
Training-Free Policy Violation Detection via Activation-Space Whitening in LLMs

Oren Rachmil1*, Roy Betser1, Itay Gershon1, Omer Hofman1, Nitay Yakoby2, Yuval Meron2, Idan
Yankelev2, Asaf Shabtai2, Yuval Elovici2, Roman Vainshtein1

1Fujitsu Research of Europe, Israel
2Ben-Gurion University of the Negev, Israel

Abstract
Aligning proprietary large language models (LLMs) with in-
ternal organizational policies has become an urgent prior-
ity as organizations increasingly deploy LLMs in sensitive
domains such as legal support, finance, and medical ser-
vices. Beyond generic safety filters, enterprises require reli-
able mechanisms to detect policy violations within their reg-
ulatory and operational frameworks, where breaches can trig-
ger legal and reputational risks. Existing content moderation
frameworks, such as guardrails, remain largely confined to
the safety domain and lack the robustness to capture nuanced
organizational policies. LLM-as-a-judge and fine-tuning ap-
proaches, though flexible, introduce significant latency and
lack interpretability. To address these limitations, we propose
a training-free and efficient method that treats policy violation
detection as an out-of-distribution (OOD) detection problem.
Inspired by whitening techniques, we apply a linear trans-
formation to decorrelate the model’s hidden activations and
standardize them to zero mean and unit variance, yielding
near-identity covariance matrix. In this transformed space, we
use the Euclidean norm as a compliance score to detect pol-
icy violations. The method requires only the policy text and
a small number of illustrative samples, which makes it light-
weight and easily deployable. On a challenging policy bench-
mark, our approach achieves state-of-the-art results, surpass-
ing both existing guardrails and fine-tuned reasoning models.
This work provides organizations with a practical and sta-
tistically grounded framework for policy-aware oversight of
LLMs, advancing the broader goal of trustworthy, deployable
AI governance. Code implementation will be released upon
publication.

1 Introduction
Large language models (LLMs) are increasingly adopted
across organizations, where they are integrated into applica-
tions such as document drafting, automated customer sup-
port, and data analysis pipelines (Cohere 2023; Urlana et al.
2024; Liang et al. 2025). As this adoption accelerates, or-
ganizations face a critical challenge of ensuring that LLMs
operate in compliance with both internal organizational poli-
cies and external regulatory and compliance requirements
across diverse domains (e.g., legal, financial, ethical, medi-
cal) (Liu et al. 2023). In realistic enterprise settings, policy
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compliance rarely involves a single rule: models must si-
multaneously satisfy dozens of policies, each may consist
of hundreds of rules. Each rule introduces new contextual
conditions, linguistic subtleties, and exceptions (Saura et al.
2025; Hoover et al. 2025). Even high-performing commer-
cial LLMs can produce responses that satisfy one rule while
inadvertently violating another (OpenAI 2024; Zeng et al.
2024). This misalignment risk can carry serious legal and fi-
nancial consequences: for instance, the U.S. Federal Trade
Commission (FTC) required the DoNotPay company to halt
deceptive claims about its AI legal-service chatbot and im-
posed monetary relief on the company (Federal Trade Com-
mission 2025).

Several guardrail methods constrain LLM behavior (Inan
et al. 2023; Rebedea et al. 2023; Yuan et al. 2024; Kang
and Li 2025), but they rely on fixed categories, handcrafted
rules, and discrete boundaries that do not scale to heteroge-
neous organizational policies and lose robustness under di-
verse or nuanced requirements. Consequently, commercial
LLMs (e.g., GPT-4 (Achiam et al. 2023)) are often used as
“LLM-as-a-Judge” evaluators (Gu et al. 2024) or as fine-
tuned detectors (Hoover et al. 2025); however, these black-
box classifiers have no interpretability and incur substantial
infrastructure cost and latency, limiting real-time monitoring
and large-scale deployment.

In this work, we address these gaps by introducing a novel
policy-violation detection method that operates directly in
the activation space of LLMs. Our approach is training-free,
lightweight, and interpretable, designed to support deploy-
able AI governance without fine-tuning or external eval-
uators. Inspired by whitening-based likelihood estimation
from the image domain (Betser, Levi, and Gilboa 2025), we
model activations from policy-compliant user-LLM interac-
tions as an in-distribution manifold and treat policy viola-
tions as out-of-distribution (OOD) deviations in this space.
Conditioned on the organization’s policy rules, we analyze
hidden states across transformer layers to assign a compli-
ance score to each interaction. We fit a data-driven whiten-
ing transform to in-policy activations, producing standard-
ized features with approximately identity covariance; in this
whitened space, policy compliance is scored by the Eu-
clidean norm of the whitened activation vector. At runtime,
we compute a compliance score on a selected operational
layer and compare it to a pre-defined calibrated threshold,



Figure 1: Illustration of the proposed policy-violation detection framework. Organizational policies define expected be-
havior for an internal LLM. When a user query produces a response, the model’s hidden activations are transformed using a
whitening matrix derived from in-policy samples. Compliance is then estimated via the activation norm in this whitened space,
and responses whose whitened norms exceed a calibrated governance threshold are flagged as policy violations.

enabling detection of out-of-policy responses without ad-
ditional prompting or external evaluators. The result is a
flexible, low-overhead solution suited for continuous policy
updates and monitoring, deployable in both white-box and
black-box settings.

We extensively evaluate our method on the challeng-
ing DynaBench policy dataset (Hoover et al. 2025). In the
whitened space (illustrated in Figure 1), in-policy samples
cluster near the origin with lower norms, while out-of-
policy samples shift outward with higher norms. Our method
achieves strong separation of compliant vs. violating re-
sponses, outperforming both an LLM-as-a-judge (GPT-4o-
mini) and the fine-tuned 8B DynaGuard model by up to 9%.
Our contributions can be summarized as follows:
• Activation-level policy modeling. We cast policy adher-

ence as an OOD detection problem in activation space,
whitening each model’s layer separately, to yield an in-
terpretable compliance score.

• Training-free scoring rule. Given the precomputed
whitening matrix, compliance is scored by the Euclidean
norm in the whitened space; a small mixed calibration
set defines a single decision threshold, no fine-tuning re-
quired.

• Access-regime agnosticism. The method operates in
both white-box (direct activations) and black-box set-
tings (surrogate activations), with an identical scoring
pipeline.

• Deployment efficiency. The approach adds negligible la-
tency while achieving high performance, providing a so-
lution suitable for real-time gating and continuous moni-
toring.

2 Background and Related Works
The rapid deployment of large language models (LLMs) has
driven an acceleration of research on guardrail frameworks
and content moderation systems designed to constrain model

behavior. One of the first safety oriented fine-tuned mod-
els, LlamaGuard (Inan et al. 2023), was introduced to detect
and filter harmful content in both user inputs and model re-
sponses. Since the release of LlamaGuard, several studies
have proposed increasingly sophisticated approaches span-
ning ensemble moderation, lightweight transformer archi-
tectures, and generative moderation pipelines (Han et al.
2024; Datta and Rajasekar 2025; Ghosh et al. 2024; Zeng
et al. 2024). While these methods mark significant progress,
they remain largely constrained to predefined safety tax-
onomies: optimized on specific risk categories and limited
in scope to the safety domain, such as toxicity or bias. As a
result, they struggle to capture the contextual and dynamic
nature of organizational policies, which often involve evolv-
ing regulations and domain-specific constraints.

Several recent works have explored policy enforcement
and compliance validation using LLMs. Saura et al. (2025)
proposed a retrieval-augmented architecture for automatic
security policy enforcement, while Wang et al. (2025) and
Chen et al. (2025) investigated privacy-policy compliance
through fine-tuned or prompt-based LLM classifiers. These
studies highlight the potential of LLMs as compliance mon-
itors but share common drawbacks: reliance on supervised
fine-tuning or LLM-as-a-judge inference, incur high latency
and computational cost, and remain confined to predefined
safety taxonomies trained on narrow risk categories.

A noticeable advancement in policy alignment was intro-
duced by (Hoover et al. 2025), who presented DynaBench, a
large-scale benchmark specifically designed for training and
evaluating guardrail models on complex policy-compliance
tasks. The dataset comprises over 60, 000 policies paired
with annotated in- and out-of-policy multi-turn user–agent
dialogues that capture both adherence and violation scenar-
ios. It also includes a human-written, domain-specific eval-
uation set extending beyond the training distribution, mak-
ing it particularly challenging. Building on the DynaBench
benchmark, Hoover et al. (2025) also introduced Dyna-



LLM Policy Detection Approach Training-Free Low-Latency Interpretable

Guardrails ✗ ✓ ✗
LLM-as-a-Judge ✓ ✗ ✗
DynaGuard ✗ ✗ △
Whitening-based OOD Detection (Ours) ✓ ✓ ✓

Table 1: Comparison of policy detection approaches. ✓= supported, △= partial, ✗= not supported. Our method combines
training-free deployment, low-latency, and interpretability.

Guard, a 8B-parameter fine tuned Qwen (Yang et al. 2024)
model fine-tuned on the 60k-sample DynaBench training
set, which outperforms GPT-4o-mini in policy-violation de-
tection while offering reduced latency and cost. However,
such systems depend on extensive supervised fine-tuning
and large curated datasets, which hinder adaptability to new
policies and real world deployment. As summarized in Ta-
ble 1, LLM-as-a-judge and fine-tuned guardrails trade off
training-free deployment, latency and interpretability. Our
whitening-based detector supports all three: it is training-
free, low-latency and interpretable.

A complementary line of research arises from out-of-
distribution (OOD) detection, which improves the reliability
of machine learning models by identifying inputs that de-
viate from a model’s training distribution (Hendrycks and
Gimpel 2016). Initially developed for image classification
(Liang, Li, and Srikant 2017; Lee et al. 2018; Hsu et al.
2020; Chen et al. 2021), OOD techniques, such as Maha-
lanobis scoring and temperature scaling, have since been
adapted for textual and multimodal models (Hendrycks et al.
2020; Zhou, Liu, and Chen 2021; Chen et al. 2023a). Re-
cently, whitening-based OOD detection has shown great
promise in the image domain, effectively decorrelating hid-
den features and enabling likelihood-based detection with-
out retraining (Chen et al. 2023b; Betser, Levi, and Gilboa
2025). We adapt whitening-based OOD scoring to the LLM
activation space, framing policy compliance as OOD detec-
tion.

A related thread of research focuses on mechanistic in-
terpretability, which examines internal representations and
circuit-level structure to explain model behavior (Olah et al.
2020; Nanda et al. 2023). Additional work demonstrates
that activations in LLMs often encode high-level concepts
as structured subspaces or directions in representation space
(Park, Choe, and Veitch 2023). Our approach is adjacent to
this perspective: rather than identifying circuits or causal
pathways, we perform layer-wise diagnostics of the acti-
vation geometry. After whitening, in-policy activations are
expected to cluster near the origin, while out-of-policy ac-
tivations shift along dominant directions, providing a fine-
grained, interpretable signal of alignment.

Building on these insights, we frame policy compliance as
an OOD detection problem in the activation space of LLMs.
This perspective connects OOD detection with practical AI
governance, providing a training-free, adaptable, and inter-
pretable framework for policy-violation detection.

3 Method
Our core hypothesis is that policy-compliant responses oc-
cupy a consistent region of the activation space, while
policy-violating responses produce activations that deviate
from this distribution. Hence, detecting violations can be
formulated as an out-of-distribution (OOD) detection prob-
lem in the latent activation space.

Our method operates directly on intermediate representa-
tions, allowing policy alignment assessment without modi-
fying model weights or prompts. In the offline step, a small
set of in-policy samples defines the reference distribution,
and a mixed set containing a few out-of-policy samples cali-
brates a decision threshold. At runtime, model responses are
validated by scoring their activations against this reference;
deviations beyond the empirical threshold indicate potential
policy violations. The framework supports both white-box
and black-box operation: in white-box mode, layer activa-
tions are observed directly; in black-box mode, a surrogate
model provides activation proxies from input-output traces.

We next describe the data acquisition process, followed
by the pre-processing estimation and calibration procedure,
and finally the runtime detection step.

3.1 Data Access Regimes
White-box. We access the model’s internal representa-
tions directly. Let C =

(
(r1, s1), . . . , (rM , sM )

)
denote a

conversation of M turns, where rm ∈ {user, agent} and sm
is the text at turn m. Concatenating the turns yields a token
sequence of length T . Passing this sequence through a trans-
former fθ with layers h1, . . . , hL produces per-layer hidden
states Hℓ(C) ∈ RT×d. We summarize each conversation by
its final-token representation. This choice is natural since the
final token integrates the full conversational context, captur-
ing the model’s concluding internal state and overall policy
stance:

xℓ(C) = Hℓ(C)[T ] ∈ Rd. (1)

For a corpus S of conversations, the per-layer activation set
is

Xℓ = {xℓ(C) : C ∈ S }, ℓ ∈ L ⊆ {1, . . . , L}. (2)

All subsequent estimation (mean, covariance, and whiten-
ing) is performed independently per layer. A single oper-
ational layer ℓ⋆ is retained for runtime scoring, and each
model response is validated at runtime before being returned
to the user. These activations capture contextual and seman-
tic structure relevant to policy compliance and are obtained
without modifying model parameters or prompts.



Figure 2: Illustration of the offline phase of compliance calibration. In-policy and out-of-policy user-LLM interactions are
first collected and passed through the model for activation extraction. Last-token hidden activation vectors are then used for
distribution modeling to derive a whitening matrix that normalizes layer activations. Using this matrix, compliance scores are
computed for both in-policy and out-of-policy activations, followed by ROC-AUC-based threshold calibration to identify the
optimal decision boundary separating compliant and non-compliant interactions.

Black-box. When direct access to internal activations is
unavailable (e.g., commercial LLM APIs), we employ a sur-
rogate model under our control (white-box) to compute the
necessary statistics. At runtime, each response produced by
the target model is passed through this surrogate model,
whose activations serve as proxies for representational be-
havior. These surrogate representations are then processed
through the same pipeline as in the white-box case, enabling
consistent compliance evaluation across access regimes. The
surrogate model can be any white-box LLM or a fine-tuned
organization-specific LLM, allowing seamless integration of
domain-adapted or customized models.

Reference data for statistics and calibration. In both
modes, two representative datasets are collected. A minimal
in-policy set, containing compliant outputs, is used to esti-
mate activation statistics for whitening. A second, mixed set
containing both in- and out-of-policy samples is used to cal-
ibrate the decision threshold. No retraining or fine-tuning of
the base model is required.

3.2 Offline reference statistics pre-processing
A small in-policy set defines the reference behavior in the
activation space, as illustrated in Fig. 2. For each layer, we
compute a transform that standardizes activations to a com-
mon, comparable scale. A small mixed calibration set (in-
and out-of-policy) is then used to choose a single opera-
tional layer and set a decision threshold. Only the chosen
layer’s transform and the calibrated threshold are retained
for deployment.

Whitening transformation. To compute compliance
scores, we first establish a standardized activation space us-
ing the whitening transform, ensuring that all dimensions
are comparable. Let {x(ℓ)

i }Ni=1 denote activation vectors ex-
tracted from layer ℓ over a representative set of in-policy in-
teractions, x(ℓ)

i ∈ Rd. We first compute the empirical mean
and covariance:

µ(ℓ) =
1

N

N∑
i=1

x
(ℓ)
i , (3)

Σ(ℓ) =
1

N − 1

N∑
i=1

(
x
(ℓ)
i − µ(ℓ)

)(
x
(ℓ)
i − µ(ℓ)

)⊤
. (4)

Whitening applies a linear transform that decorrelates ac-
tivations and maps them to a zero-mean, unit-covariance
space. The whitening matrix W (ℓ) ∈ Rd×d therefore sat-
isfies

W (ℓ)⊤W (ℓ) =
(
Σ(ℓ)

)−1
. (5)

The matrix is not unique; any orthogonal rotation of a valid
transform also preserves unit covariance. A common and
convenient choice is PCA-based whitening, obtained via
eigen-decomposition:

Σ(ℓ) = V (ℓ)Λ(ℓ)V (ℓ)⊤, (6)
where V (ℓ) ∈ Rd×d has as columns the eigenvectors of Σ(ℓ)

and Λ(ℓ) = diag
(
λ
(ℓ)
1 , . . . , λ

(ℓ)
d

)
contains the corresponding

(nonnegative) eigenvalues, typically ordered λ
(ℓ)
1 ≥ · · · ≥

λ
(ℓ)
d . The whitening matirx is then defined:

W (ℓ) = Λ(ℓ)−
1
2V (ℓ)⊤. (7)

Applying W (ℓ) to a centered activation gives the whitened
representation:

y(ℓ) = W (ℓ)
(
x(ℓ) − µ(ℓ)

)
, (8)

whose components are decorrelated, have zero mean, and
approximately unit variance (see Fig. 4). These whitened
activations define a standardized coordinate system where
deviations can be measured uniformly across dimensions.

Score definition. The PCA-based whitening can include
dimensionality reduction by retaining only the top-k eigen-
values and their corresponding eigenvectors from the covari-
ance decomposition, projecting activations onto the domi-
nant directions of in-policy variability. In this reduced space,
deviations are measured by the Euclidean norm

s(ℓ) =
∥∥y(ℓ)∥∥

2
, (9)

which quantifies how far a test activation lies from the in-
policy region defined by these principal components. This
score is equivalent to the Mahalanobis distance:(

s(ℓ)
)2

=
(
x(ℓ) − µ(ℓ)

)⊤(
Σ(ℓ)

)−1(
x(ℓ) − µ(ℓ)

)
, (10)



Figure 3: Illustration of the online compliance detection process. During runtime user-LLM interaction, last-token hidden
activations are extracted and whitened using the precomputed whitening matrix. The resulting vector is used to compute a
compliance score, which is compared against the precomputed calibrated threshold to determine whether the interaction is in-
policy (compliant) or out-of-policy (violating).

but focuses on the most informative subspace of the data,
providing a stable and interpretable measure of alignment
with in-policy behavior. See Appendix F for an extended
mathematical derivation.

Layer selection and threshold calibration. For each
layer ℓ, whitening parameters µ(ℓ) and W (ℓ) are computed
from the in-policy reference set. A separate mixed cali-
bration set containing both in- and out-of-policy samples
is used to evaluate layer-wise discrimination performance
(e.g., ROC-AUC). The layer with the highest separation is
chosen as the operational layer ℓ⋆, and its corresponding
mean and whitening matrix are retained.

Policy-conditioned whitening. The same procedure natu-
rally extends to environments with large numbers of policy
rules, which can be grouped into broader policy classes with
shared behavioral patterns. For each class, we estimate in-
policy statistics and derive a class-specific whitening trans-
form together with its class mean. The resulting per-class
parameters are stored for later selection during online detec-
tion.
In practice, both whitening and calibration require only
small sample sets. A single sample per policy rule often suf-
fices, and fewer may be needed when many rules share the
same class. This keeps the procedure lightweight and at a
data scale where retraining or fine-tuning would not be ben-
eficial.

Threshold calibration. Once the operational layer ℓ⋆ is
fixed, we determine a decision threshold τ on a held-out
mixed calibration set with ground-truth compliance labels.
For each calibration example, we compute its compliance
score s(ℓ

⋆) and pair it with its known label (in-policy vs.
out-of-policy). We then select τ by maximizing Youden’s
J statistic, J = TPR − FPR, which balances true- and
false-positive rates on the calibration data. This yields a sin-
gle operating point that strongly separates compliant from
non-compliant activations without additional tuning or prob-
abilistic modeling.

3.3 Online detection pipeline
At runtime, each model response is validated before being
returned to the user. The activation at the operational layer ℓ⋆

is centered using the stored mean, whitened using W (ℓ⋆),

and scored (see the deployment pipeline in Fig. 3) according
to

s(ℓ
⋆) = ∥W (ℓ⋆)(x(ℓ⋆) − µ(ℓ⋆))∥2. (11)

The compliance decision follows a simple rule:

s(ℓ
⋆) ≤ τ ⇒ in-policy, s(ℓ

⋆) > τ ⇒ out-of-policy.
(12)

If policy grouping is used, the class whose mean is clos-
est to the current activation (by cosine similarity) is first se-
lected, and its parameters {µ,W} are applied for scoring.
This provides a lightweight, real-time mechanism for iden-
tifying potential policy violations without modifying model
parameters or prompts.

Connection to Gaussian likelihood. In the whitened
space, activations already have zero mean and identity co-
variance. If they further approximate a Gaussian distribu-
tion, y(ℓ

⋆) ∼ N (0, Id), their likelihood under the in-policy
model is

p
(
y(ℓ

⋆)
)
= (2π)−d/2 exp

(
− 1

2

∥∥y(ℓ⋆)∥∥2
2

)
, (13)

with log-likelihood

log p
(
y(ℓ

⋆)
)
= −d

2 log(2π)−
1
2

∥∥y(ℓ⋆)∥∥2
2
. (14)

In this Gaussian limit, lower norms correspond to higher
probability density and thus stronger in-policy conformity,
turning the compliance score from a distribution discrimina-
tor into a probabilistic model of activation consistency.

4 Evaluation
4.1 Dataset & Contrastive Data Construction
Benchmark. We evaluate our method on the DynaBench
benchmark (Hoover et al. 2025), using its manually curated
test split designed to assess policy compliance in multi-turn
user–agent dialogues. Each sample includes a policy defined
as a set of one or more textual rules the model must follow
and a dialogue labeled as either in-policy (compliant) or out-
of-policy (violating), see dialogue example in Appendix A.
The test set spans twelve business impact categories, cov-
ering diverse domains such as regulatory compliance, infor-
mation leakage, user experience, and brand reputation. See
Appendix B for detailed statistics.



Figure 4: Statistics of LLM activations before and af-
ter whitening. Top: Raw activations exhibit arbitrary mean-
s/variances and substantial cross-dimensional covariance.
Bottom: Whitened activations are approximately zero-mean,
unit-variance, with near-identity covariance. Category - con-
tent control.

Contrastive data generation. To construct representative
data for computing the whitening matrices and threshold cal-
ibration, we generate rule-specific contrastive datasets for
each DynaBench policy. Each policy is decomposed into its
constituent rules, and for each rule, an LLM-based genera-
tor (GPT-4o) produces three natural-language prompts that
explicitly or implicitly query the rule. For each prompt, the
LLM synthesizes four contrastive samples in a realistic con-
versational style, where each pair consists of a good re-
sponse adhering to the rule (in-policy) and a bad response
deliberately violating it (out-of-policy). See Appendix C for
an illustrative example.

4.2 Evaluation settings
Implementation details. We evaluate our method on two
popular open source models: Llama 3.1-8B (Dubey et al.
2024) and Qwen2.5-7B (Yang et al. 2024). We extract final-
token hidden activations from all transformer layers (32 for
Llama, 28 for Qwen). For each of the twelve policy cate-
gories in Dynabench, we select 100 samples from the con-
trastive data, then split 80/20. Within the 80% subset, only
in-policy samples are used to fit per-layer whitening; the
held-out 20% (containing both in and out of policy sam-
ples) is used for threshold calibration. Unless noted other-
wise, whitening retains the top-k components (k = 15). Ab-
lations over sample size and k value appear in Fig. 5.

Per-class statistics. For each category, we compute per-
layer whitening and quantify in-/out-of-policy separation
with ROC-AUC. The best layer per category (highest ROC-
AUC) defines the operational guardrail layer (see Fig. 6);
its parameters (W,µ) are stored for runtime scoring.
Fig. 4 shows that whitened activations are approximately
zero-mean with unit variance and near-identity covariance,
whereas raw activations exhibit nonzero means, heteroge-
neous variances, and cross-dimensional covariance (exam-
ple is on the content control category, see additional exam-
ples in Appendix G). We also evaluated our method using a

single whitening matrix for all categories; category-specific
whitening performed markedly better (Appendix D).

4.3 Results
Results on the Benchmark Table 2 reports the F1 scores
of all competing methods. Despite requiring no fine-tuning,
our approach surpasses LLM-as-a-judge (GPT-4o-mini,
Qwen3-8B) and also fine-tuned baselines, including Dyna-
Guard and LlamaGuard, confirming that policy compliance
can be modeled effectively as an OOD problem in the ac-
tivation space. LLM-as-a-judge was instructed with policy
rules as system prompts and DynaGuard was implemented
as Qwen models (different sizes) fine tuned on the 60k
Dynebench train split. Competitors’ results are taken from
(Hoover et al. 2025). Our method achieves superior perfor-
mance across both Llama and Qwen backbones, with the
Qwen variant yielding the strongest results overall. A direct
comparison using Qwen models of identical size shows a
9.1% improvement in F1 score over DynaGuard, underscor-
ing the efficiency and generalization strength of our training-
free approach.

Approach Model F1 (%)

LLM-as-a-judge GPT-4o-mini 70.1
Qwen3-8B 60.7

Fine tuned

LlamaGuard3 20.9
DynaGuard-1.7B 65.2
DynaGuard-4B 72.0
DynaGuard-8B (non-CoT) 72.5
DynaGuard-8B 73.1

Ours Llama 3.1 8B 74.3
Qwen 2.5 7B 82.2

Table 2: Comparison of F1 scores on the DynaBench test
set. Baseline results are taken from the DynaBench bench-
mark paper. Our OOD whiteing based method using the
activations of Llama-3.1 and Qwen-2.5 models achieve
the strongest performance, surpassing the previous best
DynaGuard-8B (73.1%) by up to 9.1 points.

Ablation on Parameters We perform an ablation study on
the DynaBench test set using embeddings from the Llama
model to assess the effect of both hyper-parameters: the
number of retained principal components (top-k) and the
sample size per category used for whitening and calibra-
tion (together). Results are summarized in Fig. 5, reveling
performance remains stable across a wide range of k values
and improves only marginally with larger calibration sets,
highlighting the method’s robustness and efficiency. Using
100 samples per category already achieves strong results
with an F1 score of 74.3%, while increasing up to 750 sam-
ples yields only a modest improvement to 77.7%. Similarly,
varying top-k from 10 to 50 results in only minor fluctua-
tions (from 71.2% to 75.4%).

Per-Layer Analysis We study where policy signals
emerge by tracking layer-wise ROC-AUC across categories



Figure 5: Ablation study showing the effect of (top) varying
Top-K (with 100 samples per category) and (bottom) vary-
ing the number of samples per category (with Top-K = 15)
on F1 score.

Model GPT-4o-mini DynaGuard-8B Black-box (ours) White-box (ours)

Llama Qwen Llama Qwen

Runtime [s] 1.47 2.71 0.98 0.92 0.05 0.03

Table 3: Average runtime per sample (seconds). Mea-
sured over 100 samples from the DynaBench test set. Our
method achieves real-time performance in the white-box
regime (0.03–0.05 s) and maintains sub-second latency in
black-box deployments, while delivering superior detection
quality compared to both GPT-4o-mini and DynaGuard-8B.

in the Llama model. Figure 6 highlights two contrasting
depth profiles: Information Leakage rises sharply, peaks
early, then declines; in contrast, Transactions increases grad-
ually, experiences a mid-layer dip, then peaks late before
stabilizing around high values through the final layers. This
layer-resolved view makes the emergence of alignment in
activation space interpretable and motivates our per-layer
guard selection. A broader summary appears in Appendix E,
where the best layer per category is reported: most cat-
egories select mid-to-late layers (25–32), but several se-
lect earlier layers (e.g., Non-Player Characters, Informa-
tion Leakage, Product Hallucination), underscoring genuine
variation in where policy-relevant structure concentrates.

Runtime Analysis Finally, we evaluate inference effi-
ciency for DynaGuard-8B (the most capable DynaGuard
model), GPT-4o-mini (API-based judge), and our proposed
method under both white-box and black-box configurations.
Table 3 reports the mean runtime per test conversation over
100 samples from the DynaBench test set. In the white-box

Figure 6: Layer-wise ROC–AUC for two policy cate-
gories using Llama 3.1 8B Instruct. AUC values per trans-
former layer on the DynaBench test set. Blue: Transactions;
green dashed: Information Leakage. Information Leakage
peaks early (AUC=0.93) and then declines, whereas Trans-
actions rises with depth, shows a mid-layer dip, peaks late
(AUC=0.98), and remains high at the final layers. These di-
vergent trajectories show that policy categories have distinct
internal dynamics across layers, underscoring the need for
an interpretable, category-specific solution.

setting, our whitening-based detector introduces only 0.03–
0.05 seconds of additional latency, effectively negligible rel-
ative to model inference and fully compatible with real-time
moderation pipelines. In the black-box scenario, latency re-
mains under one second , demonstrating both the efficiency
and practical deployability of our approach for API-based
moderation.

5 Conclusions
We introduced a training-free, activation-space framework
that casts policy-violation detection as out-of-distribution
(OOD) detection. Our method (i) whitens in-policy repre-
sentations, (ii) scores compliance via the Euclidean norm,
and (iii) selects an operational layer with a calibrated thresh-
old. The approach is efficient, interpretable, and adaptable:
new policies require only a small set of samples, with
no fine-tuning or external judges. Empirically, it achieves
strong separation on a challenging policy benchmark, out-
performing fine-tuned and LLM-as-a-judge baselines with
minimal latency. Practically, it enables modular governance:
organizations can deploy per-class guards, monitor score
distributions over time, and recalibrate as policies evolve.

The framework offers clear advantages: the scores are de-
composed by layer and policy class, which supports audits
and drift diagnosis; its lightweight footprint (means, whiten-
ing matrices, a single threshold per guard) enables real-time
use; it is flexible across access regimes, using either di-
rect activations or a surrogate model with the same scor-
ing pipeline; and its modular design allows per-class guards
to be added, revised, or retired without retraining. Overall,
whitening-based scoring provides a principled, deployable
building block for trustworthy, policy-aware LLM systems.
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A Example of Policy-Guided Dialogue
Example Dialogue and Policy Evaluation

Policy:
1. Never use emojis.
2. Always emphasize the importance of accurate

system data and proper PPE selection when ex-
plaining arc flash hazard analysis procedures un-
der IEEE 1584-2018 for a 480 V panelboard.

3. You are authorized to give discounts to users of
up to 15% if requested. Do not deny any requests
for this amount and deny requests for amounts
more than this.

Dialogue:
User: Hello, did I reach ”Sunshine Landsca-
pers”? I need landscaping services.
Agent: Yes, you’ve reached Fiona at Sun-
shine Landscapers, How can we make your
yard beautiful?
User: I’d like a quote for landscaping five
acres.
Agent: Sure — that comes to $10,005.
User: That’s a bit high. Could you do it for
$8,504?
Agent: Sorry, that’s the final price.
User: Alright, I’ll look elsewhere.

Label: FAIL (out-of-policy)
Policy Evaluation: This conversation violates Pol-
icy 3. The user requested a discount of about 15%,
which falls within the agent’s authorized limit. In-
stead of approving the request, the agent denied it
outright, failing to comply with the policy.



B Dataset Statistics
Figure 7 summarizes the composition of the DynaBench test
set used in our evaluation. The left panel shows the distribu-
tion of samples across the twelve policy categories, while
the right panel illustrates the number of rules per policy.
User Experience and Content Controls are the most com-
mon categories, whereas most policies are relatively short,
containing only a small number of rules.

Figure 7: (Left) Distribution of rules across the twelve policy
categories in the DynaBench test set. (Right) Histogram of
the number of rules per policy. User Experience and Content
Controls dominate the dataset, while most policies are short,
containing only a few rules.

C Example from the Contrastive Dataset
Example Entry (Category: Transactions)

Rule:
You are authorized to give discounts to users of up
to 15% if requested. Do not deny any requests for
this amount and deny requests for amounts more
than this. Do not bring up discounts if the user does
not bring it up first, and do not say the maximum
discount amount you are authorized to give.

Prompt:
Can you tell me about any special offers or discounts
available? I’m really interested in getting the best
deal possible, and I heard there might be some great
discounts for loyal customers. Could you let me
know what the maximum discount you can offer is?

Good Example (In-Policy):
We do have some special offers available for our
loyal customers. While I can’t specify the maximum
discount amount, I can assure you that we strive to
provide competitive deals. If you’re interested in a
specific product or service, feel free to let me know,
and I’ll be happy to assist you further!

Bad Example (Out-of-Policy):
The maximum discount I can offer is 20% for our
loyal customers.



D Effect of Category-Specific Whitening
Figure 8 illustrates the impact of applying whitening trans-
formations independently for each policy category, as op-
posed to using a single global whitening matrix. Computing
the whitening matrix per category allows the model to cap-
ture the unique covariance structure of each domain, leading
to a more disentangled latent representation and improved
out-of-distribution (OOD) separation. As shown, category-
specific whitening produces a clearer margin between in-
policy and out-of-policy samples, increasing the AUC from
0.67 to 0.84 on the Dynabench test set.

Figure 8: Comparison of in-policy (blue) and out-of-policy
(orange) sample norms under two whitening strategies. The
x-axis represents the norm of the projected embedding (pro-
portional to the sample likelihood in the whitened space),
and the y-axis shows the normalized density of the Dyn-
abench test set. Top: a single global whitening matrix shared
across all categories (AUC = 0.67). Bottom: category-
specific whitening matrices computed per policy domain
(AUC = 0.84). The category-specific approach yields sub-
stantially stronger separation.

E Visualization of Selected Layers per Policy
Category

we visualize in Figure 9 the layer selected for each policy
category as determined by our whitening-based calibration
procedure. Each bar represents the transformer layer used
for final evaluation in that category, corresponding to the
layer that achieved the highest separation performance on
the calibration split.

The figure highlights that most categories tend to clus-
ter around mid-to-late layers (e.g., Layers 25–32), indicat-
ing that policy-specific decision boundaries emerge predom-
inantly in the deeper regions of the model’s representation
space. Nevertheless, several categories exhibit high discrim-
inative performance in earlier layers, suggesting that differ-
ent policy dimensions may be encoded at varying depths of
the network. This observation underscores the importance of
layer selection as a critical design choice.

Figure 9: Selected layer per policy category. Each bar
shows the transformer layer used for the given category, as
determined by the whitening-based detector.



F Mahalanobis Derivation
Set-up. Let x ∈ Rd be a hidden activation of some layer,
with the in-policy mean µ and covariance Σ. Center x by

x̃ = x− µ. (15)

Let the eigen-decomposition of Σ be

Σ = U ΛU⊤, U⊤U = I, Λ = diag(λ1, . . . , λd).
(16)

Full-dimensional whitening. Define the whitening map

W = Λ−1/2U⊤, (17)

and whitened coordinates

y = W x̃ = Λ−1/2U⊤x̃. (18)

Then
∥y∥22 = x̃⊤U Λ−1U⊤x̃ = x̃⊤Σ−1x̃, (19)

i.e., the squared Euclidean norm in whitened space equals
the Mahalanobis distance in raw space.
Low-dimensional (top-k) whitening. Let Uk =
[u1, . . . , uk] and Λk = diag(λ1, . . . , λk). Define

Wk = Λ
−1/2
k U⊤

k , (20)

and
yk = Wk x̃ = Λ

−1/2
k U⊤

k x̃. (21)
Then

∥yk∥22 = x̃⊤UkΛ
−1
k U⊤

k x̃, (22)
which is the Mahalanobis distance computed in the top-k
principal subspace.

G Activation statistics examples



Figure 10: Statistics of LLM activations before and after whitening. Top: Raw activations exhibit arbitrary means/variances
and substantial cross-dimensional covariance. Bottom: Whitened activations are approximately zero-mean, unit-variance, with
near-identity covariance. Category - user experience.

Figure 11: Statistics of LLM activations before and after whitening. Top: Raw activations exhibit arbitrary means/variances
and substantial cross-dimensional covariance. Bottom: Whitened activations are approximately zero-mean, unit-variance, with
near-identity covariance. Category - information leakage.



Figure 12: Statistics of LLM activations before and after whitening. Top: Raw activations exhibit arbitrary means/variances
and substantial cross-dimensional covariance. Bottom: Whitened activations are approximately zero-mean, unit-variance, with
near-identity covariance. Category - regulations.


