
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SET-SIZE DEPENDENT COMBINATORIAL BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces and studies a new variant of Combinatorial Multi-Armed
Bandits (CMAB), called Set-Size Dependent Combinatorial Multi-Armed Ban-
dits (SSD-CMAB). In SSD-CMAB, each base arm is associated with a set of
different reward distributions instead of a single distribution as in CMAB, and the
reward distribution of each base arm depends on the set size, i.e., the number of
the base arms in the chosen super arm in CMAB. SSD-CMAB involves a much
larger exploration set of the super arms than the basic CMAB model. An important
property called order preservation exists in SSD-CMAB, i.e. the order of reward
means of base arms is independent of set size, which widely exists in real-world
applications. We propose the SortUCB algorithm, effectively leveraging the order
preservation property to shrink the exploration set. We provide theoretical upper
bound of O

(
max

{
MδL
∆L

, L2

∆S

}
log(T)

)
for SortUCB which outperforms the clas-

sic CMAB algorithms with regret O
(

ML2

∆S
log(T)

)
, where M denotes the num-

ber of base arms, L denotes the maximum number of base arms in a super arm,
δ and ∆ are related to the gap of arms. We also derive a lower bound which can
be informally written as Ω

(
max

{
mink∈[L]

{
(M−L)δk

∆2
k

}
, L2

∆S

}
log(T)

)
showing

that SortUCB is partially tight. We conduct numerical experiments, showing the
good performance of SortUCB.

1 INTRODUCTION

Multi-armed bandit (MAB) (Robbins, 1952; Lai & Robbins, 1985; Auer et al., 2002) is a sequential
decision-making problem in which a learner faces a dilemma between exploiting well-observed ac-
tions (a.k.a. arms) and exploring new arms that may yield higher rewards. Different from the basic
MAB setting, where the learner selects a single arm each time slot, a more general version allows the
learner to select a combination of arms (called “base arms”) to form a “super arm”. The reward of the
super arm is the sum of the rewards from all the base arms selected. This generalization is referred to
as the Combinatorial Multi-Armed Bandit (CMAB) problem (Gai et al., 2012; Cesa-Bianchi & Lu-
gosi, 2012). Many real-world scenarios can be naturally modeled as CMAB problems. For instance,
in the network utility maximization problem (Low & Lapsley, 1999) for shared network resources,
where several users share limited resources (e.g., communication links with limited capacity), the
objective is to maximize aggregate utility for users. In this case, the utility for each user corresponds
to the reward for each base arm and super arms represent combinations of users. Similarly, in online
advertising, where each advertisement can be considered as a base arm, and displaying a set of ads
together on a website forms a super arm. Due to its practical relevance, a wide range of algorithms
have been developed to achieve near-optimal regret in CMAB problem (Kveton et al., 2015; Combes
et al., 2015a; Chen et al., 2016b; Wang & Chen, 2018; Merlis & Mannor, 2019).

Despite their generality, most existing CMAB frameworks assume that the unknown distribution
of base arms remains fixed, regardless of the properties of the super arm to which they belong.
However, in practice, there are scenarios where the distribution of base arms changes when they
are pulled in super arms of different sizes, resulting in multiple distributions for each base arm.
For example, in utility maximization problems, when selecting more users to share the bandwidth,
each user gets a reduced portion, leading to lower utility (Verma & Hanawal, 2020; Fu & Modiano,
2021). Notably, while the reward distribution changes, a better arm still performs better compared
to others within super arms of the same size. In the bandit context, this situation can be modeled

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

as one where the reward mean for each base arm decreases when pulled with a larger number of
base arms, meaning each base arm follows multiple distributions. However, the order of base arms
remains consistent within super arms of the same size. This property also exists in online advertising
where users feel less engaged with a website overloaded with a large number of ads, resulting in
lower click-through rates for each advertisement (Wang et al., 2011; Broder et al., 2008). This leads
to varying reward means for base arms depending on the size of the super arm. Nevertheless, a
high-performing ad still ranks better than others on pages with the same number of ads, even if its
distribution changes.

To address the application scenarios described above, we introduce and study the Set-Size Dependent
Combinatorial Multi-Armed Bandit (SSD-CMAB) problem, with semi-bandit feedback and linear
reward function. In SSD-CMAB, combinations of M base arms form the super arm set. Each base
arm can be associated with L different distributions, depending on the size of the super arm (up to
L) that contains it. As a result, there are ML distributions in total for the M base arms. Note that
in the CMAB model the reward distribution of a base arm remains the same across all super arms.
In contrast, SSD-CMAB models base arm rewards as dependent on the size of the super arm, with
each base arm having L different reward distributions. This is the main distinction with CMAB
where each base arm has only one fixed distribution (Gai et al., 2012; Combes et al., 2015b), even
in non-linear reward settings (Chen et al., 2016b; 2021; Merlis & Mannor, 2019). To the best of our
knowledge, previous studies on arms dependent on sets (Chen et al., 2018; Takemori et al., 2020;
Fourati et al., 2024) have primarily focused on properties like submodularity, whereas this paper is
the first to focus on the order preservation property. See Appendix A for detailed connections and
differences between our model and CMAB as well as the literature review.

The parameter space for set-size dependent arms expands significantly, adding considerable com-
plexity to solving the SSD-CMAB problem. Without utilizing the structure of reward for base arms,
one would need to independently learn ML distributions (see Appendix B for detailed implementa-
tion). However, as demonstrated in previous examples, a common property in SSD-CMAB is order
preservation: the order of the reward means for base arms remains consistent across super arms of
the same size. Traditional CMAB algorithms overlook this property in SSD-CMAB, leading to poor
performance as M or L increases. Therefore, an effective algorithm for SSD-CMAB must exploit
the order preservation property to reduce the need for learning such a large number of distributions.

Contributions. In Section 2, we introduce the SSD-CMAB problem. We propose the SortUCB
algorithm afterwards which leverages the order preservation property of super arms with the same
number of base arms. The algorithm first learns the order of base arms in fixed-size super arms,
then identifies and retains a subset of super arms likely to be optimal, excluding suboptimal ones
with high probability. Finally, it applies a UCB-based strategy to select super arms. By utilizing the
order preservation property, SortUCB minimizes exploration on suboptimal super arms, allowing it
to focus on those more likely to be optimal.

SortUCB achieves a regret upper bound of O
(
max

{
MδL,max

∆2
L,min

, L2

∆S,min

}
log(T)

)
, where M is the

total number of base arms, L is the maximum size of a super arm, ∆S,min is the minimum gap
among super arms, and ∆L,min is the minimum gap among the top L base arms in size-L super arms.

In comparison, applying existing CMAB algorithms yields a regret bound of O
(

ML2

∆S,min
log(T)

)
,

which depends only on ∆S,min. Our bound, however, accounts for ∆L,min and introduces δL,max,
the maximum regret when pulling the top L base arms, which is less than 1. Since L can be at
most M , the ML2 term in existing bounds grows rapidly with large M . By decomposing ML2

into L2 and M , our bound ensures better performance, particularly when the number of base arms
is exponentially large.

We derive a lower bound for the SSD-CMAB problem, informally expressed as

Ω

(
max

{∑M
i=ℓ∗+1 minℓ∈[L]

{
δi(ℓ)−si(ℓ)
∆2

i(ℓ),ℓ∗(ℓ)

}
, L2

∆S,min

}
log(T)

)
, where (δi(ℓ) − si(ℓ)) repre-

sents the regret from pulling base arm i in a super arm of size ℓ. This near-optimal lower
bound aligns closely with our regret upper bound. Specifically, the first term in the lower bound
corresponds to the first term in the upper bound, indicating tightness. The second term in the lower

bound, which aggregates the minimum
(

δi(ℓ)−si(ℓ)
∆2

i(ℓ),ℓ∗(ℓ)

)
for all ℓ ∈ [L] across suboptimal base arms,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

aligns with the second term in the upper bound when the index for the minimum is L. Additionally,
the log(T) factor in our upper bound is optimal, demonstrating that SortUCB achieves logarithmic
regret growth as T increases.

In Section 5, we extend our model to the Set-Dependent Combinatorial Multi-Armed Bandits (SD-
CMAB), where the mean reward of each base arm depends on the specific set of arms rather than
just the set size. This extension introduces additional complexity, as not all combinations of base
arms form valid super arms, making the reward structure more challenging to learn. To address this,
we propose the SortUCB-SD algorithm and derive its regret upper bound. Finally, in Section 6, we
present numerical experiments showcasing the effectiveness of our approach.

2 THE SSD-CMAB PROBLEM

This section introduces the Set-Size Dependent Combinatorial Multi-Armed Bandit (SSD-CMAB)
problem which defines size-dependent rewards and feedback for base arms. We begin with a brief
explanation of the notations used in this paper.

Notations. Throughout the paper, we use [n] := {1, 2, ..., n} to denote the set of indexes to simplify
notations. For two vectors with the same size µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn), we define
µ ⪰ ν when µi ≥ νi holds for all i ∈ [n]. Notation ⪯ is defined in a similar way by replacing ≥
with ≤.

An SSD-CMAB problem instance ν involves M base arms, denoted by set [M]. Consider a time
horizon of length T , the player can select a subset of base arms at each time slot as a super arm. Let
S denote the set of all possible subsets of base arms [M] whose cardinality is no more than L ∈ Z+,
i.e., S := {S ⊆ [M] : |S| ≤ L} (meaning a super arm consists of at most L base arms).

Unlike the classical stochastic CMAB problem, where each base arm’s reward follows a fixed i.i.d.
distribution, the base arm rewards in SSD-CMAB are set-size dependent. Specifically, for any base
arm i, when it is pulled as part of a super arm S ∈ S with size ℓ = |S|, its reward follows a
distribution dependent on ℓ, denoted as Pi(ℓ). For simplicity, we use ℓS to represent the size of super
arm S. Since a super arm consists of at most L base arms, each base arm i has at most L possible
reward distributions. Without loss of generality, we assume base arm rewards are [0, 1]-valued. Let
µi(ℓ) denote the expected reward for arm i under Pi(ℓ), and µi = (µi(1), µi(2), . . . , µi(L)) represent
the vector of mean rewards for arm i across different set sizes. This dependency on super arm size
defines the “Set-Size Dependent” nature of the problem.

We denote by Ni(ℓ),t the number of times base arm i has been pulled under distribution Pi(ℓ) up
to time slot t, and by Xi(ℓ),Ni(ℓ),t

the outcome of base arm i at time slot t under the same dis-
tribution. Let St and R(St) represent the super arm chosen and its corresponding reward at the
t-th time slot, respectively, with the expected reward denoted as r(St) = E[R(St)]. We consider
a linear reward function where R(St) =

∑
i∈St

Xi(ℓSt),Ni(ℓ),t
, so E[Xi(ℓ),Ni(ℓ),t

] = µi(ℓ). The
average reward of base arm i over the first t time slots within super arms of size ℓ is denoted by
µ̂i(ℓ),Ni(ℓ),t

=
∑Ni(ℓ),t

s=1 Xi(ℓ),s/Ni(ℓ),t. In this paper we consider the semi-bandit feedback, where
the learner selects a super arm S ∈ S each time slot and observes the rewards for all base arms in S.
As mentioned in the Introduction, the order preservation property exists in the SSD-CMAB model.
We formally introduce it as follows:

Order preservation. For any class ℓ ∈ [L], the order of reward expectations is fixed across different
base arms. That is, µi(ℓ) ≤ µj(ℓ) if and only if µi(ℓ′) ≤ µj(ℓ′), where i, j ∈ [M], ℓ, ℓ′ ∈ [L].

An SSD-CMAB algorithm π selects one super arm S to play each time slot according to the previous
information. The objective of π is to maximize the cumulative expected reward in T time slots. We
use S∗ = argmaxS∈S r(S) to denote the optimal super arm. In order to show the performance
between an algorithm π and the optimal policy (i.e. always pull the optimal arm) on the instance ν,
we need a quantity ‘Regret’ defined as

RegT (π, ν) = T · r(S∗)− E

[
T∑

t=1

r(St)

]
. (1)

Thus, the objective of algorithm π is to minimize RegT (π, ν).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 ALGORITHM: SORTING UPPER CONFIDENCE BOUND

In this section, we introduce details of our algorithm Sorting Upper Confidence Bound (SortUCB).

Compared to traditional CMAB problems, SSD-CMAB is faced with a larger challenge in handling
the super arms which involve more reward distributions with the same number of base arms. Con-
sider an SSD-CMAB problem with a maximum super arm size of L. As a result, the parameters
or reward means to learn expands by a factor of L compared to the CMAB setting with a single
distribution associated to each base arm. Those make traditional CMAB algorithms which directly
learn the reward means of super arms fail to maintain efficient in handling massively large amount of
parameters. Those challenges urge us to leverage a structured exploration strategy which guides the
algorithm to assign pulls to the super arms from which the algorithms can obtain more information
on the structure or order specifically of the base arms. From the analysis in Section 4, the above strat-
egy can efficiently lower down the pulls of arms whose reward means subject to a particular nature,
i.e. the order preservation property. Hence, the learning algorithm for SSD-CMAB, compared to
those for the traditional CMAB problems, contains additional Elimination Phase and Sorting Phase
where the algorithm needs to learn the structure of reward means and eliminate suboptimal super
arms according to the learned structure. However, the above strategy introduces another source of
exploration-exploitation dilemma between assigning pulls to learn the structure to eliminate super
arms or directly applying classic bandit learning algorithms to learn the best super arm. The above
dilemma results in the second challenge of SSD-CMAB. To address the above two challenges, we
present our SortUCB algorithm in Algorithm 1 which effectively leverages the order preservation
property and learns the structure of reward distributions in an appropriate way.

As mentioned above, the core idea behind the structured exploration strategy in the proposed al-
gorithm is to leverage the order preservation property to avoid exploring unnecessary super arms.
Specifically, by pulling certain super arms, the algorithm can learn the order among some base arms.
Since any combination of base arms can form a super arm, the super arm set is exponentially large.
However, with the learned order, the algorithm manage to identify some super arms as suboptimal
because the base arms they include have smaller reward means than others according to the learned
order. For example, if the algorithm figures out that base arm 1 is better than base arm 2, there
is no need to pull super arms such as {2, 3} or {2, 4}, as these super arms are worse than {1, 3}
and {1, 4}. This means that if some particular order is learned during earlier samplings to some
degree (correspond to the Sorting Phase in Algorithm 1), the order preservation property allows us
to reduce pulling all the super arms that contain a base arm which is likely to perform poorly. The
analysis later on shows that the above strategy significantly narrows down the set of super arms that
the algorithm needs to explore. We introduce the details of implementing the algorithm below.

Algorithm 1 Sorting Upper Confidence Bound
1: Initialization: B ← [M]
2: \\Elimination Phase ▷ Learn the best L base arms
3: while |B| > L do
4: Pull the super arm consisting L smallest Ni(L),t base arms (uniform pull)
5: Update µ̂i(L),t, Ni(L),t and t
6: Delete all the base arms satisfying (2) for L different base arms j1, . . . , jL
7: end while
8: R ← B
\\Sorting Phase ▷ Sort the best L base arms

9: while |B| ≥ 2 do
10: Pull the super armR, and update µ̂i(L),t, Ni(L),t and t
11: Delete any base arm i satisfying (2) for all j ∈ B \ i, and set the order of arm i to |B|+ 1
12: end while
13: Set A as (3), µ̂i(ℓ),Ni(ℓ),t

← 0 for all possible i and ℓ, NS,t ← 0 for super arms S in A
\\UCB Phase ▷ Using UCB to select a super arm each slot

14: while t ≤ T do
15: Pull super arm with the highest (4) for super arms S ∈ A
16: Update NS,t, µ̂i(ℓ),t and t.
17: end while

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The algorithm begins with exploring the order of base arms, which includes the “Elimination Phase”
and “Sorting Phase”. We use B = [M] to represent the set of all base arms in our algorithm. As
stated in the second challenge, the algorithm maintains a fixed super arm size during the exploration
phase, uniformly pulling super arms with the largest number of base arms (i.e., super arms of size
L) to gather as much information as possible.

Since each super arm contains no more than L base arms, it is unnecessary to precisely estimate
those that are not among the best L base arms, as attempting to learn about these arms can lead to
substantial regret. Thus the algorithm adjusts its policies to learn on different base arms between the
first two phases. Initially in the Elimination Phase, the algorithm focuses on identifying the (M−L)
base arms that are not among the best L and removes them from B, rather than determining their
exact order. Specifically, for a base arm i ∈ B, if there exist at least L base arms jk (k ∈ [L]) whose
lower confidence bound exceeds the upper confidence bound of i, i.e.,

µ̂i(L),t +

√
2 log(T)

Ni(L),t
< µ̂jk(L),t −

√
2 log(T)

Njk(L),t
, (2)

for L different base arms j1, j2, . . . , jL ∈ B, then we remove base arm i from B, as it is suboptimal
with high probability regarding these L base arms. This process continues until B contains no more
than L base arms, which means it now with high probability holds the best L base arms.

In the Sorting Phase, the algorithm shifts to determining the exact order of the remaining L base
arms, as their ranking is essential for exploiting the order preservation property. We define the super
arm R = B, which includes the top L base arms. The algorithm continues pulling R and removes
any base arm i from B that satisfies the condition in (2) for all jk ∈ B \ {i}, thus learning that
the rank of i is |B| + 1. This procedure concludes when only one base arm remains in B, which is
identified as the best base arm with high probability.

Afterwards, we can use the order preservation property to remove a large number of suboptimal
super arms. We use A to denote the set of super arms containing the top ℓ base arms (ℓ ∈ [L])
identified in the previous phase. That is,

A = {{1, . . . , ℓ} |ℓ ∈ [L]} . (3)

With high probability, the optimal super arm is withinA, as the best super arm for each size belongs
to this set, and the overall optimal super arm must be one of them.

The remainder of the algorithm (UCB Phase) focuses solely on exploitation within this set. To
proceed, we reset all estimates of the base arms µ̂i(ℓ), allowing us to use an extended version of the
UCB algorithm. This version treats each super arm as a single arm and tracks the number of times
each super arm has been selected. We use NS,t, instead of Ni(ℓ),t, to denote the number of times
super arm S has been selected by time t. In this phase, the algorithm pulls the super arm S ∈ A
with the highest value of (∑

i∈S

µ̂i(ℓS),Ni(ℓS),t

)
+

√
2|S| log(T)

NS,t
. (4)

Implementation of Algorithm 1. Algorithm 1 can be implemented with a computational com-
plexity of at most O(M log(M)) per time slot. Specifically, the first two phases involve sorting
the M base arms and eliminating suboptimal ones, which can be performed with complexities of
O(M log(M)) and O(M) per time slot, respectively. In the third phase, the algorithm applies a
UCB-like strategy on |A| = L super arms, which requires O(L) complexity per time slot. A de-
tailed explanation of the computational complexity is provided in Appendix C.

4 THEORETICAL ANALYSIS

4.1 INSTANCE DEPENDENT UPPER BOUND

In this subsection we give our theoretical results, including the instance dependent upper bound for
Algorithm 1 and the instance dependent lower bound for SSD-CMAB problem.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 1. For any SSD-CMAB instance ν, the regret of SortUCB is bounded as:

RegT (SortUCB, ν) ≤ O

((
MδL,max

∆2
L,min

+
L2

∆S,min

)
log(T)

)
. (5)

Here δL,max = maxi∈[M]{δi(L)}, where δi(ℓ) = r(S∗)/ℓ − µi(ℓ) for i ∈ [M] and ℓ ∈ [L], which
varies in [−1, 1] (note δi(ℓ) can be negative when i < ℓ but term δL,max keeps positive). ∆L,min =
mini∈[L] ∆i(L),(i+1)(L) denotes the minimum gap of reward mean between any two adjacent base
arms in the super arm {1, . . . , L}.
Remark 1 (Intuitive Explanation for Regret). The first term O

(
(MδL,max/∆

2
L,min) log(T)

)
of the

regret upper bound in Equation (5) is introduced by the Elimination and Sorting Phases, where
the algorithm eliminates the (M − L) worst base arms and learns the order of the first L base
arms, while the second term O

(
(L2/∆S,min) log(T)

)
in Equation (5) comes from the UCB Phase,

exploring the set A of possible optimal super arms composed by O(L2) base arms, leading to a
regret cost similar to that of the standard UCB algorithm.
Remark 2 (Comparison with CMAB Results). While our SSD-CMAB model could be reduced
to a traditional CMAB with linear reward function, the state-of-the-art result for CMAB is
O
(

ML2

∆S,min
log(T)

)
by the CombUCB1 algorithm (Kveton et al., 2015). This bound is much worse

than that of our SortUCB algorithm, where the ML2 factor of the CombUCB1 is improved to
(M + L2).

The only loose part in the upper bound compared to the lower bound in Theorem 2 of SortUCB is the
factor ∆2

L,min in the denominator of the first term. In most real-life cases, the gap ∆L,min among
the L base arms is not that small as ∆S,min, and hence SortUCB performs well in practice (see the
experiments in Section 6).

4.2 INSTANCE DEPENDENT LOWER BOUND

For the instance dependent lower bound, we consider an SSD-CMAB instance E =M1×· · ·×ML,
whereMℓ (ℓ ∈ [L]) is a set of distribution vectors P = (P1, . . . , PM) satisfying µ(P1) ≥ µ(P2) ≥
· · · ≥ µ(PM), denoting the mean for all the M base arms in super arms with size ℓ. The theoretical
result of the lower bound depends on two extra definitions. We formally introduce them as below.
Definition 1. A policy π is called consistent over a class of bandits E when for all ν ∈ E and p > 0,
it holds that

lim
T→∞

RegT (π, ν)

T p
= 0.

We use Πcons(E) to denote consistent policies over E .
Definition 2. LetM be a set of distributions with finite means, and let µ :M→ R be the function
that maps P ∈M to its mean. Let µ∗ ∈ R and P ∈M such that µ(P) < µ∗. We define:

dinf(P, µ
∗,M) = inf

P ′∈M
{D(P, P ′) : µ(P ′) > µ∗} .

Suppose π ∈ Πcons(E) is a consistent policy over E . The lower bound is indeed to calculate
RT (π, ν)/log(T) for all possible ν ∈ E when T tends to infinity.

Theorem 2. For all ν = (Pℓ)
L
ℓ=1 ∈ E , it holds that limT→∞ inf RegT (π,ν)

log(T) ≥

max


M∑

i=ℓ∗+1

min
ℓ∈[L]

{
δi(ℓ) − si(ℓ)

dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ)

}
,
∑

ℓ:ℓ ̸=ℓ∗

∆{1,...,ℓ}

dinf(
∑ℓ

j=1 Pj(ℓ), r(S∗),Mℓ)

 ,

where ∆{1,...,ℓ} = r(S∗) −
∑ℓ

j=1 µj(ℓ) denotes the gap of reward mean for best ℓ base arms with
super arm size ℓ, and si(ℓ) = r({1, . . . , ℓ})/ℓ−µ(min{ℓ,i})(ℓ). Pj(ℓ) indicates the distribution for the
j-th term in vector Pℓ, dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ) = infP′∈Mℓ

{D(Pi(ℓ), P
′
i(ℓ)) : µ(P ′

i(ℓ)) > µℓ∗(ℓ)},
and

dinf

 ℓ∑
j=1

Pj(ℓ), r(S
∗),Mℓ

 = inf
P′∈Mℓ

D

 ℓ∑
j=1

Pj(ℓ),

ℓ∑
j=1

P ′
j(ℓ)

 :

ℓ∑
j=1

µ(P ′
j(ℓ)) > r(S∗)

 .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Remark 3. In Theorem 2, we use the KL-Divergence for any two i.i.d distributions to present
the lower bound. In order to compare it to the upper bound in Theorem 1, we consider the
case where each Pi(ℓ) follows a normal distribution N (µi(ℓ), 1) for i ∈ [M], ℓ ∈ [L]. Then,
dinf(

∑ℓ
j=1 Pj(ℓ), r(S

∗),Mℓ) equals to ∆2
{1,...,ℓ}/ℓ. Hence, the first term in Theorem 2 can be

rewritten as
∑M

i=ℓ∗+1 minℓ∈[L]

{
δi(ℓ)−si(ℓ)
∆2

i(ℓ),ℓ∗(ℓ)

}
, while the second term is

∑
ℓ:ℓ̸=ℓ∗

ℓ
∆{1,...,ℓ}

.

Remark 4 (Comparison Between Upper and Lower Bounds). Both the lower bound in Theorem 2
and the upper bound in Theorem 1 have two terms. With their second terms matching, their key
distinction is the difference between the first terms which leads to their partially matching. The first
term of the lower bound considers the minimum for (δi(ℓ) − si(ℓ))/∆

2
i(ℓ),ℓ∗(ℓ) across all ℓ ∈ [L]

for each base arm i where the numerator (δi(ℓ) − si(ℓ)) represents the regret incurred by pulling
base arm i within super arm {1, . . . , ℓ}. However, this first term of the upper bound in Theorem 1
is restricted to one L, instead of the minimum across [L]. Additionally, the size of the summation
range of the first term in the lower bound is (M − ℓ∗), different from the M in the upper bound.
Note that if the minimum in the first term of Theorem 2 across ℓ ∈ [L] consistently falls on L, and
ℓ∗ is not approximate to M , then the upper and lower bounds align.

4.3 SKETCH OF PROOF

Proof Sketch (Theorem 1). We defer the full proof to Appendix D and Appendix E and discuss
the sketch proof below. SortUCB has three different phases and the regret of SortUCB could de-
composed into three parts: Elimination Phase part, Sorting Phase and UCB Phase part. Therefore,
we first give lemmas about the regret produced by three phases below.
Lemma 1. For any SSD-CMAB instance ν, the total regret produced in the Elimination Phase and
the Sorting Phase in Algorithm 1 on instance ν, denoted as RegT (1, ν), is bounded as:

M∑
i=L+1

32 log(T)

∆2
i(L),L(L)

δi(L) +
32L log(T)

minj∈[L]

{
∆2

j(L),(j+1)(L)

}δL(L) +

(
2 +

2ML

T 2

) M∑
i=1

δi. (6)

The first term in Lemma 1 arises from the Elimination Phase, where each base arm’s order is deter-
mined by ensuring that condition (2) holds. It can be shown that for each base arm i from L + 1

to M , the inequality Ni(L),T ≤ 32 log(T)
∆2

i(L),L(L)

is satisfied. The second term originates from the Sorting

Phase, during which the algorithm pulls the first L base arms together. It can be verified that the
orders of these base arms can be learned within at most 32 log(T)

minj∈[L]{∆2
j(L),(j+1)(L)

} time slots. By sum-

ming these two components, Lemma 1 is derived. These two terms are combined because of their
similar forms, resulting in a total bound of O

(
MδL,max

∆2
L,min

)
.

Lemma 2. For any SSD-CMAB instance ν, the regret produced in the UCB Phase in Algorithm 1
on instance ν, denoted as RegT (2, ν), is bounded as:∑

S∈A,S ̸=S∗

(
3∆S +

8|S| log(T)
∆S

)
+

ML

T 2

∑
S∈A

∆S . (7)

Lemma 2 gives the regret from the UCB Phase after line 14 in our algorithm. Here we treat each
super arm as a single arm, and could obtain Lemma 2 by using standard analysis of UCB. Finally,
Theorem 1 can be proved by summing RegT (1, ν) and RegT (2, ν) up.

Proof Sketch (Theorem 2). Note that the instance dependent lower bound in Theorem 2 for SSD-
CMAB problem also includes two parts. In fact, this is due to the two different ways we use to prove
the lower bound, leading to the lower bound being the maximum of the two results. Below we give
these two parts as two lemmas in turn, showing the proof sketch. Also we suppose π ∈ Πcons(E) is
a consistent policy over E . We begin with proving the first term in Theorem 2.
Lemma 3. For all ν = (Pℓ)

L
ℓ=1 ∈ E , it holds that

lim
T→∞

inf
RT (π, ν)

log(T)
≥

M∑
i=ℓ∗+1

min
ℓ∈[L]

{
∆{1,...,ℓ}/ℓ+max

{
µℓ(ℓ) − µi(ℓ), 0

}
dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ)

}
.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In order to prove Lemma 3, we just need to bound Ni(ℓ),T for each base arm i and super arm
size ℓ. We consider another SSD-CMAB instance ν′ = (P ′

j(ℓ))j∈[M],ℓ∈[L] ∈ E . For base arm
j ̸= i, let Pj(ℓ) = P ′

j(ℓ), and let P ′
i(ℓ) satisfy both D(Pi(ℓ), P

′
i(ℓ)) ≤ dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ) + ε and

µ(Pℓ∗(ℓ)) < µ(P ′
i(ℓ)) < µ(P(ℓ∗−1)(ℓ)) for each ℓ ∈ [L]. Using the Bretagnolle-Huber inequality

(Lemma 15 in Appendix E), we can derive a weighted lower bound for all Ni(ℓ),T ,

lim
T→∞

∑L
ℓ=1 Eνπ[Ni(ℓ),T](dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ) + ε)

log(T)
≥ 1. (8)

Rearranging the weight for each Ni(ℓ),T where ℓ ∈ [L] and summing that for all base arm i ∈
{ℓ∗ + 1, . . . ,M}, we obtain Lemma 3. We furtherly discuss the second term in Theorem 2.

Lemma 4. For all ν = (Pℓ)
L
ℓ=1 ∈ E , it holds that

lim
T→∞

inf
RT (π, ν)

log(T)
≥
∑

ℓ:ℓ ̸=ℓ∗

∆{1,...,ℓ}

dinf(
∑ℓ

j=1 Pj(ℓ), µS∗ ,Mℓ)
.

Lemma 4 is proved through a mapping technique. Specifically, we consider a map from policy π to
π′, where at time slot t, the super arm selected by π′ has the same size as that selected by π, but π′

always chooses the optimal super arm of that size. In other words, if π selects a super arm of size
ℓ at time t, then π′ selects the super arm consisting of the best ℓ base arms. This mapping restricts
the action space to a set of totally L super arms, where each super arm follows the distribution of
(
∑ℓ

j=1 Pj(ℓ)). Applying standard techniques for lower bound analysis, we then derive Lemma 4.
Combining these Lemma 3 and 4, we can derive the result as shown in Theorem 2.

5 EXTENSION TO SET DEPENDENT COMBINATORIAL BANDITS

In this section, we generalize the setting to cover applications where the base arm reward distribu-
tions may be different even in the super arms with the same set-size, and the set of feasible super
arms can be arbitrary, which could be subjective to any combinatorial constraints (e.g., matroids,
paths, matchings), rather than super-arms whose cardinality is less or equal to L. We call the model
Set Dependent Combinatorial Multi-Armed Bandit (SD-CMAB for short). In SD-CMAB, we con-
sider M base arms with a feasible super arm set S ⊆ {S ⊆ [M] : |S| ≤ L} as the action set,
rather than S ′ := {S ⊆ [M] : |S| ≤ L} in SSD-CMAB. We define a key concept termed as
class, where S can be partitioned into K classes, denoted by {S1, . . . ,SK}, K indicates the total
number of classes. That is,

⋃
i∈[K] Si = S, Sk ∩ Sk′ = ∅ for any two different k, k′ ∈ [K], where

∅ denotes an empty set. Each base arm i is assigned K different distributions Pi(k) for k ∈ [K].
And the reward of base arm i follows distribution Pi(k) when pulled in super arms from class k.
We use µi = (µi(1), . . . , µi(K)) to denote the vector of expected reward for base arm i in super
arms within different classes. The order preservation property also holds for SD-CMAB. The rest
of the settings (e.g., base/super arm reward, feedback) are the same as Section 2. As defined in
(1), the objective is to find an algorithm π to minimize the cumulative regret RegT (π, ν) on bandit
instance ν. To this end, we can see that SSD-CMAB is in fact the special case of SD-CMAB when
Sℓ = {S ∈ [M] : |S| = ℓ}.
We propose an algorithm which is an extension version of SortUCB, called Sorting Upper Confi-
dence Bound - Set Dependent (SortUCB-SD). Similar to SortUCB, the core idea in SortUCB-SD is
to leverage the order preservation property to learn the reward distribution structure for each base
arm within different super arms across various classes. After eliminating a large number of sub-
optimal super arms, exploration is conducted on the remaining set of super arms. However, unlike
SortUCB, SD-CMAB lacks the desirable property where the distribution for each base arm only
changes when it is pulled in super arms of different sizes, and certain combinations of base arms
cannot form a valid super arm for selection. Therefore, the algorithm relies on an (n1, n2)-efficiency
Oracle (explained in Appendix F) to guide it in determining which orders of base arms to focus
on learning (denoted by Bh), and which super arms should be pulled to achieve this learning (de-
noted by Rh). Due to space limit, we postpone the detailed algorithm with an intuitive example in
Appendix F. Here we propose Theorem 3 to show the upper bound for Algorithm 3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Theorem 3. For any SD-CMAB instance ν, the regret of SortUCB-SD is bounded as:

RegT (SortUCB-SD, ν) ≤ O

 H∑
h=1

(
32 log(T)

∆2
Bh,min

∑
S∈Rh

∆S

)
+

∑
S∈G,S ̸=S∗

8|S| log(T)
∆S

 .

Remark 5. Given that Bh is (αh, βh)-efficient for each h ∈ [H] where αh and βh are inputs of
Algorithm 3, we have |Rh| ≤ αh and G ≤ |S| −

∑H
h=1 βh. Note that |S| ≤ L, Theorem 3 can

be expressed as O
(
max

{∑H
h=1

αh∆S,max

∆2
Bh,min

,
(|S|−

∑H
h=1 βh)L

∆S,min

}
log(T)

)
where H denotes the times

of using the Oracle. In general cases, the size of Rh cannot be too large, as there are only M
base arms in total, and thus a large Rh is unnecessary. When the size of G is small, Theorem 3
demonstrates that the algorithm can achieve strong performance.

6 EXPERIMENTS

We compared our algorithm, SortUCB, against several baselines, with results shown in Figure 1.
The red line represents CombUCB1 from Kveton et al. (2015), a leading reduction algorithm for the
CMAB problem with linear rewards. The green line, labeled MPMAB-s, is based on the MPMAB
algorithm Lai & Robbins (1985), applied to L independent MPMAB instances. The blue and orange
lines correspond to two versions of SortUCB: the blue line represents Algorithm 1, while the orange
line is a variation that uses super arms of size ⌊L/2⌋ for order learning in both the ”Elimination”
and ”Sorting” phases. The plots show cumulative regret as a function of time, averaged over 10
runs, with shaded areas representing empirical standard deviations. Each base arm’s reward follows
a Bernoulli distribution, Xi(ℓ),t ∼ Ber(µi(ℓ)).

(a) Cumulative regret over time (b) Cumulative regret over different γ

(c) Cumulative regret over different M (d) Cumulative regret over different L

Figure 1: Experiments

Experiment 1: Cumulative regret over time. In this experiment, we compare the regret over
time. We set M = L = 8 and T = 106, repeating the experiment for the previously mentioned
parameter values. According to Theorem 1, the dominant term of regret for SortUCB stems from
the first two phases of where the Algorithm 1 tries to learn the order. Consequently, in the initial
time steps in Figure 1(a), our algorithm performs similarly to the baselines. However, as the time

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

horizon increases, SortUCB rapidly identifies the optimal super arm after learning the order of all
base arms, leading to a plateau in regret. In contrast, the regret for CombUCB1 and MPMAB-s
grows quickly, as they must still learn a large number of parameters. SortUCB-s performs poorly in
this setting because it uses only half of the largest possible number of base arms to learn the order,
thus gathering less information than the standard version of SortUCB. This experiment shows that
SortUCB outperforms the other three algorithms, particularly as t increases.

Experiment 2: Cumulative regret over different γ. In this experiment, we examine a setting
where µi(ℓ)/µL(ℓ) = 1 + γ · (L − i) for i ∈ [M] and ℓ ∈ [L], meaning the expected reward for
each base arm increases as the super arm size decreases. We consider M = 6 and L = 4, with γ
ranging from 0.025 to 0.150. As γ increases, the impact of super arm size becomes more significant.
Figure 1(b) shows that SortUCB and SortUCB-s outperform CombUCB1 and MPMAB-s, especially
at higher γ values. While SortUCB-s lags behind SortUCB when γ is small due to using fewer
base arms, its performance improves as γ increases, driven by higher rewards. For all algorithms,
cumulative regret decreases significantly at γ = 0.15, as the larger gap between super arms makes
it easier to identify the optimal one. Experiment 2 confirms that our algorithm performs better when
the influence of super arm size increases.

Experiment 3: Fix T, L, change M . Here we set L = 4 and evaluate multiple instances with
varying values of M from 4 to 10. Figure 1(c) shows that the cumulative regret for all algorithms
increases at a similar rate, but SortUCB and SortUCB-s consistently outperform the other two base-
lines. This observation aligns with our theoretical findings, confirming that SortUCB and CMAB
algorithms exhibit similar regret growth rates, which are linear with respect to the number of base
arms M . However, SortUCB and SortUCB-s achieve better performance because they employ more
effective policies to learn the structure of the reward distributions.

Experiment 4: Fix T,M , change L. In this experiment, we set M = 8 and consider multiple
instances with varying values of L from 3 to 8. Figure 1(d) shows that the cumulative regret of
SortUCB remains nearly unchanged as L increases and performs significantly better when L is
large. This is because the cumulative regret in Algorithm 1 arises from the Elimination Phase and
the Sorting Phase, which depends only on M and not L. In contrast, the regret of CombUCB1
and MPMAB-s grows rapidly as L increases, since their regret bounds are linear in ML2, which
becomes substantially larger as L grows. While SortUCB-s performs better than CombUCB1 and
MPMAB-s due to its effective sorting policy, it still lags behind SortUCB because it collects less
information per time slot compared to SortUCB. Experiments 3 and 4 demonstrate that our algorithm
achieves better performances when dealing with a large number of parameters to learn.

7 CONCLUSION

We propose a variant of the classic MAB problem, SSD-CMAB, where the reward of a base arm
depends on the size of the super arm it belongs to. Our algorithm, SortUCB, leverages the order
preservation property commonly seen in real-world scenarios, and we provide both upper and lower
bounds for the SSD-CMAB problem. Experiments show that SortUCB often outperforms traditional
CMAB algorithms. Additionally, we extend our model to the SD-CMAB problem, which introduces
further complexity. For future work, exploring nonlinear reward functions could expand the appli-
cability of our approach. Furthermore, while we derive a partially tight upper bound, there is room
for improvement in both the algorithm and the bounds, particularly in refining the order learning
process, which could lead to better performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mridul Agarwal, Vaneet Aggarwal, Abhishek Kumar Umrawal, and Chris Quinn. Dart: Adaptive
accept reject algorithm for non-linear combinatorial bandits. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pp. 6557–6565, 2021.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Soumya Basu, Rajat Sen, Sujay Sanghavi, and Sanjay Shakkottai. Blocking bandits. Advances in
Neural Information Processing Systems, 32, 2019.

Andrei Broder, Massimiliano Ciaramita, Marcus Fontoura, Evgeniy Gabrilovich, Vanja Josifovski,
Donald Metzler, Vanessa Murdock, and Vassilis Plachouras. To swing or not to swing: learn-
ing when (not) to advertise. In Proceedings of the 17th ACM conference on information and
knowledge management, pp. 1003–1012, 2008.

Nicolò Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. J. Comput. Syst. Sci., 78(5):1404–
1422, 2012. doi: 10.1016/J.JCSS.2012.01.001. URL https://doi.org/10.1016/j.
jcss.2012.01.001.

Lin Chen, Andreas Krause, and Amin Karbasi. Interactive submodular bandit. Advances in Neural
Information Processing Systems, 30, 2017.

Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi. Projection-free online opti-
mization with stochastic gradient: From convexity to submodularity. In International Conference
on Machine Learning, pp. 814–823. PMLR, 2018.

Shouyuan Chen, Tian Lin, Irwin King, Michael R Lyu, and Wei Chen. Combinatorial pure ex-
ploration of multi-armed bandits. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 27. Cur-
ran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/
paper/2014/file/e56954b4f6347e897f954495eab16a88-Paper.pdf.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
and applications. In International conference on machine learning, pp. 151–159. PMLR, 2013.

Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed bandit with
general reward functions. Advances in Neural Information Processing Systems, 29, 2016a.

Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial multi-armed bandit and its
extension to probabilistically triggered arms. The Journal of Machine Learning Research, 17(1):
1746–1778, 2016b.

Wei Chen, Liwei Wang, Haoyu Zhao, and Kai Zheng. Combinatorial semi-bandit in the non-
stationary environment. In Uncertainty in Artificial Intelligence, pp. 865–875. PMLR, 2021.

Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere, and marc lelarge.
Combinatorial bandits revisited. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015a. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/0ce2ffd21fc958d9ef0ee9ba5336e357-Paper.pdf.

Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere, et al. Combina-
torial bandits revisited. Advances in neural information processing systems, 28, 2015b.

Yihan Du, Yuko Kuroki, and Wei Chen. Combinatorial pure exploration with bottleneck reward
function. Advances in Neural Information Processing Systems, 34:23956–23967, 2021.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133–1153, 2011.

11

https://doi.org/10.1016/j.jcss.2012.01.001
https://doi.org/10.1016/j.jcss.2012.01.001
https://proceedings.neurips.cc/paper_files/paper/2014/file/e56954b4f6347e897f954495eab16a88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/e56954b4f6347e897f954495eab16a88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/0ce2ffd21fc958d9ef0ee9ba5336e357-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/0ce2ffd21fc958d9ef0ee9ba5336e357-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fares Fourati, Vaneet Aggarwal, Christopher Quinn, and Mohamed-Slim Alouini. Randomized
greedy learning for non-monotone stochastic submodular maximization under full-bandit feed-
back. In International Conference on Artificial Intelligence and Statistics, pp. 7455–7471. PMLR,
2023.

Fares Fourati, Christopher John Quinn, Mohamed-Slim Alouini, and Vaneet Aggarwal. Combina-
torial stochastic-greedy bandit. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 12052–12060, 2024.

Xinzhe Fu and Eytan Modiano. Learning-num: Network utility maximization with unknown utility
functions and queueing delay. In Proceedings of the Twenty-second International Symposium on
Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Com-
puting, pp. 21–30, 2021.

Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Combinatorial network optimization with
unknown variables: Multi-armed bandits with linear rewards and individual observations.
IEEE/ACM Transactions on Networking, 20(5):1466–1478, 2012.

Yu-Guan Hsieh, Shiva Kasiviswanathan, and Branislav Kveton. Uplifting bandits. Advances in
Neural Information Processing Systems, 35:22368–22379, 2022.

Robert Kleinberg and Nicole Immorlica. Recharging bandits. In 2018 IEEE 59th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 309–319. IEEE, 2018.

Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds for stochas-
tic combinatorial semi-bandits. In Artificial Intelligence and Statistics, pp. 535–543. PMLR, 2015.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics, 6(1):4–22, 1985.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Steven H Low and David E Lapsley. Optimization flow control. i. basic algorithm and convergence.
IEEE/ACM Transactions on networking, 7(6):861–874, 1999.

Nadav Merlis and Shie Mannor. Batch-size independent regret bounds for the combinatorial multi-
armed bandit problem. In Conference on Learning Theory, pp. 2465–2489. PMLR, 2019.

Rad Niazadeh, Negin Golrezaei, Joshua R Wang, Fransisca Susan, and Ashwinkumar Badanidiyuru.
Online learning via offline greedy algorithms: Applications in market design and optimization. In
Proceedings of the 22nd ACM Conference on Economics and Computation, pp. 737–738, 2021.

Herbert Robbins. Some aspects of the sequential design of experiments. 1952.

Sho Takemori, Masahiro Sato, Takashi Sonoda, Janmajay Singh, and Tomoko Ohkuma. Submodular
bandit problem under multiple constraints. In Conference on Uncertainty in Artificial Intelligence,
pp. 191–200. PMLR, 2020.

Arun Verma and Manjesh K Hanawal. Stochastic network utility maximization with unknown util-
ities: Multi-armed bandits approach. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pp. 189–198. IEEE, 2020.

Bo Wang, Zhaonan Li, Jie Tang, Kuo Zhang, Songcan Chen, and Liyun Ru. Learning to advertise:
How many ads are enough? In Advances in Knowledge Discovery and Data Mining: 15th Pacific-
Asia Conference, PAKDD 2011, Shenzhen, China, May 24-27, 2011, Proceedings, Part II 15, pp.
506–518. Springer, 2011.

Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits. In International
Conference on Machine Learning, pp. 5114–5122. PMLR, 2018.

Xuchuang Wang, Hong Xie, and John C.S. Lui. Multiple-play stochastic bandits with shareable
finite-capacity arms. In Proceedings of the 39th International Conference on Machine Learning,
pp. 23181–23212. PMLR, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zheng Wen, Branislav Kveton, Michal Valko, and Sharan Vaswani. Online influence maximization
under independent cascade model with semi-bandit feedback. Advances in neural information
processing systems, 30, 2017.

Yisong Yue and Carlos Guestrin. Linear submodular bandits and their application to diversified
retrieval. Advances in Neural Information Processing Systems, 24, 2011.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A LITERATURE REVIEW

Multi-armed bandits, first introduced by Lai & Robbins (1985), have been studied extensively in
various generalizations. Among these, the Combinatorial Multi-Armed Bandits (CMAB) model is a
key extension of the canonical MAB model and shares some similarities with our proposed frame-
work. CMAB was first introduced by Gai et al. (2012); Cesa-Bianchi & Lugosi (2012), where each
action corresponds to pulling a super arm composed of multiple base arms. Subsequently, Chen et al.
(2013; 2016b;a) proposed the combinatorial upper confidence bound (CUCB) algorithm for CMAB,
achieving near-optimal regret performance (Kveton et al., 2015; Combes et al., 2015a; Merlis &
Mannor, 2019). Beyond CUCB, other CMAB algorithms have also been developed (Wang & Chen,
2018; Chen et al., 2014). Moreover, Agarwal et al. (2021) investigated the order-preservation prop-
erty, which is central to SSD-CMAB.

However, these algorithms are designed for the traditional CMAB problem, where the reward of a
base arm follows the same distribution across all super arms. In contrast, SSD-CMAB introduces
set-size dependence, where a base arm’s outcome depends on the size of the super arm. Specifically,
each base arm in SSD-CMAB is associated with L different distributions, one for each possible
super arm size, whereas in CMAB, a base arm is tied to a single fixed distribution. While non-linear
reward functions in CMAB (Chen et al., 2016b; 2021; Merlis & Mannor, 2019) address cases where
super arm rewards are not simple summations of base arm rewards, the base arm outcomes in these
models still follow fixed distributions. As such, they cannot capture scenarios where the reward
distributions of base arms vary with super arm size.

Our work also relates to bandits with specialized reward structures (Kleinberg & Immorlica, 2018;
Hsieh et al., 2022; Basu et al., 2019; Du et al., 2021; Wang et al., 2022). Recharging bandits (Klein-
berg & Immorlica, 2018), uplifting bandits (Hsieh et al., 2022), and blocking bandits (Basu et al.,
2019) explore how an arm’s pulling history affects subsequent reward realizations. A graph-based
model is proposed by Wen et al. (2017). Submodular bandits (Yue & Guestrin, 2011; Chen et al.,
2017; 2018) are somewhat related to our model since base arm rewards may change based on the
presence of other base arms in the super arm, while some of which require the monotonicity prop-
erty as an assumption (Takemori et al., 2020; Fourati et al., 2024) for the reward function and some
do not (Feige et al., 2011; Niazadeh et al., 2021; Fourati et al., 2023). However, one common prop-
erty that submodular function requires is the submodular property. In contrast, SSD-CMAB only
requires the order preservation property, which is different from that in submodular bandits. Hence,
our model is able to capture many scenarios that submodular bandits cannot capture.

Finally, bandits with bottleneck rewards (Du et al., 2021) and shareable arms (Wang et al., 2022)
study how the super arm structure affects reward realizations, but not how the size of the super arm
influences the base arm reward mean itself. To the best of our knowledge, no prior work has explored
the Set-Size Dependent reward model proposed in this paper.

B REDUCTION VERSION OF CMAB ALGORITHMS

We propose an algorithm that adapts standard CMAB algorithms to effectively address SSD-CMAB
problems.

Algorithm 2 Reduction of CMAB Algorithms for SSD-CMAB Problems
1: Input: Base arm reward means µi(ℓ) for i ∈ [M] and ℓ ∈ [L], super arm sets Sℓ for each size ℓ.
2: Define a new reward vector ν of size D = ML: νi+(ℓ−1)M ← µi(ℓ) for all i ∈ [M] and ℓ ∈ [L].
3: Construct transformed super arm sets S ′ℓ:

S ′ℓ ←
{
{(ℓ− 1)M + i1, (ℓ− 1)M + i2, . . . , (ℓ− 1)M + ip} | {i1, i2, . . . , ip} ∈ Sℓ

}
.

4: Combine all transformed sets:
S ′ ←

⋃
ℓ∈{1,2,...,L}

S ′ℓ.

5: Apply any standard CMAB algorithm to the super arm set S ′ using the reward vector ν.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

In the algorithm above, we can treat the problem as a CMAB instance with D base arms and a
reward expectation vector ν. The action set for this problem is the transformed set S ′, as defined
earlier. At each time slot, the learner selects a super arm S ∈ S ′ with |S| ≤ L. This transformation
allows any SSD-CMAB problem to be mapped to a CMAB problem. Since CMAB settings can
vary, we focus on the linear reward case, which is highly relevant to our work.
Theorem 4. For a linear reward function in an SSD-CMAB problem (i.e., r(S) =

∑
i∈S µi(ℓS)), we

apply the CombUCB1 algorithm raised by Kveton et al. (2015), which achieves a tight regret bound
for linear reward settings, in the second phase of Algorithm 1. The regret bound is given by:

RegT (CombUCB1, ν) ≤
∑
i∈Ẽ

K
534

∆i,min
log(T) +

(
π2

3
+ 1

)
KD,

where

Ẽ = [D]−
{
{(ℓS∗ − 1)M + i1, (ℓS∗ − 1)M + i2, . . . , (ℓS∗ − 1)M + ip} | ij ∈ S∗, j ∈ [p]

}
represents the set of base arms in all suboptimal super arms. Here, ∆i,min = minS∈S:i∈S,∆S>0 ∆S

is the smallest gap between the optimal super arm and the best suboptimal super arm containing
base arm i.

This formalization highlights the relationship between SSD-CMAB and CMAB problems while
leveraging the tight regret guarantees of the CombUCB1 algorithm in CMAB with linear reward
function. Notice that Theorem 4 achieves a regret upper bound of O

(
ML2

∆S,min
log(T)

)
which is

worse than our result in 1.

C IMPLEMENTATION OF ALGORITHM 1

In this section, we detail the implementation of Algorithm 1 and analyze the computational com-
plexity of its three phases. The overall complexity per time slot is at most O(M log(M)).

Elimination Phase. In the Elimination Phase, the complexity arises from ranking the L smallest
Ni(L),t base arms and removing base arms, corresponding to lines 4 and 6 in the algorithm. Rank-
ing the base arms can be performed with a complexity of O(M log(M)) per time slot. Deleting
base arms requires comparing the lowest upper confidence bound with the largest L upper confi-
dence bounds, as specified in (2), which incurs a complexity of O(L). Therefore, the computational
complexity of the Elimination Phase is at most O(M log(M)) per time slot.

Sorting Phase. In the Sorting Phase, the pulled arm in each time slot is fixed to R, and the com-
plexity arises from ranking the L base arms and deleting base arms, similar to the Elimination Phase.
Thus, the computational complexity in this phase is O(L log(L)).

UCB Phase. In the UCB Phase, the algorithm selects the super arm with the highest value accord-
ing to (4) in A. As shown in Appendix D, there are L super arms in A, so the algorithm only needs
to identify the largest value among L items, resulting in a computational complexity of O(L).

D PROOF OF THEOREM 1

W.L.O.G., according to the order preservation property, we can suppose the reward mean of base
arms decreases as the subscript increases (i.e. µi ⪰ µj when i ≤ j). We first give several lemmas.
Lemma 5. Hoeffding’s inequality: For independent variables X1, X2, ..., Xn with Xi ∈ [0, 1], i ∈
[n], we have:

P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−2nϵ2

)
.

Lemma 6. Union bound: For a set of n events A1, A2, ..., An, we have:

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lemma 7. Principle of Inclusion-Exclusion: For event X1, X2, ..., Xn, we have:

1− P

(
n⋂

i=1

Xi

)
= P

(
n⋃

i=1

Xc
i

)
.

where Xc
i denotes the complement of event Xi.

Lemma 8. Assume event Gi(ℓ),t =
{
µ̂i(ℓ),Ni(ℓ),t

∈
[
µi(ℓ) −

√
2 log(T)
Ni(ℓ),t

, µi(ℓ) +
√

2 log(T)
Ni(ℓ),t

]}
, G =⋂

i∈[M]

⋂
ℓ∈[L]

⋂
t∈[T] Gi(ℓ),t. Event Gc denotes the complement part of G (that is, P(G)+P(Gc) =

1). Then P(Gc) ≤ 2ML
T 3 .

Proof of Lemma 8. We use Gc
i(ℓ),t to indicate the complement part of Gi(ℓ),t. Using Lemma 6 and

7, probability that event Gc happens is

P (Gc) = 1− P (G) = P

 ⋃
i∈[M]

⋃
ℓ∈[L]

⋃
t∈[T]

Gc
i(ℓ),t

 ≤ ∑
i∈[M]

∑
ℓ∈[L]

∑
t∈[T]

P
(
Gc

i(ℓ),t

)
.

Firstly we calculate P
(
Gc

i(ℓ),t

)
for all i ∈ [M], ℓ ∈ [L], t ∈ [T]. Using Lemma 6, we can derive

P(Gc
i(ℓ),t) = P

(
µ̂i(ℓ),Ni(ℓ),t

< µi(ℓ) −

√
2 log(T)

Ni(ℓ),t

⋃
µ̂i(ℓ),Ni(ℓ),t

> µi(ℓ) +

√
2 log(T)

Ni(ℓ),t

)

= P

(∣∣∣µ̂i(ℓ),Ni(ℓ),t
− µi(ℓ)

∣∣∣ ≥√2 log(T)

Ni(ℓ),t

)
. (9)

As µ̂i(ℓ),Ni(ℓ),t
= 1

Ni(ℓ),t

∑Ni(ℓ),t

s=1 Xi(ℓ),s and µi(ℓ) = E
[

1
Ni(ℓ),t

∑Ni(ℓ),t

s=1 Xi(ℓ),s

]
, combining

Lemma 5 and (9), we obtain

P
(
Gc

i(ℓ),t

)
≤ 2

T 4
, P (Gc) =

∑
i∈[M]

∑
ℓ∈[L]

∑
t∈[T]

P
(
Gc

i(ℓ),t

)
≤ 2ML

T 2
.

Here we end the proof of Lemma 8.

Proof of Theorem 1. We use Reg1,T (π, ν) to denote the regret generated from the Elimination Phase
and Sorting Phase in Algorithm 1, and Reg2,T (π, ν) denotes the regret generated from the UCB
Phase. Then

RegT (π, ν) = Reg1,T (π, ν) + Reg2,T (π, ν).

We define Gi(ℓ),t as below:

Gi(ℓ),t =

{
µ̂i(ℓ),Ni(ℓ),t

∈

[
µi(ℓ) −

√
2 log(T)

Ni(ℓ),t
, µi(ℓ) +

√
2 log(T)

Ni(ℓ),t

]}
, (10)

and Gc
i(ℓ),t denotes the complement part.

As in Algorithm 1, we consider base arms rather than super arms, thus we consider the pulled time
slots for each base arm. Since we pull L arms per time slot for sorting, the regret for base arm i each
time slot can be seen as δi(L) =

r(S∗)
L − µi(L). Hence

Reg1,T (π, ν) =
M∑
i=1

E
[
Ni(L),T1

]
δi(L)

holds, where T1 denotes the total time slots before the third cycle. We consider the time slots under
G =

⋂
i∈[M]

⋂
ℓ∈[L]

⋂
t∈[T] Gi(ℓ),t and its opposite Gc. According to Lemma 8, P(Gc) ≤ 2ML

T 3

holds, thus the pulling time slots for any base arm i in Elimination Phase is

E
[
Ni(L),T1

]
≤ E

[
NG

i(L),T1

]
+

2ML

T 2
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Then we can just consider the time slots for E
[
NG

i(L),T1

]
. W.L.O.G, we assume µ1(L) ≥ µ2(L) ≥

... ≥ µM(L). Below we consider cases when L < M holds, as for the case that L = M , the first
cycle in Algorithm 1 does not run, and can be easily deduced from the proof below. Afterwards we
give a lemma ensuring base arms we eliminate cannot be concluded in the optimal super arm with
high probability.

Lemma 9. If event G happens, the base arms we eliminate in line 7 cannot be concluded in S∗.

Proof of Lemma 9. Combining (10) and the condition (2), we have

µi(L) ≤ µ̂i(L),NG
i(L),T1

+

√
2 log(T)

NG
i(L),T1

< µ̂j(L),NG
i(L),T1

−
√

2 log(T)

NG
i(L),T1

≤ µj(L) (11)

hold for at least L different base arms j. Therefore, arms that we eliminate cannot be any of the
first L of base arms, meaning they cannot be concluded in the optimal super arm. That ends the
proof.

According to Lemma 9, in Elimination Phase, we successfully find the first L arms. Therefore, we
can always eliminate the suboptimal base arms (denoted by [M]− [L] = {L+1, L+2, ...,M}). We
consider the time slots that the first L base arms are pulled as well as the other base arms separately.

For base arm in [M] − [L], as they will eventually be eliminated in this cycle, we can bound their
pulled time slots. Consider base arm i ∈ [M]− [L], if it is not eliminated, as the opposite of (11),

µ̂i(L),NG
i(L),T1

+

√
2 log(T)

NG
i(L),T1

≥ µ̂j(L),NG
j(L),T1

−
√

2 log(T)

NG
j(L),T1

hold for at least M − L + 1 base arms j in [M]. We use E to denote the set for all possible base
arms satisfying (11), where |E| ≥M − L+ 1. According to (10), this means

µi(L) + 2

√
2 log(T)

NG
i(L),T1

≥ µj(L) − 2

√
2 log(T)

NG
j(L),T1

(12)

holds for base arms in E. As for any two base arms i and j, their pulling time slots differs no more
than 1 according to the uniform pulling, which lead to

max(NG
i(L),T1

, NG
j(L),T1

) ≤ 32 log(T)

∆2
i(L),j(L)

+ 1.

Since there are |E| choices for arm j, we have NG
i(L),T1

≤ minj∈E
32 log(T)
∆2

i(L),j(L)

+1. As i ∈ [M]−[L]+1

and |E| ≥M−L+1, at least 1 base arm in [L] that is in E. Thus, it holds that maxj∈B ∆2
i(L),j(L) ≥

∆2
i(L),L(L). Therefore,

NG
i(L),T1

≤ 32 log(T)

∆2
i(L),L(L)

+ 1

holds for all base arm i ∈ [M]− [L]. Therefore when M = L, [M]− [L] = ϕ, meaning Elimination
Phase does not run in this case.

For base arm i ∈ [L], as we cannot eliminate them under G, and once all base arms in [M] − [L]
have been eliminated, the first cycle ends. As we have declared before, pulled time slots for two
base arms not eliminated do not differ than 1, we have

NG
i(L),t ≤ max

j∈[M]−[L]

32 log(T)

∆2
j(L),L(L)

+ 2 =
32 log(T)

∆2
(L+1)(L),L(L)

+ 2,

where ∆(M+1)(L),M(L) =∞ when L = M .

In Sorting Phase, as we have found the first L arms, and our goal is to sort for these L base arms.
We give Lemma 10 to ensure we can get the right sequence of the first L base arms.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lemma 10. If event G happens, the second cycle in Algorithm 1 can get the right order of the first
L base arms with high probability.

Proof of Lemma 10. According to (10) and the condition (2), we have µi(L) < µj(L) for all base
arms j ∈ B − i holds. That means base arm j is the worst base arm in B, thus we can get the right
order for the first L base arms.

With Lemma 10, we can continue our proof. Consider base arm i which is still in E′, it means

µi(L) + 2

√
2 log(T)

NG
i(L),T1

≥ µj(L) − 2

√
2 log(T)

NG
j(L),T1

hold for all j ̸= i and j ∈ E′.

Since we uniformly pull all base arms, Ni(K) do not differ more than 1 between any two base arms
in the first L arms. Thus,

NG
i(L),T1

≤ 32 log(T)

∆2
i(L),j(L)

+ 1 ≤ 32 log(T)

minj∈[L−1]

(
∆2

j(L),(j+1)(L)

) + 1. (13)

Therefore, NG
i(L),T1

≤ 32 log(T)

minj∈[L−1]

(
∆2

j(L),(j+1)(L)

) + 2 holds for all i ∈ [L]. Since we have proved

that NG
i(L),T1

≤ 32 log(T)
∆2

(L+1)(L),L(L)

+ 2 in the cycle, we have

NG
i(L),T1

≤ 32 log(T)

minj∈[L]

(
∆2

j(L),(j+1)(L)

) + 2

for all i ∈ [L]. Combining with the definition of Ni(L),T1
, we have

Ni(L),T1
≤


32 log(T)

minj∈[L]

(
∆2

j(L),(j+1)(L)

) + 2 + 2ML
T 2 , if i ∈ [L],

32 log(T)
∆2

i(L),L(L)

+ 1 + 2ML
T 2 , if i ∈ [M]− [L].

As a result,

Reg1,T (π, ν) =
M∑
i=1

Ni(L),T1
δi(L) ≤

∑
i∈[M]−[L]

32 log(T)

∆2
i(L),L(L)

δi +
32 log(T)

minj∈[L]

(
∆2

j(L),(j+1)(L)

)∆{1,2,...,L}

+

(
2 +

2ML

T 2

) M∑
i=1

δi. (14)

That is the end of proof of Reg1,T (π, ν).

Below we prove the bound for Reg2,T (π, ν). In UCB Phase, our intuition is seeing each super arm
as a single item. We use µS =

∑
i∈S µi(ℓS) to denote the reward expectation for super arm S and

µ̂S,NS,t
to denote the unbiased estimate for super arm S in the first t time slots, while NS,t indicates

the chosen times for super arm S as a whole since the start of the second cycle, which is initialized
to zero in line 11 in Algorithm 1. It is simple to show that

Reg2,T (π, ν) =
∑
S∈A

E [NS,T] ∆S . (15)

First we give a lemma that ensures the optimal super arm can be in A with high probability.

Lemma 11. If event G happens, the optimal super arm (denoted by S∗) must be concluded in A.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof of Lemma 11. As we defined, event G means µi(ℓ) −
√

2 log(T)
Ni(ℓ),t

≤ µ̂i(ℓ),Ni(ℓ),t
≤ µi(ℓ) +√

2 log(T)
Ni(ℓ),t

holds for each i ∈ [M], ℓ ∈ [L], t ∈ [T]. For each super arm size ℓ ∈ [L], as we have
learnt the best ℓ base arms and combine them as a super arm in A, Lemma 11 holds obviously.

Now we continue our proof of bound in Reg2,T (π, ν). As we have proved in previous,

Reg2,T (π, ν) =
∑
S∈A

E [NS,T] ∆S ≤
∑
S∈A

E
[
NG

S,T

]
∆S +

2ML

T 2

∑
S∈A

∆S

=
∑
S∈A
S ̸=S∗

E
[
NG

S,T

]
∆S +

2ML

T 2

∑
S∈A

∆S . (16)

The last equation is because of ∆S∗ = 0. Thus, we only need to prove the upper bound for E
[
NG

S,T

]
.

We first define another event G̃S which we need in our proof:

G̃S =

{
µS∗ < min

t∈[T]
µ̂S∗,NS∗,t

+

√
2|S∗| log(T)

NS∗,t

}
∩

µ̂S,uS
+

√
2|S| log(T)

uS
< µS∗

 ,

where uS ∈ [T] is a constant to be chosen later. Two lemmas are introduced for our derivation,

Lemma 12. If G̃S occurs, then NS,T ≤ uS .

Lemma 13. G̃c
S , meaning the complement part of G̃S , happens with low probability.

As NG
S,T ≤ T , we use NG∩G̃S

S,t to denote the pulling times for super arm S in the first t time slots

in the second cycle with event G and G̃S both happening, while N
G∩G̃c

S

S,t means that only event G
happens while event G̃S does not happen. Then,

E
[
NG

S,T

]
= E

[
I(G̃S)N

G∩G̃S

S,T

]
+ E

[
I(G̃c

S)N
G∩G̃c

S

S,T

]
≤ E

[
NG∩G̃S

S,T

]
+ T · P

(
G̃c

S

)
. (17)

Proof of Lemma 12. Assuming that G̃S occurs with NS,T ≥ uS . That means there exists t ∈ T s.t.
NS,t−1 = uS while At = S, where At means the chosen super arm at time slot t. Hence we have:

µ̂S,NS,t−1
+

√
2|S| log(T)
NS,t−1

≤ µS∗ ≤ µ̂S∗,NS,t−1
+

√
2|S∗| log(T)

NS,t−1
. (18)

That means in time slot t we should choose super arm S∗ rather than arm S, which is a contradiction.

Proof of Lemma 13. The complement part of G̃S is

G̃c
S =

{
µS∗ ≥ min

t∈[T]

(
µ̂S∗,NS∗,t

+

√
2|S∗| log(T)

NS∗,t

)}
∪

µ̂S,uS
+

√
2|S| log(T)

uS
≥ µS∗

 .

(19)

We begin with bounding the first part of G̃c
S . As{

µS∗ ≥ min
t∈[T]

(
µ̂S∗,t +

√
2|S∗| log(T)

NS∗,t

)}
⊂

{
µS∗ ≥ min

t∈[T]

(
µ̂S∗,t +

√
2|S∗| log(T)

t

)}

=
⋃

t∈[T]

{
µS∗ ≥ µ̂S∗,t +

√
2|S∗| log(T)

t

}
. (20)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Thus, using Lemma 6, we have

P

(
µS∗ ≥ min

t∈[T]

(
µ̂S∗,t +

√
2|S∗| log(T)

NS∗,t

))
≤ P

 ⋃
t∈[T]

{
µS∗ ≥ µ̂S∗,t +

√
2|S∗| log(T)

t

}
≤

T∑
t=1

P

(
µS∗ ≥ µ̂S∗,t +

√
2 |S∗| log (T)

t

)
≤ 1

T 3
, (21)

which is a low probability if T is chosen large enough. For the last inequality in (21), we use Lemma
5 with t|S∗| independent samples.

Next we bound the second part of G̃c
S . As uS is a parameter undetermined, we assume it is large

enough that ∆S −
√

2|S| log(T)
uS

≥ c∆S , where c ∈ (0, 1) will be chosen later. Thus,

P

µ̂S,uS
+

√
2|S| log(T)

uS
≥ µS∗

 = P

µ̂S,uS
− µS ≥ ∆S −

√
2|S| log(T)

uS


≤ P(µ̂S,uS

− µS ≥ c∆S) ≤ exp

(
−2c2∆2

S

uS

|S|

)
. (22)

Taking together (21) and (22),

P
(
G̃c

S

)
≤ 1

T 3
+ exp

(
−2c2∆2

S

uS

|S|

)
.

Here we end the proof of Lemma 13.

As we have proved in (17)

E
[
NG

S,T

]
≤ uS + T

(
1

T 3
+ exp

(
−2c2∆2

S

uS

|S|

))
= uS + T exp

(
−2c2∆2

S

uS

|S|

)
+

1

T 2
.

Choosing uS = ⌈ 2|S| log(T)
(1−c)2∆2

S
⌉ and c = 1/2, then

E [NS,T] ≤ 3 +
8|S| log(T)

∆2
S

.

Considering (16), we can give an upper bound for Reg2,T (π, ν),

Reg2,T (π, ν) ≤
∑

S∈A,S ̸=S∗

(
3∆S +

8|S| log(T)
∆S

)
+

ML

T 2

∑
S∈A

∆S . (23)

Combining with (14) and (23), we have RegT (π, ν) ≤∑
i∈[M]−[L]

32 log(T)

∆2
i(L),L(L)

δi(L) +
32 log(T)

minj∈[L]

(
∆2

j(L),(j+1)(L)

)∆{1,2,...,L} +
∑

S∈A−S∗

8|S| log(T)
∆S

+

(
2ML

T 2
+ 2

) M∑
i=1

δi(L) +

(
2ML

T 2
+ 3

)∑
S∈A

∆S ,

where ∆(M)(L),(M+1)(L) = ∞ when L = M . Simplify this bound and we then end of proof of
Theorem 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E PROOF OF THEOREM 2

We first give several lemmas that we need in the proof.
Lemma 14. Divergence decomposition: Let ν = (P1, . . . , Pm) denotes the reward distributions for
an m-armed bandit problem and ν′ = (P ′

1, . . . , P
′
m) denotes another. For a fixed policy π, we have:

D(Pν ,Pν′) =

m∑
i=1

Eν [Ti(T)]D(Pi, P
′
i).

where Pν = Pνπ and Pν′ = Pν′π be the probability measures on the canonical bandit model induced
by the T -time slot interconnection of π and ν (or ν′).
Lemma 15. Bretagnolle-Huber inequality: Let P and Q be probability measures on the same
measure space (Ω,F), and let A ∈ F be an arbitrary event. Then,

P (A) +Q(Ac) ≥ 1

2
exp (−D(P,Q)) ,

where Ac = Ω−A denotes the complement part of A.
Lemma 16. Let E =M1 ∗ · · · ∗ Mm and π ∈ Πcons(E) be a consistent policy over E . Then, for
all ν = (Pi)

m
i=1 ∈ E , it holds that

lim
T→∞

inf
RT (π, ν)

log(T)
≥ c∗(ν, E) =

∑
i:∆i>0

∆i

dinf(Pi, µ∗,Mi)
,

where ∆i is the suboptimality gap of the i-th arm in ν and µ∗ denotes the mean reward of the optimal
arm.

The proof of above lemmas can be found in Lattimore & Szepesvári (2020). Below we give proof
about Lemma 3 and 4.

Proof of Lemma 3. First, we rearrange term ν = (P1(1), . . . , PM(1), , P1(L), . . . , PM(L)) to
denote the SSD-CMAB instance, just for convenience. Since the optimal super arm has ℓ∗ base arms,
we call the first ℓ∗ base arms “optimal base arms” and the rest “suboptimal base arms”. Consider
a suboptimal base arm i (i.e. i > ℓ∗), let ε > 0. We define ν′ = (P ′

j(ℓ))j∈[M]
ℓ∈[L]

satisfying that

for each ℓ ∈ [L], P ′
j(ℓ) = Pj(ℓ) when j ̸= i, Pi(ℓ) is the i-th term in some vector P ∈ Mℓ such

that D(Pi(ℓ), P
′
i(ℓ)) ≤ dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ) + ε and µ(Pℓ∗(ℓ)) < µ(P ′

i(ℓ)) < µ(P(ℓ∗−1)(ℓ)). Let
µ′ ∈ RML be the vector of means of distributions of ν′. By Lemma 14, we have D(Pνπ,Pν′π) ≤∑L

ℓ=1 Eνπ[Ti(ℓ)(T)](dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ) + ε).

By Lemma 15, for any event A,

Pνπ(A) + Pν′π(A
c) ≥ 1

2
exp

(
−

L∑
ℓ=1

Eνπ

[
Ti(ℓ)(T)

] (
dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ

)
+ ε)

)
. (24)

Suppose ℓ∗
′

is the size of optimal super arm in ν′. Obviously ℓ∗
′ ≥ ℓ∗, since the means for the best

super arm in class ℓ where ℓ < ℓ∗ do not change and are worse than super arm {1, . . . , ℓ∗}. We
assume the optimal super arm in ν′ is unique (which can be implemented by fine tuning ν′). Choose
A = {Ti(ℓ∗′)(T) ≥ T

2 }. Let RT = RT (π, ν), R
′
T = RT (π, ν

′).

For ν, each time a super arm in class ℓ∗
′

concluding base arm i is pulled, regret increases by at least
∆1 = min{∆i(ℓ∗),ℓ∗(ℓ∗),minℓ̸=ℓ∗ ∆{1,...,ℓ}} (where the first term comes from cases when ℓ∗

′
= ℓ∗,

and the second term comes from cases when ℓ∗
′ ̸= ℓ∗). Then RT ≥ T

2 · P (A) ·∆1.

For ν′, base arm i is in the optimal super arm in ℓ∗
′

since µ
(
P ′
i(ℓ∗′)

)
> µ

(
Pℓ∗(ℓ∗′)

)
≥

µ
(
Pℓ∗′ (ℓ∗′)

)
. Each time a super arm in class ℓ∗

′
not concluding base arm i is pulled, the regret

increases by at least ∆2 = min{µ
(
P ′
i(ℓ∗′)

)
− µ

(
Pℓ∗′ (ℓ∗)

)
,minℓ̸=ℓ∗′ ∆

′
ℓ}, where ∆′

ℓ denotes the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

gap for the optimal super arm in class ℓ in ν′ which is greater than 0 since the optimal super arm in
ν′ is unique. Therefore, R′

T ≥ T
2 · P (Ac) ·∆2.

Combining RT , R′
T and inequality (24), we have

RT +R′
T ≥

T

2
(P (A) + P (Ac))min(∆1,∆2)

≥ T

4
min(∆1,∆2) exp

(
−

L∑
ℓ=1

Eνπ

[
Ti(ℓ)(T)

] (
dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ) + ε

))
. (25)

Rearranging (25) and combining Definition 1, we have:

lim
T→∞

∑L
ℓ=1 Eνπ[Ti(ℓ)(T)](dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ) + ε)

log(T)
≥ 1. (26)

Below we consider how the regret are composed. As RT ≥
∑M

i=ℓ∗+1 RT,i, where RT,i denotes
the regret from pulling a suboptimal base arm i. Consider base arm i can be pulled in super arms
from different class, we need to give a lower bound for each RT,i. For a suboptimal base arm i
pulled in super arm from class ℓ, as the optimal super arm in class ℓ is {1, . . . , ℓ} and the regret for
choosing which is ∆{1,...,ℓ}, then the regret for choosing super arm concluding base arm i is at least
∆{1,...,ℓ}

ℓ +max(µℓ(ℓ)−µi(ℓ), 0) (the first term comes from the regret generated by the optimal super
arm in class ℓ divided into ℓ parts, and the second term comes from the regret generated by choosing
base arm i).

Sum them up, we have

RT,i ≥
L∑

ℓ=1

E
[
Ti(ℓ)(T)

](∆{1,...,ℓ}

ℓ
+max

(
µℓ(ℓ) − µi(ℓ), 0

))

≥ min
ℓ∈[L]

(
∆{1,...,ℓ}/ℓ+max

(
µℓ(ℓ) − µi(ℓ), 0

)
dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ) + ε

)
·

L∑
ℓ=1

E
[
Ti(ℓ)(T)

] (
dinf

(
Pi(ℓ), µℓ∗(ℓ),Mℓ

)
+ ε
)
.

Combine inequality (26), for all i ≥ ℓ∗ + 1, it holds that

lim
T→∞

RT,i

log(T)
≥ min

ℓ∈[L]

(
∆{1,...,ℓ}/ℓ+max

(
µℓ(ℓ) − µi(ℓ), 0

)
dinf

(
Pi(ℓ), µℓ∗(ℓ),Mℓ

)
+ ε

)
.

Thus, sum up for all ℓ ≥ ℓ∗ + 1, we have

lim
T→∞

RT

log(T)
≥

M∑
i=ℓ∗+1

min
ℓ∈[L]

(
∆{1,...,ℓ}/ℓ+max

(
µℓ(ℓ) − µi(ℓ), 0

)
dinf(Pi(ℓ), µℓ∗(ℓ),Mℓ) + ε

)
.

We end the proof when ε tends to zero.

Proof of Lemma 4. First, we consider a map v : Πcons(E) → Π′
cons(E) (Π′

cons(E) will be defined
later) that maps a policy π to v(π) as the following way: In time slot t, assume π chooses the super
arm in class ℓ, policy v(π) chooses the best super arm in class ℓ (i.e. super arm {1, . . . , ℓ} if the
mean reward of base arm decreases in subscript order). The set Π′

cons(E) concludes all consistent
policies which only chooses super arms in {{1, . . . , ℓ}|ℓ ∈ [L]}, over E .

Obviously, policy v(π) is always choosing a better super arm than π. Thus, RT (π, ν) ≥
RT (v(π), ν) holds. Therefore, we only need to prove for all ν = (Pℓ)

L
ℓ=1 ∈ E and π ∈ Π′

cons(E),
Lemma 4 holds.

Consider Qℓ =
∑ℓ

j=1 Pj(ℓ) which denotes the sum of distributions for the best ℓ base arms in class
ℓ. Using Lemma 3 on the L distributions Q1, . . . , QL, Lemma 4 can be verified on π ∈ Πcons(E)′.
Therefore, as RT (π, ν) ≥ RT (v(π), ν) holds, and Lemma 4 holds.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Class (k) Super arm set (Sk)

k = 1 S1 = {1, 2}, S2 = {2, 3}, S3 = {1, 3}, S4 = {4}
k = 2 S5 = {1, 2, 3}, S6 = {2, 3, 4}, S7 = {5}
k = 3 S8 = {1, 5}, S9 = {4, 5}, S10 = {3, 5}, S11 = {2}
k = 4 S12 = {1, 2, 3, 4}, S13 = {1, 2, 3, 5}, S14 = {1, 4, 5}, S15 = {2, 3, 4, 5}

Table 1: An instance of SD-CMAB problem

F SET DEPENDENT COMBINATORIAL MULTI-ARMED BANDIT

F.1 DETAILED SETTING OF SD-CMAB

An instance of a SD-CMAB problem involves M base arms. We consider a time horizon of length
T . Let S denote the restricted action set S ⊆ {S ⊆ [M] : |S| ≤ L} where L denotes the maximum
number of base arms in a super arm. In each time slot, the learner plays a super arm S ∈ S , which
is a set of base arms.

In SD-CMAB, the super arm S ∈ S affects the distributions for base arms in S. As all super arms are
in the set S , we divide S into K different classes {S1, ...,SK}. That is,

⋃
i∈[K] Si = S, Sk∩Sk′ = ∅

for two different k, k′ ∈ [L], where ∅ denotes an empty set. For any base arm i, when it is pulled
in super arm S ∈ Sk, it obeys the distribution related to class k, denoted by Pi(k). Notation kS
indicates the class that super arm S is in. Without loss of generality, we assume the rewards of the
base arms are [0, 1]-valued. We use µi(k) to denote the reward expectation for arm i in distribution
Pi(k) in class k while µi = (µi(1), µi(2), ..., µi(K)) indicates the reward vector for base arm i in all
classes. When pulled in a super arm from a different class, base arm i obeys different distributions,
corresponding to the “Set Dependent”.

We use Ni(k),t to indicate the number of times that base arm i has been pulled with super arms
in class k until time slot t. R(St) denotes the reward of the chosen super arm at t-th time slot,
where r(St) = E[R(St)] shows its expectation. We consider the linear reward function in which
the reward function is R(St) =

∑
i∈S Xi(kS),Ni(kS),t

, where variable Xi(k),t indicates the outcome
of base arm i in its t-th trial with distribution Pi(k). Thus, E[Xi(kS),Ni(kS),t

] = µi(kS). We consider
the semi-bandit feedback, which means the learner can observe the reward for any base arm in the
super arm it pulls.

As mentioned in the introduction, the order preservation property also exists in SSD-CMAB:
Order preservation. For any class k ∈ [K], the order of reward expectations is fixed across different
base arms. That is, µi(k) ≤ µj(k) if and only if µi(k′) ≤ µj(k′), where i, j ∈ [M], k, k′ ∈ [K].

Table 1 gives an instance of general SD-CMAB framework with 5 base arms (M = 5). The size
of S is 15 and the number of classes is 4 (K = 4), meaning these 15 super arms are separated into
4 different classes S1 to S4. Fix a base arm, its reward expectation keeps unchanged when it is
pulled in super arms from a same class, while that may change when it is pulled in super arms from
different classes. For example, consider base arm 3, its reward expectation is same in super arm S2

and S3, but can be different in super arm S10 or S13.

The objective is to find an algorithm π to minimize RegT (π, ν) on SD-CMAB instance ν which is
defined as

RegT (π, ν) = T · r(S∗)− E

[
T∑

t=1

r(St)

]
, (27)

where S∗ denotes the optimal super arm in S.

F.2 DETAILED EXPLANATION FOR SORTUCB-SD

In this appendix we introduce the detailed explanation for SortUCB-SD. We first propose the
(n1, n2)-efficiency Oracle designed for our algorithm.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Ordered base arms Explored super arms Number of eliminated super arms

B = {1, 2, 3} S5 3

B = {1, 2, 3, 4} S12 6

B = {1, 4} S14 3

Table 2: Examples of using the Oracle

(n1,n2)-efficiency Oracle. Consider any B denoting the set of base arms that the algorithm plans
to learn the order (called ordered base arms). The Oracle can figure out the least set of super arms
that are needed to learn the order (called explored super arms), and also the number of super arms
that can be directly eliminated according to the learned order of B (called eliminated super arms).
We call that B is (n1, n2)-efficiency when the number of “explored super arms” is n1 while the
number of “eliminated super arms” is n2.

Intuitively, n1 and n2 measures the learning efficiency if the algorithm decides to learn the order
of the base arms in B. The less the n1, and the larger the n2, the more quickly the algorithm can
eliminate super arms.

Consider the SD-CMAB instance given by Table 1, Table 2 gives several examples on how our
Oracle works. Here we explain the first example in Table 2, and other examples are just similar.
According to the ordered base arms B = {1, 2, 3}, the Oracle finds super arm S5 covers all these
base arms, and recognizes it as the explored super arm. As for the eliminated super arms, assuming
we have already learned the order among base arm 1, 2 and 3. Then for super arms S1, S2 and S3,
since any two of them differs no more than 1 base arm, the order among these 3 base arms can
definitely help identify two suboptimal super arms. This situation is the same for super arms S8 and
S10. Therefore, the total number of eliminated super arms is 3.

We propose our algorithm, SortUCB-SD in Algorithm 3. Our algorithm performs in round basis.
In round h, Oracle decides the set of “ordered base arms” denoted by Bh, as well as the set of
“explored super arms” denoted by Rh = {R1,h, R2,h,...} according to the given input αh and βh.
By uniformly pulling the “explored super arms”, the algorithm learns the order of each base arm in
Bh, and the round ends whenever the orders of all base arms in Bh have been learnt.

Algorithm 3 Sorting Upper Confidence Bound - Set Dependent
1: Initialization: h← 1,G ← S
2: \\Sorting Phase ▷ Find base arm sets Bh and super arm sets Ri,h

3: Input: α1 > 0, β1 > 0.
4: while Oracle finds an (n1, n2)-efficiency ordered base arm set Bh with n1 ≤ αh, n2 ≥ βh do
5: Supposing R1,h, R2,h, . . . denote the explored super arms
6: while Bh does not satisfy (28) do
7: Uniformly pulling super arm Ri,h.
8: Update Ni(k),t, µ̂i(k),t and t
9: end while

10: Delete super arm S ∈ G according to Elimination Law (29)
11: h← h+ 1, input new αh and βh.
12: end while
13: µ̂i(k),Ni(k),t

← 0 for all i ∈ [M] and k ∈ [K], NS,t ← 0 for all super arms S ∈ G
14: \\UCB Phase ▷ Using UCB to select the near-optimal super arm
15: while t ≤ T do
16: Pull super arm with the highest (30) for the rest super arms S ∈ G
17: Update NS,t, µ̂i(k),t and t
18: end while

Specifically, all the orders of the base arms in a set Bh have been learnt if for any i, j ∈ Bh, it holds
that

|µ̂i(ki,j),Ni(ki,j),t
− µ̂j(ki,j),Nj(ki,j),t

| ≥
√

2 log T (
1√

Ni(ki,j),t

+
1√

Nj(ki,j),t

) (28)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where ki,j ∈ [K] denotes some class. After the total H rounds, the algorithm finishes the period of
learning the order and remove a large amount of suboptimal super arms according to the “Elimina-
tion Law” which is introduced below.

Elimination Law. For some super arm S, if there exists S′ ∈ S, S′ ̸= S, |S| ≤ |S′|, and there exist
i1, i2, . . . , i|S| and j1, j2, . . . , j|S|, ip ∈ [|S|], jp ∈ [|S′|], ip ̸= ip′ when p ̸= p′ s.t.

µ̂jp(kp),Njp(kp),t
−

√
2 log(T)

Njp(kp),t
≥ µ̂ip(kp),Nip(kp),t

+

√
2 log(T)

Nip(kp),t
(29)

holds for all p ∈ {1, 2, . . . , |S|} and some kp ∈ [K] (which is associated with p), then eliminate
super arm S.

For some problem instances, this procedure can be very effective since we can only use information
of the reward of several base arms to eliminate a large number of super arms. The above manner can
speed up the exploration process since we can avoid pulling many super arms which are apparently
not the optimal super arm and thus lowers down regret and avoid exploring repeatedly.

Afterwards, we first reset all the estimation of base arms µ̂i(k) so that we can continue using an
extension version of algorithm UCB (which consider each super arm as a single super arm and
needs to record the sampled times for each super arm rather than each base arm) we consider each
of the rest super arms as a single arm, and use an extension version of UCB algorithm to select the
near-optimal super arm. That is, we just need to pull super arm S with the highest

∑
i∈S

µ̂i(kS),Ni(kS),t
+

√
2|S| log T

NS,t
. (30)

The term NS,t, similar to Ni(k),t, is used to denote the pulled times for super arm S in the first t
time slots.

G PROOF OF THEOREM 3

Proof of Theorem 3. In algorithm 3 there exist two phases. We use Reg1,T (π, ν) to denote regret in
the Sorting Phase and Reg2,T (π, ν) to denote regret in the UCB Phase. Thus

RegT (π, ν) = Reg1,T (π, ν) + Reg2,T (π, ν)

As we totally use the Oracle for H times in the first cycle, we have

Reg1,T (π, ν) =
H∑

h=1

Reg1(h),T (π, ν)

where Reg1(h),T (π, ν) indicates the sum regret produced with the h-th use of Oracle. We use Th to
indicate the time slots until the order of the ‘explored super arms’ returned by the h-th use of Oracle
has been learned thoroughly, where h ∈ [H].

W.L.O.G., we consider the h-th use of the Oracle. We define Gi(k),t as follows:

Gi(k),t =

{
µ̂i(k),Ni(k),t

∈

[
µi(k) −

√
2 log T

Ni(k),t
, µi(k) +

√
2 log T

Ni(k),t

]}
, (31)

which shows the estimate of reward for arm i with expectation k in the t-th time slot is bounded in a
range. The term Gc

i(k),t indicates the complement event. We use P
(
Gi(k),t

)
to show the probability

that event Gi(k),t happens. Thus, P
(
Gi(k),t

)
+ P

(
Gc

i(k),t

)
= 1.

Similar to Ni(k),t, we use NS,t to denote the times that super arm S is pulled in the first t time slots.
We use ÑS,Th

= NS,Th
− NS,Th−1

to indicate the number of pulls for super arm S between the
h-th and (h + 1)-th use of Oracle. Term ÑG

S,t denotes the pulling times for super arm S in the first

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

t slots with event G =
⋂

i∈[M]

⋂
K∈[K]

⋂
t∈[T] Gi(ℓ),t happening, while ÑGc

S,t denotes the opposite.
According to 1,

Reg1(h),T (π, ν) =
∑

S∈Rh

E
[
ÑS,Th

]
∆S . (32)

Our goal is to calculate E[ÑS,Th
] for all super arms S ∈ Rh. Obviously,

E
[
ÑS,Th

]
= E

[
I {G} ÑG

S,Th

]
+ E

[
I {Gc} ÑGc

S,Th

]
. (33)

As I{G} ≤ 1 and ÑGc

S,Th
≤ Th ≤ T , combining (33), the upper bound for E

[
ÑS,Th

]
can be shown

as follows

E
[
ÑS,Th

]
≤ E

[
ÑG

S,Th

]
+ T · E [I{Gc}] = E

[
ÑG

S,Th

]
+ T · P (Gc) .

Using Lemma 8, we obtain

P (Gc) ≤ 2MK

T 3
, E
[
ÑS,Th

]
≤ E

[
ÑG

S,Th

]
+

2MK

T 2
.

Below we consider the bound for E
[
ÑG

S,Th

]
. In this cycle, our aim is to learn the order of base arms

in base arm set Bh. Assume the estimations of base arms in Bh have not reached the elimination
condition (28). That is, there exists at least two base arms i, j ∈ Bh, and for all k ∈ [K],

∣∣∣µ̂i(k),NG
i(k),t

− µ̂j(k),NG
j(k),t

∣∣∣ <√2 log T

 1√
NG

i(k),t

+
1√

NG
j(k),t

 .

W.L.O.G, we assume µ̂i(k),NG
i(k),t

≥ µ̂j(k),NG
j(k),t

. Thus, in the time slot t, we have:

µ̂i(k),NG
i(k),t

− µ̂j(k),NG
j(k),t

<
√
2 log T

 1√
NG

i(k),t

+
1√

NG
j(k),t


for some i, j ∈ [M] and all k ∈ [K]. With the definition of (33), we can derive that

µi(k) − µj(k) < 2
√
2 log T

 1√
NG

i(k),t

+
1√

NG
j(k),t

 .

According to the definition of Oracle, super arm setRh must cover any base arm i ∈ Bh (otherwise
it is impossible to learn the order for all base arms in Bh with super arms in Rh). As we uniformly
pull super arms inRh, after every |Rh| time slots, each base arm i ∈ Bh can be achieved at least one
time. That means NG

i(k),t − ÑG
S,t ≥ −1 for any S ∈ Rh. Thus, we can bound ÑG

S,t and as follows:

ÑG
S,t <

32 log T

∆2
i(k),j(k)

+ 1

for all t ∈ [Th−1 + 1, Th], meaning ÑG
S,Th

< 32 log T
∆2

i(k),j(k)

+1 holds. This means for any two base arms

i, j ∈ Bh, if there exists S1, S2 ∈ Rh, i ∈ S1, j ∈ S2, kS1
= kS2

= k satisfying the condition in the
14-th row in algorithm 3, we can eliminate set B. Thus, for the two base arms i, j, we should pull
all the super arms in Rh for at least 32 log T

max S1,S2∈Rh
i∈S1,j∈S2
kS1

=kS2
=k

∆2
i(k),j(k)

+ 1 time slots to ensure learning their

order.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

As we need to eliminate all the base arm sets in B, the maximum pulling times for all super arms in
Rh are

E
[
ÑG

S,Th

]
≤ 32 log T

mini,j∈Bh
max S1,S2∈Rh

i∈S1,j∈S2
kS1

=kS2
=k

∆2
i(k),j(k)

+ 1. (34)

With this upper bound and proof above, we get E
[
[ÑS,Th

]
≤ 32 log T

mini,j∈Bh
max S1,S2∈Rh

i∈S1,j∈S2
kS1

=kS2
=k

∆2
i(k),j(k)

+

2MK
T 2 + 1. Thus, according to (32) and (34),

Reg1(h),T (π, ν) =
∑

S∈Rh

E
[
ÑS,Th

]
∆S ≤ (

32 log T

mini,j∈B max S1,S2∈Rh
i∈S1,j∈S2
kS1

=kS2
=k

∆2
i(k),j(k)

+
2MK

T 2
+ 1)

∑
S∈Rh

∆S

=

(
32 log T

∆2
Bh,min

+
2MK

T 2
+ 1

) ∑
S∈Rh

∆S .

Summing up for all h ∈ [H], we have

Reg1,T (π, ν) ≤
H∑

h=1

(
32 log T

∆2
Bh,min

+
2MK

T 2
+ 1

) ∑
S∈Rh

∆S .

Here we end the proof of the bound for Reg1,T (π, ν). Below we prove the bound for Reg2,T (π, ν).

In this phase, our intuition is seeing each super arm as a single arm. We use µS =
∑

i∈S µi(kS) to
denote the reward expectation for super arm S and µ̂S,NS,t

to denote the unbiased estimate for super
arm S in the first t time slots, while NS,t indicates the chosen times for super arm S as a whole since
the start of the UCB Phase, which is initialized to zero. We have

Reg2,T (π, ν) =
∑
S∈G

E [NS,T] ∆S . (35)

First we give a lemma that ensures the optimal super arm can be in G with high probability.

Lemma 17. If event G happens, the optimal super arm (denoted by S∗) must be concluded in G.

Proof of lemma 17. As we defined, event G means µi(k) −
√

2 log T
Ni(k),t

≤ µ̂i(k),Ni(k),t
≤ µi(k) +√

2 log T
Ni(k),t

is true for each i ∈ [M], k ∈ [K], t ∈ [T]. We just need to prove what we eliminate in line
8 in Algorithm 3 are suboptimal super arms.

According to the elimination condition (29), when there exists i1, i2, . . . , i|S| and j1, j2, . . . , j|S| s.t.

µ̂jp(kp),Njp(kp),t
−
√

2 log T

Njp(kp),t
≥ µ̂ip(kp),Nip(kp),t

+

√
2 log T

Nip(kp),t
, (36)

we can eliminate super arm S. Combining the definition of (31), inequalities µ̂ip(kp),Nip(kp),t
+√

2 log T
Nip(kp),t

≥ µip(kp) and µ̂jp(kp),Njp(kp),t
−
√

2 log T
Njp(kp),t

≤ µjp(kp) hold. Take (36) into considera-

tion, that is µjp(kp) ≥ µip(kp), meaning base arm jp is better than ip under Gi(k),t.

As this quality holds for all base arms in S, this means for any base arm i in S, there exists a different
base arm in S′ which is better than i. Thus,

µS =
∑
i∈S

µi(kS) ≤
∑
i∈S′

µi(kS′) = µS′ (37)

shows super arm S is a suboptimal arm. Therefore, any eliminated arm in this phase must be a
suboptimal arm when event G happens. Here we end the proof of lemma 17.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Now we continue our proof of Reg2,T (π, ν). As we have proved in previous,

Reg2,T (π, ν) =
∑
S∈G

E [NS,T] ∆S ≤
∑
S∈G

E
[
NG

S,T

]
∆S +

2MK

T 2

∑
S∈G

∆S

=
∑
S∈G
S ̸=S∗

E
[
NG

S,T

]
∆S +

2MK

T 2

∑
S∈G

∆S . (38)

The last equation is because of ∆S∗ = 0. Thus, we only need to prove the upper bound for E[NG
S,T].

We first define another event G̃S which we need in our proof:

G̃S =

{
µS∗ < min

t∈[T]
µ̂S∗,NS∗,t

+

√
2|S∗| log T

NS∗,t

}
∩

µ̂S,uS
+

√
2|S| log T

uS
< µS∗

 , (39)

where uS ∈ [T] is a constant to be chosen later.

Below we give two lemmas.

Lemma 18. If G̃S occurs, then NS,T ≤ uS .

Lemma 19. G̃c
S , meaning the complement part of G̃S , happens with low probability.

As NG
S,T ≤ T , we use NG∩G̃S

S,t to denote the pulling times for super arm S in the first t time slots

in the second cycle with event G and G̃S both happening, while N
G∩G̃c

S

S,t means that only event G
happens while event G̃S does not happen. Then,

E
[
NG

S,T

]
= E

[
I(G̃S)N

G∩G̃S

S,T

]
+ E

[
I(G̃c

S)N
G∩G̃c

S

S,T

]
≤ E

[
NG∩G̃S

S,T

]
+ T · P

(
G̃c

S

)
. (40)

Proof of lemma 18. Assuming that G̃S occurs with NS,T ≥ uS . That means there exists t ∈ T s.t.
NS,t−1 = uS while At = S, where At means the chosen super arm at time slot t. According to
(39), we have:

µ̂S,NS,t−1
+

√
2|S| log T
NS,t−1

≤ µS∗ ≤ µ̂S∗,NS,t−1
+

√
2|S∗| log T
NS,t−1

. (41)

That means in time slot t we should choose super arm S∗ rather than arm S, which is a contradiction.

Proof of lemma 19. The complement part of G̃S is

G̃c
S =

{
µS∗ ≥ min

t∈[T]

(
µ̂S∗,NS∗,t

+

√
2|S∗| log T

NS∗,t

)}
∪

µ̂S,uS
+

√
2|S| log T

uS
≥ µS∗

 . (42)

We first prove the first part of G̃c
S . As{

µS∗ ≥ min
t∈[T]

(
µ̂S∗,t +

√
2|S∗| log T

NS∗,t

)}
⊂

{
µS∗ ≥ min

t∈[T]

(
µ̂S∗,t +

√
2|S∗| log T

t

)}

=
⋃

t∈[T]

{
µS∗ ≥ µ̂S∗,t +

√
2|S∗| log T

t

}
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Thus, using Lemma 5, we have:

P

(
µS∗ ≥ min

t∈[T]

(
µ̂S∗,t +

√
2|S∗| log T

NS∗,t

))
≤ P

 ⋃
t∈[T]

{
µS∗ ≥ µ̂S∗,t +

√
2|S∗| log T

t

}
≤

T∑
t=1

P

(
µS∗ ≥ µ̂S∗,t +

√
2|S∗| log T

t

)
≤ 1

T 3
, (43)

which is a low probability if T is chosen large enough. For the last inequality in (43), we use lemma
4 with t|S∗| independent samples.

Next we bound the second part of G̃c
S . As uS is a parameter undetermined, we assume it is large

enough that ∆S −
√

2|S| log T
uS

≥ c∆S , where c ∈ (0, 1) will be chosen later. Thus,

P

µ̂S,uS
+

√
2|S| log T

uS
≥ µS∗

 = P

µ̂S,uS
− µS ≥ ∆S −

√
2|S| log T

uS


≤ P (µ̂S,uS

− µS ≥ c∆S) ≤ exp

(
−2c2∆2

S

uS

|S|

)
. (44)

Taking together (43) and (44),

P
(
G̃c

S

)
≤ 1

T 3
+ exp

(
−2c2∆2

S

uS

|S|

)
.

Here we end the proof of lemma 19.

As we have proved in (40)

E
[
NG

S,T

]
≤ uS + T

(
1

T 3
+ exp

(
−2c2∆2

S

uS

|S|

))
= uS + T exp

(
−2c2∆2

S

uS

|S|

)
+

1

T 2
.

Choosing uS = ⌈ 2|S| log T
(1−c)2∆2

S
⌉ and c = 1/2, then

E[NS,T] ≤ 3 +
8|S| log T

∆2
S

.

Considering (38), we can give an upper bound for Reg2,T (π, ν),

Reg2,T

π, ν) ≤
∑

S∈G,S ̸=S∗

(3∆S +
8|S| log T

∆S

+
MK

T 2

∑
S∈G

∆S . (45)

Then we take together (34) and (45) and get

RegT (π, ν) ≤
H∑

h=1

(
32 log T

∆2
Bh,min

∑
S∈Rh

∆S

)
+

∑
S∈G,S ̸=S∗

8|S| log T
∆S

+

(
2MK

T 2
+ 3

) H∑
h=1

∑
S∈Rh

∆S +
∑

S∈G,S ̸=S∗

∆S

 . (46)

Theorem 3 is the simplified version of (46).

29

	Introduction
	The SSD-CMAB Problem
	Algorithm: Sorting Upper Confidence Bound
	 Theoretical Analysis
	Instance Dependent Upper Bound
	Instance Dependent Lower Bound
	Sketch of Proof

	Extension to Set Dependent Combinatorial Bandits
	Experiments
	Conclusion
	Literature Review
	Reduction Version of CMAB Algorithms
	Implementation of Algorithm 1
	Proof of Theorem 1
	Proof of Theorem 2
	Set Dependent Combinatorial Multi-Armed Bandit
	Detailed Setting of SD-CMAB
	Detailed Explanation for SortUCB-SD

	Proof of Theorem 3

