Under review as a conference paper at ICLR 2025

SET-S1ZE DEPENDENT COMBINATORIAL BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces and studies a new variant of Combinatorial Multi-Armed
Bandits (CMAB), called Set-Size Dependent Combinatorial Multi-Armed Ban-
dits (SSD-CMAB). In SSD-CMAB, each base arm is associated with a set of
different reward distributions instead of a single distribution as in CMAB, and the
reward distribution of each base arm depends on the set size, i.e., the number of
the base arms in the chosen super arm in CMAB. SSD-CMAB involves a much
larger exploration set of the super arms than the basic CMAB model. An important
property called order preservation exists in SSD-CMAB, i.e. the order of reward
means of base arms is independent of set size, which widely exists in real-world
applications. We propose the SortUCB algorithm, effectively leveraging the order
preservation property to shrink the exploration set. We provide theoretical upper

bound of O (max { Ai‘iL , i—i} log(T)) for SortUCB which outperforms the clas-

sic CMAB algorithms with regret O (%’:2 log(T)) , where M denotes the num-
S

ber of base arms, L denotes the maximum number of base arms in a super arm,
0 and A are related to the gap of arms. We also derive a lower bound which can

be informally written as {2 (max {minke L] {%} , ﬁ—i} log(T)) showing
k

that SortUCB is partially tight. We conduct numerical experiments, showing the

good performance of SortUCB.

1 INTRODUCTION

Multi-armed bandit (MAB) (Robbins, |1952}|Lai & Robbins| 1985 |Auer et al., 2002) is a sequential
decision-making problem in which a learner faces a dilemma between exploiting well-observed ac-
tions (a.k.a. arms) and exploring new arms that may yield higher rewards. Different from the basic
MAB setting, where the learner selects a single arm each time slot, a more general version allows the
learner to select a combination of arms (called “base arms”) to form a “super arm”. The reward of the
super arm is the sum of the rewards from all the base arms selected. This generalization is referred to
as the Combinatorial Multi-Armed Bandit (CMAB) problem (Gai et al.| 2012; |Cesa-Bianchi & Lu-
gosil [2012). Many real-world scenarios can be naturally modeled as CMAB problems. For instance,
in the network utility maximization problem (Low & Lapsley, [1999) for shared network resources,
where several users share limited resources (e.g., communication links with limited capacity), the
objective is to maximize aggregate utility for users. In this case, the utility for each user corresponds
to the reward for each base arm and super arms represent combinations of users. Similarly, in online
advertising, where each advertisement can be considered as a base arm, and displaying a set of ads
together on a website forms a super arm. Due to its practical relevance, a wide range of algorithms
have been developed to achieve near-optimal regret in CMAB problem (Kveton et al.,[2015}/Combes
et al.,[2015a;|Chen et al.,|2016b; Wang & Chen, 2018} Merlis & Mannor;,|2019).

Despite their generality, most existing CMAB frameworks assume that the unknown distribution
of base arms remains fixed, regardless of the properties of the super arm to which they belong.
However, in practice, there are scenarios where the distribution of base arms changes when they
are pulled in super arms of different sizes, resulting in multiple distributions for each base arm.
For example, in utility maximization problems, when selecting more users to share the bandwidth,
each user gets a reduced portion, leading to lower utility (Verma & Hanawall, 2020; [Fu & Modiano,
2021)). Notably, while the reward distribution changes, a better arm still performs better compared
to others within super arms of the same size. In the bandit context, this situation can be modeled

Under review as a conference paper at ICLR 2025

as one where the reward mean for each base arm decreases when pulled with a larger number of
base arms, meaning each base arm follows multiple distributions. However, the order of base arms
remains consistent within super arms of the same size. This property also exists in online advertising
where users feel less engaged with a website overloaded with a large number of ads, resulting in
lower click-through rates for each advertisement (Wang et al., 2011} Broder et al., |2008)). This leads
to varying reward means for base arms depending on the size of the super arm. Nevertheless, a
high-performing ad still ranks better than others on pages with the same number of ads, even if its
distribution changes.

To address the application scenarios described above, we introduce and study the Sez-Size Dependent
Combinatorial Multi-Armed Bandit (SSD-CMAB) problem, with semi-bandit feedback and linear
reward function. In SSD-CMAB, combinations of M base arms form the super arm set. Each base
arm can be associated with L different distributions, depending on the size of the super arm (up to
L) that contains it. As a result, there are M L distributions in total for the M base arms. Note that
in the CMAB model the reward distribution of a base arm remains the same across all super arms.
In contrast, SSD-CMAB models base arm rewards as dependent on the size of the super arm, with
each base arm having L different reward distributions. This is the main distinction with CMAB
where each base arm has only one fixed distribution (Gai et al., 2012; |(Combes et al., [2015b), even
in non-linear reward settings (Chen et al.,2016b;|2021; Merlis & Mannor, [2019). To the best of our
knowledge, previous studies on arms dependent on sets (Chen et al.l |2018; [Takemori et al., 2020;
Fourati et al., 2024) have primarily focused on properties like submodularity, whereas this paper is
the first to focus on the order preservation property. See Appendix [A] for detailed connections and
differences between our model and CMAB as well as the literature review.

The parameter space for set-size dependent arms expands significantly, adding considerable com-
plexity to solving the SSD-CMAB problem. Without utilizing the structure of reward for base arms,
one would need to independently learn M L distributions (see Appendix [Bfor detailed implementa-
tion). However, as demonstrated in previous examples, a common property in SSD-CMAB is order
preservation: the order of the reward means for base arms remains consistent across super arms of
the same size. Traditional CMAB algorithms overlook this property in SSD-CMAB, leading to poor
performance as M or L increases. Therefore, an effective algorithm for SSD-CMAB must exploit
the order preservation property to reduce the need for learning such a large number of distributions.

Contributions. In Section 2] we introduce the SSD-CMAB problem. We propose the SortUCB
algorithm afterwards which leverages the order preservation property of super arms with the same
number of base arms. The algorithm first learns the order of base arms in fixed-size super arms,
then identifies and retains a subset of super arms likely to be optimal, excluding suboptimal ones
with high probability. Finally, it applies a UCB-based strategy to select super arms. By utilizing the
order preservation property, SortUCB minimizes exploration on suboptimal super arms, allowing it
to focus on those more likely to be optimal.

SortUCB achieves a regret upper bound of O (max {m L }log(T)), where M is the

A7 in) Asmin
L,min)
total number of base arms, L is the maximum size of a super arm, Ag p,;, is the minimum gap
among super arms, and Ay, i, is the minimum gap among the top L base arms in size- L super arms.

In comparison, applying existing CMAB algorithms yields a regret bound of O (AIZ L log(T)>,

which depends only on Ag in. Our bound, however, accounts for Ay, i, and introduces 67, max,
the maximum regret when pulling the top L base arms, which is less than 1. Since L can be at
most M, the M L? term in existing bounds grows rapidly with large M. By decomposing M L?
into L2 and M, our bound ensures better performance, particularly when the number of base arms
is exponentially large.

We derive a lower bound for the SSD-CMAB problem, informally expressed as
M . 8i(0)—Si L2

Q (max {Zi_£*+1 minge(z] {A}il)zzj; } e } log(T)>, where (0;) — Sie)) repre-

sents the regret from pulling base arm ¢ in a super arm of size ¢. This near-optimal lower

bound aligns closely with our regret upper bound. Specifically, the first term in the lower bound

corresponds to the first term in the upper bound, indicating tightness. The second term in the lower

bound, which aggregates the minimum SUH =50) for all £ € [L] across suboptimal base arms,

2
i(0),0%(2)

Under review as a conference paper at ICLR 2025

aligns with the second term in the upper bound when the index for the minimum is L. Additionally,
the log(T") factor in our upper bound is optimal, demonstrating that SortUCB achieves logarithmic
regret growth as 7" increases.

In Section [5] we extend our model to the Set-Dependent Combinatorial Multi-Armed Bandits (SD-
CMAB), where the mean reward of each base arm depends on the specific set of arms rather than
just the set size. This extension introduces additional complexity, as not all combinations of base
arms form valid super arms, making the reward structure more challenging to learn. To address this,
we propose the SortUCB-SD algorithm and derive its regret upper bound. Finally, in Section [6] we
present numerical experiments showcasing the effectiveness of our approach.

2 THE SSD-CMAB PROBLEM

This section introduces the Set-Size Dependent Combinatorial Multi-Armed Bandit (SSD-CMAB)
problem which defines size-dependent rewards and feedback for base arms. We begin with a brief
explanation of the notations used in this paper.

Notations. Throughout the paper, we use [n] := {1, 2, ..., n} to denote the set of indexes to simplify
notations. For two vectors with the same size o = (u1, ..., 4,) and v = (vq,...,v,), we define
= v when p; > v; holds for all ¢ € [n]. Notation =< is defined in a similar way by replacing >
with <.

An SSD-CMAB problem instance v involves M base arms, denoted by set [M]. Consider a time
horizon of length T, the player can select a subset of base arms at each time slot as a super arm. Let
S denote the set of all possible subsets of base arms [M] whose cardinality is no more than L € Z .,
ie.,S:={S C[M]:]|S| <L} (meaning a super arm consists of at most L base arms).

Unlike the classical stochastic CMAB problem, where each base arm’s reward follows a fixed i.i.d.
distribution, the base arm rewards in SSD-CMAB are set-size dependent. Specifically, for any base
arm i, when it is pulled as part of a super arm S € S with size ¢ = |S], its reward follows a
distribution dependent on /, denoted as P;(,). For simplicity, we use /s to represent the size of super
arm S. Since a super arm consists of at most L base arms, each base arm ¢ has at most L possible
reward distributions. Without loss of generality, we assume base arm rewards are [0, 1]-valued. Let
Hi(ey denote the expected reward for arm ¢ under P;(y), and p; = (M¢(1)7 Hi(2)s - -+ 5 Bi L)) represent
the vector of mean rewards for arm 7 across different set sizes. This dependency on super arm size
defines the “Set-Size Dependent” nature of the problem.

We denote by N;) ; the number of times base arm ¢ has been pulled under distribution P;,) up
to time slot ¢, and by X4, n, (0. the outcome of base arm ¢ at time slot ¢ under the same dis-
tribution. Let S; and R(S;) represent the super arm chosen and its corresponding reward at the
t-th time slot, respectively, with the expected reward denoted as r(S;) = E[R(S;)]. We consider
a linear reward function where R(S:) = > cq, Xi(s,),Nigey.0» SO]E[Xi(ﬁ),Nm),t] = i) The
average reward of base arm ¢ over the first ¢ time slots within super arms of size ¢ is denoted by

ﬂi(t’),Ni(z),t = Zi(f)'t Xi0),s/Ni(e),+- In this paper we consider the semi-bandit feedback, where

the learner selects a super arm S € S each time slot and observes the rewards for all base arms in S.
As mentioned in the Introduction, the order preservation property exists in the SSD-CMAB model.
We formally introduce it as follows:

Order preservation. For any class ¢ € [L], the order of reward expectations is fixed across different
base arms. That is, 1;(s) < 1;(¢) if and only if j1;0r) < prj(ery, where i, j € [M], £,0" € [L].

An SSD-CMAB algorithm 7 selects one super arm S to play each time slot according to the previous
information. The objective of 7 is to maximize the cumulative expected reward in 7" time slots. We
use S* = argmaxgcs7(S) to denote the optimal super arm. In order to show the performance
between an algorithm 7 and the optimal policy (i.e. always pull the optimal arm) on the instance v,
we need a quantity ‘Regret’ defined as

Regr(m,v) =T -r(S*) —E

Zr(st)l : (1)

t=1

Thus, the objective of algorithm 7 is to minimize Reg(, /).

Under review as a conference paper at ICLR 2025

3 ALGORITHM: SORTING UPPER CONFIDENCE BOUND

In this section, we introduce details of our algorithm Sorting Upper Confidence Bound (SortUCB).

Compared to traditional CMAB problems, SSD-CMAB is faced with a larger challenge in handling
the super arms which involve more reward distributions with the same number of base arms. Con-
sider an SSD-CMAB problem with a maximum super arm size of L. As a result, the parameters
or reward means to learn expands by a factor of L compared to the CMAB setting with a single
distribution associated to each base arm. Those make traditional CMAB algorithms which directly
learn the reward means of super arms fail to maintain efficient in handling massively large amount of
parameters. Those challenges urge us to leverage a structured exploration strategy which guides the
algorithm to assign pulls to the super arms from which the algorithms can obtain more information
on the structure or order specifically of the base arms. From the analysis in Section[d} the above strat-
egy can efficiently lower down the pulls of arms whose reward means subject to a particular nature,
i.e. the order preservation property. Hence, the learning algorithm for SSD-CMAB, compared to
those for the traditional CMAB problems, contains additional Elimination Phase and Sorting Phase
where the algorithm needs to learn the structure of reward means and eliminate suboptimal super
arms according to the learned structure. However, the above strategy introduces another source of
exploration-exploitation dilemma between assigning pulls to learn the structure to eliminate super
arms or directly applying classic bandit learning algorithms to learn the best super arm. The above
dilemma results in the second challenge of SSD-CMAB. To address the above two challenges, we
present our SortUCB algorithm in Algorithm [T] which effectively leverages the order preservation
property and learns the structure of reward distributions in an appropriate way.

As mentioned above, the core idea behind the structured exploration strategy in the proposed al-
gorithm is to leverage the order preservation property to avoid exploring unnecessary super arms.
Specifically, by pulling certain super arms, the algorithm can learn the order among some base arms.
Since any combination of base arms can form a super arm, the super arm set is exponentially large.
However, with the learned order, the algorithm manage to identify some super arms as suboptimal
because the base arms they include have smaller reward means than others according to the learned
order. For example, if the algorithm figures out that base arm 1 is better than base arm 2, there
is no need to pull super arms such as {2,3} or {2,4}, as these super arms are worse than {1, 3}
and {1,4}. This means that if some particular order is learned during earlier samplings to some
degree (correspond to the Sorting Phase in Algorithm [T)), the order preservation property allows us
to reduce pulling all the super arms that contain a base arm which is likely to perform poorly. The
analysis later on shows that the above strategy significantly narrows down the set of super arms that
the algorithm needs to explore. We introduce the details of implementing the algorithm below.

Algorithm 1 Sorting Upper Confidence Bound
1: Initialization: B < [M]

2: \\Elimination Phase > Learn the best L base arms
3: while |5| > L do
4: Pull the super arm consisting L smallest V;(r ; base arms (uniform pull)
5: Update fi;(r.),¢, Ni(r),c and ¢
6: Delete all the base arms satisfying (2) for L different base arms j1,...,J1
7: end while
8: R« B
\\Sorting Phase > Sort the best L base arms

9: while |B| > 2 do
10: Pull the super arm R, and update fi;(1¢, Ni(r),+ and
11: Delete any base arm i satisfying (2) for all j € B\ 4, and set the order of arm ¢ to |B| + 1
12: end while
13: Set A as (3). ftice),N,(p),, < O for all possible i and £, N ; <— 0 for super arms S in A

\\UCB Phase > Using UCB to select a super arm each slot

14: while t < T do
15: Pull super arm with the highest () for super arms S € A
16: Update N ¢, fii(e),c and £.
17: end while

Under review as a conference paper at ICLR 2025

The algorithm begins with exploring the order of base arms, which includes the “Elimination Phase”
and “Sorting Phase”. We use B = [M] to represent the set of all base arms in our algorithm. As
stated in the second challenge, the algorithm maintains a fixed super arm size during the exploration
phase, uniformly pulling super arms with the largest number of base arms (i.e., super arms of size
L) to gather as much information as possible.

Since each super arm contains no more than L base arms, it is unnecessary to precisely estimate
those that are not among the best L base arms, as attempting to learn about these arms can lead to
substantial regret. Thus the algorithm adjusts its policies to learn on different base arms between the
first two phases. Initially in the Elimination Phase, the algorithm focuses on identifying the (M — L)
base arms that are not among the best L and removes them from B3, rather than determining their
exact order. Specifically, for a base arm ¢ € B, if there exist at least L base arms j, (k € [L]) whose
lower confidence bound exceeds the upper confidence bound of ¢, i.e.,

. 2log(T) . 21og(T)
i+ | o < B = @)
TN Ny T NG
for L different base arms j1, j, ..., jr € B, then we remove base arm ¢ from 53, as it is suboptimal

with high probability regarding these L base arms. This process continues until 3 contains no more
than L base arms, which means it now with high probability holds the best L base arms.

In the Sorting Phase, the algorithm shifts to determining the exact order of the remaining L base
arms, as their ranking is essential for exploiting the order preservation property. We define the super
arm R = B, which includes the top L base arms. The algorithm continues pulling R and removes
any base arm ¢ from B that satisfies the condition in (2) for all j, € B\ {i}, thus learning that
the rank of 4 is |B| 4+ 1. This procedure concludes when only one base arm remains in 13, which is
identified as the best base arm with high probability.

Afterwards, we can use the order preservation property to remove a large number of suboptimal
super arms. We use A to denote the set of super arms containing the top ¢ base arms (¢ € [L])
identified in the previous phase. That is,

A={{1,... 0y |eelL]}. 3)

With high probability, the optimal super arm is within A, as the best super arm for each size belongs
to this set, and the overall optimal super arm must be one of them.

The remainder of the algorithm (UCB Phase) focuses solely on exploitation within this set. To
proceed, we reset all estimates of the base arms fi;(;), allowing us to use an extended version of the
UCB algorithm. This version treats each super arm as a single arm and tracks the number of times
each super arm has been selected. We use N, instead of Ny, ¢, to denote the number of times
super arm S has been selected by time ¢. In this phase, the algorithm pulls the super arm S € A
with the highest value of

) 2|S|log(T)
(Z Hz‘(fs)’NMs),t) + ~ Nsi ?

i€S

Implementation of Algorithm [I, Algorithm [I] can be implemented with a computational com-
plexity of at most O(M log(M)) per time slot. Specifically, the first two phases involve sorting
the M base arms and eliminating suboptimal ones, which can be performed with complexities of
O(M log(M)) and O(M) per time slot, respectively. In the third phase, the algorithm applies a
UCB-like strategy on |A| = L super arms, which requires O(L) complexity per time slot. A de-
tailed explanation of the computational complexity is provided in Appendix [C|

4 THEORETICAL ANALYSIS

4.1 INSTANCE DEPENDENT UPPER BOUND

In this subsection we give our theoretical results, including the instance dependent upper bound for
Algorithm [T]and the instance dependent lower bound for SSD-CMAB problem.

Under review as a conference paper at ICLR 2025

Theorem 1. For any SSD-CMAB instance v, the regret of SortUCB is bounded as:

M : L?
Reg(SortUCB, v) < O ((AiL,mdx n) log(T)> . 5)

L,min AS,min

Here 01, max = maX;e[n]10i(r)}, where §;y = 7(S*) /0 — pip) for i € [M] and £ € [L], which
varies in [—1, 1] (note 61»(4) can be negative when i < £ but term 01, max keeps positive). Ay nin =
minge(r) Ai(r),(i+1)(L) denotes the minimum gap of reward mean between any two adjacent base
arms in the super arm {1,..., L}.

Remark 1 (Intuitive Explanation for Regret). The first term O ((M0p max/A% i) 10g(T)) of the
regret upper bound in Equation is introduced by the Elimination and Sorting Phases, where
the algorithm eliminates the (M — L) worst base arms and learns the order of the first L base
arms, while the second term O ((L?/Ag win)log(T)) in Equation (5) comes from the UCB Phase,

exploring the set A of possible optimal super arms composed by O(L?) base arms, leading to a
regret cost similar to that of the standard UCB algorithm.

Remark 2 (Comparison with CMAB Results). While our SSD-CMAB model could be reduced
to a traditional CMAB with linear reward function, the state-of-the-art result for CMAB is

0] (ML* log(T)) by the CombUCBI algorithm (Kveton et al.||2015). This bound is much worse

AS min
than that of our SortUCB algorithm, where the M L? factor of the CombUCBI is improved to
(M + L?).

The only loose part in the upper bound compared to the lower bound in Theorem[2|of SortUCB is the
factor A%‘mm in the denominator of the first term. In most real-life cases, the gap A, min among
the L base arms is not that small as A min, and hence SortUCB performs well in practice (see the

experiments in Section @)

4.2 INSTANCE DEPENDENT LOWER BOUND

For the instance dependent lower bound, we consider an SSD-CMAB instance £ = Mq x---x M,
where My (¢ € [L]) is a set of distribution vectors P = (Py,..., Py) satisfying u(Py) > p(Ps) >
-+« > u(Pyr), denoting the mean for all the M base arms in super arms with size ¢. The theoretical
result of the lower bound depends on two extra definitions. We formally introduce them as below.

Definition 1. A policy 7 is called consistent over a class of bandits & when for allv € £ andp > 0,
it holds that Regy(m.)
. egT T,V
P £7
We use Wions(E) to denote consistent policies over E.
Definition 2. Let M be a set of distributions with finite means, and let 1 : M — R be the function
that maps P € M to its mean. Let i* € R and P € M such that u(P) < p*. We define:

ding(P,p", M) = inf {D(P, P') : p(P') > "}

=0.

Suppose m € Il.ons(E) is a consistent policy over £. The lower bound is indeed to calculate
Ry (m,v)/log(T) for all possible v € £ when T tends to infinity.

Theorem 2. Forallv = (P,)L_, € &, it holds that limr_, ., inf Regy (mv) >

log(T)
M
die) — Si(r) } Ag,ny
max min , ,
i:eZ*H te[L] { dint (Pi(e fe= 0y, M) ”Z# dinf(Zf.:l Pjpy,r(5*), My)

where Ay o = 7(S*) — Z§:1 Hj(¢) denotes the gap of reward mean for best { base arms with
super arm size {, and s;py = ({1, ..., £})/€— peminge,i})(0)- Pjee) indicates the distribution for the
J-th term in vector Py, ding(P;(p), te= (1), Me) = infp/EMl{D(Pi(g)7pi/([)) : ,U,(Pi/(e)) > [(0) s
and

¢ ¢ ¢ ¢
ding ZPj(f)ar(s*)7M€ = P/iél/fvu D ZPJ'(E)»ZP]/'@) 1 ZM(P]{(@) >r(5%)
=1 j=1 =1 =1

Under review as a conference paper at ICLR 2025

Remark 3. In Theorem [2} we use the KL-Divergence for any two i.i.d distributions to present
the lower bound. In order to compare it to the upper bound in Theorem (I} we consider the
case where each Py follows a normal distribution N (p;(s),1) for i € [M], £ € [L]. Then,

dinf(Z§:1 Pj(e),m(S*), My) equals to A%l,...,é}/ﬁ Hence, the first term in Theorem @ can be

rewritten as Ziﬂie*-u minge(z) {m , while the second term is 3 ;.4 - ﬁ.
Remark 4 (Comparison Between Upper and Lower Bounds). Both the lower bound in Theorem 2]
and the upper bound in Theorem [I| have two terms. With their second terms matching, their key
distinction is the difference between the first terms which leads to their partially matching. The first
term of the lower bound considers the minimum for (Ji(g) - si(g))/A?“M*(@ across all ¢ € [L]
for each base arm i where the numerator (3;;) — Si(¢)) represents the regret incurred by pulling
base arm i within super arm {1,... £}. However, this first term of the upper bound in Theorem
is restricted to one L, instead of the minimum across [L). Additionally, the size of the summation
range of the first term in the lower bound is (M — (*), different from the M in the upper bound.
Note that if the minimum in the first term of Theorem|2|across € € [L] consistently falls on L, and
£* is not approximate to M, then the upper and lower bounds align.

4.3 SKETCH OF PROOF

Proof Sketch (Theorem[I). We defer the full proof to Appendix [D]and Appendix [E]and discuss
the sketch proof below. SortUCB has three different phases and the regret of SortUCB could de-
composed into three parts: Elimination Phase part, Sorting Phase and UCB Phase part. Therefore,
we first give lemmas about the regret produced by three phases below.

Lemma 1. For any SSD-CMAB instance v, the total regret produced in the Elimination Phase and
the Sorting Phase in Algorithmon instance v, denoted as Regy(1,v), is bounded as:

M M
32log(T 32L1og(T 2ML
AT g() 51‘(L) + : 2g() 5L(L) + (2 + T2) E ;. (6)
i=L+1 —i(L),L(L) milje(r] {Aj(L),(j+1)(L)} i=1

The first term in Lemma [T] arises from the Elimination Phase, where each base arm’s order is deter-
mined by ensuring that condition holds. It can be shown that for each base arm ¢ from L + 1

to M, the inequality N;py 7 < X’flo& is satisfied. The second term originates from the Sorting
i(L),L(L)

Phase, during which the algorithm pulls the first L base arms together. It can be verified that the

. 32log(T) time slots. By sum-
minje L] {A7 L), +1)(L)
ming these two components, Lemma |l|is derived. These two terms are combined because of their

ML max
A2 .

L,min

orders of these base arms can be learned within at most

similar forms, resulting in a total bound of O (

Lemma 2. For any SSD-CMAB instance v, the regret produced in the UCB Phase in Algorithm
on instance v, denoted as Regr(2,v), is bounded as:

8S|log(T)\ . ML
3 (3AS+||Og()) + 5 Y As. (7

A
SEA,SHS s SeA

Lemma 2] gives the regret from the UCB Phase after line 14 in our algorithm. Here we treat each
super arm as a single arm, and could obtain Lemma 2] by using standard analysis of UCB. Finally,
Theorem [I]can be proved by summing Reg,-(1,) and Reg(2, v) up.

Proof Sketch (Theorem[Z). Note that the instance dependent lower bound in Theorem 2] for SSD-
CMAB problem also includes two parts. In fact, this is due to the two different ways we use to prove
the lower bound, leading to the lower bound being the maximum of the two results. Below we give
these two parts as two lemmas in turn, showing the proof sketch. Also we suppose 7 € Il oy (E) is
a consistent policy over £. We begin with proving the first term in Theorem

Lemma 3. Forall v = (Py)l_, € &, it holds that
M
A 14 — i), 0
Br(r) 5 min{ (1,01/¢ + max { o) — prige }}_

lim inf
T—o0 log(T) L el dint (Pi(ey fe= 2y, Me)

Under review as a conference paper at ICLR 2025

In order to prove Lemma E], we just need to bound Ny 7 for each base arm 7 and super arm
size . We consider another SSD-CMAB instance v/ = (P;(g))je[M],ee[L] € &. For base arm
J # i, let Py = PJ’.(Z), and let Pi/(é) satisfy both D(P;), Pi/(Z)) < dint (Pi(0), fte= (¢), M¢) + € and
Py (0y) < M(Pi/(é)) < p(Pg+—1)()) for each £ € [L]. Using the Bretagnolle-Huber inequality
(Lemma@] in Appendix @), we can derive a weighted lower bound for all Ny r,

L
lim > vt B [Nigoy, 0] (dint (Pigey s fe= 0y, Me) + €) -1

T-00 log(T) - ®

Rearranging the weight for each N, o where £ € [L] and summing that for all base arm i €
{¢*+1,...,M}, we obtain Lernma We furtherly discuss the second term in T heorem

Lemma 4. Forall v = (Py)l_, € &, it holds that

R (ﬂ-vy) > Z A{1 £}

lim inf —— > 7 :
T—o0 IOg(T) L:0£0* dinf(zj‘=1 Pj([)vus*vMZ)

Lemma[]is proved through a mapping technique. Specifically, we consider a map from policy 7 to
7', where at time slot ¢, the super arm selected by 7’ has the same size as that selected by , but 7’
always chooses the optimal super arm of that size. In other words, if 7 selects a super arm of size
¢ at time t, then 7’ selects the super arm consisting of the best £ base arms. This mapping restricts
the action space to a set of totally L super arms, where each super arm follows the distribution of

(Z?:l Pj(y)). Applying standard techniques for lower bound analysis, we then derive Lemma
Combining these Lemma [3|and 4] we can derive the result as shown in Theorem 2}

5 EXTENSION TO SET DEPENDENT COMBINATORIAL BANDITS

In this section, we generalize the setting to cover applications where the base arm reward distribu-
tions may be different even in the super arms with the same set-size, and the set of feasible super
arms can be arbitrary, which could be subjective to any combinatorial constraints (e.g., matroids,
paths, matchings), rather than super-arms whose cardinality is less or equal to L. We call the model
Set Dependent Combinatorial Multi-Armed Bandit (SD-CMAB for short). In SD-CMAB, we con-
sider M base arms with a feasible super arm set S C {S C [M] : |S| < L} as the action set,
rather than &’ := {S C [M] : |S| < L} in SSD-CMAB. We define a key concept termed as
class, where S can be partitioned into K classes, denoted by {Sy,...,Sk}, K indicates the total
number of classes. That is, ;¢ (x) Si = S, Sk N Sy = 0 for any two different k, k" € [K], where

() denotes an empty set. Each base arm i is assigned K different distributions P;x for k € [K].
And the reward of base arm ¢ follows distribution P;;) when pulled in super arms from class .
We use p; = (f1), - - -, Mi(k)) to denote the vector of expected reward for base arm i in super
arms within different classes. The order preservation property also holds for SD-CMAB. The rest
of the settings (e.g., base/super arm reward, feedback) are the same as Section [2| As defined in
, the objective is to find an algorithm 7 to minimize the cumulative regret Reg, (7, v/) on bandit
instance v. To this end, we can see that SSD-CMAB is in fact the special case of SD-CMAB when
Se={S € [M]:|S|=1}.

We propose an algorithm which is an extension version of SortUCB, called Sorting Upper Confi-
dence Bound - Set Dependent (SortUCB-SD). Similar to SortUCB, the core idea in SortUCB-SD is
to leverage the order preservation property to learn the reward distribution structure for each base
arm within different super arms across various classes. After eliminating a large number of sub-
optimal super arms, exploration is conducted on the remaining set of super arms. However, unlike
SortUCB, SD-CMAB lacks the desirable property where the distribution for each base arm only
changes when it is pulled in super arms of different sizes, and certain combinations of base arms
cannot form a valid super arm for selection. Therefore, the algorithm relies on an (n1, ny)-efficiency
Oracle (explained in Appendix |F) to guide it in determining which orders of base arms to focus
on learning (denoted by Bj), and which super arms should be pulled to achieve this learning (de-
noted by Ry,). Due to space limit, we postpone the detailed algorithm with an intuitive example in
Appendix [F] Here we propose Theorem [3|to show the upper bound for Algorithm 3]

Under review as a conference paper at ICLR 2025

Theorem 3. For any SD-CMAB instance v, the regret of SortUCB-SD is bounded as:

H
Regy(SortUCB-SD,) < O | 3 (W ¥ As> _ 8| S| log(T)

AZ A
h=1 By,min gcR, S€G, 545+ s

Remark 5. Given that By, is (ap, p)-efficient for each h € [H| where oy, and By, are inputs of
Algorithm we have |Rp| < ayp and G < |S| — Zthl Bh. Note that |S| < L, Theoremcan

_SH)L .
be expressed as O | max ZhH:1 (XKZAS"““, US| AZS*L:? Bn) }log(T) where H denotes the times

By, ;min

of using the Oracle. In general cases, the size of Ry cannot be too large, as there are only M
base arms in total, and thus a large Ry, is unnecessary. When the size of G is small, Theorem
demonstrates that the algorithm can achieve strong performance.

6 EXPERIMENTS

We compared our algorithm, SortUCB, against several baselines, with results shown in Figure [T}
The red line represents CombUCB1 from Kveton et al.|(2015), a leading reduction algorithm for the
CMAB problem with linear rewards. The green line, labeled MPMAB-s, is based on the MPMAB
algorithm|Lai & Robbins|(1985), applied to L independent MPMAB instances. The blue and orange
lines correspond to two versions of SortUCB: the blue line represents Algorithm [T} while the orange
line is a variation that uses super arms of size | L/2| for order learning in both the “Elimination”
and ”Sorting” phases. The plots show cumulative regret as a function of time, averaged over 10
runs, with shaded areas representing empirical standard deviations. Each base arm’s reward follows
a Bernoulli distribution, X, ; ~ Ber(u;()).

led le3
2.0{ — CombUCB1 —— CombUCB1
—— SortUCB 51 — sortucs
—— MPMAB-s —— MPMAB-s
SortUCB-s SortUCB-s
15 / 4
0.5

1 =S
% -
0.0

Regret
g
o

0.0 0.2 0.4 0.6 0.8 1.0 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14
t le6 Y
(a) Cumulative regret over time (b) Cumulative regret over different v
le3 le4
—— CombUCB1 2.00{ — CombUCB1
3.51 — sortucs — SortUcs
—— MPMAB-s 1.75{ — MPMAB-s
3.0 SortUCB-s SortUCB-s
= 1.50
2.5
= 1.25
220 o
g ——— ~ E’ 1.00
L3 g 0.75
1.0 /,/ 0.50
0.5 0.25
0.0 0.00
0.4 0.5 0.6 0.7 0.8 0.9 1.0 3 4 5 6 7 8
M lel L
(c) Cumulative regret over different M (d) Cumulative regret over different L

Figure 1: Experiments

Experiment 1: Cumulative regret over time. In this experiment, we compare the regret over
time. We set M = L = 8 and T = 10°, repeating the experiment for the previously mentioned
parameter values. According to Theorem [T} the dominant term of regret for SortUCB stems from
the first two phases of where the Algorithm [I] tries to learn the order. Consequently, in the initial
time steps in Figure [I(a)] our algorithm performs similarly to the baselines. However, as the time

Under review as a conference paper at ICLR 2025

horizon increases, SortUCB rapidly identifies the optimal super arm after learning the order of all
base arms, leading to a plateau in regret. In contrast, the regret for CombUCB1 and MPMAB-s
grows quickly, as they must still learn a large number of parameters. SortUCB-s performs poorly in
this setting because it uses only half of the largest possible number of base arms to learn the order,
thus gathering less information than the standard version of SortUCB. This experiment shows that
SortUCB outperforms the other three algorithms, particularly as ¢ increases.

Experiment 2: Cumulative regret over different . In this experiment, we examine a setting
where fi;(¢)/pire) = 1+ - (L — i) fori € [M] and £ € [L], meaning the expected reward for
each base arm increases as the super arm size decreases. We consider M = 6 and L = 4, with ¢
ranging from 0.025 to 0.150. As « increases, the impact of super arm size becomes more significant.
Figure(1(b)|shows that SortUCB and SortUCB-s outperform CombUCB1 and MPMAB-s, especially
at higher ~ values. While SortUCB-s lags behind SortUCB when + is small due to using fewer
base arms, its performance improves as <y increases, driven by higher rewards. For all algorithms,
cumulative regret decreases significantly at v = 0.15, as the larger gap between super arms makes
it easier to identify the optimal one. Experiment 2 confirms that our algorithm performs better when
the influence of super arm size increases.

Experiment 3: Fix 7, L, change). Here we set L = 4 and evaluate multiple instances with
varying values of M from 4 to 10. Figure shows that the cumulative regret for all algorithms
increases at a similar rate, but SortUCB and SortUCB-s consistently outperform the other two base-
lines. This observation aligns with our theoretical findings, confirming that SortUCB and CMAB
algorithms exhibit similar regret growth rates, which are linear with respect to the number of base
arms M. However, SortUCB and SortUCB-s achieve better performance because they employ more
effective policies to learn the structure of the reward distributions.

Experiment 4: Fix T, M, change L. In this experiment, we set M/ = 8 and consider multiple
instances with varying values of L from 3 to 8. Figure shows that the cumulative regret of
SortUCB remains nearly unchanged as L increases and performs significantly better when L is
large. This is because the cumulative regret in Algorithm [I] arises from the Elimination Phase and
the Sorting Phase, which depends only on M and not L. In contrast, the regret of CombUCBI1
and MPMAB-s grows rapidly as L increases, since their regret bounds are linear in M L2, which
becomes substantially larger as L grows. While SortUCB-s performs better than CombUCB1 and
MPMAB-s due to its effective sorting policy, it still lags behind SortUCB because it collects less
information per time slot compared to SortUCB. Experiments 3 and 4 demonstrate that our algorithm
achieves better performances when dealing with a large number of parameters to learn.

7 CONCLUSION

We propose a variant of the classic MAB problem, SSD-CMAB, where the reward of a base arm
depends on the size of the super arm it belongs to. Our algorithm, SortUCB, leverages the order
preservation property commonly seen in real-world scenarios, and we provide both upper and lower
bounds for the SSD-CMAB problem. Experiments show that SortUCB often outperforms traditional
CMAB algorithms. Additionally, we extend our model to the SD-CMAB problem, which introduces
further complexity. For future work, exploring nonlinear reward functions could expand the appli-
cability of our approach. Furthermore, while we derive a partially tight upper bound, there is room
for improvement in both the algorithm and the bounds, particularly in refining the order learning
process, which could lead to better performance.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Mridul Agarwal, Vaneet Aggarwal, Abhishek Kumar Umrawal, and Chris Quinn. Dart: Adaptive
accept reject algorithm for non-linear combinatorial bandits. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pp. 6557-6565, 2021.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235-256, 2002.

Soumya Basu, Rajat Sen, Sujay Sanghavi, and Sanjay Shakkottai. Blocking bandits. Advances in
Neural Information Processing Systems, 32, 2019.

Andrei Broder, Massimiliano Ciaramita, Marcus Fontoura, Evgeniy Gabrilovich, Vanja Josifovski,
Donald Metzler, Vanessa Murdock, and Vassilis Plachouras. To swing or not to swing: learn-
ing when (not) to advertise. In Proceedings of the 17th ACM conference on information and
knowledge management, pp. 1003-1012, 2008.

Nicold Cesa-Bianchi and Gabor Lugosi. Combinatorial bandits. J. Comput. Syst. Sci., 78(5):1404—
1422, 2012. doi: 10.1016/J.JCSS.2012.01.001. URL https://doi.org/10.1016/7.
jcss.2012.01.001.

Lin Chen, Andreas Krause, and Amin Karbasi. Interactive submodular bandit. Advances in Neural
Information Processing Systems, 30, 2017.

Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi. Projection-free online opti-
mization with stochastic gradient: From convexity to submodularity. In International Conference
on Machine Learning, pp. 814-823. PMLR, 2018.

Shouyuan Chen, Tian Lin, Irwin King, Michael R Lyu, and Wei Chen. Combinatorial pure ex-
ploration of multi-armed bandits. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 27. Cur-
ran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/
paper/2014/file/e56954b4f6347e897f954495eabl6a88-Paper.pdf.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
and applications. In International conference on machine learning, pp. 151-159. PMLR, 2013.

Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed bandit with
general reward functions. Advances in Neural Information Processing Systems, 29, 2016a.

Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial multi-armed bandit and its
extension to probabilistically triggered arms. The Journal of Machine Learning Research, 17(1):
1746-1778, 2016b.

Wei Chen, Liwei Wang, Haoyu Zhao, and Kai Zheng. Combinatorial semi-bandit in the non-
stationary environment. In Uncertainty in Artificial Intelligence, pp. 865-875. PMLR, 2021.

Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere, and marc lelarge.
Combinatorial bandits revisited. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015a. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/0ce2ffd21fc958d9ef0ee9bab336e357-Paper.pdfl

Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere, et al. Combina-
torial bandits revisited. Advances in neural information processing systems, 28, 2015b.

Yihan Du, Yuko Kuroki, and Wei Chen. Combinatorial pure exploration with bottleneck reward
function. Advances in Neural Information Processing Systems, 34:23956-23967, 2021.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrdk. Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133-1153, 2011.

11

https://doi.org/10.1016/j.jcss.2012.01.001
https://doi.org/10.1016/j.jcss.2012.01.001
https://proceedings.neurips.cc/paper_files/paper/2014/file/e56954b4f6347e897f954495eab16a88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/e56954b4f6347e897f954495eab16a88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/0ce2ffd21fc958d9ef0ee9ba5336e357-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/0ce2ffd21fc958d9ef0ee9ba5336e357-Paper.pdf

Under review as a conference paper at ICLR 2025

Fares Fourati, Vaneet Aggarwal, Christopher Quinn, and Mohamed-Slim Alouini. Randomized
greedy learning for non-monotone stochastic submodular maximization under full-bandit feed-
back. In International Conference on Artificial Intelligence and Statistics, pp. 7455-7471. PMLR,
2023.

Fares Fourati, Christopher John Quinn, Mohamed-Slim Alouini, and Vaneet Aggarwal. Combina-
torial stochastic-greedy bandit. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 12052-12060, 2024.

Xinzhe Fu and Eytan Modiano. Learning-num: Network utility maximization with unknown utility
functions and queueing delay. In Proceedings of the Twenty-second International Symposium on
Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Com-
puting, pp. 21-30, 2021.

Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Combinatorial network optimization with
unknown variables: Multi-armed bandits with linear rewards and individual observations.
IEEE/ACM Transactions on Networking, 20(5):1466-1478, 2012.

Yu-Guan Hsieh, Shiva Kasiviswanathan, and Branislav Kveton. Uplifting bandits. Advances in
Neural Information Processing Systems, 35:22368-22379, 2022.

Robert Kleinberg and Nicole Immorlica. Recharging bandits. In 2018 IEEE 59th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 309-319. IEEE, 2018.

Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds for stochas-
tic combinatorial semi-bandits. In Artificial Intelligence and Statistics, pp. 535-543. PMLR, 2015.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics, 6(1):4-22, 1985.

Tor Lattimore and Csaba Szepesvari. Bandit algorithms. Cambridge University Press, 2020.

Steven H Low and David E Lapsley. Optimization flow control. i. basic algorithm and convergence.
IEEE/ACM Transactions on networking, 7(6):861-874, 1999.

Nadav Merlis and Shie Mannor. Batch-size independent regret bounds for the combinatorial multi-
armed bandit problem. In Conference on Learning Theory, pp. 2465-2489. PMLR, 2019.

Rad Niazadeh, Negin Golrezaei, Joshua R Wang, Fransisca Susan, and Ashwinkumar Badanidiyuru.
Online learning via offline greedy algorithms: Applications in market design and optimization. In
Proceedings of the 22nd ACM Conference on Economics and Computation, pp. 737-738, 2021.

Herbert Robbins. Some aspects of the sequential design of experiments. 1952.

Sho Takemori, Masahiro Sato, Takashi Sonoda, Janmajay Singh, and Tomoko Ohkuma. Submodular
bandit problem under multiple constraints. In Conference on Uncertainty in Artificial Intelligence,
pp- 191-200. PMLR, 2020.

Arun Verma and Manjesh K Hanawal. Stochastic network utility maximization with unknown util-
ities: Multi-armed bandits approach. In IEEE INFOCOM 2020-1EEE Conference on Computer
Communications, pp. 189—198. IEEE, 2020.

Bo Wang, Zhaonan Li, Jie Tang, Kuo Zhang, Songcan Chen, and Liyun Ru. Learning to advertise:
How many ads are enough? In Advances in Knowledge Discovery and Data Mining: 15th Pacific-
Asia Conference, PAKDD 2011, Shenzhen, China, May 24-27, 2011, Proceedings, Part II 15, pp.
506-518. Springer, 2011.

Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits. In International
Conference on Machine Learning, pp. 5114-5122. PMLR, 2018.

Xuchuang Wang, Hong Xie, and John C.S. Lui. Multiple-play stochastic bandits with shareable
finite-capacity arms. In Proceedings of the 39th International Conference on Machine Learning,
pp- 23181-23212. PMLR, 2022.

12

Under review as a conference paper at ICLR 2025

Zheng Wen, Branislav Kveton, Michal Valko, and Sharan Vaswani. Online influence maximization
under independent cascade model with semi-bandit feedback. Advances in neural information
processing systems, 30, 2017.

Yisong Yue and Carlos Guestrin. Linear submodular bandits and their application to diversified
retrieval. Advances in Neural Information Processing Systems, 24, 2011.

13

Under review as a conference paper at ICLR 2025

A LITERATURE REVIEW

Multi-armed bandits, first introduced by [Lai & Robbins| (1985), have been studied extensively in
various generalizations. Among these, the Combinatorial Multi-Armed Bandits (CMAB) model is a
key extension of the canonical MAB model and shares some similarities with our proposed frame-
work. CMAB was first introduced by |Gai et al.| (2012); [Cesa-Bianchi & Lugosi| (2012), where each
action corresponds to pulling a super arm composed of multiple base arms. Subsequently, Chen et al.
(2013;2016bja)) proposed the combinatorial upper confidence bound (CUCB) algorithm for CMAB,
achieving near-optimal regret performance (Kveton et all 2015} [Combes et al., [2015a; Merlis &
Mannor, 2019). Beyond CUCB, other CMAB algorithms have also been developed (Wang & Chen,
2018 |Chen et al.l 2014). Moreover, Agarwal et al.| (2021) investigated the order-preservation prop-
erty, which is central to SSD-CMAB.

However, these algorithms are designed for the traditional CMAB problem, where the reward of a
base arm follows the same distribution across all super arms. In contrast, SSD-CMAB introduces
set-size dependence, where a base arm’s outcome depends on the size of the super arm. Specifically,
each base arm in SSD-CMAB is associated with L different distributions, one for each possible
super arm size, whereas in CMAB, a base arm is tied to a single fixed distribution. While non-linear
reward functions in CMAB (Chen et al.,[2016b;2021; Merlis & Mannor, 2019) address cases where
super arm rewards are not simple summations of base arm rewards, the base arm outcomes in these
models still follow fixed distributions. As such, they cannot capture scenarios where the reward
distributions of base arms vary with super arm size.

Our work also relates to bandits with specialized reward structures (Kleinberg & Immorlica, 2018;
Hsieh et al., [2022; Basu et al., 2019;|Du et al.| [2021}; [Wang et al.,2022)). Recharging bandits (Klein-
berg & Immorlical |2018)), uplifting bandits (Hsieh et al., [2022), and blocking bandits (Basu et al.,
2019) explore how an arm’s pulling history affects subsequent reward realizations. A graph-based
model is proposed by [Wen et al.| (2017). Submodular bandits (Yue & Guestrin, 2011; |Chen et al.,
2017; |2018) are somewhat related to our model since base arm rewards may change based on the
presence of other base arms in the super arm, while some of which require the monotonicity prop-
erty as an assumption (Takemori et al.,|2020; |[Fourati et al., [2024)) for the reward function and some
do not (Feige et al., 2011} Niazadeh et al., 2021} Fourati et al., 2023). However, one common prop-
erty that submodular function requires is the submodular property. In contrast, SSD-CMAB only
requires the order preservation property, which is different from that in submodular bandits. Hence,
our model is able to capture many scenarios that submodular bandits cannot capture.

Finally, bandits with bottleneck rewards (Du et al.| [2021) and shareable arms (Wang et al.| [2022)
study how the super arm structure affects reward realizations, but not how the size of the super arm
influences the base arm reward mean itself. To the best of our knowledge, no prior work has explored
the Set-Size Dependent reward model proposed in this paper.

B REDUCTION VERSION OF CMAB ALGORITHMS

We propose an algorithm that adapts standard CMAB algorithms to effectively address SSD-CMAB
problems.

Algorithm 2 Reduction of CMAB Algorithms for SSD-CMAB Problems

1: Input: Base arm reward means f1;(¢) for i € [M] and £ € [L], super arm sets S, for each size /.
2: Define a new reward vector v of size D = M L: v (o—1ynr < pi(e) forall i € [M]and £ € [L].
3: Construct transformed super arm sets Sy:

Sy {{l=1)M +iy, (€ = V)M +ia,..., (0 =)M + iy} | {i1,d2,...,ip} € Se}.

4: Combine all transformed sets:

S~ U s
(e{1,2,...,.L}

5: Apply any standard CMAB algorithm to the super arm set S’ using the reward vector v.

14

Under review as a conference paper at ICLR 2025

In the algorithm above, we can treat the problem as a CMAB instance with D base arms and a
reward expectation vector . The action set for this problem is the transformed set S’, as defined
earlier. At each time slot, the learner selects a super arm S € S’ with |\S| < L. This transformation
allows any SSD-CMAB problem to be mapped to a CMAB problem. Since CMAB settings can
vary, we focus on the linear reward case, which is highly relevant to our work.

Theorem 4. For a linear reward function in an SSD-CMAB problem (i.e., r(S) = 3, g ti(es)) we
apply the CombUCBI algorithm raised by Kveton et al.|(2015)), which achieves a tight regret bound
for linear reward settings, in the second phase of Algorithm|[I| The regret bound is given by:

534 72
log(T —+1| KD
Ai,min Og()+ (3 *) ’

Regr(CombUCBI1,v) < Z K
icE
where
E = [D] — {{(Es* — I)M—Fil, (65* — l)M—‘rig, RN (fs* — 1)M+ip} | ij € S*,] S [p]}

represents the set of base arms in all suboptimal super arms. Here, A; nin = Minges:ics,A5>0 As
is the smallest gap between the optimal super arm and the best suboptimal super arm containing
base arm 1.

This formalization highlights the relationship between SSD-CMAB and CMAB problems while
leveraging the tight regret guarantees of the CombUCB1 algorithm in CMAB with linear reward

function. Notice that Theorem || achieves a regret upper bound of O (Ajg i,i, 1og(T)) which is

worse than our result in[I]

C IMPLEMENTATION OF ALGORITHM 1]

In this section, we detail the implementation of Algorithm [I] and analyze the computational com-
plexity of its three phases. The overall complexity per time slot is at most O(M log(M)).

Elimination Phase. In the Elimination Phase, the complexity arises from ranking the . smallest
Nj(r),+ base arms and removing base arms, corresponding to lines 4 and 6 in the algorithm. Rank-
ing the base arms can be performed with a complexity of O(M log(M)) per time slot. Deleting
base arms requires comparing the lowest upper confidence bound with the largest L upper confi-
dence bounds, as specified in , which incurs a complexity of O(L). Therefore, the computational
complexity of the Elimination Phase is at most O(M log(M)) per time slot.

Sorting Phase. In the Sorting Phase, the pulled arm in each time slot is fixed to R, and the com-
plexity arises from ranking the L base arms and deleting base arms, similar to the Elimination Phase.
Thus, the computational complexity in this phase is O(L log(L)).

UCB Phase. In the UCB Phase, the algorithm selects the super arm with the highest value accord-
ing to @) in A. As shown in Appendix [D} there are L super arms in A, so the algorithm only needs
to identify the largest value among L items, resulting in a computational complexity of O(L).

D PROOF OF THEOREMI]

W.L.O.G., according to the order preservation property, we can suppose the reward mean of base
arms decreases as the subscript increases (i.e. p; = p; when i < j). We first give several lemmas.
Lemma 5. Hoeffding’s inequality: For independent variables X1, Xs, ..., X,, with X; € [0,1],i €

[n], we have:

LS (- B

P(
ni:l

Lemma 6. Union bound: For a set of n events A1, A, ..., Ay, we have:

i=1 i=1

> e) < 2exp (—27162).

15

Under review as a conference paper at ICLR 2025

Lemma 7. Principle of Inclusion-Exclusion: For event X1, Xs, ..., Xn, we have:

(7)o (0

where X{ denotes the complement of event X;.

. Tog(T Tog(T)
Lemma 8. Assume event G;(g) ¢ = {ui(0\ Nigoy e {,ui(g —,/2 Oi() t)’”l +)/ 2eed) Oi() - }

Nieinn Neer) Niepry Gigey v Event G€ denotes the complement part of G (that is, P(G
1). Then P(G°) < 2L,

Proof of Lemmal8] We use Gf(o, to indicate the complement part of G ;. Using Lemma@ and
probability that event G¢ happens is

p@)=1-P@ =P J U U Giw.| < ZZZ (Gier) -

1€[M] Le[L] te[T] M) Le[L] te[T)

Firstly we calculate P (Gf(z)’t) forall i € [M],¢ € [L],t € [T]. Using Lemma@ we can derive

. 2log(T) 21og(T)
(Gioe) (l‘z(f),N@(e),t < Hie) Nioys U Nieye = Mi(e) + Nitot
X 2log(T)
=P < Hi(e),Nypy,e — Nv:(é)‘ > W . 9

o Nz‘ N N-; s .« .
As Hi(0),Niey,e = N,,(lﬂ)yt Zs:&z) ' Xiwy,s and pipy = E |:N7',(11{),f, Zs;f) ! Xi(g),s}, combining
Lemmal[5]and (@), we obtain

P (i) < s P ZZZP(G%% e

i€[M] Le[L] te[T)

Here we end the proof of Lemma|] O

Proof of Theorem[l] We use Reg, -(m, v) to denote the regret generated from the Elimination Phase
and Sorting Phase in Algorithm |1} and Reg, 1(,v) denotes the regret generated from the UCB

Phase. Then
}) (10

As in Algorithm [T} we consider base arms rather than super arms, thus we consider the pulled time
slots for each base arm. Since we pull L arms per time slot for sorting, the regret for base arm ¢ each

time slot can be seen as d;(r, T(. i)~ Hence

Regr(m,v) = Regy 1(m,v) + Regy (7, v).
We define Gy, as below:

. 21og(T) 2log(T)
Gio)t = i), Nigoy,e € |Hice) = 4] sMiey T4 >
()t {’u (€);Ni(e),t |fL) Nio) 1 Hi(e) Nio).c

and Gf(0.t denotes the complement part.

Rengwu ZE z()

holds, where T denotes the total time slots before the third cycle. We consider the time slots under

G = Miepn Neerr Niepr) Giey,+ and its opposite G According to Lemma P(G°) < ML

holds, thus the pulling time slots for any base arm ¢ in Elimination Phase is
2M L
T2

E [Niny] <E [Nic(;L),Tl} +

16

Under review as a conference paper at ICLR 2025

Then we can just consider the time slots for E {NZC(;L) T] W.L.O.G, we assume pi1(r) > pacr) =

.. 2> par(r)- Below we consider cases when L < M holds, as for the case that L = M, the first
cycle in Algorithm |1{does not run, and can be easily deduced from the proof below. Afterwards we
give a lemma ensuring base arms we eliminate cannot be concluded in the optimal super arm with
high probability.

Lemma 9. If event G happens, the base arms we eliminate in line 7 cannot be concluded in S*.

Proof of Lemma[9 Combining and the condition (2), we have

2log(T) 2log(T)
wi(L) < fi(Ly,NG + < ftj(L),NG < W) (11)
N * [Ny, <O T N, S

hold for at least L different base arms j. Therefore, arms that we eliminate cannot be any of the
first L of base arms, meaning they cannot be concluded in the optimal super arm. That ends the
proof. O

According to Lemma@ in Elimination Phase, we successfully find the first L arms. Therefore, we
can always eliminate the suboptimal base arms (denoted by [M]—[L] = {L+1,L+2,..., M}). We
consider the time slots that the first L base arms are pulled as well as the other base arms separately.

For base arm in [M] — [L], as they will eventually be eliminated in this cycle, we can bound their
pulled time slots. Consider base arm i € [M] — [L], if it is not eliminated, as the opposite of (L1)),

21og(T) 21og(T)
'U'Z(L) NL(L) T + ch(;L) - > MJ(L) NJ(L) T - NJC(:L) T

hold for at least M — L + 1 base arms j in [M]. We use E to denote the set for all possible base
arms satisfying (11), where |E| > M — L + 1. According to (10), this means

log 2log
By +2 > Hi(L) NG) (12)
L) Th J(L), Ty

holds for base arms in E. As for any two base arms ¢ and j, their pulling time slots differs no more
than 1 according to the uniform pulling, which lead to

NG < B2 log(T)

maX(NiL),T17 J(L),Ty A2L) »)+1.
J

Since there are | E/| choices for arm j, we have NI(L) 7, < minjep 221073;@)4—1 Asi e [M]—[L]+1
i(L),5(L)

and |E| > M —L+1, atleast 1 base arm in [L] that is in E. Thus, it holds that max;c g A?

i(L), J(L)
A?(L),L(L)' Therefore,
321og(T)
Nic(;L),Tl < A2 +1
L), L(L)

holds for all base arm ¢ € [M] — [L]. Therefore when M = L, [M]— [L] = ¢, meaning Elimination
Phase does not run in this case.

For base arm ¢ € [L], as we cannot eliminate them under G, and once all base arms in [M] — [L]
have been eliminated, the first cycle ends. As we have declared before, pulled time slots for two
base arms not eliminated do not differ than 1, we have

N?L)t< max ?)zloig(T)_;'_QZ;QIO—g(T)—FQ
T jeM]-[L] Aj(L),L(L) A(L+1)(L)7L(L)

where Aar41)(z),m(z) = o0 when L = M.

In Sorting Phase, as we have found the first L arms, and our goal is to sort for these L base arms.
We give Lemma[I0|to ensure we can get the right sequence of the first L base arms.

17

Under review as a conference paper at ICLR 2025

Lemma 10. If event G happens, the second cycle in Algorithm[I|can get the right order of the first
L base arms with high probability.

Proof of Lemma[l0} According to and the condition (2), we have p;() < p;z) for all base
arms j € B — 7 holds. That means base arm j is the worst base arm in B, thus we can get the right
order for the first L base arms.

With Lemma we can continue our proof. Consider base arm 7 which is still in E’, it means

21og(T) 21og(T)
rin) 24 e 2w 2 e
Ni(L),Tl Nj(L),Tl

hold for all j # i and j € E’.

Since we uniformly pull all base arms, V;(x do not differ more than 1 between any two base arms
in the first L arms. Thus,

32log(T 32log(T
NﬁmméAgoig()Hé . ng() +1. (13)
(L)L) mingete 1) (80, 11
321og(T)

Therefore, NiL) 7 <

: + 2 holds for all ¢ € [L]. Since we have proved
min; A2 .
JE[L*H(a(L>,(J+1)<L>)

that NﬁL) 7, < Aw& + 2 in the cycle, we have

2
(L+1)(L),L(L)

321og(T)

minje|] (A?w),ml)(m)

G
Ninyr, <

+ 2

for all ¢ € [L]. Combining with the definition of Niy,,» we have

321log(T)

: 2 +2+ 2L ifie (1),
Ni(L) 7 < m1nje.[L] (Aj(L)‘(j-Fl)(L))
; 33107g(T)+1+2§\/1[2L7 it e (0] - (L.

Aly,Lw

As aresult,

M

32log(T 32log(T

Reg, r(m,v) = > Nipymliry < Y it)5i+ : Qg() AVETCTNN !

i=1 ielM)-[r) TUL)LIL) Mije(r) (Aj<L>,<j+1)(L)>

M

2ML

(o285, s

i=1

That is the end of proof of Reg; (7, v).

Below we prove the bound for Reg, (7, 7). In UCB Phase, our intuition is seeing each super arm

as a single item. We use g = D, Mi(ss) to denote the reward expectation for super arm S and
fis,Ns., to denote the unbiased estimate for super arm S in the first ¢ time slots, while N ; indicates
the chosen times for super arm S as a whole since the start of the second cycle, which is initialized
to zero in line 11 in Algorithm|T] It is simple to show that

Reg, (m,v) = > E[Nsz]As. (15)
SeA

First we give a lemma that ensures the optimal super arm can be in .4 with high probability.

Lemma 11. If event G happens, the optimal super arm (denoted by S*) must be concluded in A.

18

Under review as a conference paper at ICLR 2025

Proof of Lemmal[l1} As we defined, event G means Higey — ,/% < /:Li(g)yNi([)yt < ey +

2}\17%2(:) holds for each i € [M],¢ € [L],t € [T]. For each super arm size ¢ € [L], as we have

learnt the best ¢ base arms and combine them as a super arm in A, Lemma T T]holds obviously. [

Now we continue our proof of bound in Reg, (7, v). As we have proved in previous,

2ML
Reg, r(m,v) = Z E[Nsr]As < Z E [NgT] As + T2 Z As
SeA SeA SeA

2ML
= § E [N§r] As+ Tz E:AS. (16)
SeA SeA
S#£5*

The last equation is because of Ag+ = 0. Thus, we only need to prove the upper bound for E [N SG T] .
We first define another event G which we need in our proof:

~ .. 2|S5*| log(T R 2|S|log(T
GS:{M5*<HHHMS*,NSH+ Hg()}ﬂ Hsus + M<M5*)

te[T] Ng- us
where ug € [T7] is a constant to be chosen later. Two lemmas are introduced for our derivation,

Lemma 12. Ifés occurs, then Ng 1 < ug.

Lemma 13. G¢, meaning the complement part of Gs, happens with low probability.

As N, g + < T, weuse N g PGS to denote the pulling times for super arm S in the first ¢ time slots

in the second cycle with event G and G both happening, while NSG? “S means that only event G
happens while event G does not happen. Then,

E[N§r] =E [H(@s)Néf?éS] +E {H(égwg;@%} <E [Ng;@s} YT-P (GS) .an

Proof of Lemma Assuming that Gs occurs with IV, 5,7 > ug. That means there exists ¢t € T's.t.
Ng -1 = ug while A; = S, where A; means the chosen super arm at time slot ¢. Hence we have:

R 2|S| log(T . 2|.5*| log(T
fsvery +) EHBT) g, 4y A oe(D) (18)
Nsi—1 Nst—1

That means in time slot ¢ we should choose super arm S* rather than arm S, which is a contradiction.

O
Proof of LemmalI3] The complement part of Gs is
- . 2|5*|log(T) . 2|S|1log(T)
¢ = . > - New A BN " R > g
s {MS z trél[l;l} (Ms Ngw, T Ns- HSus + s 2 ps
(19)
We begin with bounding the first part of G‘g As
s 2|5*|log(T) | 2|5*| log(T)
> * _ . > " LN et = S
{HS Z tlél[lqr}] (,US &t Ns-+ C s =2 tlél[lqr}] fsx ¢ + P
R 2|.5*| log(T
Yy {W > fons ltgm} 0)
te(T]

19

Under review as a conference paper at ICLR 2025

Thus, using Lemmal6] we have

2|.5*| log(T R 2|S5*| log(T
P<u5*>rg[m]<usw+]\Lsg()»gp U{MS*ZMS*,t‘F ||tg()}

te[T]

T

) 2|5*|log (T 1

<) P <u3* > fige 4 + |tg()> < 73 1)
t=1

which is a low probability if 7" is chosen large enough. For the last inequality in (2I), we use Lemma
[5 with ¢|5*| independent samples.

Next we bound the second part of Gg. As ug is a parameter undetermined, we assume it is large
enough that Ag — 4/ %C;g(n > c¢Ag, where ¢ € (0, 1) will be chosen later. Thus,

. 2|S|log(T R 2|S|log(T
P gu+ 1) 228D o) [s — s > Ag —) 108D
ug us
< P(ﬂs,us —ps 2 CAS) < exp < 262AS |S|> (22)
Taking together (21)) and (22)),
~e 1
P (GS) < T3 +exp(202A35|)
Here we end the proof of Lemma T3] O
As we have proved in
E[NG] <ug+T ! +exp [—2c2A2 =ug + Texp [—2¢* A% +i
szl = 73] Sel) T
Choosing ug = [M] and ¢ = 1/2, then
(1-c)2A%
8|S log(T
E[Nsr] <3+ ng()_
Ag
Considering , we can give an upper bound for RegQ,T(W, v),
8|S log(T) ML
< e) 4 =2)
Regy r(mv) <) <3As A,)t s (23)
SeA,S#S* SeA
Combining with (14)) and (23)), we have Reg (7, v) <
32log(T 32log(T 8]S| log(T
Bopl) ;L S0y, ey S
ie[M]—[r] — L), L(L) mije[r) (Aj(LMjH)(L)) SeA-s* s
2ML 2ML
- (2 oo (S +9) T o

SeA

where A1), (m+1)(L) = 00 when L = M. Simplify this bound and we then end of proof of
Theorem [

20

Under review as a conference paper at ICLR 2025

E PROOF OF THEOREM 2]

We first give several lemmas that we need in the proof.

Lemma 14. Divergence decomposition: Let v = (P, . .., Pp,) denotes the reward distributions for
an m-armed bandit problem and v' = (PJ, ..., P).) denotes another. For a fixed policy 7, we have:
D(P,,P,) = > E,[T;(T)D(P;, P)).

i=1

where P, = P, and P, = P, be the probability measures on the canonical bandit model induced
by the T-time slot interconnection of ™ and v (or V').

Lemma 15. Bretagnolle-Huber inequality: Let P and () be probability measures on the same
measure space (), F), and let A € F be an arbitrary event. Then,

P(A4) + Q(A°) > S exp (~D(P,Q))

where A® = Q) — A denotes the complement part of A.

Lemma 16. Let £ = My % -+ x My, and w € I opn5(E) be a consistent policy over E. Then, for
allv = (P;)™, € &, it holds that

A,

A Sy 2O = X B)

where A; is the suboptimality gap of the i-th arm in v and |v* denotes the mean reward of the optimal
arm.

The proof of above lemmas can be found in |Lattimore & Szepesvari| (2020). Below we give proof
about Lemma[3and

Proof of Lemma5] First, we rearrange term v = (Py(1), ..., Prg(1), -« - vPiry, - Pury) to

denote the SSD-CMAB instance, just for convenience. Since the optimal super arm has £* base arms,

we call the first £* base arms “optimal base arms” and the rest “suboptimal base arms”. Consider

a suboptimal base arm 7 (i.e. i > £*), let e > 0. We define v/ = (P]{(g))je[M] satisfying that
Le(L]

for each ¢ € [L], ij(e) = Pj) when j # i, Py is the i-th term in some vector P € M, such

that D(Pi(é)apil(g)) < dinf(Pi(g),,ug*(g),Me) + € and /,L(Pg*(e)) < /.L(Pi/(é)) < /A(P(g*,l)(g)). Let

i € RMEL be the vector of means of distributions of /. By Lemma we have D(P, ., P,..) <
L

> vt Bur [Tigoy (D)) (ding (Pyey, toa= (), Me) +€).

By Lemma T3] for any event A,

L
1
]P>l/7T (A) + PV’W(AC) Z 5 exp <_ E IEVTI’ [Tz(é) (T)} (dinf (Pz(€)7 =) M@) + E)) . (24)
=1

Suppose ¢+ is the size of optimal super arm in ¢’. Obviously ¢+ > ¢*, since the means for the best
super arm in class ¢ where £ < £* do not change and are worse than super arm {1,...,¢*}. We
assume the optimal super arm in v/ is unique (which can be implemented by fine tuning v’). Choose
A= {TL([*/)(T) > %} Let R = RT(’]T, V), R/T = RT(T(, l/l).

For v, each time a super arm in class o concluding base arm i is pulled, regret increases by at least
Ay = min{Aj(ge) g+ (¢+), Mingze- Agy gy} (Where the first term comes from cases when 0 =~
and the second term comes from cases when /*' # (*). Then Ry > % -P(A) - Ay.

For 1/, base arm i is in the optimal super arm in ¢* since p (Pi/(f*')) > Ui (PZ*(Z*’)> >
o (PZ*/ (z*’))- Each time a super arm in class ¢+ not concluding base arm : is pulled, the regret

increases by at least Ay = min{u (Pi,(é*/)) — i (Pe*/(g*)) ,ming .0 Ay}, where A} denotes the

21

Under review as a conference paper at ICLR 2025

gap for the optimal super arm in class £ in v’ which is greater than 0 since the optimal super arm in
v/ is unique. Therefore, R/, > % - P(A°) - As.
Combining Ry, R/, and inequality , we have

T
Ry + Ry > o (P(A) + P(A%)) min(Ay, Ay)
T
> Zmln(Al,AQ exp (ZEWT T(g) (dinf(ﬂ(g),ugx(@),./\/le) +€)> (25)

Rearranging (25) and combining Definition [T} we have:

i St Eun [Ty (D)) (ding (Pigey s b (0, M) + €)
TS 00 log(T)

> 1. (26)

Below we consider how the regret are composed. As Ry > Zi]\ié* 11 Rr,;, where Rt ; denotes
the regret from pulling a suboptimal base arm i. Consider base arm ¢ can be pulled in super arms
from different class, we need to give a lower bound for each Ry ;. For a suboptimal base arm ¢
pulled in super arm from class ¢, as the optimal super arm in class ¢ is {1, ..., ¢} and the regret for

choosing whichis Ay . /3, then the regret for choosing super arm concluding base arm i is at least
A{ 1

’é"’” +max(fLe(g) — fi(e), 0) (the first term comes from the regret generated by the optimal super
arm 1in class ¢ divided into ¢ parts, and the second term comes from the regret generated by choosing
base arm 7).

Sum them up, we have

L A
Rr; > ZE [T50)(T)] ({1@@} + max (pue(e) — Ui(l)70)>
=1

. A{1 Z}/g + max (M[(z) — /Ll(g
=z : E dln Pz) * 7M + .
o frg[llr}] (dmf(i(£) ‘LLZ*((M@ + g Z f ((0 He (£) Z) 8)

Combine inequality (26), for all i > ¢* + 1, it holds that

; A 14 — M 70
lim Rr; > min Q,..0y/f+ max (W(Z) Hi(e)))
T—oo log(T) ~ te[L] dint (PZ-()5 Hex(£) ./\/‘g) +e

Thus, sum up for all £ > ¢* + 1, we have

M
A 14 — (e, 0
lim Fr > min (1.0 /€ + max (MW) tite),0) .
T—o0 log(T) i:e*+1ée[L] dint (Pi(e), pe=(2), Me) + €
We end the proof when ¢ tends to zero. O

Proof of Lemmal] First, we consider a map v : Hcopns(E) — 1L, () (IL,,,,,(€) will be defined

later) that maps a policy 7 to v(7) as the following way: In time slot ¢, assume 7 chooses the super

arm in class ¢, policy v(m) chooses the best super arm in class £ (i.e. super arm {1,...,¢} if the
mean reward of base arm decreases in subscnpt order) The set I/, (£) concludes all consistent
policies which only chooses super arms in {{1, ..., ¢}|¢ € [L]}, over &.

Obviously, policy v(rw) is always choosing a better super arm than 7. Thus, Rp(mw,v) >
Ry (v(r), v) holds. Therefore, we only need to prove for all v = (P,)l_, € Eand 7 € I, ,(£),
Lemma holds.

Consider @y = 2421 P;(y) which denotes the sum of distributions for the best £ base arms in class

¢. Using Lemma [3|on the L distributions Q1, ..., Qp, LemmaE]can be verified on 7 € Tl.pps(E)".
Therefore, as Ry (m,v) > Ry (v(w), v) holds, and Lemmad] holds. O

22

Under review as a conference paper at ICLR 2025

Class (k) | Super arm set (Sy)

k=1 | S1={1,2},8 = {2,3}, 55 = {1,3}, Sy = {4}

k=2 | Ss = {1,2,3}, 8 = {2,3,4}, 57 = {5}
|
|

k=3 Ss ={1,5}, Sy = {4,5}, S10 = {3,5}, 511 = {2}
k=4 S12 = {1a25374}7513 = {1527375}7514 = {17475}7815 = {27374a5}

Table 1: An instance of SD-CMAB problem

F SET DEPENDENT COMBINATORIAL MULTI-ARMED BANDIT

F.1 DETAILED SETTING OF SD-CMAB

An instance of a SD-CMAB problem involves M base arms. We consider a time horizon of length
T. Let S denote the restricted action set S C {S C [M] : |S| < L} where L denotes the maximum
number of base arms in a super arm. In each time slot, the learner plays a super arm S € S, which
is a set of base arms.

In SD-CMAB, the super arm S € S affects the distributions for base arms in S. As all super arms are
in the set S, we divide S into K different classes {S1, ..., Sk }. Thatis, Uie[K] Si=38, SNS =0
for two different k, k' € [L], where () denotes an empty set. For any base arm 7, when it is pulled
in super arm S € Sy, it obeys the distribution related to class k, denoted by Pi(k). Notation kg
indicates the class that super arm S is in. Without loss of generality, we assume the rewards of the
base arms are [0, 1]-valued. We use j;(x) to denote the reward expectation for arm ¢ in distribution
IP; (1) in class k while po; = (pi(1), ti(2), -+, Hi(k)) indicates the reward vector for base arm 4 in all
classes. When pulled in a super arm from a different class, base arm ¢ obeys different distributions,
corresponding to the “Set Dependent”.

We use Ny, to indicate the number of times that base arm ¢ has been pulled with super arms
in class k until time slot t. R(S;) denotes the reward of the chosen super arm at ¢-th time slot,
where 7(S;) = E[R(S;)] shows its expectation. We consider the linear reward function in which
the reward function is R(St) = ZieS Xi(;fs)wi(ks)yt , Where variable X (1) ; indicates the outcome

of base arm ¢ in its ¢-th trial with distribution ;. Thus, E[Xi(ks)yNMs),J = li(kg)- We consider
the semi-bandit feedback, which means the learner can observe the reward for any base arm in the
super arm it pulls.

As mentioned in the introduction, the order preservation property also exists in SSD-CMAB:
Order preservation. For any class k € [K], the order of reward expectations is fixed across different
base arms. That is, f1;(x) < ;1) if and only if p1;(y < pr(ry, where i, j € [M], k, k' € [K].

Table [1]| gives an instance of general SD-CMAB framework with 5 base arms (M = 5). The size
of S is 15 and the number of classes is 4 (X = 4), meaning these 15 super arms are separated into
4 different classes S; to Sy. Fix a base arm, its reward expectation keeps unchanged when it is
pulled in super arms from a same class, while that may change when it is pulled in super arms from
different classes. For example, consider base arm 3, its reward expectation is same in super arm Sy
and S3, but can be different in super arm Sy or S13.

The objective is to find an algorithm 7 to minimize Reg (7, v) on SD-CMAB instance v which is
defined as

Reg(m,v) =T -r(S*) —E

> r(Sh)

t=1

; 27)

where S* denotes the optimal super arm in S.

F.2 DETAILED EXPLANATION FOR SORTUCB-SD

In this appendix we introduce the detailed explanation for SortUCB-SD. We first propose the
(n1,ng)-efficiency Oracle designed for our algorithm.

23

Under review as a conference paper at ICLR 2025

Ordered base arms | Explored super arms | Number of eliminated super arms

B={1,2,3} | Ss | 3
B = {1727374} ‘ 512 ‘ 6
B={1,4} \ S14 \ 3

Table 2: Examples of using the Oracle

(n1,ny)-efficiency Oracle. Consider any 5 denoting the set of base arms that the algorithm plans
to learn the order (called ordered base arms). The Oracle can figure out the least set of super arms
that are needed to learn the order (called explored super arms), and also the number of super arms
that can be directly eliminated according to the learned order of B (called eliminated super arms).
We call that B is (nq, ng)-efficiency when the number of “explored super arms” is n; while the
number of “eliminated super arms” is no.

Intuitively, n; and no measures the learning efficiency if the algorithm decides to learn the order
of the base arms in B. The less the nj, and the larger the ns, the more quickly the algorithm can
eliminate super arms.

Consider the SD-CMAB instance given by Table |1} Table [2| gives several examples on how our
Oracle works. Here we explain the first example in Table 2] and other examples are just similar.
According to the ordered base arms B = {1, 2, 3}, the Oracle finds super arm S5 covers all these
base arms, and recognizes it as the explored super arm. As for the eliminated super arms, assuming
we have already learned the order among base arm 1, 2 and 3. Then for super arms S7, S2 and Ss,
since any two of them differs no more than 1 base arm, the order among these 3 base arms can
definitely help identify two suboptimal super arms. This situation is the same for super arms Sg and
S10- Therefore, the total number of eliminated super arms is 3.

We propose our algorithm, SortUCB-SD in Algorithm [3] Our algorithm performs in round basis.
In round h, Oracle decides the set of “ordered base arms” denoted by B, as well as the set of
“explored super arms” denoted by Ry, = {R1 1, Ra,,...} according to the given input o, and Sp,.
By uniformly pulling the “explored super arms”, the algorithm learns the order of each base arm in
By, and the round ends whenever the orders of all base arms in I3, have been learnt.

Algorithm 3 Sorting Upper Confidence Bound - Set Dependent

1: Initialization: h < 1,G < S
\\Sorting Phase > Find base arm sets 53, and super arm sets R; p,
Input: oy > 0,3, > 0.
while Oracle finds an (nq, ny)-efficiency ordered base arm set B, with n; < ay,, no > S, do
Supposing Ry 1, Ra 1, ... denote the explored super arms
while 3}, does not satisfy do
Uniformly pulling super arm R; j,.
Update N1y ¢» fhi(k),c and ¢
9: end while
10: Delete super arm S € G according to Elimination Law (29)
11: h < h + 1, input new oy, and 3y,
12: end while
13: fli(k),N, ., < Oforalli € [M]andk € [K], Ns < O for all super arms S € G
14: \\UCB Phase > Using UCB to select the near-optimal super arm
15: whilet < T do
16: Pull super arm with the highest (30) for the rest super arms S € G
17: Update N ¢, fij(r),c and ¢
18: end while

PR AL

Specifically, all the orders of the base arms in a set B;, have been learnt if for any 4, j € By, it holds
that
1

1
Jr
\/Ni(ki.,j)vt \/Nj(ki,j)xt

|'a7;(k'i,j)7Nz‘(kiyj),t - 'aj(ki,j)aNj(ki‘j),J B, 210gT() (28)

24

Under review as a conference paper at ICLR 2025

where k; ; € [K] denotes some class. After the total H rounds, the algorithm finishes the period of
learning the order and remove a large amount of suboptimal super arms according to the “Elimina-
tion Law” which is introduced below.

Elimination Law. For some super arm S, if there exists S’ € S, 5’ # S,|S| < |S’|, and there exist
21,19, ... >i|S\ and 71, Jo, . .. ,j‘s‘, 1y € HSH, Jp € HS’H, ip =+ i When p #p st

. 2log(T) _ . 2log(T)
iy (k) Ny eyt N e Z By (kp),Ni (ke T Moot (29)
holds for all p € {1,2,...,|S|} and some k, € [K] (which is associated with p), then eliminate

super arm S.

For some problem instances, this procedure can be very effective since we can only use information
of the reward of several base arms to eliminate a large number of super arms. The above manner can
speed up the exploration process since we can avoid pulling many super arms which are apparently
not the optimal super arm and thus lowers down regret and avoid exploring repeatedly.

Afterwards, we first reset all the estimation of base arms fi;1) so that we can continue using an
extension version of algorithm UCB (which consider each super arm as a single super arm and
needs to record the sampled times for each super arm rather than each base arm) we consider each
of the rest super arms as a single arm, and use an extension version of UCB algorithm to select the
near-optimal super arm. That is, we just need to pull super arm .S with the highest

) 2|S|log T
Zﬂi(ks)vN'i(ks)=t + \/TSt -
i€S 7

The term N, similar to Ny ¢, is used to denote the pulled times for super arm S in the first ¢
time slots.

G PROOF OF THEOREM

Proof of Theorem 3] In algorithm [3| there exist two phases. We use Reg; ,(, v) to denote regret in
the Sorting Phase and Reg, 1 (,) to denote regret in the UCB Phase. Thus
RegT(W» V) = Regl,T(W’ V) + Reg27T (Wa V)

As we totally use the Oracle for H times in the first cycle, we have

H
Regl,T(Wa v) = Z Reg1(h),T(7Ta v)
h=1

where Reg; (j,) (7, v) indicates the sum regret produced with the h-th use of Oracle. We use T}, to
indicate the time slots until the order of the ‘explored super arms’ returned by the h-th use of Oracle
has been learned thoroughly, where h € [H].

W.L.O.G., we consider the h-th use of the Oracle. We define G, as follows:

2logT 2logT
i - N M +) (31)
Hik) \/ Niry t Hik) \/ Niry ¢ }

which shows the estimate of reward for arm ¢ with expectation k in the ¢-th time slot is bounded in a
range. The term Gf(k).t indicates the complement event. We use PP (Gi(k),t) to show the probability

that event G (x) » happens. Thus, P (G ;) + P (Gf(k)’t) =1.

Gi(k),t = {ﬂi(k)vNi(k),t €

Similar to Ny ¢, we use N to denote the times that super arm S is pulled in the first # time slots.
We use N, s1, = Ns1, — Ng 1, _, to indicate the number of pulls for super arm S between the
h-th and (h + 1)-th use of Oracle. Term Ngt denotes the pulling times for super arm S in the first

25

Under review as a conference paper at ICLR 2025

t slots with event G = (\;c(a Nie(x) Nierr) Gite),« happening, while N§, denotes the opposite.
According to[I]

Reg, () r(mv) = 3 E [NS,T;L} Ag. (32)
SER

Our goal is to calculate E[N 5.1, for all super arms S € Ry,. Obviously,

E [NS,Th} —E []1). Ng{Th] +E []1 (G} Ng;h] . (33)

AsT{G} < 1and N gf}l < T, < T, combining 1b the upper bound for E {N&Th} can be shown
as follows

E[Nsr| <E[Ngy,] + T EEY =E [Ny +T P(e).

Using Lemmal8] we obtain

2MK

2MK
T3 '

P(G%) < e

) E |:NS,T;1:| < E |:NSG"Th:| +
Below we consider the bound for E [1\7 g Th:| . In this cycle, our aim is to learn the order of base arms

in base arm set ;. Assume the estimations of base arms in 5;, have not reached the elimination
condition (28)). That is, there exists at least two base arms ¢, j € By, and for all k € [K],

‘< 2log T

Uz(k) NG . M](k) NG

i(k),t J(k),t

¢N . ¢N<k>t

W.L.O.G, we assume fi;(y G =~ = ﬂj(k)’NjG(k),t. Thus, in the time slot ¢, we have:

i(k),t

fi(k). NG, , — Hi(e)NG,, , < V2logT

o

for some i, € [M] and all k € [K]. With the definition of (33), we can derive that

1 1
Hi(k) — y <24/2logT + NG
\/Nz(k \/ k)t

According to the definition of Oracle, super arm set R, must cover any base arm ¢ € By, (otherwise
it is impossible to learn the order for all base arms in Bj, with super arms in R,). As we uniformly
pull super arms in Ry, after every | R, | time slots, each base arm ¢ € BB}, can be achieved at least one

time. That means Nﬁk) . Ngt > —1 for any S € Ry. Thus, we can bound Ngt and as follows:

~ 32logT
N§, A +1
i(k),j(k)
forall¢ € [T},—1 + 1,T}], meaning NSC';Th < A322 ¢ T 1 1 holds. This means for any two base arms
’ i(k).4 (k)

i,J € By, if there exists 51,52 € Rp,i € S1,5 € Sa, ks, = ks, = k satisfying the condition in the
14-th row in algorithm 3] we can eliminate set B. Thus, for the two base arms 4, j, we should pull
all the super arms in R, for at least 32log T N + 1 time slots to ensure learning their
max §y,82€Rp “i(k),i(k)
1€51,j€S2
ks, =ks, =k

order.

26

Under review as a conference paper at ICLR 2025

As we need to eliminate all the base arm sets in 3, the maximum pulling times for all super arms in
Ry, are

. 32logT
E[NGr,] < — o8 . .y (34)
o min; jep, Max §,,S,eR, Ai(k),j(k)
1€S51,j€S2
ks, =ks,=k
th thi ; ’ E[N }< . 32log T
With this upper bound and proof above, we get E |[Ng 1, | < iy a5, % 5, SyeRn AT
1€S1,jE€S?
ks, =ks,=k
2M K 1 1. Thus, according to (32) and (34),
- 32logT 2MK
Reg,) r(m,v) = Z E [NS,T,L] Ag < (min' p—— A2 + T2 +1) Z Ag
e A sy saety Al s
ks, =ks, =k
32logT 2MK
:<A% —+ = +1) > As.
h,min SER

Summing up for all h € [H], we have

H
32logT 2MK
Reg, 7(m,v) < Z <A2 —+ T2 + 1) Z Ag.
h=1 Bp ,min SeR

Here we end the proof of the bound for Reg, - (,). Below we prove the bound for Reg, (7, v).

In this phase, our intuition is seeing each super arm as a single arm. We use p15 = >, g fi(ks) tO
denote the reward expectation for super arm S and fig, x5 , to denote the unbiased estimate for super
arm S in the first ¢ time slots, while N ; indicates the chosen times for super arm .S as a whole since
the start of the UCB Phase, which is initialized to zero. We have

Reg, r(m,v) = Y E[Ngr]As. (35)
Seg

First we give a lemma that ensures the optimal super arm can be in G with high probability.

Lemma 17. If event G happens, the optimal super arm (denoted by S*) must be concluded in G.

Proof of lemmall7} As we defined, event G' means f1;() —]2\,1‘??)7: < flitk) Ny < Hik)

A/ % is true for each i € [M], k € [K],t € [T]. We just need to prove what we eliminate in line

8 in Algorithm [3]are suboptimal super arms.

According to the elimination condition @), when there exists 71, 72, . . ., 4|5 and j1, j2, - - - , J| 5] S-t.
. 2logT . 2logT

i, (ky),N; A\ N 2= iy k), N, ~ (36)
Jp(kp) Jp(kp),t Nj,,(k,,),t ip(kp) ip(kp),t Nz'p(kp),t

we can eliminate super arm S. Combining the definition of l| inequalities fi;,(k,), N, .), T
7 itp(Fp)s

2logT) N _ 2logT . 1 1 -
o > Wi, (k,) and B (k) Ny (e ™ /7]\,]‘17%)1t < Wj,(k,) hold. Take 1) into considera
tion, that is 15, (x,) > M, (k,)» meaning base arm jj, is better than i, under G, ;-

As this quality holds for all base arms in .S, this means for any base arm ¢ in S, there exists a different
base arm in S’ which is better than ¢. Thus,

HS =Y itks) S D Hi(k) = M (37)

i€s i€s’
shows super arm S is a suboptimal arm. Therefore, any eliminated arm in this phase must be a
suboptimal arm when event G happens. Here we end the proof of lemma [

27

Under review as a conference paper at ICLR 2025

Now we continue our proof of Reg, ,-(, /). As we have proved in previous,

2MK
Reg, r(m,v) = Z E[Nsr]As < Z E [NSG,T} T2 Z As
Seg Seg Seg
2MK
- S ENE] A+ 2 S o
Seg Seg
S#£S*

The last equation is because of Ag« = 0. Thus, we only need to prove the upper bound for E[NSG:T].
We first define another event G which we need in our proof:

= o 2|S*|log T . 2|S|log T
Gs = qps+ < min fig« Ng. , + 215"|log T N q fsus + 2IS|log T <pss o, (39
te[T) Ng= 4 us

where ug € [T7] is a constant to be chosen later.

Below we give two lemmas.
Lemma 18. If@g occurs, then Ng 1 < ug.

Lemma 19. GS, meaning the complement part of G, happens with low probability.

As N g + < T, weuse N g ?GS to denote the pulling times for super arm S in the first ¢ time slots

in the second cycle with event G and G both happening, while Ng? “S means that only event G

happens while event G does not happen. Then,

E[N§r] =E [IGs)NSRos | +E 1 (G°)NGOGS} <E[NGRO|+T-P(C5). w0

Proof of lemman Assuming that G'g occurs with Ngr > ug. That means there exists ¢t € T s.t.
Ngi—1 = ug while A, = S, where A, means the chosen super arm at time slot ¢. According to

@]) we have:
R 2|S|logT N 2|S*|logT
:LLsyNS,t,—l + Hig S s+ S uS*yNS,t—l + & (41)
Ns -1 Ngi—1

That means in time slot ¢ we should choose super arm S* rather than arm .S, which is a contradiction.
O

Proof of lemma[I9 The complement part of Gg is

~ N 2|S*|log T . 2|S|1log T
¢ = . > . i el " SEIOT > pige b (42
s {Ms Iél[lj{l] <ﬂs Ng«, T Ne- s U dsus + s > 1S 42)
We first prove the first part of ég As
> i R n 2|S*|log T c > i N n 2|S*|logT
» > min * - « > min . \ —
Hs* = telT] HS* ¢ N~ pHs* = telT] St 7
. 2|5*|logT
= | Sus = fses+ ("

te[T]

28

Under review as a conference paper at ICLR 2025

Thus, using Lemma[5] we have:

. 2|S*|log T . 2|S*|log T
. > * _— < . > * _
P(us 2 min <us T/ Nes)) <P| | {us > fus=x +1/ ;

te[T)

T
N 2|S*|log T 1
<ZP<MS* >MS*,t+\/|tg> < T3 (43)
t=1

which is a low probability if T" is chosen large enough. For the last inequality in (@3)), we use lemma
with ¢|.S*| independent samples.

Next we bound the second part of ég. As ug is a parameter undetermined, we assume it is large
enough that Ag — 4/ Q‘SL% > cAg, where ¢ € (0, 1) will be chosen later. Thus,

R 2|S|logT R 2|S|logT
P . + [2sloeT o) _p iss — s > Ag — 2[S|log T
us us

<P (fisus — ps > cAg) < exp (—2c2A%|1f;>. (44)
Taking together (@3] and (@4),
S 1 us
]P <G5> S ﬁ + exp (262A2351|) .
Here we end the proof of lemma [T9] O
As we have proved in (@0)
1 usg us 1
E[N§r] <us+T <T3 + exp <202A§|S|>) = ug + T exp <202A~29|S|> + 5
Choosing ug = [%] and ¢ = 1/2, then
S
8|S|logT
E[Ns 7] <3+ ||Aif.
5

Considering , we can give an upper bound for Reg27T(ﬂ', v),

8)S|log T\ MK
Regyr (m)< > (3As+ SHos T Y As. (45)
: Ag T2
Seg,S#S* Seg

Then we take together (34) and (@3] and get

H
32logT 8|S|log T
Reg,(m,v) < Z <A2 Z AS> + Z %

h=1 \ "Bnmin 5cRr, S€g,5£5* 5

H
+(2AT42K+3) DD As+ D As. (46)

h=1SER,, Seg,S#S*

Theorem [3]is the simplified version of (46). O

29

	Introduction
	The SSD-CMAB Problem
	Algorithm: Sorting Upper Confidence Bound
	 Theoretical Analysis
	Instance Dependent Upper Bound
	Instance Dependent Lower Bound
	Sketch of Proof

	Extension to Set Dependent Combinatorial Bandits
	Experiments
	Conclusion
	Literature Review
	Reduction Version of CMAB Algorithms
	Implementation of Algorithm 1
	Proof of Theorem 1
	Proof of Theorem 2
	Set Dependent Combinatorial Multi-Armed Bandit
	Detailed Setting of SD-CMAB
	Detailed Explanation for SortUCB-SD

	Proof of Theorem 3

