable parameters. Conventional algorithms update all elements of θ simultaneously, leading to
high memory and computational costs that hinder the training of LLMs on low-end hardware. In
this work, we propose an alternative formulation of the problem in (1). Specifically, we introduce a
block-wise representation of θ, defined as θ = (θ1, θ2, . . . , θB), where θb ∈ Rdb represents the b-th

3

block of weights. Here, we have d =
∑B

b=1 db. The resulting problem formulation is then given by:
min

θ1,...,θB
f (θ1, θ2, ..., θB) := Eξ[F (θ1, θ2, ..., θB ; ξ)].

2.2 Block Sampling Strategy

At each time step, block-wise LLM training updates only a subset of parameters {θi}. This approach
inherently reduces the number of trainable parameters, resulting in lower memory and computational
requirements. However, it also introduces greater variability in the gradient’s unbiased estima-
tor, which can potentially hinder convergence performance. This section will derive an effective
importance sampling strategy to enhance block-coordinate optimization.

Block coordinate descent. Let gnb := [∇f(θn)]b ∈ Rdb denote the b-th block gradient of ∇f(θn),
where b ∈ [B] is the block index and n ≥ 0 is the iteration index. Additionally, we define the matrix
Ub := [0; · · · ; Ib; · · · ; 0] ∈ Rd×db , where the b-th block of Ub is the identity matrix Ib ∈ Rdb×db ,
and all other blocks are zero. Suppose each block gradient gnb is sampled with probability pb, the
BCD algorithm will iterate as follows

θn+1 = θn − αUbg
n
b , where block b is sampled with probability pb.

where α is the learning rate. Assume f(θ) is L-smooth, we have

f(θn+1) = f(θn − αUbg
n
b) ≤ f(θn)− α⟨∇f(θn), Ubg

n
b ⟩+

Lα2

2
∥Ubg

n
b ∥2

(a)
= f(θn)− α(1− Lα

2
)∥gnb ∥2

(b)

≤ f(θn)− α∥gnb ∥2/2

where (a) holds because gnb = U⊤
b ∇f(θn) and (b) holds when α ≤ 1/L. Taking expectation on b,

E[f(θn)− f(θn+1)] ≥ α

2

B∑
b=1

pb∥gnb ∥2.

Importance sampling. An ideal update θn+1 should maximize the expected decrease E[f(θn)−
f(θn+1)], ensuring the most significant descent in the objective function. This can be achieved by

max
{pb}B

b=1

B∑
b=1

pb∥gnb ∥2, s.t.
B∑

b=1

pb = 1, pb ≥ 0.

Intuitively, this strategy prioritizes blocks with larger expected gradient norms, as they contribute
more significantly to optimization progress. However, excessively prioritizing important blocks can
lead to a scenario where only a few blocks are updated frequently. This results in over-exploitation at
the expense of exploration. To encourage broader exploration, we constrain the sampling probabilities
to stay close to a uniform distribution by incorporating a Kullback–Leibler (KL) divergence penalty:

max
{pb}B

b=1

B∑
b=1

pb∥gnb ∥2 − (1/η)KL(pb, qB), s.t.
B∑

b=1

pb = 1, pb ≥ 0, (2)

where qB = 1/B denotes the uniform distribution, and η > 0 is a coefficient controlling the trade-off
between exploration and exploitation. As η → 0, the KL divergence penalty dominates, and each pb
approaches uniform sampling; as η → +∞, the penalty vanishes, recovering standard importance
sampling. The following proposition provides a closed-form solution to problem (2).

Proposition 1. The optimal solution to problem (2) is given as follows

pnb =
exp

(
η∥gnb ∥2

)∑B
b=1 exp (η∥gnb ∥2)

, (3)

which is the sampling probability of block b at iteration n.

Practical implementation. The sampling probability in (3) is impractical to implement, as gnb =
[∇f(θn)]b represents a full-batch block gradient, which is inaccessible during LLM optimization.
In block-wise LLM training, each sampled block is typically updated for T steps using the Adam
optimizer before switching to another block. Let gn,tb := [∇F (θn,t; ξn,t)]b denote the b-th block
stochastic gradient at outer iteration n and inner update t. We approximate the full-batch gradient

4

norm ∥gnb ∥2 using the empirical average 1
T

∑T
t=1 ∥g

n,t
b ∥2, resulting in a practical sampling strategy:

pnb =
exp (ηGn

b)∑B
b=1 exp (ηG

n
b)

where Gn
b =

{
βGn−1

b +(1−β) 1
T

∑T
t=1 ∥g

n,t
b ∥2 If b is sampled;

Gn−1
b otherwise.

(4)

Instead of relying solely on the most recent T mini-batch block stochastic gradients, Gn
b aggregates

all historical stochastic gradients to approximate the full-batch block gradient norm ∥gnb ∥2 in (4).
To eliminate the impact of differences in the number of parameters across blocks on gradient norm
calculation, we actually use the scaled gradient norm in practice rather than the original gradient
norm, and the specific definition is provided in Appendix B.2. We thus address Question 2 by
answering how to effectively sample blocks.

Remark 1 (MEMORY AND COMPUTATION OVERHEAD). The computation and storage cost to
maintain {Gn

b }Bb=1 is negligible compared to that of the block stochastic gradients. See Sections G.3
and F.5 for details.

Remark 2 (CLARIFICATION ON "LAYER", "MODULE", AND "BLOCK"). A layer is a standard
transformer component (e.g., with MHA and FFN), a module is a fine-grained subcomponent within
a layer (e.g., Wq, Wk, Wv), and a block is a flexible optimization unit in block coordinate descent
that can be a layer, a module, or a group of modules.

2.3 Partition the Weights into Fine-Grained Modules Instead of Coarse Layers

Wq Wk Wv Wo Wgate Wup Wdown

0.0

0.2

0.4

0.6

0.8

1.0

1.2
G

ra
d

N
or

m
Layer 1
Layer 9
Layer 17
Layer 25
Layer 31

Figure 1: The gradient norm of different modules
in different layers when fine-tuning LLaMA3-8B.

Current approaches [37, 36, 75, 41, 47] often treat
transformer layers as homogeneous structures, ne-
glecting the distinct roles and contributions of their
internal components—such as multi-head attention
mechanisms, feed-forward networks, and normal-
ization layers. As shown in Fig. 1, different mod-
ules within the same transformer layer exhibit signifi-
cantly varying gradient norms, underscoring their dif-
fering levels of importance. Uniformly updating all
modules within a layer risks over-adapting less crit-
ical components while under-training more essential
ones, ultimately leading to suboptimal performance.

Motivated by this observation, we propose decomposing layers into distinct internal modules. In this
work, a module is defined as a matrix parameter within a transformer layer that is associated with a
weight gradient. For example, in the multi-head attention mechanism, we identify four modules—Wq ,
Wk, Wv, and Wo—while in the feed-forward network, we define two modules—Wup and Wdown.
In other words, we treat each module as a sampling block, addressing Question 2. Proposition 2
characterizes the advantages of module-wise over layer-wise block sampling.
Proposition 2. Suppose θb in problem (2) contains K modules such that θb = (θb,1, θb,2, . . . , θb,K)
which associates with block gradient gb = (gb,1, gb,2, . . . , gb,K). We further introduce pbj as the
sampling probability of the block gradient gb,j . Under this setting, problem (2) transforms into

max
{pbj}

B∑
b=1

K∑
j=1

pbj∥gnb,j∥2 − (1/η)KL(pbj , qBK), s.t.

B∑
b=1

K∑
j=1

pbj = 1, pbj ≥ 0, (5)

Here, qBK = 1/(BK) is the uniform distribution. Any layer-wise importance sampling (i.e., a
solution to problem (2)) is also a feasible solution to (5). Consequently, module-wise importance
sampling (i.e., the optimal solution to problem (5)) will yield a larger objective function value than
layer-wise importance sampling, making it a superior strategy to layer-wise sampling.

2.4 Module-wise Importance Sampling (MISA) Method

Based on the discussions in Sec. 2.2 and 2.3, we now introduce Module-wise Importance SAmpling
(MISA). The pseudocode for MISA is provided in Algorithm 1. MISA is a double-loop algorithm: the
outer loop, indexed by n, selects a module, while the inner loop (Lines 7-12) updates the parameters
of the selected module T times using the Adam optimizer, with each update indexed by t. As shown
in Line 1, MISA partitions the model into modules rather than layers. Lines 14-15 illustrate that
MISA follows the effective sampling strategy described in Proposition 1. By adjusting η, we can

5

balance exploration across all modules with exploitation of the more important ones. In Line 16,
the module weight θn,Tτn undergoes an additional Adam step to obtain θn+1,0

τn , which facilitates the
convergence analysis. In Line 17, we clear the optimizer states to ensure consistent memory efficiency
throughout the training process.

Algorithm 1 Module-wise Importance Sampling (MISA)
Require: θ0,N,T,B, η, α, δ > 0, β1, β2 ∈ (0, 1) and the sampling block τn at outer loop n

1: Partition the model into B modules (not layers); ▷ Partition weights into modules;
2: Initialize probability weights P 1 = (1

B , ..., 1
B);

3: Initialize the module gradient estimate G0
b = 0 for b ∈ [B] and let G0 = (G0

1, · · · , G0
B);

4: for n = 1, ..., N do
5: Sample Ln modules (labeled with index τn) according to Pn such that the ratio of trainable

parameter is less than δ. (See Algorithm 2 for more details); ▷ Importance sampling;
6: Initialize mn,0

τn = 0, vn,0τn = 0
7: for t = 1, ..., T do
8: Sample a batch of data and calculate block stochastic gradient gn,tτn for selected module τn;
9: Update the corresponding first-order and second-order momentum as follows:

10: mn,t
τn ← β1m

n,t−1
τn + (1− β1) g

n,t
τn , vn,tτn ← β2v

n,t−1
τn + (1− β2) (g

n,t
τn)2

11: Update the corresponding module as follows:

12: θn,tτn ← θn,t−1
τn − αmn,t

τn /(

√
vn,tτn + ε)

13: end for
14: Update Gn

b for each b ∈ [B] according to (4); ▷ Track block gradient norm;

15: Update pn+1
b ← exp(ηGn

b)∑B
j=1 exp(ηGn

j)
for each b ∈ [B]; ▷ Update sampling probability;

16: θn+1,0
τn ← θn,Tτn − α β1

1−β1

mn,T
τn√

vn,T
τn +ε

;

17: gτn ,mτn , vτn ← None ▷ Clear optimizer states;
18: end for
19: Return θN ,PN

Table 2: Comparison of existing memory-efficient optimization methods of LLMs.

LoRA[24] IST[64] GaLore[71] OwLore[30] BAdam[37] LISA[41] MISA

Full-rank Update ✗ ✗ ✗ ✗ ✓ ✓ ✓

Importance-aware ✗ ✓ ✗ ✓ ✗ ✓1 ✓

Fine-grained memory ✓ ✓ ✓ ✓ ✗ ✗ ✓

Gradient acccumulation ✓ ✓ ✗ ✗ ✓ ✓ ✓

w/o SVD ✓ ✓ ✗ ✗ ✓ ✓ ✓

Fine-Tuning ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pre-Training ✗ ✗ ✓ ✓ ✓ ✓ ✓

Convergence guarantee ✗ ✗ / ✗ / ✗ ,
1: LISA’s importance-aware strategy focuses only on the embedding layer and LM-head layer, while transformer
layers which account for the majority of model parameters still use uniform sampling.

/: GaLore’s convergence proof[71] holds only when the gradient exhibits a highly specialized structure, and BAdam’s
analysis[37] applies exclusively to the full-gradient regime. Their settings in the theoretical guarantees rely on
restrictive assumptions.

,: MISA’s framework is based on the standard assumptions for analyzing non-convex optimization problems, making
it more relevant to practical applications.

Table 2 provides a detailed comparison of existing optimization methods of LLMs. Notably, although
LISA finds the embedding and LM-head layers to be very important, MISA does not train them in
fine-tuning tasks because their parameters are too large (proportional to vocabulary size), and training
them would lead to a significant increase in memory consumption.

2.5 Memory Analysis

6

100 500 1000 1500
Sequence Length

17.5

20.0

22.5

25.0

27.5

30.0

32.5

M
em

or
y

(G
B

)

24 GB

MISA (=1%)
MISA (=3%)
LoRA (r=16)
LoRA (r=128)

Figure 2: Comparison of peak memory con-
sumption using MISA and LoRA fine-tuning on
LLaMA3-8B across various sequence length.

We perform detailed memory analysis of MISA and
present a comparative overview of memory consump-
tion between block-wise optimization and subspace
optimization methods, such as LoRA and Galore.
Our findings demonstrate MISA’s significant poten-
tial for long-sequence fine-tuning tasks. As illus-
trated in Fig. 2, for the LLaMA3-8B model, MISA
significantly outperforms LoRA in terms of memory
efficiency when the sequence length becomes suffi-
ciently large. Notably, when r = 16, the trainable
parameters in LoRA constitute only about 0.5% of
the total parameters. In Appendix F, we demonstrate
that (1) Layer-wise method acheives lower peak mem-
ory than subspace method such as LoRA and GaLore in the long-sequence setting. (2) Layer-wise
method can update more weights than LoRA in memory-constrained scenarios. (3) MISA achieves
greater memory efficiency compared to the layer-wise method when the sampling ratio threshold δ is
small.

3 Convergence Analysis

This section presents the convergence analysis for the proposed MISA method.

Limitations in existing analysis. Conventional BCD methods focus on the convergence of block-
wise GD or SGD [59, 61, 22], but they do not generalize to the Adam optimizer. More recent
studies [37, 74, 41] establish convergence results for layer-wise Adam, but only under restrictive
conditions—such as assuming noiseless gradients or allowing just a single update per sampled block.
These assumptions, however, diverge significantly from practical LLM training, where Adam is used
with stochastic gradients and multiple updates are performed for each sampled block.

New challenges. Conventional BCD methods rely on the assumption that block gradients are unbiased
estimators of the full gradient, an assumption that holds only when a single update is performed per
sampled block—due to the preservation of unbiasedness through random block selection. However,
our repeated block updating strategy introduces two key challenges: (1) Biased Gradient Estimates.
Performing multiple updates on the same block breaks the randomness of block selection assumed in
conventional BCD, resulting in biased estimates of the full gradient. (2) Bias-Noise Interplay. The
introduced gradient bias interacts with inherent gradient noise, potentially amplifying estimation
errors that would otherwise be mitigated by unbiased estimators.

Analysis highlights. Our work tackles these challenges via three innovations: (1) Bias Propagation
Analysis. We derive novel recursive relations (Corollary 2) that characterize how gradient bias and
stochastic noise accumulate over successive block updates. (2) Bridging Block and Full Gradients. We
establish fundamental connections between block-level gradients and the full gradient (Corollary 3),
despite the loss of unbiasedness. The additional Adam step in Line 15 of Algorithm 1 plays a critical
role in ensuring a smooth transition from local block updates to the optimization of global variables.
(3) Convergence Framework. We develop new analytical tools to jointly control gradient bias and
amplified stochastic noise, resulting in rigorous convergence guarantees (Theorem 1).

Main results. We theoretically justify the convergence of MISA as follows.

Theorem 1 (Informal). Assume the loss function is L-smooth, the stochastic gradient is unbiased and
bounded, the gradient variance is upper bounded (see Appendix E for detailed assumptions). With an
appropriate learning rate α, MISA achieves the following convergence rate (proof is in Appendix E):

1

N

N∑
n=1

E[∥∇f(θn,0)∥2] = O
(

1√
NT

+
1

N

)
where N and T denote the numbers of outer and inner-loop iterations, respectively.

Remark 3. According to Theorem 1, MISA converges for any number T of inner local block updates,
which constitutes a key advantage of our analysis. In contrast, the analyses in [59, 61, 74] are limited
to the case T = 1, while the analysis in [48, 5] requires T to be sufficiently large to ensure each
block is adequately updated.

7

4 Experiments

This section evaluates the performance of MISA across various fine-tuning and pre-training tasks. All
our experiments are conducted on RTX 4090 24GB. We also conducted detailed ablation experiments,
as presented in Appendix D.

4.1 Commonsense Reasoning

Settings. To validate the efficiency of MISA, we fine-tuned the LLaMA3-8B [14] and Qwen2.5-7B
[63] models on the Commonsense Reasoning tasks. The dataset consists of eight subsets: BoolQ
[6], PIQA [3], SIQA [51], HellaSwag [65], WinoGrande [50], ARC [7], and OBQA [40]. Following
the settings in [25], we combined the training data from all eight tasks into a single training set for
fine-tuning and then evaluated each model separately on the eight test sets. The baselines included
LoRA [24], DoRA [35], and BCD-based methods, namely LISA [41] and BAdam [37]. We also
reported GPU memory consumption for each method to ensure a thorough comparison. No additional
memory-saving techniques, such as checkpointing [4] or flash attention [9], were employed.

Results. Table 3 presents the results for the commonsense tasks. Notably, DoRA’s additional memory
consumption arises from activations, while LISA incurs extra memory usage from fine-tuning both
the embedding layer and the language modeling head layer. MISA outperforms all baseline methods
on both the LLaMA-3-8B and Qwen2.5-7B models. Furthermore, with the trainable parameter ratio
set to 1%, MISA achieves performance comparable to LoRA while saving approximately 10% of
memory. In particular, MISA demonstrates significant improvements over BAdam and LISA in the
Qwen2.5-7B model.

Table 3: This table compares fine-tuning methods on Qwen2.5-7B models across eight commonsense reasoning
tasks. "Hella." refers to HellaSwag [65], and "Wino." to Winogrande [50]. The first row shows ChatGPT results
from Zero-shot CoT [58] using the GPT-3.5-turbo API. Refer to Table 1 for results of LLaMA3-8B.

Model Method Mem.(GB) BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c OBQA Avg.↑

Qwen2.5-7B

FT 140.5 75.3 91 81.4 96.2 91.5 96.1 89.1 93.4 89.3
LoRA 34.2 75.3 90.1 80.8 96.2 86.7 96.3 89 91.4 88.2
DoRA 55.6 74.9 90.4 81.2 96.1 87.1 96.1 88.9 91.9 88.3
LISA 57.9 75 90.3 80.6 95.2 86.2 95.8 89.1 89.8 87.8
BAdam 33.7 74.5 90.3 80.8 95.5 86.1 96.1 89.6 91.8 88.1
MISA(δ = 1%) 30.3 74 90.1 82.4 95.5 87.1 96.1 89.3 90.2 88.1
MISA(δ = 3%) 34 75.4 90.5 81.6 95.7 87.2 96.3 89.5 92 88.5

4.2 Math Reasoning

Settings. To evaluate MISA on math reasoning tasks, we tested LLaMA3-8B and Qwen2.5-7B on
four arithmetic benchmarks: GSM8K [8], SVAMP [42], AQUA [34], and MAWPS [28], following
[25] for dataset settings. The models were fine-tuned on MATH10K [25], which combines training
data from AQUA, GSM8K, and MAWPS, incorporating LM-generated chain-of-thought [58] steps.

Results. Table 4 presents the performance of various fine-tuning methods on LLaMA3-8B and
Qwen2.5-7B. MISA outperforms all baselines on both models. Notably, MISA achieves a signif-
icant performance boost over LoRA and BAdam, which have similar GPU memory consumption.
Compared to DoRA, MISA attains comparable performance with greater memory efficiency.

Table 4: Comparison of fine-tuning methods on LLaMA3-8B and Qwen2.5-7B across four arithmetic reasoning
tasks. The left table presents results for LLaMA3-8B, while the right table displays results for Qwen2.5-7B. The
unit of memory consumption is GB.

Method Mem. GSM8K SVAMP AQuA MAWPS Avg.↑ Mem. GSM8K SVAMP AQuA MAWPS Avg.↑
LLaMA3-8B Qwen2.5-7B

LoRA 35.6 70.1 78.1 45.7 93.7 71.9 34.3 80.6 86.6 65.7 92.4 81.3
DoRA 54 70.9 78.4 50.3 93.4 73.3 54.8 80.1 86.7 68.1 92.5 81.9
LISA 54.2 68 76.7 49.7 88.3 70.7 55.6 77.6 86.8 70.1 89.8 81.1
BAdam 33.5 69.5 77.6 47.6 93.3 72 33.6 80.2 85.9 65.1 92.4 80.9
MISA(δ = 1%) 30.4 68.5 77.3 49.3 90.1 71.3 29.8 77.5 85 65 89.5 79.3
MISA(δ = 3%) 34.1 71.3 78.5 51.2 93.3 73.6 33.6 81 88.1 66.1 92.9 82

8

4.3 Instruction Tuning

To demonstrate MISA’s efficiency in instruction-following fine-tuning, we fine-tuned
TinyLLaMA[67], LLaMA2-7B[54] and Mistral-7B[26] on the Alpaca GPT-4 dataset, which consists
of 52K samples generated by GPT-4 based on inputs from the Alpaca dataset [53]. Model performance
was evaluated on MMLU[21], MMLU-pro[57] and MT-Bench [72], As shown in Table 5, MISA
outperforms all baselines in most evaluation benchmarks, demonstrating its robustness and efficiency
for instruction fine-tuning across different models. In addition, we compared the validation loss of
MISA with other BCD methods, BAdam and LISA. As shown in Figure 3, the x-axis represents
training time in minutes. MISA and LISA have similar total training time, while BAdam is faster
than both. Despite this, MISA exhibits much better convergence compared to LISA and BAdam.

Table 5: Comparison of different methods on MMLU, MMLU-pro and MT-Bench. Results of LISA,
GaLore, and LoRA in MMLU and MT-Bench are cited from LISA[41], while others are reproduced
by us. MT-Bench evaluation was conducted using GPT-4. Memory was tested with batch size 2.

Model Method Mem.(GB) MMLU (5-shot) MMLU-pro (5-shot) MT-Bench

TinyLLaMA

LoRA 5.00 25.81 11.32 1.90
GaLore 5.00 25.21 10.96 2.61
LISA 5.92 26.02 11.59 2.57
BAdam 4.49 25.27 11.44 2.42
MISA 4.36 25.40 11.65 2.73

LLaMA2-7B

LoRA 20.48 45.50 20.57 4.45
GaLore 19.25 45.56 20.19 4.63
LISA 22.79 46.21 20.85 4.94
BAdam 19.83 45.61 20.68 4.81
MISA 19.72 46.27 20.69 5.13

Mistral-7B

LoRA 21.96 61.78 32.96 4.41
GaLore 20.87 57.87 31.87 4.36
LISA 26.90 62.09 32.83 4.85
BAdam 21.21 62.11 32.79 5.03
MISA 21.18 62.90 33.44 5.19

0 50 100 150 200 250
Time(min)

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

Va
lid

at
io

n
Lo

ss

LISA
BAdam
MISA

0 50 100 150 200 250
Time(min)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Va
lid

at
io

n
Lo

ss

LISA
BAdam
MISA

0 10 20 30 40 50 60 70
Time(min)

1.075

1.100

1.125

1.150

1.175

1.200

1.225

1.250

Va
lid

at
io

n
Lo

ss

LISA
BAdam
MISA

Figure 3: Validation loss of LISA, BAdam, and MISA across three epochs of fine-tuning Mistral-7B
(left), LLaMA2-7B (middle) and TinyLLaMA (right) on the Alpaca-GPT4 dataset. The x-axis
represents training time (minutes).

4.4 Pre-training

We evaluate MISA for pre-training LLaMA models [54] on the C4 dataset [46]. We pre-trained the
130M and 350M variant of LLaMA2 [33]. Unlike fine-tuning, where the embedding and output layers
remain frozen, we trained them using the standard Adam optimizer. The number of training tokens is
2.75B. We report results for Adam, GaLore, and MISA. Table 6 reports the validation perplexity after
52K training steps. With a high-rank subspace (i.e., r = 256, δ = 25%), MISA outperforms GaLore
and Adam on the 130M model. While on the 350M model, MISA outperforms GaLore and is slightly
behind Adam. As shown in Fig. 4, MISA converges better than GaLore, and is similar with Adam’s
performance in the later training stage. MISA’s strong performance indicates that it can be viewed as
a regularization of Adam, and many gradients are redundant during full-parameter training.

Table 6: Validation perplexity of pre-training LLaMA 350M model on C4 dataset.

Adam GaLore MISA

r=32 r=256 δ=3% δ=25%

LLaMA 130M Perplexity 24.63 44.88 28.27 36.07 23.81
Memory(GB) 6.03 5.73 5.85 5.09 5.87

LLaMA 350M Perplexity 21.30 39.43 24.34 30.62 22.11
Memory(GB) 13.58 11.81 12.14 9.99 11.63

9

0 10000 20000 30000 40000 50000
Steps

30

40

50

60

70

Va
lid

at
io

n
P

er
pl

ex
ity Adam

GaLore(r=256)
MISA(= 25%)

0 10000 20000 30000 40000 50000
Steps

20

25

30

35

40

45

50

Va
lid

at
io

n
P

er
pl

ex
ity Adam

GaLore(r=256)
MISA(= 25%)

Figure 4: Pre-training dynamics for LLaMA 130M (left) and LLaMA 350M (right) on the C4 dataset.

5 Conclusion and Limitation

Conclusions. In this paper, we propose MISA, a novel memory-efficient training method. MISA
decomposes each layer into smaller modules and employs an importance sampling mechanism
for module training. We provide a detailed memory analysis demonstrating that MISA achieves
high memory efficiency in long-sequence fine-tuning. Additionally, we show that MISA attains a
convergence rate of O(1/

√
K), where K is the total number of updates.

Limitations. Due to resource constraints, we pre-trained MISA at a small scale, and whether MISA
can scale to large-scale LLMs pre-training (e.g., 7B, 70B, or larger models) remains to be validated.
Additionally, MISA has only been verified on text-modal Transformer-based LLMs (e.g., LLaMA
series, Qwen2.5 series, Mistral series) and has not been extended to multi-modal models or non-
Transformer architectures, so its adaptability across different modalities and model structures needs
further exploration.

6 Acknowledgements

Kun Yuan is supported by the National Natural Science Foundation of China (NSFC) under Grants
W2441021, 92370121 and 12301392. Tao Yao is supported by the National Natural Science Founda-
tion of China (NSFC) under Grants W2441021, 72371172, 72342023, and 71929101.

References
[1] Anonymous. HiRA: Parameter-efficient hadamard high-rank adaptation for large language models. In The

Thirteenth International Conference on Learning Representations, 2025.

[2] D. Biderman, J. Portes, J. J. G. Ortiz, M. Paul, P. Greengard, C. Jennings, D. King, S. Havens, V. Chiley,
J. Frankle, et al. Lora learns less and forgets less. arXiv preprint arXiv:2405.09673, 2024.

[3] Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. Piqa: Reasoning about physical commonsense in natural language.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 7432–7439, 2020.

[4] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with sublinear memory cost, 2016.

[5] Y. Chen, Y. Zhang, Y. Liu, K. Yuan, and Z. Wen. A memory efficient randomized subspace optimization
method for training large language models. arXiv preprint arXiv:2502.07222, 2025.

[6] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. Boolq: Exploring the
surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044, 2019.

[7] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think you have
solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457, 2018.

[8] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

[9] T. Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In International
Conference on Learning Representations (ICLR), 2024.

[10] DeepSeek-AI. Deepseek-v3 technical report, 2024.

10

[11] T. Dettmers, M. Lewis, S. Shleifer, and L. Zettlemoyer. 8-bit optimizers via block-wise quantization. arXiv
preprint arXiv:2110.02861, 2021.

[12] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora: Efficient finetuning of quantized llms,
2023.

[13] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora: Efficient finetuning of quantized llms.
Advances in Neural Information Processing Systems, 36, 2024.

[14] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Yang,
A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[15] M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun, S. Agarwal,
A. Roman, A. Aly, B. Chen, and C.-J. Wu. Layerskip: Enabling early exit inference and self-speculative
decoding. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), page 12622–12642. Association for Computational Linguistics, 2024.

[16] A. Fan, E. Grave, and A. Joulin. Reducing transformer depth on demand with structured dropout, 2019.

[17] C. Fan, J. Li, X. Ao, F. Wu, Y. Meng, and X. Sun. Layer-wise model pruning based on mutual information,
2021.

[18] X. Han, W. Zhao, N. Ding, Z. Liu, and M. Sun. Ptr: Prompt tuning with rules for text classification. AI
Open, 3:182–192, 2022.

[19] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig. Towards a unified view of parameter-efficient
transfer learning. arXiv preprint arXiv:2110.04366, 2021.

[20] S. He, L. Ding, D. Dong, M. Zhang, and D. Tao. Sparseadapter: An easy approach for improving the
parameter-efficiency of adapters. arXiv preprint arXiv:2210.04284, 2022.

[21] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring massive
multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

[22] M. Hong, X. Wang, M. Razaviyayn, and Z.-Q. Luo. Iteration complexity analysis of block coordinate
descent methods. Mathematical Programming, 163:85–114, 2017.

[23] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan, and
S. Gelly. Parameter-efficient transfer learning for nlp. In International conference on machine learning,
pages 2790–2799. PMLR, 2019.

[24] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora: Low-rank
adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

[25] Z. Hu, Y. Lan, L. Wang, W. Xu, E.-P. Lim, R. K.-W. Lee, L. Bing, and S. Poria. Llm-adapters: An adapter
family for parameter-efficient fine-tuning of large language models. arXiv preprint arXiv:2304.01933,
2023.

[26] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F. Bressand, G. Lengyel,
G. Lample, L. Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[27] T. Jiang, S. Huang, S. Luo, Z. Zhang, H. Huang, F. Wei, W. Deng, F. Sun, Q. Zhang, D. Wang, et al. Mora:
High-rank updating for parameter-efficient fine-tuning. arXiv preprint arXiv:2405.12130, 2024.

[28] R. Koncel-Kedziorski, S. Roy, A. Amini, N. Kushman, and H. Hajishirzi. Mawps: A math word problem
repository. In Proceedings of the 2016 conference of the north american chapter of the association for
computational linguistics: human language technologies, pages 1152–1157, 2016.

[29] B. Li, J. Chen, and J. Zhu. Memory efficient optimizers with 4-bit states, 2023. URL https://arxiv.
org/abs/2309.01507.

[30] P. Li, L. Yin, X. Gao, and S. Liu. Owlore: Outlier-weighed layerwise sampled low-rank projection for
memory-efficient llm fine-tuning, 2024.

[31] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021.

[32] V. Lialin, S. Muckatira, N. Shivagunde, and A. Rumshisky. Relora: High-rank training through low-rank
updates. In The Twelfth International Conference on Learning Representations, 2023.

11

[33] V. Lialin, N. Shivagunde, S. Muckatira, and A. Rumshisky. Relora: High-rank training through low-rank
updates, 2023.

[34] W. Ling, D. Yogatama, C. Dyer, and P. Blunsom. Program induction by rationale generation: Learning to
solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146, 2017.

[35] S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-C. F. Wang, K.-T. Cheng, and M.-H. Chen. Dora:
Weight-decomposed low-rank adaptation. In Forty-first International Conference on Machine Learning,
2024.

[36] Y. Liu, Y. Zhang, Q. Li, T. Liu, S. Feng, D. Wang, Y. Zhang, and H. Schütze. Hift: A hierarchical full
parameter fine-tuning strategy. arXiv preprint arXiv:2401.15207, 2024.

[37] Q. Luo, H. Yu, and X. Li. Badam: A memory efficient full parameter optimization method for large
language models. Advances in Neural Information Processing Systems, 37:24926–24958, 2024.

[38] K. Lv, H. Yan, Q. Guo, H. Lv, and X. Qiu. Adalomo: Low-memory optimization with adaptive learning
rate. arXiv preprint arXiv:2310.10195, 2023.

[39] K. Lv, Y. Yang, T. Liu, Q. Gao, Q. Guo, and X. Qiu. Full parameter fine-tuning for large language models
with limited resources. arXiv preprint arXiv:2306.09782, 2023.

[40] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. Can a suit of armor conduct electricity? a new dataset
for open book question answering. arXiv preprint arXiv:1809.02789, 2018.

[41] R. Pan, X. Liu, S. Diao, R. Pi, J. Zhang, C. Han, and T. Zhang. Lisa: layerwise importance sampling for
memory-efficient large language model fine-tuning. Advances in Neural Information Processing Systems,
37:57018–57049, 2024.

[42] A. Patel, S. Bhattamishra, and N. Goyal. Are nlp models really able to solve simple math word problems?
arXiv preprint arXiv:2103.07191, 2021.

[43] J. Pfeiffer, I. Vulić, I. Gurevych, and S. Ruder. Mad-x: An adapter-based framework for multi-task
cross-lingual transfer. arXiv preprint arXiv:2005.00052, 2020.

[44] G. Qin and J. Eisner. Learning how to ask: Querying lms with mixtures of soft prompts. arXiv preprint
arXiv:2104.06599, 2021.

[45] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang. Pre-trained models for natural language processing:
A survey. Science China technological sciences, 63(10):1872–1897, 2020.

[46] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring
the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning research,
21(140):1–67, 2020.

[47] A. V. Ramesh, V. Ganapathiraman, I. H. Laradji, and M. Schmidt. Blockllm: Memory-efficient adaptation
of llms by selecting and optimizing the right coordinate blocks. arXiv preprint arXiv:2406.17296, 2024.

[48] M. Razaviyayn, M. Hong, and Z.-Q. Luo. A unified convergence analysis of block successive minimization
methods for nonsmooth optimization. SIAM Journal on Optimization, 23(2):1126–1153, 2013.

[49] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, R. Sauvestre, T. Remez,
J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Dé-
fossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and G. Synnaeve. Code llama:
Open foundation models for code, 2024.

[50] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd schema
challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

[51] M. Sap, H. Rashkin, D. Chen, R. LeBras, and Y. Choi. Socialiqa: Commonsense reasoning about social
interactions. arXiv preprint arXiv:1904.09728, 2019.

[52] G. Shi, Z. Lu, X. Dong, W. Zhang, X. Zhang, Y. Feng, and X.-M. Wu. Understanding layer significance in
llm alignment, 2024.

[53] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto. Stanford
alpaca: An instruction-following llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.

12

https://github.com/tatsu-lab/stanford_alpaca

[54] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava,
S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu,
B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez,
M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu,
Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta,
K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams,
J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic,
S. Edunov, and T. Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

[55] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal
of optimization theory and applications, 109:475–494, 2001.

[56] Y. Wang, S. Agarwal, S. Mukherjee, X. Liu, J. Gao, A. H. Awadallah, and J. Gao. Adamix: Mixture-of-
adaptations for parameter-efficient model tuning. arXiv preprint arXiv:2205.12410, 2022.

[57] Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren, A. Arulraj, X. He, Z. Jiang, et al. Mmlu-
pro: A more robust and challenging multi-task language understanding benchmark. In The Thirty-eight
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.

[58] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in neural information processing systems,
35:24824–24837, 2022.

[59] S. J. Wright. Coordinate descent algorithms. Mathematical programming, 151(1):3–34, 2015.

[60] L. Xu, H. Xie, S.-Z. J. Qin, X. Tao, and F. L. Wang. Parameter-efficient fine-tuning methods for pretrained
language models: A critical review and assessment. arXiv preprint arXiv:2312.12148, 2023.

[61] Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization with
applications to nonnegative tensor factorization and completion. SIAM Journal on imaging sciences,
6(3):1758–1789, 2013.

[62] Y. Xu and W. Yin. Block stochastic gradient iteration for convex and nonconvex optimization. SIAM
Journal on Optimization, 25(3):1686–1716, 2015.

[63] A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li, D. Liu, F. Huang, G. Dong, H. Wei,
H. Lin, J. Tang, J. Wang, J. Yang, J. Tu, J. Zhang, J. Ma, J. Xu, J. Zhou, J. Bai, J. He, J. Lin, K. Dang,
K. Lu, K. Chen, K. Yang, M. Li, M. Xue, N. Ni, P. Zhang, P. Wang, R. Peng, R. Men, R. Gao, R. Lin,
S. Wang, S. Bai, S. Tan, T. Zhu, T. Li, T. Liu, W. Ge, X. Deng, X. Zhou, X. Ren, X. Zhang, X. Wei, X. Ren,
Y. Fan, Y. Yao, Y. Zhang, Y. Wan, Y. Chu, Y. Liu, Z. Cui, Z. Zhang, and Z. Fan. Qwen2 technical report.
arXiv preprint arXiv:2407.10671, 2024.

[64] K. Yao, P. Gao, L. Li, Y. Zhao, X. Wang, W. Wang, and J. Zhu. Layer-wise importance matters: Less
memory for better performance in parameter-efficient fine-tuning of large language models, 2024.

[65] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really finish your
sentence? arXiv preprint arXiv:1905.07830, 2019.

[66] B. Zhang, Z. Liu, C. Cherry, and O. Firat. When scaling meets llm finetuning: The effect of data, model
and finetuning method. arXiv preprint arXiv:2402.17193, 2024.

[67] P. Zhang, G. Zeng, T. Wang, and W. Lu. Tinyllama: An open-source small language model. arXiv preprint
arXiv:2401.02385, 2024.

[68] Q. Zhang, M. Chen, A. Bukharin, N. Karampatziakis, P. He, Y. Cheng, W. Chen, and T. Zhao. Adalora:
Adaptive budget allocation for parameter-efficient fine-tuning, 2023.

[69] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin, et al.
Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[70] Y. Zhang, C. Chen, Z. Li, T. Ding, C. Wu, D. P. Kingma, Y. Ye, Z.-Q. Luo, and R. Sun. Adam-mini: Use
fewer learning rates to gain more, 2024.

[71] J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, and Y. Tian. Galore: Memory-efficient llm training
by gradient low-rank projection. arXiv preprint arXiv:2403.03507, 2024.

[72] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing, et al.
Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information Processing
Systems, 36:46595–46623, 2023.

13

[73] Z. Zhong, D. Friedman, and D. Chen. Factual probing is [mask]: Learning vs. learning to recall. arXiv
preprint arXiv:2104.05240, 2021.

[74] Y. Zhou, M. Zhang, J. Zhu, R. Zheng, and Q. Wu. A randomized block-coordinate adam online learning
optimization algorithm. Neural Computing and Applications, 32(16):12671–12684, 2020.

[75] L. Zhu, L. Hu, J. Lin, and S. Han. LIFT: Efficient layer-wise fine-tuning for large model models, 2024.

14

Appendix for “MISA: Memory-Efficient LLMs
Optimization with Module-wise Importance Sampling”

Contents

1 Introduction 1

2 Module-wise Importance Sampling 3

2.1 Problem Formulation . 3

2.2 Block Sampling Strategy . 4

2.3 Partition the Weights into Fine-Grained Modules Instead of Coarse Layers 5

2.4 Module-wise Importance Sampling (MISA) Method 5

2.5 Memory Analysis . 6

3 Convergence Analysis 7

4 Experiments 8

4.1 Commonsense Reasoning . 8

4.2 Math Reasoning . 8

4.3 Instruction Tuning . 9

4.4 Pre-training . 9

5 Conclusion and Limitation 10

6 Acknowledgements 10

A Related Work 17

B Algorithm Details 17

B.1 Module selection strategy . 17

B.2 Definition of the scaled gradient norm . 18

C Additional Experiments 18

C.1 Memory Efficiency When Scaling To 70B Model 18

C.2 Enhancing LoRA with MISA . 18

C.3 Computation Efficiency . 19

D Ablation Study 19

D.1 Ablation Study: Impact of Clearing Optimizer States 19

D.2 Ablation Study: Impact of Hyperparameters . 19

D.3 Impact of Inner-Loop Iteration T . 20

D.4 Ablation Study: Sampling Strategy . 21

15

D.5 Ablation Study: Importance Scoring Methods . 21

D.6 Ablation Study: Impact of Each Module . 21

E Theoretical Analysis. 23

E.1 Notation . 23

E.2 Proof of theorem 1 . 33

F Memory Analysis 34

F.1 Memory analysis of layer-wise optimization method 35

F.2 Memory analysis of MISA and LoRA . 37

F.2.1 Memory analysis of Module-wise BCD 37

F.2.2 Memory analysis of LoRA . 38

F.3 Memory analysis of GaLore . 38

F.4 Memory analysis of MISA . 39

F.5 Memory analysis of MISA’s indicators . 39

F.6 Peak memory comparison between MISA and layer-wise method 40

F.7 Peak memory comparison between layer-wise method and LoRA 40

F.8 Paras/Peak-Memory comparison between layer-wise method and LoRA 40

G Computation Analysis 41

G.1 Computation analysis of layer-wise optimization methods 42

G.2 Computation analysis of module-wise optimization methods 43

G.3 Computation analysis of MISA’s indicators . 43

H Broader Impacts 43

I Experimental Hyperparameters 43

I.1 Hyperparameters for commonsense reasoning . 44

I.2 Hyperparameters for math reasoning . 44

I.3 Hyperparameters for instruction fine-tuning . 45

I.4 Hyperparameters for pre-training . 46

16

A Related Work

Parameter-efficient fine-tuning. Adapter-based methods introduce new modules (e.g., fully
connected layers) into the backbone model and update only these modules during training
[43, 23, 19, 56, 20], incurring additional computational costs during inference. Prompt-based
methods prepend random soft tokens to the input (typically as a prefix) and train their embeddings
while keeping the backbone LLM frozen [31, 18, 73, 44], also introducing inference overhead.

LoRA and its variants, including QLoRA [13], DoRA [35], and AdaLoRA [68], have become state-of-
the-art PEFT methods. LoRA injects low-rank matrices into linear layers to estimate weight updates
while keeping the backbone LLM parameters frozen. Unlike adapter- and prompt-based methods,
LoRA has no additional inference overhead, as the low-rank matrices can be merged into the model
weights. To address the limitations of the low-rank structure, recent methods such as ReLoRA [32],
MoRA [27], and HiRA [1] have explored high-rank updates based on LoRA.

Memory-efficient optimization. LOMO [39] eliminates optimizer and gradient memory costs
during training with standard SGD. AdaLOMO [38] extends LOMO by integrating a fused backward
operation with an adaptive learning rate per parameter . GaLore [71] enhances memory efficiency by
projecting gradients into a low-rank subspace. Quantization techniques are widely applied to model
parameters, gradients, optimizer states, and intermediate activations [11, 29, 10]. Adam-mini [70]
reduces memory usage by optimizing learning rate allocation in Adam.

Layer-wise optimization. Inspired by classical Block Coordinate Descent (BCD), layer-wise opti-
mization has emerged as a promising approach for fine-tuning large language models. Methods such
as LIFT [75], HIFT [36], and BAdam [37] update LLM layers sequentially, achieving performance
comparable to parameter-efficient fine-tuning (PEFT) methods while significantly reducing compu-
tational costs. LISA [41] identified a skewed weight-norm distribution across layers in LoRA and
introduced a randomized layer update strategy, keeping the embedding and language modeling head
layers activated. Similarly, BlockLLM [47] prioritizes frequent updates to layers with larger gradient
norms. However, none of these approaches incorporate module-wise importance sampling.

Varying importance of modules in LLM fine-tuning. Previous studies have shown that different
layers contribute unequally to LLM performance. LayerSkip [15], LayerDrop [16], and Layer-wise
Model Pruning [17] demonstrated that the overparameterization of pre-trained models leads to layer
redundancy, enabling high performance to be maintained even after removing certain layers. IST [64]
and ILA [52] further highlighted that layer importance varies during LLM fine-tuning. Additionally,
studies on PEFT have revealed that different modules within transformer blocks exhibit varying ranks
[2, 68]. OwLore[30] identifies layer importance by detecting outliers in the model weights. However,
these insights have not yet motivate module-wise importance sampling in LLM optimization.

B Algorithm Details

B.1 Module selection strategy

Algorithm 2 Module selection
Require: Active set τn, Non-active set B, Sampling threshold δ, Probability distribution Pn, Total

model parameters nmodel, Counter S.
1: Initialize:τn = ∅, B = {M1,M2, ...,MB}, S = 0
2: while B ̸= ∅ do
3: Sample a module m from B based on the probability distribution Pn.
4: B = B −m.
5: if S + |m| < δnmodel then
6: τn = τn + t
7: end if
8: end while
9: Return: τn

17

B.2 Definition of the scaled gradient norm

For a given module mi, we define its scaled gradient norm be the ratio of the Frobenius norm of the
gradient to the square root of the number of parameters ∥gi∥F√

|mi|
in practice, which can be considered a

definition of normalization.

C Additional Experiments

C.1 Memory Efficiency When Scaling To 70B Model

Fig. 5 demonstrates that when training a 70B model, MISA is still more memory-efficient than LoRA
under long sequence length settings, and the use of flash-attention[9] has minimal impact on overall
memory consumption.

100 500 1000 1500
Sequence Length

17.5

20.0

22.5

25.0

27.5

30.0

32.5

M
em

or
y

(G
B

)

24 GB

MISA (=1%)
MISA (=3%)
LoRA (r=16)
LoRA (r=128)

(a) LLaMA3-8B

100 500 1000 1500
Sequence Length

140

160

180

200

220

M
em

or
y

(G
B

)
MISA (=1%)
MISA (=3%)
LoRA (r=16)
LoRA (r=128)

(b) LLaMA3-70B

100 500 1000 1500
Sequence Length

140

160

180

200

220

M
em

or
y

(G
B

)

MISA (=1%)
MISA (=3%)
LoRA (r=16)
LoRA (r=128)

(c) LLaMA3-70B w/ flash-attention

Figure 5: Comparison of peak memory consumption on LLaMA3-8B and LLaMA3-70B. (c) used
flash-attention technique.

C.2 Enhancing LoRA with MISA

A key advantage of LoRA over MISA is its ability to train separate adapters for different downstream
tasks. Instead of storing full model weights, LoRA only requires storage for task-specific adapters,
significantly reducing storage costs. Since MISA is orthogonal to LoRA and can be used alongside
it, we explored a hybrid approach combining both methods. Given a model weight W with LoRA
applied, it is represented as W ′ = W + AB, where A and B are treated as separate modules. We
freeze the original model parameters and consider the LoRA adapters as the total set of trainable
parameters nLoRA. MISA dynamically activates LoRA adapters while ensuring that the number of
active parameters at each step remains below nLoRA × δ. Furthermore, we found that optimizer states
are not the primary source of memory consumption for LoRA + MISA. Thus, we retain optimizer
states for all LoRA adapters without clearing them. Our results show that MISA enhances full LoRA’s
performance while further reducing memory usage. As shown in Fig. 6, activating no more than 30%
of LoRA parameters achieves or even surpasses full LoRA’s performance while saving approximately
7.9% of memory. We also compared IST [64] with MISA (see Table 7) and MISA outperformed IST.

10% 30% 50% 70% 90%
70.0

70.5

71.0

71.5

72.0

72.5

73.0

A
cc

ur
ac

y LoRA Acc.

32.5

33.0

33.5

34.0

34.5

35.0

M
em

or
y

(G
B

)

LoRA+MISA
Memory

Figure 6: Accuracy and memory consumption of LoRA + MISA fine-tuning with varying δ on math reasoning
tasks.

18

Table 7: Comparison of MISA and IST on LLaMA-7B and LLaMA3-8B across eight commonsense reasoning
tasks. Results of LoRA+IST are cited from IST paper.

Model Method BoolQ PIQA SIQA Hella. Wino. ARC-e ARC-c OBQA Avg.↑

LLaMA-7B

LoRA 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
LoRA+IST 68.7 81.7 77.3 82.7 78.7 80.6 62.4 80.0 76.5
LoRA+MISA 70.4 81.5 78.9 83.4 78.9 81.2 63.1 79.7 77.1

LLaMA3-8B

LoRA 70.8 85.2 79.7 92.5 84.9 88.9 78.7 84.4 82.5
LoRA+IST 72.7 88.3 80.5 94.7 84.4 89.8 79.9 86.6 84.6
LoRA+MISA 74.4 88.9 81.8 95.3 86.1 91.3 81.4 86.5 85.7

C.3 Computation Efficiency

A training step includes forward propagation, backward propagation, and optimizer computations
(including parameter updates and any algorithm-specific operations). Table 8 reports the average
time per step for each method. GaLore incurs the highest optimizer computation overhead because it
performs a full-model SVD (with very large time complexity) every 2000 steps. For MISA, we further
conduct detailed operation-level profiling (under the same hardware and training configurations as
Table 8) to quantify the overhead of its unique components (e.g., module sampling, gradient norm
tracking). Results show that these components introduce negligible additional time (accounting for
less than 0.05% of the total per-step time), as their key operations (e.g., gradient norm aggregation,
sampling probability calculation) are either lightweight or amortized over multiple inner-loop steps.
Thus, MISA’s computation efficiency is only behind BAdam’s, while it also achieves superior
convergence with respect to training time (see Fig. 3).

Table 8: Comparison of training time for fine-tuning LLaMA2-7B on the Alpaca-GPT4 dataset. The
Forward, Backward, and Optimizer time represent the average time per step. The last column shows
the overall training time of 3 epochs.

Method Forward(ms) Backward(ms) Optimizer(ms) Averged cost per step(ms)

LoRA 70.3 104.5 4.5 179.3
GaLore 35.7 140.5 267.4 443.6
BAdam 34.3 42.9 1.5 78.7
LISA 36.4 84.1 2.9 123.4
MISA 35.2 74.6 1.8 111.6

D Ablation Study

D.1 Ablation Study: Impact of Clearing Optimizer States

In line 17 of algorithm1, we clear the optimizer state to save memory consumption. We explored a
method to maintain the optimizer states of active layers during training. When a layer is frozen, its
complete optimizer state is preserved and offloaded to CPU memory. These saved states are then
precisely restored to GPU when the layer is reactivated in subsequent training cycles.

As shown in Fig. 7, preserving optimizer states has no significant impact on fine-tuning loss but brings
significant extra pretraining perplexity. However, we don’t have a particularly good explanation for
this phenomenon. Our guess is that in the early stage of pre-training, when the model is still in the
coarse-tuning stage, the dependence on the history of momentum is not that strong, so the clearing
optimizer may be able to avoid local minima and thus improve optimization.

D.2 Ablation Study: Impact of Hyperparameters

We primarily investigated the effects of three hyperparameters: the learning rate, MISA’s δ, and
MISA’s η. η controls the trade-off between importance sampling and uniform sampling. When η = 0,

19

0 1000 2000 3000 4000 5000 6000 7000
Steps

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Va
lid

at
io

n
Lo

ss

MISA w/ preserve optim.
MISA

0 10000 20000 30000 40000 50000
Steps

20

30

40

50

60

70

80

Va
lid

at
io

n
P

er
pl

ex
ity

MISA w/ preserve optim.
MISA

Figure 7: Fine-tuning loss (left) and pre-training perplexity (right) of LLaMA3-8B. Fine-tuning used MATH10K
dataset, and pre-training used C4 dataset. MISA discards the optimizer states when switching activated layers,
while "MISA w/ preserve optim." indicates retaining the optimizer states.

MISA reduces to uniform sampling. δ determines the number of parameters updated at each step and
scales proportionally with memory consumption.

Fig. 8 presents the impact of η and δ. In practice, variations in η have a minor effect on model
accuracy, whereas MISA is highly sensitive to the learning rate. An excessively large learning rate
significantly degrades performance of the model.

10
6

10
5

10
4

Learning Rate

55.0
57.5
60.0
62.5
65.0
67.5
70.0
72.5

A
cc

ur
ac

y

10
1

10
0

10
1

MISA's

71.5

72.0

72.5

73.0

73.5
A

cc
ur

ac
y

Figure 8: The accuracy of LLaMA3-8B on math reasoning tasks with different learning rate and η.

Fig. 9 illustrates the validation loss over three epochs of fine-tuning LLaMA2-7B on the Alpaca-GPT4
dataset for different δ. We observe that larger δ lead to more severe overfitting in the third epoch,
further supporting the interpretation of MISA as a regularization method of full parameter fine-tuning.

0 20 40 60 80 100 120 140 160
Step

0.85

0.90

0.95

1.00

1.05

1.10

Va
lid

at
io

n
Lo

ss

= 1%
= 3%
= 10%
= 15%

Figure 9: Validation loss of LLaMA2-7B on Alpaca-GPT4 dataset.

D.3 Impact of Inner-Loop Iteration T

We conduct an ablation study to evaluate the sensitivity of MISA to the inner-loop iteration count
T (defined in Algorithm 1, representing the number of Adam updates for a sampled module before
switching to another module). Experiments are conducted on the Mistral-7B model fine-tuned on the
Alpaca-GPT4 dataset, with other hyperparameters fixed as: learning rate = 1e-5, δ = 3%, η = 0.5,
and batch size = 16. Table 9 reports the validation loss and MMLU score across different T values.

As shown in Table 9, varying T from 5 to 500 does not significantly affect the convergence of
validation loss or the MMLU performance. This observation aligns with the findings in BAdam [37]
and LISA [41], confirming that MISA’s convergence is robust to the choice of T—a result supported
by our theoretical analysis in Theorem 1, where MISA is proven to converge for any number of
inner-loop updates T . Notably, when T ≥ 200, we observe a slight degradation in MMLU score
(e.g., 46.01 at T = 200 and. 46.27 at T = 50), which may stem from over-fitting to the sampled
module during extended inner-loop updates. Thus, we recommend setting T = 30–50 in practice to
balance computational efficiency and performance.

20

Table 9: Ablation Study of the Inner-Loop Iteration T for the Mistral-7B Model on Alpaca-GPT4

T Validation Loss (↓) MMLU (5-shot, ↑)
5 0.877 46.22
15 0.874 46.23
30 0.871 46.17
50 0.873 46.27

100 0.877 46.19
200 0.881 46.01
500 0.879 45.89

D.4 Ablation Study: Sampling Strategy

To validate the necessity of MISA’s sampling strategy, we explored alternative approaches. The
Uniform strategy samples modules randomly without computing importance scores, effectively
replacing BAdam’s layer-wise optimization with module-wise optimization. The Top-K strategy
selects the most important modules while ensuring that the total sampled parameters remain below
δ of all parameters. In contrast, the Bottom-K strategy selects the least important modules under
the same δ constraint. As shown in Table 10, the Uniform and Top-K strategies achieve similar
performance but remain inferior to MISA, while the Bottom-K strategy significantly reduces accuracy.
We observed that with the Top-K strategy, many modules are never sampled, which may explain
its suboptimal performance. The effectiveness of MISA can be attributed to its balanced approach,
combining elements of both the Uniform and Top-K strategies. It prioritizes modules with higher
importance scores while ensuring that all modules have a chance to be sampled.

Table 10: Results of different sampling strategies for fine-tuning LLaMA3-8B on math and commonsense
reasoning tasks. The reported scores indicate the average accuracy across all tasks.

Strategy Math Commonsense

MISA 73.6 86.6
Uniform 71.1(-2.5) 85.9(-0.7)

Top-K 71.2(-2.4) 86(-0.6)

Bottom-K 69.6(-4.0) 82.1(-4.5)

D.5 Ablation Study: Importance Scoring Methods

In (4), we identify each module’s importance score via its gradient norm. To validate its effectiveness,
we also evaluated two alternative scoring functions: the module’s weight norm and its total parameter
count. Table 11 compares those importance scoring methods and demonstrates that MISA’s sampling
strategy significantly outperforms the alternatives, thereby validating the efficacy of MISA.

Table 11: Comparison of different scoring function in MISA. The accuracy of commonsense resoning and math
reasoning benchmarks are averaged across all tasks.

Model Method MMLU MMLU-pro Commonsense Math

LLaMA3-8B
Weight Norm 64.5 35.9 85.7 71.9
Number of Parameters 63.7 36.2 85.9 72.7
MISA(Gradient Norm) 65 36.5 86.6 73.6

D.6 Ablation Study: Impact of Each Module

To assess the impact of each module, we applied MISA to individual modules while keeping all
others frozen. Fig. 10 shows that the effectiveness of fine-tuning follows the order: Wq,Wk <
Wv < Wo,Wgate,Wup,Wdown. Interestingly, when applying MISA to all modules, the sampling
frequency does not strictly follow this order, as shown in Fig. 11. We think there may be three

21

reasons: (1) Sampling frequency does not directly reflect importance—more critical layers may
require less fine-tuning for optimal performance. (2) When training multiple modules simultaneously,
the combined importance of those modules may not be simply the sum of each module’s individual
importance. (3) Module sizes vary significantly; for instance, Wgate,Wup,Wdown contain over ten
times as many parameters as Wk and Wv . Small-size modules are less likely to exceed the sampling
threshold δ, leading to more frequent sampling.

AQuA
42

44

46

48

50

52

GSM8K
60

62

64

66

68

70

SVAMP
70

72

74

76

78

80

MAWPS
88

89

90

91

92

93

Wq

Wk

Wv

Wo

Wgate

Wup

Wdown

Figure 10: Accuracy comparison on math reasoning tasks when sample each individual module separately.

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132
Layer

0

20

40

60

80

S
am

pl
in

g
Fr

eq
ue

nc
y Wq

Wk

Wv

Wo

Wgate

Wup

Wdown

Figure 11: The frequency of module sampling across all layers when applying MISA to LLaMA3-8B.

Therefore, we further applied both uniform and MISA sampling strategies to individual modules in
isolation, in order to assess which modules benefit most from MISA. As shown in Table12, when
fine-tuning Wq,Wgate,Wdown and Wdown, MISA achieves substantially larger accuracy gains than
uniform sampling.

Table 12: Average accuracy of LLaMA3-8B on math reasoning benchmark when fine-tuning only 1
module type with uniform and MISA sampling strategies. Red indicates an improvement of more
than 1%.

Model Method Wq Wk Wv Wo Wgate Wup Wdown

LLaMA3-8B Uniform 70 67.1 70.5 71.2 69.2 71.4 70.5
MISA 69.5 68.8 70.5 71.7 71.5 72.5 72.1

22

E Theoretical Analysis.

E.1 Notation

• Let f : Rd → R be the objective function to minimize.

• Let f∗ := infθ∈Rdf (θ) be the optimal value of f .

• Let ∇f denote the estimator for the gradient of f at the queried points.

• Let α denote the learning rate.

• Let n denote the block epoch, n = 1, 2, ..., N .

• Let t denote the inner iterations for a certain block, t = 0, 1, ..., T .

• Let ξn,t denote the sampled data at n-th block epoch and t-th inner iteration.

• Let τn denote the sampled block at n-th block epoch.

• Let b denote the block’s ID, b = 1, 2, ..., B.

• Let θn,tτn denote the parameter when selected module τn at n-th block epoch and t-th inner
adam step.

• Let gn,tτn denote the partial derivative conditioned on data ξn,t at n-th block epoch and t-th
inner adam step.

• Let G̃n,T
τn = 1

T

∑T
t=1∥gn,tτn ∥

2 be the cumulative gains during a sampling period.

• Let Γn,t
τn = Diag−1/2(ṽn,tτn + ε, ∥vn,t−1

τn ∥min + ε), ṽn,tτn = max
(
vn,tτn , ∥ṽn,t−1

τn ∥max

)
.

• Let θn,t denote the full parameter at n-th block epoch and t-th inner adam step.

θn,t :=
(
θn−1,T
1 , θn−1,T

2 , ..., θn−1,T
τn−1 , θn,tτn , θn−1,T

τn+1 , ..., θn−1,T
B

)
.

• Let Ft denote the filtration containing all historical variables at and before computing θn,tτn .
Ft :=

{
θn,tτn , ξn,tgn,tτn ,mn,t−1

τn , vn,t−1
τn , θn,t−2

τn , ..., ξn,1, gn,1τn ,mn,0
τn , vn,0τn , θn,0τn

}
• Let Et denote the expectation conditioned on Ft.

To enhance the smoothness of the proof procedure, we utilized three techniques.

1. Second-order Momentum Inheritance

To establish Lemma 1, we utilize a second-order momentum inheritance technique. Upon completing
the (n− 1)-th block epoch, we initialize the second-order momentum for the n-th block epoch as:

vn,0τn = ∥ṽn−1,T
τn−1

∥maxI for n ≥ 2

This initialization strategy maintains memory efficiency, with its additional overhead being negligible
compared to gradient storage requirements.

2. Additional Momentum Step

The additional momentum step arises naturally from the variable transformation in (11). This carefully
designed operation prevents momentum wastage in τn during the n-th block epoch, significantly
simplifying the analysis at block transition points. The step is defined as:

θn+1,0
τn ← θn,Tτn − α

β1

1− β1

mn,T
τn√

vn,Tτn + ε

23

3. Single-module Gradient Propagation

While MISA typically activates multiple modules simultaneously, our theoretical analysis focuses on
the single-module case for clarity. The multi-module scenario can be represented by introducing a
diagonal projection matrix Qn, transforming the stochastic gradient in Algorithm 3 to:

gn,tLn
= Qn

∂

∂θn,t−1
f
(
θn,t−1

)∣∣∣∣
ξn,t

where Ln denotes the set of activated modules at the n-th step. Our analysis naturally extends to this
generalized case.

Algorithm 3 MISA:Analytical View
Require: θ0,N,T,B, η, α, δ > 0, β1, β2 ∈ (0, 1) and the sampling block τn at outer loop n

1: Partition the model into B modules (not layers); ▷ Partition weights into modules;
2: Initialize probability weights P 1 = (1

B , ..., 1
B);

3: Initialize the module gradient estimate G0
b = 0 for b ∈ [B] and let G0 = (G0

1, · · · , G0
B);

4: for n = 1, ..., N do
5: Sample a module τn according to Pn; ▷ Importance sampling;
6: Initialize mn,0

τn = 0, v1,0τn = 0, vn,0τn =∥ṽn−1,T
τn−1

∥maxI if n ≥ 2;
7: for t = 1, ..., T do
8: Sample a batch of data ξn,t ∼ D

9: Calculate block stochastic gradient gn,tτn = ∂

∂θn,t−1
τn

f
(
θn,t−1
τn

)∣∣∣
ξn,t

for selected module τn;

10: Update the corresponding first-order and second-order momentum as follows:
11: mn,t

τn ← β1m
n,t−1
τn + (1− β1) g

n,t
τn , vn,tτn ← β2v

n,t−1
τn + (1− β2) (g

n,t
τn)2

12: Update ṽn,tτn as follows:
13: ṽn,tτn = max

(
vn,tτn , ∥ṽn,t−1

τn ∥max

)
▷ AMSGrad-type normalization;

14: Update the corresponding module as follows:

15: θn,tτn ← θn,t−1
τn − αmn,t

τn /(

√
ṽn,tτn + ε)

16: end for
17: Update Gn

b for each b ∈ [B] according to (4); ▷ Track block gradient norm;

18: Update pn+1
b ← exp(ηGn

b)∑B
j=1 exp(ηGn

j)
for each b ∈ [B]; ▷ Update sampling probability;

19: θn+1,0
τn ← θn,Tτn −α

β1

1−β1

mn,T
τn√

vn,T
τn +ε

; ▷ Additional momentum step;

20: gτn ,mτn , vτn ← None ▷ Clear optimizer states;
21: end for
22: Return θN ,PN

Assumption 1. The loss function is L-smooth. And when restricted on i-th block, it is Li-smooth.

∥∇L
(
θ1
)
−∇L

(
θ2
)
∥ ≤ L∥θ1 − θ2∥, ∥ ∂L

∂θi

∣∣∣∣
θ1
i

− ∂L

∂θi

∣∣∣∣
θ2
i

∥ ≤ Li∥θ1i − θ2i ∥, i = 1, ..., B.

Let L = max
{
L,Li

}
i=1,...,B

.

Assumption 2. (Unbiased and bounded stochastic gradient). For all inner iterates t ≥ 1 at n-th
block epoch, the stochastic gradient gn,tτn is unbiased and uniformly bounded by some constant G ≥ 0.

Et

[
gn,tτn

]
= ∇f

(
θn,t−1
τn

)
, ∥gn,tτn ∥ ≤ G.

Assumption 3. (Bounded variance). For all inner iterates t at n-th block epoch, the variance of the
stochastic gradient gn,tτn is uniformly bounded by some constant σ2 ≥ 0.

Et

[
∥gn,tτn −∇f

(
θn,t−1
τn

)
∥2
]
≤ σ2

24

Proposition 3. (Proof of proposition 1) Consider the optimization problem

max
p

B∑
i=1

Gn
i pi − ηKL(pi, qB)

s.t. pi ≥ 0,

B∑
i=1

pi = 1,

the solution is

pn+1
i =

exp (η0G
n
i)∑B

b=1 exp (η0G
n
i)

where η0 = 1
η .

Proof. We consider the equivalence problem

max
pn

η0

B∑
i=1

Gn
i pi −KL(pi, qB)

Where η0 = 1
η .

We construct the Lagrangian function L(P, λ) of the optimization problem

L(P, λ) = η0

B∑
i=1

piG
n
i −

B∑
i=1

pilog
pi
qB

+ λ(

B∑
i=1

pi − 1)

We take the partial derivative of pi and obtain
∂L
∂pi

= log qB − log pi − 1 + η0G
n
i + λ = 0, i = 1, 2, ..., B

Which is equivalent to
pi = qB exp (η0G

n
i + λ− 1) , i = 1, 2, ..., B.

According to the normalization condition, we have

1 =

B∑
i=1

pi =

B∑
i=1

qB exp (η0G
n
i + λ− 1)

Let Z = exp(1− λ), we have

Z =
B∑
i=1

qB exp(η0G
n
i)

Which implies

pn+1
i =

qB exp (η0G
n
i)∑B

i=1 qB exp (η0Gn
i)

=
exp (η0G

n
i)∑B

i=1 exp (η0G
n
i)

Proposition 4. (Proof of proposition 2) Suppose that in each layer we have K modules such that
θi = (θi1 , θi2 , ..., θiK), the sampling probability of each layer be pi, each module be pi,j , the gain of
each module be Gi,j at n-th step and certain iteration, we have

1

K

B∑
i=1

Gn
i pi ≤

B∑
i=1

K∑
j=1

Gn
i,jpi,j

Proof. We consider pi =
∑K

j=1 pi,j , which means the sum of each module’s sampling probability is
equal to the sampling probability of the corresponding layer.

25

Noting that in layer-wise setting, the sampling probability of each module is pi

K .

Next, we will prove

Gn
i

pi
K
≤

K∑
j=1

Gn
i,jpi,j

Noting that gain Gn
i is equal to the sum of each individual module gains Gn

i,j , we have∑K
j=1 G

n
i,j

K
≤

K∑
j=1

Gn
i,j p̂i,j (6)

Where p̂i,j =
pi,j

pi
,
∑K

j=1 p̂i,j = 1.

By symmetry, we can assume without loss of generality that Gn
i,j is ordered as follows.

Gn
i,1 ≤ Gn

i,2 ≤ ... ≤ Gn
i,K

From Proposition 3, it’s obvious that
p̂i,1 ≤ p̂i,2 ≤ ... ≤ p̂i,K

The left side of inequality (6) is arithmetic average, the ride side is weighted average of Gn
i,j .

From Chebyshev’s inequality, inequality (6) holds. Summing over i, we obtain

1

K

B∑
i=1

Gn
i pi ≤

B∑
i=1

K∑
j=1

Gn
i,jpi,j

Corollary 1. The sampling probability {pni }
n∈N
i=1,2,...,B in algorithm 3 has a uniform lower bound π.

Proof. From Assumption 2, for ∀ i ∈ [1, B], n ∈ N∗, we have

G̃n,T
i =

∑T
t=1∥g

n,t
i ∥2

T
≤ TG2

T
= G2

We obtain
GN

i = (1− β)GN−1
i + βG̃N,T

i ≤ (1− β)GN−1
i + βG2 (7)

Let p = 1− β, q = βG.

Updating equation (7) for K times, we obtain

GN+K
i ≤ q

1− p
+ pN+k−1

(
GN

i −
q

1− p

)
Noting that 0 < p < 1, for ∀k ∈ N∗, we obtain

GN+K
i ≤ G2 + (1− β)N

(
GN

i −G2
)

Let π∗
i = max

1≤n≤N

{
Gn

i , G
2 + (1− β)N

(
GN

i −G2
)}

We have
1

Beηπ
∗
i
≤ exp (ηGn

i)∑B
j=1 exp

(
ηGn

j

) = pni

We get the lower bound πi =
1

Beηπ∗
i

Let π = min{πi}, which is the uniform lower bound of {pni }
n∈N
i=1,2,...,B .

Lemma 1. Let Γn,t
τn = Diag−1/2(ṽn,tτn +ε, ∥vn,t−1

τn ∥min+ε), ∆Γn,t
τn = Γn,t−1

τn −Γn,t
τn , t = 1, 2, ..., T

26

We have the following upper bound estimation
N∑

n=1

T∑
t=1

∥∆Γn,t
τn ∥ ≤

2√
ε
,

N∑
n=1

T∑
t=1

∥∆Γn,t
τn ∥

2 ≤ 2

ε
.

Where ∆Γn,0
τn = Γn−1,T

τn−1
− Γn,0

τn .

Proof. From algorithm 3, we have vn,0τn =∥ṽn−1,T
τn−1

∥maxI, n ≥ 2.

For notational convenience, we denote Γt, ṽt as Γn,t
τn , ṽn,tτn in this proof.

Γt = Diag−1/2(ṽt + ε, ∥ṽt∥min + ε)

⪯ Diag−1/2(∥ṽt∥min + ε)

⪯ 1√
∥ṽt−1∥max + ε

I

= Diag−1/2(∥ṽt−1∥max + ε)

⪯ Diag−1/2(ṽt−1 + ε, ∥ṽt−1∥min + ε) = Γt−1

which implies that ∆Γt = Γt−1 − Γt is positive semi-definite. Hence, ∥∆Γt∥ = λmax (∆Γt) ≥ 0

Using the convexity of λmax over symmetric matrices, we have
T∑

t=1

∥∆Γt∥ =
T∑

t=1

λmax(Γt−1 − Γt)

≤
T∑

t=1

(λmax(Γt−1) + λmax(−Γt))

=

T∑
t=1

(λmax(Γt−1)− λmin(Γt))

=

T∑
t=1

(
1√

∥ṽt−1∥min + ε
− 1√

∥ṽt∥max + ε

)

=

T∑
t=1

(
1√

∥ṽt−1∥min + ε
− 1√

∥ṽt−1∥max + ε
+

1√
∥ṽt−1∥max + ε

− 1√
∥ṽt∥max + ε

)

≤
T∑

t=1

(
1√

∥ṽt−1∥min + ε
− 1√

∥ṽt∥min + ε

)
+

NT∑
t=1

(
1√

∥ṽt−1∥max + ε
− 1√

∥ṽt∥max + ε

)

=
1√

∥ṽ0∥min + ε
− 1√

∥ṽT ∥min + ε
+

1√
∥ṽ0∥max + ε

− 1√
∥ṽT ∥max + ε

27

For the second sum of squared norms, notice that for scalars a ≥ b ≥ 0, it holds that (a − b)2 ≤
(a+ b)(a− b) = a2 − b2. Therefore, the derivation can be repeated without the square roots:

T∑
t=1

∥∆Γt∥2 =

T∑
t=1

(λmax(Γt−1 − Γt))
2

≤
T∑

t=1

(λmax(Γt−1) + λmax(−Γt))
2 =

T∑
t=1

(λmax(Γt−1)− λmin(Γt))
2

≤
T∑

t=1

(λmax(Γt−1))
2 − (λmin(Γt))

2

=

T∑
t=1

(
1

∥ṽt−1∥min + ε
− 1

∥ṽt∥max + ε

)

=

T∑
t=1

(
1

∥ṽt−1∥min + ε
− 1

∥ṽt−1∥max + ε
+

1

∥ṽt−1∥max + ε
− 1

∥ṽt∥max + ε

)

≤
T∑

t=1

(
1

∥ṽt−1∥min + ε
− 1

∥ṽt∥min + ε

)
+

T∑
t=1

(
1

∥ṽt−1∥max + ε
− 1

∥ṽt∥max + ε

)
=

1

∥ṽ0∥min + ε
− 1

∥ṽT ∥min + ε
+

1

∥ṽ0∥max + ε
− 1

∥ṽT ∥max + ε

Applying the above estimation, we obtain

N∑
n=1

T∑
t=1

∥∆Γn,t
τn ∥ ≤

N∑
n=1

 1√
∥ṽn,0τn ∥min + ε

− 1√
∥ṽn,Tτn ∥min + ε

+
1√

∥ṽn,0τn ∥max + ε
− 1√

∥ṽn,Tτn ∥max + ε


≤

N∑
n=1

 2√
∥ṽn,0τn ∥min + ε

− 2√
∥ṽn,Tτn ∥max + ε


=

2√
∥ṽ1,0τ1 ∥min + ε

−
N−1∑
n=1

 2√
∥ṽn,Tτn ∥max + ε

− 2√
∥ṽn+1,0

τn+1 ∥min + ε

− 2√
∥ṽN,T

τN ∥max + ε

≤ 2√
∥ṽ1,0τ1 ∥min + ε

≤ 2√
ε

Where the last inequality is because vn+1,0
τn+1

=∥ṽn,Tτn ∥maxI . Similarly, we obtain

N∑
n=1

T∑
t=1

∥∆Γn,t
τn ∥

2 ≤ 2

ε
.

Which completes the proof.

Lemma 2.

Et[∥mn,t
τn ∥] ≤ G,

T∑
t=1

Et

[
∥
β1m

n,t−1
τn

1− β1
∥2
]
≤ (

β1

1− β1
)2G2T, Et

[
∥ṽn,tτn ∥max

]
≤ G2

Proof.

∥mn,t
τn ∥ = ∥(1− β1)

t∑
i=1

βt−i
1 gn,iτn ∥ ≤ (1− β1)

t∑
i=1

βt−i
1 G ≤ G

Taking expectation, we obtain
Et[∥mn,t

τn ∥] ≤ G (8)

28

From equation (8), we have

∥
β1m

n,t−1
τn

1− β1
∥2 = (

β1

1− β1
)2∥mn,t−1

τn ∥2 ≤ (
β1

1− β1
)2G2

We get the bound
T∑

t=1

Et

[
∥
β1m

n,t−1
τn

1− β1
∥2
]
≤ (

β1

1− β1
)2G2T

Next, we bound ∥vn,tτn ∥

∥vn,tτn ∥ =∥(1− β2)

t∑
i=1

βt−i
2 (gn,iτn)2∥ ≤ (1− β2)

t∑
i=1

βt−1
2 G2 ≤ G2.

We obtain
Et[∥ṽn,tτn ∥max] ≤ G2.

Corollary 2. Suppose Assumptions 1, 2, 3 are satisfied. When the learning rate meets the condition
that α ≤ min

{√
ε

4C0L
,

√
ε

C1L

}
, inner iterations at n-th block epoch satisfies:

Et[f(x
n,T
τn)− f(xn,0

τn)] ≤ − α

2C0

T−1∑
t=0

Et[∥∇τnf(θ
n,t
τn)∥2] + Tα2Lσ2

ε
+

Tα3C2
1L

2C0G
2

ε2

+2α(1 + C1)G
2

T∑
t=1

Et

[
∥∆Γn,t

τn ∥
]
+

2α2C2
1LG

2

ε
(9)

Proof. First, we define a series
{
xn,t
τn

}
, t = 0, 1, ..., T

xn,t
τn = θn,tτn − α

β1Γ
n,t
τn mn,t

τn

1− β1

Noting that for t = 1, 2, ..., T , we have
mn,0

τn = 0, xn,0
τn = θn,0τn , θn,tτn = θn,t−1

τn − αΓn,t
τn mn,t

τn (10)
We will prove the following recurrence relation

xn,t
τn = xn,t−1

τn − αΓn,t
τn gn,tτn + α∆Γn,t

τn

β1

1− β1
mn,t−1

τn , t = 1, 2, ..., T (11)

For notational convenience, we denote θt, gt,mt,Γt,∇f(θt) as θn,tτn , gn,tτn ,mn,t
τn , Γn,t

τn ,∇f(θn,tτn) be-
low.

From the definition of
{
xn,t
i

}
, we have

xt = θt − αΓt
β1

1− β1
mt

= θt−1 − αΓtmt − αΓt
β1

1− β1
mt

= θt−1 − αΓt
1

1− β1
mt

= θt−1 − αΓt
β1mt−1 + (1− β1) gt

1− β1

= θt−1 − αΓtgt − αΓt
β1mt−1

1− β1

29

Noting that

xt−1 = θt−1 − αΓt−1
β1

1− β1
mt−1

We obtain

xt = xt−1 − αΓtgt + α∆Γt
β1

1− β1
mt−1

Next, we apply smoothness assumption1 of the loss function f over the iterates xn,t
τn , t = 1, ..., T .

f(xt) ≤ f(xt−1) + ⟨∇f(xt−1), xt − xt−1⟩+
L

2
∥xt − xt−1∥2.

Taking expectation, we obtain

Et[f(xt)]−Et[f(xt−1)] ≤ −αEt [⟨∇f(xt−1), Γtgt⟩]+αEt

[〈
∇f(xt−1),∆Γt

(
β1

1− β1
mt−1

)〉]

+
α2L

2
Et

[∥∥∥∥Γtgt −∆Γt

(
β1

1− β1
mt−1

)∥∥∥∥2
]

Expanding further, we have
Et[f(xt)]− Et[f(xt−1)] ≤ −αEt [⟨∇f(θt−1), Γtgt⟩] (I)

+ αEt [⟨∇f(θt−1)−∇f(xt−1), Γtgt⟩] (II)

+ αEt

[〈
∇f(xt−1),∆Γt

(
β1

1− β1
mt−1

)〉]
(III)

+
α2L

2
Et

[∥∥∥∥Γtgt −∆Γt

(
β1

1− β1
mt−1

)∥∥∥∥2
]

(IV)

We will estimate each part step by step.

Bounding term I
I = −αEt [⟨∇f (θt−1) , Γt−1gt⟩] + αEt [⟨∇f (θt−1) ,∆Γtgt⟩]
≤ −αEt [⟨∇f (θt−1) , Γt−1∇L (θt−1)⟩] + αG2Et [∥∆Γt∥]
≤ −αλmin (Γt−1)Et

[
∥∇f (θt−1)∥2

]
+ αG2Et [∥∆Γt∥]

≤ − α

C0
Et

[
∥∇f (θt−1)∥2

]
+ αG2Et [∥∆Γt∥]

Where 1
C0

= 1√
G2+ε

≤ λmin(Γt−1), the first inequality is because assumption 2, the second
inequality is because lemma 2.

Bounding term II

II = αEt [⟨∇f(θt−1)−∇f(xt−1), Γt−1gt⟩]− αEt [⟨∇f (θt−1)−∇f (xt−1) ,∆Γtgt⟩]

≤ αEt [⟨∇f (θt−1)−∇f (xt−1) , Γt−1∇f (θt−1)⟩] + α2LEt

[
∥Γt−1

(
β1mt−1

1− β1

)
∥∥∆Γtgt∥

]
≤ αρ

2ε
Et

[
∥∇f (θt−1)∥2

]
+

α

2ρ
Et

[
∥∇f (θt−1)−∇f (xt−1)∥2

]
+

α2C1LG
2

√
ε

Et [∥∆Γt∥]

≤ αρ

2ε
Et

[
∥∇f (θt−1)∥2

]
+

α3L2

2ρ
Et

[
∥Γt−1

(
β1mt−1

1− β1

)
∥2
]
+

α2C1LG
2

√
ε

Et [∥∆Γt∥]

≤ αρ

2ε
Et

[
∥∇f (θt−1)∥2

]
+

α3C2
1L

2G2

2ρε
+

α2C1LG
2

√
ε

Et [∥∆Γt∥]

30

where C1 = β1

1−β1
, ρ is a positive constant, we used the fact ∥Γt∥ = 1√

∥ṽt∥min+ε
≤ 1√

ε
, the first

and third inequality is because assumption 1, the second inequality is because Cauchy–Schwarz
inequality.

Bounding term III

III = αEt

[〈
∇f(xt−1),∆Γt

(
β1

1− β1
mt−1

)〉]
≤ αEt

[〈
∇f(θt−1),∆Γt

(
β1

1− β1
mt−1

)〉]
+ αEt

[〈
∇f (xt−1)−∇f (θt−1) ,∆Γt

(
β1mt−1

1− β1

)〉]
≤ αEt

[
∥∇f (θt−1)∥∥∆Γt

β1mt−1

1− β1
∥
]
+ α2LEt

[
∥Γt−1

(
β1mt−1

1− β1

)
∥∥∆Γt

β1mt

1− β1
∥
]

≤ αC1G
2Et [∥∆Γt∥] +

α2C2
1LG

2

√
ε

Et [∥∆Γt∥]

Where the third inequality is because assumption 1.

Bounding term IV

IV =
α2L

2
Et

[∥∥∥∥Γtgt −∆Γt

(
β1

1− β1
mt−1

)∥∥∥∥2
]

≤ α2LEt[∥Γtgt∥2] + α2LEt

[∥∥∥∥∆Γt

(
β1

1− β1
mt−1

)∥∥∥∥2
]

≤ α2L

ε
Et

[
∥gt −∇f (θt−1) +∇f (θt−1)∥2

]
+ α2LEt

[
∥∆Γt

(
β1mt−1

1− β1

)
∥2
]

≤ α2L

ε

(
Et

[
∥∇f (θt−1)∥2

]
+ σ2

)
+ α2C2

1LG
2Et

[
∥∆Γt∥2

]
≤ α2L

ε
Et

[
∥∇f (θt−1)∥2

]
+

α2Lσ2

ε
+ α2C2

1LG
2Et

[
∥∆Γt∥2

]
Where we used assumption 3 that gt is unbiased with bounded variance σ2.

We obtain the bound of each part

I ≤ − α

C0
Et

[
∥∇f (θt−1)∥2

]
+ αG2Et [∥∆Γt∥]

II ≤ αρ

2ε
Et

[
∥∇f (θt−1)∥2

]
+

α3C2
1L

2G2

2ρε
+

α2C1LG
2

√
ε

Et [∥∆Γt∥]

III ≤ αC1G
2Et [∥∆Γt∥] +

α2C2
1LG

2

√
ε

Et [∥∆Γt∥]

IV ≤ α2L

ε
Et

[
∥∇f (θt−1)∥2

]
+

α2Lσ2

ε
+ α2C2

1LG
2Et

[
∥∆Γt∥2

]
Substituting each part into the above single-step estimation, we obtain

Et[f(xt)− f(xt−1)] ≤
(
− α

C0
+

α2L

ε
+

αρ

2ε

)
Et[∥∇f(θt−1)∥2] +

α2Lσ2

ε
+

α3C2
1L

2G2

2ρε

+

(
α(1 + C1)G

2 +
α2(1 + C1)C1LG

2

√
ε

)
Et [∥∆Γt∥] + α2C2

1LG
2Et

[
∥∆Γt∥2

]
Updating T times, we obtain

Et[f(xT)− f(x0)] ≤
(
− α

C0
+

α2L

ε
+

αρ

2ε

) T−1∑
t=0

Et[∥∇f(θt)∥2] +
Tα2Lσ2

ε
+

Tα3C2
1L

2G2

2ρε

31

+

(
α(1 + C1)G

2 +
α2(1 + C1)C1LG

2

√
ε

) T∑
t=1

Et [∥∆Γt∥] + α2C2
1LG

2
T∑

t=1

Et

[
∥∆Γt∥2

]
.

Choosing ρ = ε
2C0

, α ≤ min
{√

ε
4C0L

,
√
ε

C1L

}
, applying lemma1, we obtain:

Et[f(xT)− f(x0)] ≤ −
α

2C0

T−1∑
t=0

Et[∥∇f(θt)∥2] +
Tα2Lσ2

ε
+

Tα3C2
1L

2C0G
2

ε2
.

+2α(1 + C1)G
2

T∑
t=1

Et [∥∆Γt∥] +
2α2C2

1LG
2

ε
.

Corollary 3. For each inner iteration index T1 = 0, 1, ..., T at n-th block epoch, the expectation of
∥∇τnf

(
θn,0

)
∥2 is bounded by ∥∇τnf

(
θn,T1
τn

)
∥2

Et

[
∥∇τnf

(
θn,0

)
∥2
]
− α2T 2C2

2
≤ Et

[
∥∇τnf

(
θn,T1
τn

)
∥2
]

(12)

Where C2 = 2L2G2

ε .

Proof.

Et

[
∥∇τnf

(
θn,0

)
∥2
]
≤ 2Et

[
∥∇τnf

(
θn,T1
τn

)
∥2
]
+ 2Et

[
∥∇τnf

(
θn,0

)
−∇τnf

(
θn,T1
τn

)
∥2
]

≤ 2Et

[
∥∇τnf

(
θn,T1
τn

)
∥2
]
+ 2Et

[
∥∇f

(
θn,0

)
−∇f

(
θ
n,T1

τn

)
∥2
]

≤ 2Et

[
∥∇τnf

(
θn,T1
τn

)
∥2
]
+ 2L2Et

[
∥θn,0 − θ

n,T1

τn ∥
2
]

Where

θ
n,T1

τn =
(
θn−1,T
1 , ..., θn−1,T

τn−1 , θn,T1
τn , θn−1,T

τn+1 ..., θn−1,T
B

)
θn,0 =

(
θn−1,T
1 , ..., θn−1,T

τn−1 , θn,0τn , θn−1,T
τn+1 ..., θn−1,T

B

)
,

the second inequality is because the partial derivative vector ∇τnf
(
θn,T1
τn

)
is part of the gradient

vector ∇f
(
θ
n,T1

τn

)
.

Next, we will bound Et

[
∥θn,0 − θ

n,T1

τn ∥
2
]
.

Et

[
∥θn,0 − θ

n,T1

τn ∥
2
]
= α2Et

∥ T1∑
j=1

Γn,j
τn mn,j

τn ∥
2


≤ T1α

2

ε

T1∑
j=1

Et

[
∥mn,j

τn ∥
2
]

≤ T 2
1α

2G2

ε
≤ T 2α2G2

ε
Where we used assumption 3 and lemma 2, the first inequality is because Cauchy-shwarz inequality.

We obtain

Et

[
∥∇τnf

(
θn,0

)
∥2
]
≤ 2Et

[
∥∇τnf

(
θn,T1
τn

)
∥2
]
+

2T 2α2L2G2

ε
.

Let C2 = 2L2G2

ε , we have

Et

[
∥∇τnf

(
θn,0

)
∥2
]
− α2T 2C2

2
≤ Et

[
∥∇τnf

(
θn,T1
τn

)
∥2
]
.

32

E.2 Proof of theorem 1

Theorem 2. (MISA Convergence) Suppose that Assumptions 1, 2, 3 are fulfilled, learning rate
satisfies α ≤ min

{√
ε

4C0L
,

√
ε

C1L

}
, MISA converges at the rate of O(1√

NT
+ 1

N).

∑N
n=1 Et[∥∇f(θn,0)∥2]

N
≤ 1√

N

4C0

√
∆0[TLσ2 + 2LG2(β1

1−β1
)2]

Tπ
√
ε

+O(1
N

).

Where ∆0 = f(x1,0)− f(x∗), C1 = β1

1−β1
, C0 = 1√

G2+ε
.

Proof. From algorithm 3, we have

θn+1,0
τn+1

= θn,Tτn − α
β1

1− β1
Γn,T
τn mn,T

τn

From the definition of the sequence
{
xn,T
τn

}
in (10), we obtain

Et[f(x
n+1,0
τn)] = Et[f(θ

n+1,0
τn)] = Et[f(x

n,T
τn)]

Which implies

Et[f(x
n+1,0
τn)] = Et[f(x

n,T
τn)] (13)

Substituting (12) and (13) into (9) ,we obtain

Et[f(x
n+1,0
τn)− f(xn,0

τn)] ≤ − αT

4C0
Et[∥∇τnf(θ

n,T)∥2] + Tα2Lσ2

ε
+

Tα3C2
1L

2C0G
2

ε2
.

+2α(1 + C1)G
2

T∑
t=1

Et [∥∆Γt∥] +
2α2C2

1LG
2

ε
+

α3T 3C2

4C0

It’s obvious that the norm of full gradient is equal to the sum of individual block’s gradient norms.

∥∇f
(
θn,T

)
∥2 =

B∑
b=1

∥∇bf
(
θn,T

)
∥2

Taking expectation, we have

Et

[
∥∇f

(
θn,T

)
∥2
]
=

B∑
b=1

Et

[
∥∇bf

(
θn,T

)
∥2
]

Using the conclusion of Corollary 2 and taking expectation with respect to τn, we have

Et,τn [f(x
n+1,0)− f(xn,0)] =

B∑
b=1

pnbEt[f(x
n+1,0
b)− f(xn,0

b)]

≤ − αT

4C0

B∑
b=1

Pn
b Et[∥∇bf(θ

n,0)∥2] + Tα2Lσ2

ε
+

Tα3C2
1L

2C0G
2

ε2

+ 2α(1 + C1)G
2

B∑
b=1

Pn
b (

T∑
t=1

Et

[
∥∆Γn,t

b ∥
]
) +

2α2C2
1LG

2

ε
+

α3T 3C2

4C0

≤ − αT

4C0
πEt[∥∇f(θn,0)∥2] +

Tα2Lσ2

ε
+

Tα3C2
1L

2C0G
2

ε2

+ 2α(1 + C1)G
2

B∑
b=1

Pn
b (

T∑
t=1

Et

[
∥∆Γn,t

b ∥
]
) +

2α2C2
1LG

2

ε
+

α3T 3C2

4C0

33

≤ − αT

4C0
πEt[∥∇f(θn,0)∥2] +

Tα2Lσ2

ε
+

Tα3C2
1L

2C0G
2

ε2

+ 2α(1 + C1)G
2

T∑
t=1

Et

[
∥∆Γn,t

bn
∥
]
+

2α2C2
1LG

2

ε
+

α3T 3C2

4C0

Where bn = argmax
b∈{1,2,...,B}

{∑T
t=1 Et

[
∥∆Γn,t

b ∥
]}

, {Pn
b } is the sampling probability of each block

at n-th block epoch, the first inequality is because Corollary 2, the second inequality is because
Corollary 1.

Let D0 = π
4C0

, D1 = Lσ2

ε , D2 =
C2

1L
2C0G

2

ε2 , D3 = 2(1 + C1)G
2, D4 =

2C2
1LG2

ε , D5 = C2

4C0
, we

obtain

Et[f(x
n+1,0)− f(xn,0)] ≤ −αTD0Et[∥∇f(θn,0)∥2] + Tα2D1 + Tα3D2 + αD3

T∑
t=1

Et

[
∥∆Γn,t

bn
∥
]

+D4α
2 +D5α

3T 3

Updating the above equation for N times, we obtain

Et[f(x
N+1,0)− f(x1,0)] ≤ −αTD0

N∑
n=1

Et[∥∇f(θn,0)∥2] +NTα2D1 +NTα3D2

+ αD3

N∑
n=1

T∑
t=1

Et

[
∥∆Γn,t

bn
∥
]
+ND4α

2 +ND5α
3T 3

From lemma 1, we know
N∑

n=1

T∑
t=1

Et

[
∥∆Γn,t

bn
∥
]
≤ 2√

ε

Let D6 = −(f(x∗)− f(x1,0)), we obtain∑N
n=1 Et[∥∇f(θn,0)∥2]

N
≤ D6

αNTD0
+

αD1

D0
+

α2D2

D0
+

2D3

NTD0
√
ε
+

αD4

TD0
+

T 2α2D5

D0

=
D6

αNTD0
+ α

TD1 +D4

TD0
+ α2 (D2 + T 2D5)

D0

Choosing α =
√

D6

N(TD1+D4)
, we get the conclusion∑N

n=1 Et[∥∇f(θn,0)∥2]
N

≤
2
√
D6(TD1 +D4)√

NTD0

+O(1
N

)

=
1√
N

4C0

√
∆0[TLσ2 + 2LG2(β1

1−β1
)2]

Tπ
√
ε

+O(1
N

).

F Memory Analysis

The memory analysis presented in this study is conducted under frozen embedding layer and language
modeling head layer configurations, with memory quantification comprehensively defined as the
cumulative composition of parameters, gradients, optimizer states, and intermediate activation.

Notation. We suppose that the model follows the standard transformer architecture, where each
layer consists of six modules, i.e., WQ ∈ Rh×h, WK ∈ Rh×h, WV ∈ Rh×h, WO ∈
Rh×h, W1 ∈ Rh×4h, W2 ∈ R4h×h. Let L denote the number of the transformer layers, and a

34

denotes the number of attention heads. v is the vocabulary size of the model. s refer to the sequence
length. b represents the training batch size. The embedding representation dim is h.

Table 13: Parameter dimension

Parameter Property Memory consumption

X Activation s ∗ h ∗ b = bsh
WQ Model parameter a ∗ (h ∗ h/a) = h2

Q Activation a ∗ (s ∗ h/a) ∗ b = bsh
WK Model parameter a ∗ (h ∗ h/a) = h2

K Activation s ∗ (h ∗ h/a) ∗ b = bsh
WV Model parameter a ∗ (h ∗ h/a) = h2

V Activation a ∗ (s ∗ h/a) ∗ b = bsh
S Activation a ∗ s ∗ s ∗ b = abs2

O Activation a ∗ (s ∗ h/a) ∗ b = bsh
WO Model parameter a ∗ (h ∗ h/a) = h2

U Activation s ∗ h ∗ b = bsh
Z Activation s ∗ h ∗ b = bsh
Z1 Activation s ∗ 4h ∗ b = 4bsh
W1 Model parameter h ∗ 4h = 4h2

IZW1+b1>0 Activation s ∗ 4h ∗ b = 4bsh
W2 Model parameter 4h ∗ h = 4h2

F.1 Memory analysis of layer-wise optimization method

In this section, we will give detailed memory analysis for layer-wise optimization methods in
backward propagation based on LLaMA’s standard architecture.

Lemma 3. ∂f
∂U = g1

(
∂f
∂Z , U

)
, ∂f

∂A = g2

(
∂f
∂S , S

)
Where Z = Layernorm(U), S = softmax(A).

Proof. First, we compute ∂f
∂U .

The computational flow of Z = LayerNorm(U) can be written as

µ =
1

h

h∑
i=1

U:,i

σ =

√√√√ 1

h

h∑
i=1

(U:,i − µ)
2
+ δ

Z =
U − µ

σ
Taking the partial derivative of U , we obtain

∂f

∂Uij
=

1

σj

(
∂f

∂Zij
− 1

h

h∑
k=1

{
∂f

∂Zik
− Uij − σj

σ2
j

∂f

∂Zik
(Uik − µj)

})
We observe that the computation of ∂f

∂U depends solely on ∂f
∂Z and U . For notational convenience, we

denote ∂f
∂U as g1

(
∂f
∂Z , U

)
.

Second,we compute ∂f
∂A .

35

Let Sij =
eAij∑s

k=1 eAik
, we have

∂Sij

∂Amn
=


0, if m ̸= i

− eAimeAij

(
∑s

k=1 eAik)
2 = −SinSij , if m = i and n ̸= j

eAij (
∑

k ̸=j eAik)
(
∑s

k=1 eAik)
2 = Sij (1− Sij) , if m = i and n = j

We obtain
∂f

∂Aij
=
∑
k ̸=j

∂f

∂Sik
(−SikSij) +

∂f

∂Sij
Sij (1− Sij)

= Sij

(
∂f

∂Sij
−

s∑
k=1

∂f

∂Sik
Sik

)

Which indicates
∂f

∂A
= g2

(
∂f

∂S
, S

)
.

Below, we present the forward and backward propagation flows of certain transformer layer.

Q = XWQ

K = XWK

V = XWV

A = QKT

√
dk

S = softmax(A)

O = SV

Attn = OW0

U = Attn+X

Z = LayerNorm(U)

Z1 = ReLU(ZW1 + b1)

Z2 = Z1W2 + b2
∂f
∂Z1

= ∂f
∂Z2

WT
2 , ∂f

∂W2
= ZT

1
∂f
∂Z2

∂f
∂Z = ∂f

∂Z1
⊙ IZW1+b1>0W

T
1 , ∂f

∂W1
= ZT ∂f

∂Z1

∂f
∂U = g1

(
∂f
∂Z , U

)∂f
∂Attn = ∂f

∂U

∂f
∂O = ∂f

∂AttnW
T
0 , ∂f

∂W0
= OT ∂f

∂Attn

∂f
∂S = ∂f

∂OV T , ∂f
∂V = ST ∂f

∂O

∂f
∂A = g2

(
∂f
∂S , S

)∂f
∂Q = ∂f

∂AKT 1√
dk
, ∂f
∂K = (∂f

∂A)TQ 1√
dk

∂f
∂X = ∂f

∂V WT
V , ∂f

∂WV
= XT ∂f

∂V

∂f
∂WK

= XT ∂f
∂K

∂f
∂WQ

= XT ∂f
∂Q

Forward Backward

Next, we will analyze layer-wise optimization methods’ memory based on the forward and backward
propagation flow of a transformer layer.

Activation memory of frozen layers. To enable backpropagation, the activation gradients of a
Transformer layer must be stored, including the tensors Q,V,K, S, U and IZW1+b1>0. The total
activation memory is calculated as: 3bsh+ abs2 + 5bsh = abs2 + 8bsh.

Activation memory of activated layers. In the layer-wise optimization method, the weight matrices
of unfrozen layers WQ,WK ,WV ,WO,W1,W2 require computation, necessitating the storage of
X,Q,K, V,O, S, U, IZW1+b1>0, Z and Z1. The total activation memory here is: 5bsh + abs2 +
10bsh = abs2 + 15bsh.

Parameter memory of layer-wise optimization method. Irrespective of which Transformer layer
is activated, the model parameters must always be stored. This includes the weight matrices of a full

36

Transformer layer WQ,WK ,WV ,WO,W1,W2. The total parameter memory is: L(4h2 + 8h2) =
12h2L.

Optimizer state and gradient memory of frozen layer. For frozen layers, neither optimizer states
nor gradients need to be stored, resulting in zero memory usage for these components.

Optimizer state and gradient memory of activated layer. Activated layers require storing both
gradients and optimizer states. The total memory for this is 3× 12h2 = 36h2.

Table 14: Memory of layer-wise optimization method

Layer State Parameter Memory Activation Memory Optimizer State and Gradient Memory

Activated layer 12h2L abs2 + 15bsh 36h2

Frozen layer 12h2L abs2 + 8bsh 0

In practice, we assume that the activated layer’s ID is i, we obtain the following conclusion
Parameter : 12h2L

Optimizer State : 24h2

Gradient : 12h2

Activation : (L− i)(abs2 + 8bsh) + (abs2 + 15bsh)

Total : (L− i)(abs2 + 8bsh) + (abs2 + 15bsh) + 12h2L+ 36h2

The rationale for the activation memory is as follows: when the activated layer ID is i, backpropagation
only needs to propagate to the i-th layer. Consequently, the activations of layers j = 1, 2, ..., i− 1
can be saved.

Based on this, we derive the peak memory of the layer-wise method.
L(abs2 + 8bsh) + 7bsh+ 12h2L+ 36h2.

F.2 Memory analysis of MISA and LoRA

In this section, we focus on the scenario where only a specific module within a layer is activated at
each step. Based on this, we derive a memory comparison between the module-wise optimization
method and LoRA.

F.2.1 Memory analysis of Module-wise BCD

Based on the computation flow described above, activating different individual modules incurs
additional memory consumption compared to the module-wise optimization method.

Table 15: Memory of Module-wise BCD

Unfrozen Module Extra Storage Extra Activation Memory Extra Optimizer State And Gradient Memory

WQ X,WQ bsh 3h2

WK X,WK bsh 3h2

WV X,WV bsh 3h2

WO O,WO bsh 3h2

W1 Z,W1 bsh 12h2

W2 Z1,W2 4bsh 12h2

Let us consider the case where the activated module is WQ as an example. The memory analysis
yields the following components:

• Activation memory of frozen modules

37

From the layer-wise memory analysis, we know that for a frozen layer, the activation
memory requirement is abs2 + 8bsh.

• Activation memory of the activated module
To enable backpropagation through WQ, we need to store the additional activation X ,
resulting in a total memory of abs2 + 9bsh.

• Parameter memory in layer-wise optimization
The layer-wise approach requires storing all parameters of each layer, amounting to 12h2L
memory.

• Optimizer state and gradient memory for frozen layers
Similar to the layer-wise optimization case, the module-wise approach requires no additional
memory for frozen layers.

• Optimizer state and gradient memory for the activated layer
Only the optimizer states and gradients for WQ need to be stored, requiring 3h2 memory.

The peak memory consumption for the module-wise optimization method, when WQ is the activated
module, is therefore:

L(abs2 + 8bsh) + bsh+ 12h2L+ 3h2

F.2.2 Memory analysis of LoRA

Consider a weight matrix WQ with LoRA adaptation, which can be expressed as:

WQ = W0 +BQAQ, where BQ ∈ Rh×r, AQ ∈ Rr×h
a

The backward propagation gradients are computed as:
∂L
∂BQ

=
∂L
∂WQ

A⊤
Q

∂L
∂AQ

= B⊤
Q

∂L
∂WQ

This formulation leads to the following memory requirements:

• Embedding layer activations: Requires storing parameters of size sh.
• Adapter gradients and optimizer states: For each layer’s adapters AQ and BQ, this

requires 3aL
(
2hr
a

)
= 6hrL memory.

• Full model parameters: The base model parameters require 12h2L memory.
• Activation storage: During backpropagation through WQ, LoRA needs to store additional

activations X , AQ, and BQ, requiring L(abs2 + 9bsh+ 2hr) memory.

The peak memory consumption when applying LoRA to WQ is therefore:

L
(
abs2 + 9bsh+ 12h2 + 8hr

)
From the analysis above, we can similarly generalize the memory storage of different modules.

F.3 Memory analysis of GaLore

Consider activating WQ as an example, GaLore maintains a projection matrix PQ ∈ Rh×r for WQ

and optimizer states in the projected subspace of shape r × h. It holds that:

• GaLore needs to store gradient, projection matrix and optimizer state of each layer’s WQ,
which needs 4hrL memory storage.

• GaLore needs to store full model parameters, which needs 12h2L memory storage.
• For backward propagation, GaLore needs to store extra activation X , leading to L(abs2 +
9bsh) activation memory in total.

38

We obtain the peak memory of GaLore when the activated module is WQ:

L(abs2 + 9bsh+ 12h2 + 4hr).

From the analysis above, we can similarly generalize the memory storage of different modules. Then
we obtain the comparison between LoRA, GaLore and Module-wise BCD.

Table 16: Peak memory comparison between LoRA, GaLore and Module-wise BCD

Activating Module LoRA GaLore Modulewise-BCD

WQ
L(abs2 + 9bsh L(abs2 + 9bsh L(abs2 + 8bsh
+12h2 + 8hr) +12h2 + 4hr) +12h2) + bsh+ 3h2

WK
L(abs2 + 9bsh L(abs2 + 9bsh L(abs2 + 8bsh
+12h2 + 8hr) +12h2 + 4hr) +12h2) + bsh+ 3h2

WV
L(abs2 + 9bsh L(abs2 + 9bsh L(abs2 + 8bsh
+12h2 + 8hr) +12h2 + 4hr) +12h2) + bsh+ 3h2

WO
L(abs2 + 9bsh L(abs2 + 9bsh L(abs2 + 8bsh
+12h2 + 4hr) +12h2 + 8hr) +12h2) + bsh+ 3h2

W1
L(abs2 + 9bsh L(abs2 + 9bsh L(abs2 + 8bsh
+12h2 + 20hr) +12h2 + 13hr) +12h2) + bsh+ 12h2

W2
L(abs2 + 12bsh L(abs2 + 12bsh L(abs2 + 8bsh
+12h2 + 20hr) +12h2 + 13hr) +12h2) + 4bsh+ 12h2

All
L(abs2 + 15bsh L(abs2 + 15bsh L(abs2 + 8bsh
+12h2 + 72hr) +12h2 + 42hr) +12h2) + 7bsh+ 36h2

F.4 Memory analysis of MISA

Let x, y, and z denote the number of activated modules for WQ/WK/WV , W1, and W2, respectively.
Based on Table 15, we derive the memory estimation for MISA as follows:

• Activation Memory
Compared to layer-wise optimization, MISA requires additional activation storage of:

bshx+ bshy + 4bshz

• Parameter Memory
The full model parameters require:

12h2L

• Optimizer States and Gradients
The memory needed for storing optimizer states and gradients of activated modules is:

3h2x+ 12h2y + 12h2z

Given a trainable parameter ratio threshold δ, where the number of trainable parameters is 12h2Lδ,
we formulate the optimization problem to determine the maximum memory consumption M :

Constraint: h2x+ 4h2(y + z) ≤ 12h2Lδ

Objective: M = L(abs2 + 8bsh+ 12h2) + bsh(x+ y + 4z)

+ h2(3x+ 12y + 12z)

The optimal solution yields the peak memory consumption of MISA:
L
(
abs2 + 8bsh+ 12h2 + 12bshδ + 36h2δ

)
(14)

F.5 Memory analysis of MISA’s indicators

In this subsection, we denote B be the total number of modules.

According to equation 4, MISA needs to maintain Gn
b , pnb .

39

• Memory of Gn
b : For the frozen block b0, Gn

0 follows the previous step. For the unfrozen
block b, since its gradient has been saved, we only need to store 1

T

∑T
t=1 ∥g

n,t
b ∥2, which is

negligible. Therefore, the total memory overhead is O(B).

• Memory of pnb : According to the definition of pnb in equation 4, the previous one pn−1
b can

be discarded at n-th sampling period. Therefore, the memory occupation is O(B) .

Therefore, the storage of the importance indicator O(B) is negligible compared with the gradients,
which is O(h2L).

Memory efficiency even as model scales. The memory overhead of storing the smoothed historical
gradient norm Gb is O(B), which is negligible compared to the O(h2L) overhead of the gradients
themselves (with a relative ratio of O(1/h2) when L = O(B), as in LLaMA models). As model
dimensions h and L increase, this ratio decays quadratically, making the overhead of storing Gb

negligible.

F.6 Peak memory comparison between MISA and layer-wise method

Lemma 4. Let δ be the trainable parameter ratio threshold, when δ < 7bs+36h
12bsL+36hL , MISA is more

memory efficient than layer-wise method.

Proof. From conclusion (14), we only need to prove
L(abs2 + 8bsh+ 12h2 + 12bshδ + 36h2δ) < L(abs2 + 8bsh+ 12h2) + 7bsh+ 36h2

⇐⇒

δ <
7bs+ 36h

12bsL+ 36hL

It’s obvious that when δ < 1
L , memory of MISA is always smaller than layer-wise method.

F.7 Peak memory comparison between layer-wise method and LoRA

Lemma 5. As sequence length gets larger, layer-wise optimization method will become more memory
efficient than LoRA and Galore. When s > 36h−72rL

7bL−7b , peak memory of layer-wise optimization
method is always smaller than LoRA and Galore.

Proof. In this proof, we only consider the case when LoRA target and Galore target are all modules.

From table 16, when peak memory of layer-wise method is smaller than LoRA and Galore, we have
L
(
abs2 + 8bsh+ 12h2

)
+ 7bsh+ 36h2 < L

(
abs2 + 15bsh+ 12h2 + 42hr

)
⇐⇒

7bsh+ 36h2 < 7bshL+ 42rhL

⇐⇒
36h− 42rL < s (7bL− 7b)

⇐⇒

s >
36h− 42rL

7bL− 7b

F.8 Paras/Peak-Memory comparison between layer-wise method and LoRA

Lemma 6. In the memory-consistent case, layer-wise optimization method can update more parame-
ters than LoRA when the inequality holds h > 3rL

2 .

Proof. From table16, we only need to prove

18rhL

L (abs2 + 15bsh+ 12h2 + 72rh)
<

12h2

L (abs2 + 8bsh+ 12h2) + 7bsh+ 36h2

40

⇐⇒
3r
[
L
(
abs2 + 8bsh+ 12h2

)
+ 7bsh+ 36h2

]
< 2h

(
abs2 + 15bsh+ 12h2 + 72rh

)
⇐⇒

abs2 (2h− 3rL) + bsh [30h− 24rL− 21r] + h2(36r + 24h− 36rL) > 0

When r < 2h
3L holds, each part of the last inequality is greater than 0, which completes the proof.

G Computation Analysis

In this subsection, we adopt the same notation and setting as those in the memory analysis. It is
well known that subspace optimization algorithms, such as LoRA, are not computationally efficient.
Therefore, in this section, we will only analyze the computational complexity of layer-wise and
module-wise optimization methods. Here we present the computation analysis in detail. We will
analyze the exact floating point operations (FLOPs) required for backward propagation through a
single Transformer layer. To begin with, we should remind that the matrices production with size
m× n and n× r need 2mnr FLOPs.

From the forward and backward propagation flows and analysis in F.1, We can estimate the computa-
tional overhead under layer-wise setting.

Let:

• b: batch size

• s: sequence length

• h: hidden dimension

• a: number of attention heads

• d = h/a: per-head dimension

WQ,WK ,WV ∈ Rh×h, WO ∈ Rh×h,

W1 ∈ Rh×4h, W2 ∈ R4h×h

Backward FLOPs per layer

1. Feed-Forward Network (FFN)

Grad ∂W2 : 2bs · 4h · h = 8bsh2

Grad ∂Z1 : 2bs · h · 4h = 8bsh2

Grad ∂W1 : 2bs · h · 4h = 8bsh2

ReLU mask : 4bsh

Total : 24bsh2 + 4bsh

2. Output Projection WO

Grad ∂WO : 2bsh2

Grad ∂O : 2bsh2

Total : 4bsh2

3. Q/K/V Projection

Each of ∂WQ, ∂WK , ∂WV : 2bsh2

Total : 6bsh2

41

4. Attention Score and Softmax

QK⊤ : 2bs2h

Grad w.r.t Q,K : 2bs2h

Softmax backward : 2bas2

Total : 4bs2h+ 2bas2

5. Attention Output Context (SV)

S⊤∂O : 2bs2h

∂SV ⊤ : 2bs2h

Total : 4bs2h

6. Layer-Norm Backward

10bsh

Total Backward FLOPs (One Layer)

34bsh2 + 8bs2h+ 2bas2 + 14bsh

G.1 Computation analysis of layer-wise optimization methods

We assume only one layer is unfrozen at each iteration under a block coordinate descent (BCD)
strategy.

Activated layer

For an activated layer, we cannot omit the computation cost of the entire layer during backpropagation.

Thus, the total FLOPs without weight gradient computations is:

34bsh2 + 8bs2h+ 2bas2 + 14bsh

Frozen layer

For a frozen layer, we can omit part of the computational cost of calculating the weight gradients
during backpropagation.

We exclude the following terms:

• WQ,WK ,WV : 6bsh2

• WO: 2bsh2

• W1,W2: 16bsh2

Thus, the total FLOPs without weight gradient computations is:

10bsh2 + 8bs2h+ 2bas2 + 14bsh

Total computation cost

(L− 1)(10bsh2 + 8bs2h+ 2bas2 + 14bsh) + 34bsh2 + 8bs2h+ 2bas2 + 14bsh

42

G.2 Computation analysis of module-wise optimization methods

Let the total number of activated modules WQ, WK , WV , WO be x, number of modules W1, W2 be
y, the expectation of computation cost be C, from analysis of G, we obtain the simple optimization
Problem.

h2x+ 4h2y ≤ 12h2Lδ

C = L(10bsh2 + 8bs2h+ 2bas2 + 14bsh) + 2bsh2x+ 8bsh2y

We obtain

Cmax = L(10bsh2 + 8bs2h+ 2bas2 + 14bsh) + 24bsh2Lδ

It is obvious that when δ < 1
L , module-wise methods demonstrates greater computational efficiency

compared to layer-wise optimization methods.

G.3 Computation analysis of MISA’s indicators

In implementation, we first update Gn
b and then compute pnb according to Equation (4).

• Computation overhead of Gn
b : The dominant term of the computation cost is the calculation

for ∥gn,tb ∥2, which needs O(h2) flops.

• Computation overhead of pnb : The computation overhead of pnb only depends on the
number of blocks B, which needs O(B) flops.

Therefore, the computational overhead of the importance indicators O(B+h2) is negligible compared
with the gradients, which is O(bsh2).

Computational efficiency even as model scales. The computation of the smoothed historical gradient
norm Gb introduces an overhead of O(h2). In contrast, the computational overhead for gradients is
O(bsh2), yielding a relative ratio of O(1/bs). As the model scales up, (i.e., with increasing h and L),
this ratio remains stable, making the overhead of computing Gb’s overhead negligible.

H Broader Impacts

This paper presents work that aims to advance the field of machine learning. The proposed method,
MISA, is designed to efficiently train LLMs with low memory consumption. This will facilitate
further research regarding memory-efficient LLM training in the future. We believe that this work
will not cause significant societal consequences.

I Experimental Hyperparameters

For all baselines and our proposed method, we conducted extensive hyperparameter searches. The
learning rate was searched in {2e-4, 1e-4, 5e-5, 1e-5, 5e-6, 3e-6, 1e-6}. For LoRA and GaLore,
we explored ranks in {8, 16, 32}, and we found that a rank of 16 or 32 consistently yielded better
performance than 8. For MISA, η was searched in {0.1, 0.5, 1}. The table below presents the optimal
hyperparameter settings.

The batch size in the following tables is represented as micro batch size× gradient accumulation.

43

I.1 Hyperparameters for commonsense reasoning

Hyperparameters LLaMA3-8B Qwen2.5-7B
LoRA DoRA LoRA DoRA

Rank 32 16 32 16
α 64 32 64 32
Dropout 0.05
Optimizer AdamW
Learning rate 1e-4 1e-4 2e-4 2e-4
Batch size 4×4
Warmup Steps 100
Epochs 3
Target module Wq,Wk,Wv,Wup,Wdown

Table 17: Hyperparameters of LoRA and DoRA in commonsense reasoning tasks.

Hyperparameters LLaMA3-8B Qwen2.5-7B
MISA BAdam LISA MISA BAdam LISA

Optimizer AdamW
Learning rate 1e-5 5e-6 3e-6 5e-6 5e-6 3e-6
Batch size 4×4
Warmup Steps 0
Activated parameters 1%, 3% 1 layer 1 layer 1%, 3% 1 layer 1 layer
MISA’s η 1 - - 1 - -
T 50
Epochs 3

Table 18: Hyperparameters of MISA, BAdam and LISA in commonsense reasoning tasks.

I.2 Hyperparameters for math reasoning

Hyperparameters LLaMA3-8B Qwen2.5-7B
LoRA DoRA LoRA DoRA

Rank 32 32 32 32
α 32
Dropout 0.05
Optimizer AdamW
Learning rate 2e-4 2e-4 1e-4 1e-4
Batch size 4×1
Warmup Steps 0
Epochs 3
Target module Wq,Wv,Wup,Wdown

Table 19: Hyperparameters of LoRA and DoRA in math reasoning tasks.

44

Hyperparameters LLaMA3-8B Qwen2.5-7B
MISA BAdam LISA MISA BAdam LISA

Optimizer AdamW
Learning rate 5e-6 5e-6 5e-6 1e-5 1e-5 5e-6
Batch size 4×1
Warmup Steps 0
Activated parameters 1%, 3% 1 layer 1 layer 1%, 3% 1 layer 1 layer
MISA’s η 0.5 - - 1 - -
T 50
Epochs 3

Table 20: Hyperparameters of MISA, BAdam and LISA in math reasoning tasks.

I.3 Hyperparameters for instruction fine-tuning

Hyperparameters LLaMA2-7B Mistral-7B Tiny-LLaMA
LoRA GaLore LoRA GaLore LoRA GaLore

Rank 32 32 32 32 32 32
α 64 64 64 64 64 64
Dropout 0.05 0 0.05 0 0.05 0
Optimizer AdamW
Learning rate 2e-4 3e-6 1e-4 1e-6 2e-4 1e-5
Batch size 2×8
Warmup Steps 0
Epochs 3
Target module Wq,Wk,Wv,Wo,Wup,Wgate,Wdown

Table 21: Hyperparameters of LoRA and DoRA on Alpaca GPT4.

Hyperparameters LLaMA2-7B Mistral-7B Tiny-LLaMA
MISA BAdam LISA MISA BAdam LISA MISA BAdam LISA

Optimizer AdamW
Learning rate 1e-5 1e-5 5e-6 1e-5 5e-6 1e-5 5e-5 1e-5 1e-5
Batch size 2×8
Warmup Steps 0
Activated parameters 3% 1 layer 1 layer 3% 1 layer 1 layer 4.545% 1 layer 1 layer
MISA’s η 0.5 - - 1 - - 0.5 - -
T 50
Epochs 3

Table 22: Hyperparameters of MISA, BAdam and LISA on Alpaca GPT4.

45

I.4 Hyperparameters for pre-training

Hyperparameters MISA

Optimizer AdamW
Learning rate 1e-3
Batch size 32×256
Warmup Steps 0
MISA’s δ 3%, 25%
MISA’s η 300
T 50
Sequence Length 256
Training Steps 52000

Table 23: Hyperparameters of MISA on pre-training
LLaMA2 350M.

Hyperparameters GaLore

Optimizer AdamW
Learning rate 1e-3
Batch size 32×256
Warmup Steps 0
GaLore’s rank 32, 256
GaLore’s α 1
T 50
Sequence Length 256
Training Steps 52000

Table 24: Hyperparameters of GaLore on pre-training
LLaMA2 350M.

46

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the abstract and introduction part.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

47

Justification: See Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Hyperparameters are in Appendix I. The code is available in the supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

48

Answer: [Yes]
Justification: All the code and data are available in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided all our experimental settings in Section 4 and Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conducted extensive hyperparameter searches for all baselines and our
proposed method. Experimental results are tested multiple times to ensure stability and
reliability. See Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

49

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See 4. Experiments are conducted on RTX 4090 GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the code of ethics and confirmed that our research complies
with its guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

50

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of LLM optimiza-
tion. All of the datasets and models are public and we have checked them all. Our paper
poses no such risks mentioned in the question.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the assets properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

51

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All the code are available in the supplementary material, along with an explicit
README.md.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

52

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not used in our core method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

53

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Module-wise Importance Sampling
	Problem Formulation
	Block Sampling Strategy
	Partition the Weights into Fine-Grained Modules Instead of Coarse Layers
	Module-wise Importance Sampling (MISA) Method
	Memory Analysis

	Convergence Analysis
	Experiments
	Commonsense Reasoning
	Math Reasoning
	Instruction Tuning
	Pre-training

	Conclusion and Limitation
	Acknowledgements
	Related Work
	Algorithm Details
	Module selection strategy
	Definition of the scaled gradient norm

	Additional Experiments
	Memory Efficiency When Scaling To 70B Model
	Enhancing LoRA with MISA
	Computation Efficiency

	Ablation Study
	Ablation Study: Impact of Clearing Optimizer States
	Ablation Study: Impact of Hyperparameters
	Impact of Inner-Loop Iteration T
	Ablation Study: Sampling Strategy
	Ablation Study: Importance Scoring Methods
	Ablation Study: Impact of Each Module

	Theoretical Analysis.
	Notation
	Proof of theorem 1

	Memory Analysis
	Memory analysis of layer-wise optimization method
	Memory analysis of MISA and LoRA
	Memory analysis of Module-wise BCD
	Memory analysis of LoRA

	Memory analysis of GaLore
	Memory analysis of MISA
	Memory analysis of MISA's indicators
	Peak memory comparison between MISA and layer-wise method
	Peak memory comparison between layer-wise method and LoRA
	Paras/Peak-Memory comparison between layer-wise method and LoRA

	Computation Analysis
	Computation analysis of layer-wise optimization methods
	Computation analysis of module-wise optimization methods
	Computation analysis of MISA's indicators

	Broader Impacts
	Experimental Hyperparameters
	Hyperparameters for commonsense reasoning
	Hyperparameters for math reasoning
	Hyperparameters for instruction fine-tuning
	Hyperparameters for pre-training

