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Abstract

Covariate shift occurs prevalently in practice, where the input distributions of the
source and target data are substantially different. Despite its practical importance in
various learning problems, most of the existing methods only focus on some specific
learning tasks and are not well validated theoretically and numerically. To tackle
this problem, we propose a unified analysis of general nonparametric methods in a
reproducing kernel Hilbert space (RKHS) under covariate shift. Our theoretical
results are established for a general loss belonging to a rich loss function family,
which includes many commonly used methods as special cases, such as mean
regression, quantile regression, likelihood-based classification, and margin-based
classification. Two types of covariate shift problems are the focus of this paper and
the sharp convergence rates are established for a general loss function to provide
a unified theoretical analysis, which concurs with the optimal results in literature
where the squared loss is used. Extensive numerical studies on synthetic and real
examples confirm our theoretical findings and further illustrate the effectiveness of
our proposed method.

1 Introduction

Covariate shift is a phenomenon that commonly occurs in machine learning, where the distribution of
input features (covariates) changes between the source (or training) and target (or test) data, while
the conditional distribution of output values given covariates remains unchanged (Shimodaira, 2000;
Pan & Yang, 2010). Such a phenomenon is illustrated in Figure 1 where the learned predictive
function from the source data may significantly differ from the true function. Thus, the prediction
performance can be largely degraded since the predictive function has not been trained on data
that accurately represents the target environment. Covariate shift can arise in a variety of domains,
including medicine and healthcare (Wei et al., 2015; Hajiramezanali et al., 2018), remote sensing
(Tuia et al., 2011), and natural language and speech processing (Yamada et al., 2009; Fei & Liu, 2015).
Various factors contribute to covariate shift, such as data sampling bias (e.g., patient demographics
in healthcare applications), changes in the studied population (e.g., vocabulary evolution in natural
language processing), or measurement and observational errors (e.g., sensor noise or calibration errors
in the sensor domain). Compared to the well-studied supervised learning without such a distribution
mismatch (Györfi et al., 2002), there still exists some gap in both theoretically and numerically
understanding the influence of the covariate shift under various kernel-based learning problems.

∗Caixing Wang is the corresponding author and all the authors contributed equally to this paper and their
names are listed in alphabetical ordering.
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This paper provides a unified analysis of the kernel-based methods under covariate shift. Moreover,
a general loss function is considered, which is allowed to belong to a rich loss function family and
thus includes many commonly used methods as special cases, such as mean regression, quantile
regression, likelihood-based classification, and margin-based classification. This paper considers two
types of covariate shift problems in which the importance ratio is assumed to be uniformly bounded
or to have a bounded second moment. A unified theoretical analysis has been provided that the sharp
convergence rates are established for a general loss function under two evaluation metrics, which
concurs with the optimal results in Ma et al. (2023) where the squared loss is used. Our theoretical
findings are also validated by a variety of synthetic and real-life examples.

(a) (b)

Figure 1: (a) The probability density functions of normal distributions with µ1 = 0, σ2 = 0.4 that the source
data is driven from and µ1 = 1.5, σ2 = 0.6 that the target data is driven from, respectively; (b) the learned
function trained by using the source data and the true mean regression function. Note that the considered example
serves as an illustration that satisfies case (ii) in Section 2.3.

Our contributions. The contributions of this paper are multi-fold. We propose a unified analysis
of the kernel-based methods under covariate shift, which provides an insightful understanding of
the influences of covariate shift on the kernel-based methods both theoretically and numerically. By
utilizing empirical process in learning theory, we investigate the theoretical behaviors of several
estimators under various conditions, with particular emphasis on different importance ratio cases
between the source and target distributions. Specifically, we show that the unweighted estimator
achieves the optimal learning rates in terms of both L2-error and the excess risk with respect to
the target distribution under the uniformly bounded case. Yet, the unweighted estimator is sub-
optimal under the bounded second moment case. Then, we construct a weighted estimator by using
an appropriate truncated ratio, which again attains a sharp convergence rate. Unlike kernel ridge
regression (KRR), the estimator for the general loss does not have an explicit form, making many
classical analysis techniques inapplicable (Lian, 2022) and in our technical proofs, the theoretical
derivation is much more involved due to the considered general loss function. Numerous experiments
on synthetic data and multi-source real data with various loss functions confirm our theoretical
findings. To some extent, this paper provides a comprehensive study of the numerical performance of
the kernel-based methods under various scenarios with covariate shift.

Related work. Some most related works including covariate shift adaptation and importance ratio
estimation are presented below.

Covariate shift adaptation. Shimodaira (2000) investigates the impact of covariate shift in para-
metric regression with maximum likelihood estimation and proposes an importance-weighting (IW)
estimator, which has a significant improvement when the misspecification does exist. Sugiyama &
Müller (2005b) further extend this work by analyzing an unbiased estimator for L2-error. These
fundamental works also motivate a variety of follow-up studies under the parametric setting Sugiyama
& Storkey (2006); Yamazaki et al. (2007); Wen et al. (2014); Lei et al. (2021). Beyond the parametric
setting, Kpotufe & Martinet (2021) consider the nonparametric classification problem and provide
a new minimax result that concisely captures the relative benefits of source and target labeled data
under covariate shift. Focusing on the Hölder continuous regression function class, Pathak et al.
(2022) propose a new measure of distribution mismatch between the source and target distributions.
Ma et al. (2023) and Gogolashvili et al. (2023) establish the optimal learning rates for KRR over
RKHS. Recently, covariate shift in overparameterized models, such as high-dimensional models
and neural networks, has also drawn tremendous attention from relevant researchers (Hendrycks &
Dietterich, 2019; Byrd & Lipton, 2019; Hendrycks et al., 2021; Tripuraneni et al., 2021).
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Importance ratio estimation. A straightforward approach to estimating the importance ratio is
separately estimating the source and target densities by kernel density estimation (Sugiyama &
Müller, 2005a; Baktashmotlagh et al., 2014) and then computing the ratio. In practice, it is more
efficient to directly estimate the importance ratio by minimizing some discrepancy measures between
distributions, including kernel mean matching (Huang et al., 2006; Gretton et al., 2009), Kullback-
Leibler divergence (Sugiyama et al., 2007a,b, 2012) and non-negative Bregman divergence (Kato &
Teshima, 2021).

Notation. In this paper, we use C to denote a universal constant that may vary from line to line. For
two sequence an and bn, we say an ≍ bn if and only if an = O(bn) and bn = O(an) hold.

2 Problem formulation

2.1 Learning within a rich family of loss functions

Suppose that the random pair (x, y) is drawn from some unknown distribution Px,y with x =
(x1, . . . , xp)

⊤ ∈ X , where X ⊂ Rp is a compact support and y ∈ Y ⊂ R. In the literature of
machine learning, the true target function f∗ is often defined as the minimizer of the expected risk
with a pre-specified loss function L(·, ·) : Y ×R → R+ that

f∗ := argminf EL(f) = argminf E
[
L
(
y, f(x)

)]
. (1)

Throughout this paper, we consider a general loss function belonging to a rich loss function family that
L(y, ·) is assumed to be convex and locally cL-Lipschitz continuous (Wainwright, 2019; Dasgupta
et al., 2019), that is for some V ≥ 0, there exists a constant cL > 0 such that |L(y, ω)− L(y, ω′)| ≤
cL|ω − ω′| holds for all pairs ω, ω′ ∈ [−V, V ] and y ∈ Y . A variety of popularly used loss functions
satisfy these two conditions, including

• Squared loss: L(y, f(x)) = (y − f(x))2 with cL = 2 (My + V ), for any |y| ≤ My with
constant My > 0;

• Check loss: L(y, f(x)) = (y − f(x))
(
τ − I{y≤f(x)}

)
with cL = 1 and quantile level τ ;

• Huber loss: L(y, f(x)) = (y − f(x))2, if |y − f(x)| ≤ δ; δ|y − f(x)| − 1
2δ

2, otherwise,
with cL = δ;

• Logistic loss: L(y, f(x)) = log(1 + exp(−yf(x)))/log 2 with cL = (log 2)−1eV /(1 +
eV );

• Hinge loss: L(y, f(x)) = (1− yf(x))+with cL = 1 .

Note that the explicit form of f∗ may differ from one loss to another. For example, for the squared
loss, f∗(x) = E[y|x]; for the check loss, f∗(x) = Qτ (y|x) with Qτ (y|x) = inf{y : P (Y ≤
y|x) ≥ τ}; for the hinge loss, f∗ =sign(P (y = 1|x)− 1/2) with sign(·) denoting the sign function.
Moreover, we require f∗ ∈ HK , where HK denotes the RKHS induced by a pre-specified kernel
function K(·, ·) : X ×X → R. In practice, one of the most important tasks in machine learning is to
learn f∗ from the source data and use the estimated predictive function f̂ for prediction in the target
data.

2.2 Measurement under source and target distributions

Classical learning problems often explicitly or implicitly assume that the source and target data
are drawn from the same distribution. Precisely, the source data comes from a joint distribution
PS = Py|xP

S
x where Py|x is the conditional distribution and PS

x is the input distribution with density
function ρSx . Then, the performance of the estimated predictive function f̂ is usually evaluated by the
L2(PS

x )-error or the excess risk error with respect to PS that

∥f̂ − f∗∥2S = Ex∼S

[(
f̂(x)− f∗(x)

)2]
, EL

S (f̂)− EL
S (f

∗) = ES

[
L(y, f̂(x))− L(y, f∗(x))

]
,

where Ex∼S and ES are the expectation over PS
x and PS conditioning on the observed data, re-

spectively. When covariate shift occurs, the target data may come from some totally different joint
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distribution PT = Py|xP
T
x in the sense that although Py|x representing the regression or classifica-

tion rule remains invariant, PT
x differs significantly from PS

x . We also assume that PT
x has density

function ρTx . Obviously, it is reasonable to evaluate f̂ under PT instead of PS . Then, our primary
interest is the L2(PT

x )-error or the excess risk error with respect to PT that

∥f̂ − f∗∥2T = Ex∼T

[(
f̂(x)− f∗(x)

)2]
, EL

T (f̂)− EL
T (f

∗) = ET

[
L(y, f̂(x))− L(y, f∗(x))

]
,

where Ex∼T and ET are the expectation over PT
x and PT conditioning on the observed data,

respectively. In the rest of this paper, f∗ is defined as the optimal function under the target distribution
such that f∗ = argminf ET [L

(
y, f(x)

)
].

2.3 Kernel-based estimation under covariate shift and importance ratio correction

Suppose that random sample ZS
n =

{(
xS
i , y

S
i

)}n

i=1
are i.i.d. drawn from the source distribution PS .

We consider the classical nonparametric estimation problem in RKHS (Vapnik, 1999) that

f̂ := argmin
f∈HK

1

n

n∑
i=1

L
(
ySi , f(x

S
i )
)
+ λ∥f∥2K , (2)

where λ is the regularization parameter. Without covariate shift, the first term on the right side of
(2) is an unbiased estimator of EL

T (f). However, it becomes biased when covariate shift occurs, and
thus may lead to inaccurate predictive estimator. To tackle this issue, we consider the importance
ratio measuring the discrepancy between distributions that is ϕ(x) = ρTx (x)/ρ

S
x(x), for any x ∈ X ,

and we notice that
∫ ∫

L(y, f(x))ρTx (x)dPy|xdx =
∫ ∫

ϕ(x)L(y, f(x))ρSx(x)dPy|xdx. Inspired
by this, the weighted version of (2) can be used, which leads to an importance ratio weighted (IRW)
estimator that

f̃ϕ := argmin
f∈HK

1

n

n∑
i=1

ϕ(xS
i )L

(
ySi , f(x

S
i )
)
+ λ∥f∥2K . (3)

Throughout this paper, we focus on two types of the importance ratio that

(i) ϕ(x) is α-uniformly bounded that is supx∈X ϕ(x) ≤ α, for some positive constant α;

(ii) ϕ(x)’s second moment is bounded that is Ex∼S [ϕ
2(x)] ≤ β2, for some constant β2 ≥ 1.

Note that case (i) reduces to the classical case without covariate shift if α = 1. Yet, the bounded
case is somewhat restrictive, and a much weaker condition is considered in case (ii). It is also clear
that case (i) can be regarded as a special case of case (ii) by taking β2 = α. To see this, we have
Ex∼S [ϕ(x)

2] = Ex∼T [ϕ(x)] ≤ α. It is interesting to notice that these two cases are related to
Rényi divergence (Rényi, 1961) between ρSx and ρTx . Specifically, the conditions in cases (i) and
(ii) are equivalent to requiring D∞(ρTx ||ρSx) and D2(ρ

T
x ||ρSx) being bounded (Cortes et al., 2010),

respectively. Moreover, as pointed out by Ma et al. (2023), (3) may result in significant inflation of
the variance, largely due to the unbounded importance ratio. Thus, it is natural to consider a truncated
importance ratio with a pre-specified threshold value γn > 0 (Ma et al., 2023; Gogolashvili et al.,
2023). Precisely, we consider the following truncation

ϕn(x) := min {ϕ(x), γn} .

Accordingly, the following truncated important ratio weighted (TIRW) estimator is considered that

f̂ϕ := argmin
f∈HK

1

n

n∑
i=1

ϕn(x
S
i )L

(
ySi , f(x

S
i )
)
+ λ∥f∥2K , (4)

where the theoretical suggestion of the choice of γn is provided in Section 3.

3 Main results

In this section, we provide a unified theoretical analysis of the unweighted estimator in (2) and the
TIRW estimator in (4) under two types of importance ratio. Let HK denote the RKHS induced by a
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symmetric, continuous, and positive semi-definite kernel functionK(·, ·) : X ×X → R. Under some
regularity conditions, Mercer’s theorem (Mercer, 1909) guarantees that K has an eigen-expansion of
the form

K(x,x′) =

∞∑
j=1

µjψj(x)ψj(x
′),

where {µj}j≥1 are the eigenvalues and {ψj}j≥1 are the orthonormal eigenfunctions of L2(X , PT
x ) ={

f :
∫
X f

2(x)ρTx (x)dx <∞
}

. We expand the kernel in L2(X , PT
x ) for deriving bounds under the

target distribution. For any f ∈ HK , we have f =
∑∞

j=1 ajψj with aj =
∫
X f(x)ψj(x)ρ

T
x (x)dx

and the RKHS-norm is ∥f∥2K =
∑∞

j=1 a
2
j/µj < ∞. The kernel complexity function of HK is

then given as R(δ) =
√

1
n

∑∞
j=1 min(δ2, µj∥f∗∥2K). In literature, R(δ) is important to quantify the

localized Rademacher complexity of HK , which helps to build tight bounds in kernel-based methods
(Mendelson, 2002; Koltchinskii & Yuan, 2010). For theoretical simplicity, we assume ∥f∗∥K = 1
in the rest of this paper, which is commonly considered in machine learning literature (Yang et al.,
2017; Li et al., 2021). The following technical assumptions are required for the theoretical analysis.

Assumption 1: There exists some constant κ > 0 such that supx∈X |K(x,x)| ≤ κ, and the
eigenfunctions {ψj}j≥1 are uniformly bounded such that supx∈X |ψj(x)| ≤ 1 for all j ≥ 1.

Assumption 2: For some sufficiently small constant u > 0, we assume EI [L(y, f(x))] −
EI [L (y, f∗(x))] ⩾ c0 ∥f − f∗∥2I holds with some constant c0 > 0, for all ∥f − f∗∥I ≤ u, where
I ∈ {S, T}.

Assumption 1 imposes a boundedness condition on the kernel function and its corresponding eigen-
functions, which is commonly considered in the literature and satisfied by many popularly used
kernel functions with the compact support condition (Smale & Zhou, 2007; Steinwart et al., 2009;
Mendelson & Neeman, 2010). Assumption 2 is a local c0-strong convexity condition of the expected
loss function with respect to L2(X , PS

x ) and L2(X , PT
x ) at f∗. Similar assumptions are also con-

sidered by Steinwart & Christmann (2008); Wainwright (2019); Li et al. (2021); Lian (2022). Note
that many popularly used loss functions, including squared loss, check loss, Huber loss, logistic loss,
and hinge loss, satisfy this assumption. More detailed discussions on Assumption 2 are deferred to
Section A.7 of the supplementary material.

3.1 Convergence rate for the uniformly bounded case

We begin to establish the convergence rate of the unweighted estimator f̂ under the uniformly bounded
case with covariate shift.

Theorem 1. Under Assumptions 1-2, if the importance ratio is α-uniformly bounded, let λ > c0δ
2
n/4

with δn being the smallest positive solution to C
√
log nR(

√
αδ) ≤ c0δ

2/2, then for some constant
c1 > 0, with probability at least 1− n−c1 , we have

∥f̂ − f∗∥2T ≤ α
(
δ2n + 2c−1

0 λ
)
. (5)

Furthermore, based on (5), we have

EL
T (f̂)− EL

T (f
∗) ≤ cLα

(
δ2n + 2c−1

0 λ
)1/2

. (6)

Note that the existence and uniqueness of δn in Theorem 1 is guaranteed for any kernel class (Bartlett
et al., 2005). To facilitate the comprehension of Theorem 1, we define an index as d(δ) = min{j ≥
1|µj ≤ δ2} for a given target error level δ > 0. It is known that the kernel with eigenvalues satisfying
that

∑∞
j=d(δ)+1 µj ≤ Cd(δ)δ2 is referred to as the regular kernel class (Yang et al., 2017). From the

definition of d(δ) and regular kernel, we can get that
∑∞

j=1 min(δ2, µj) ≍ d(δ)δ2, thus the inequality
C
√
log nR(

√
αδ) ≤ c0δ

2/2 in Theorem 1 can be directly simplified as
√
α log nd(

√
αδ)/n ≤ Cδ

under the assumption that ∥f∗∥K = 1. Consequently, we can rewrite (5) as

∥f̂ − f∗∥2T ≤ Cα
(
δ2 + α

log n

n
d(
√
αδ)

)
, (7)
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where δ satisfies α logn
n d(

√
αδ) ≤ Cδ2 and λ ≍ δ2 (see Section C.4 of the supplementary material

for the detailed proof). The bound in (7) controls a type of bias-variance tradeoff by the choice of δ,
and hence λ. Under the uniformly bounded case, Ma et al. (2023) has established a minimax rate of
the order α infδ>0{δ2+ σ2d(

√
αδ)

n } for the squared loss function. It is worthnoting that the result in (7)
can also attain this lower bound up to a logarithmic factor under some weaker conditions. Particularly,
the assumption of Ma et al. (2023) that the noise terms are sub-Gaussian is no longer needed in (7).
Although the convergence rate of (6) is sub-optimal for general loss function L considered in Section
2.1, it becomes optimal at the rate of c′0α

(
δ2n + 2c−1

0 λ
)

if the following assumption holds.

Assumption 3: For some sufficiently small constant u > 0, we assume ET [L(y, f(x))] −
ET [L (y, f∗(x))] ≤ c′0 ∥f − f∗∥2T holds with some constant c′0 > c0 > 0, for all ∥f − f∗∥T ≤ u.

In fact, Assumption 3 is a mild condition that can be satisfied by many commonly used losses. For
instance, for the squared loss, the equality always holds with c′0 = 1; for the check loss, Assumption
3 is satisfied if the conditional density of the noise term is uniformly bounded (Zhang et al., 2021;
Lian, 2022). Moreover, the regular kernel class includes kernels with either finite rank (i.e., linear
or polynomial kernels), polynomially decayed eigenvalues (i.e., Sobolev kernels), or exponentially
decayed eigenvalues (i.e., Gaussian kernels). Corollary 1 provides the convergence rate of f̂ over
these three specific kernel classes.

Corollary 1. Under Assumptions 1-3, if the kernel has a finite rank D, and let λ = C αD logn
n , then

with probability at least 1− n−c1 , we have

∥f̂ − f∗∥2T ≍ EL
T (f̂)− EL

T (f
∗) ≤ C

α2D log n

n
, (8)

and if the eigenvalues of the kernel decay polynomially such as µj ≤ Cj−2r with some constant
r > 1/2 for j = 1, 2, . . ., and let λ = Cα

2r−1
2r+1 ( logn

n )
2r

2r+1 , then with probability at least 1− n−c1 ,
we have

∥f̂ − f∗∥2T ≍ EL
T (f̂)− EL

T (f
∗) ≤ C

(
α2 log n

n

) 2r
2r+1

, (9)

and if the eigenvalues of the kernel decay exponentially such as µj ≍ e−Cj log j , and let λ = C α log2 n
n ,

then with probability at least 1− n−c1 , we have

∥f̂ − f∗∥2T ≍ EL
T (f̂)− EL

T (f
∗) ≤ C

α2 log2 n

n
, (10)

Note that these bounds in (8)-(10) reduce to the known minimax lower bounds (Yang et al., 2017)
for the squared loss without covariate shift (i.e., α = 1). As the uniform boundedness implies the
boundedness of the second moment, the convergence rate of the TIRW estimator f̂ϕ for the uniformly
bounded case is similar to Theorem 3 in the next section by replacing α with β2.

3.2 Convergence rate for the second moment bounded case

The optimality for the α-uniformly bounded importance ratio condition relies on the inequality that
∥f̂ − f∗∥2T ≤ α∥f̂ − f∗∥2S . Yet, such a desired relation is not guaranteed for the second moment
bounded case. Theorem 2 shows that the unweighted estimator f̂ is still consistent, but not optimal.

Theorem 2. Under Assumptions 1-2, if the importance ratio satisfies that Ex∼S [ϕ
2(x)] ≤ β2, let

λ > c0δ
2
n/4 with δn being the smallest positive solution to C

√
log nR((c−1

0 cL
√
β2δ)1/2) ≤ c0δ

2/2,
then for some constant c2 > 0, with probability at least 1− n−c2 , we have

∥f̂ − f∗∥2T ≤ c−1
0 cL

√
β2

(
δ2n + 2c−1

0 λ
)1/2

. (11)

Furthermore, based on (11), we have

EL
T (f̂)− EL

T (f
∗) ≤ cL

√
β2

(
δ2n + 2c−1

0 λ
)1/2

. (12)
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To see the bound in (11) is sub-optimal, we consider the kernel with finite rank D, we can show

that δn ≍ (

√
β2D logn

n )1/3, and if we take λ ≍ (

√
β2D logn

n )2/3, the unweighted estimator satisfies

that ∥f̂ − f∗∥2T = OP ((
β4D logn

n )1/3), which is far from the optimal rate (see Section C.4 of the
supplementary material for examples of finite rank, polynomially and exponentially decay kernel
classes). To deal with the sub-optimality, we consider the importance ratio correction ensuring that
ES [ϕ(x)L(y, f(x))] = ET [L(y, f(x))]. The following theorem shows that the TIRW estimator f̂ϕ
can again reach a sharp convergence rate up to logarithmic factors under some mild conditions.
Theorem 3. Under Assumptions 1-2, if the importance ratio satisfies that Ex∼S [ϕ

2(x)] ≤ β2, let
λ > c0δ

2
n/4 with δn being the smallest positive solution to C

√
β2 log nR(δ) ≤ c0δ

2/2, and set the
truncation level γn =

√
nβ2, then for some constant c3 > 0, with probability at least 1− n−c3 , we

have

∥f̂ϕ − f∗∥2T ≤ δ2n + 2c−1
0 λ. (13)

Furthermore, based on (13), we have

EL
T (f̂

ϕ)− EL
T (f

∗) ≤ 1

2
c0δ

2
n + 2λ. (14)

Similar to (7), when dealing with regular kernel classes, the bounds in (13) and (14) become

∥f̂ϕ − f∗∥2T ≍ EL
T (f̂

ϕ)− EL
T (f

∗) ≤ C
(
δ2 + β2 log

2 n

n
d(δ)

)
, (15)

where δ is any solution of β2 log2 n
n d(δ) ≤ Cδ2 and λ ≍ δ2. Since the second moment boundedness

can be implied by the uniform boundedness, it can be concluded that f̂ϕ also reaches the minimax
lower bound for the square loss up to logarithmic factors (with α substituted by β2). For three specific
kernel classes, we also have the following Corollary for the TIRW estimator f̂ϕ.

Corollary 2. Under Assumptions 1-2, if the kernel has a finite rank D, and let λ = C β2D log2 n
n , then

with probability at least 1− n−c3 , we have

∥f̂ϕ − f∗∥2T ≍ EL
T (f̂

ϕ)− EL
T (f

∗) ≤ C
β2D log2 n

n
, (16)

and if the eigenvalues of the kernel decay polynomially such as µj ≤ Cj−2r with a constant r > 1/2

for j = 1, 2, . . ., and let λ = C(β
2 logn
n )

2r
2r+1 , then with probability at least 1− n−c3 , we have

∥f̂ϕ − f∗∥2T ≍ EL
T (f̂

ϕ)− EL
T (f

∗) ≤ C

(
β2 log2 n

n

) 2r
2r+1

, (17)

and if the eigenvalues of the kernel decay exponentially such as µj ≍ e−Cj log j , and let λ =

C β2 log3 n
n , then with probability at least 1− n−c3 , we have

∥f̂ − f∗∥2T ≍ EL
T (f̂)− EL

T (f
∗) ≤ C

β2 log3 n

n
, (18)

For easy reference, we summarize some important theoretical results that have been established by us
in table 1.

Table 1: Established convergence rates under different cases

Kernel class
Uniformly bounded case Moment bounded case

Unweighted estimator TIRW estimator Unweighted estimator TIRW estimator

Finite rank D OP (
α2D logn

n
) OP (

αD log2 n
n

) OP ((
β4D logn

n
)1/3) OP (

β2D log2 n
n

)

Polynomial decay OP ((
α2 logn

n
)

2r
2r+1 ) OP ((

α log2 n
n

)
2r

2r+1 ) OP ((
β4 logn

n
)

2r
6r+1 ) OP ((

β2 log2 n
n

)
2r

2r+1 )

Exponential decay OP (
α2 log2 n

n
) OP (

α log3 n
n

) OP ((
β4 log2 n

n
)1/3) OP (

β2 log3 n
n

)
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4 Numerical experiments

In this section, we validate our theoretical analyses by performing numerical experiments on both
synthetic data and real applications. To estimate the importance ratios, we apply the Kullback-Leibler
importance estimation procedure (KLIEP) (Sugiyama et al., 2007b), and the estimation details are
provided in the supplementary material. For brevity, we only report the performance of kernel-based
quantile regression (KQR) where the check loss is used in synthetic data analysis, and the performance
of kernel support vector support machine (KSVM) with hinge loss in the real data analysis; completed
results for other loss functions as well as the detailed settings and results for the other examples,
including for the multi-dimensional cases, can be found in Section A of the supplementary material.
In our experiments, we consider the RKHS induced by Gaussian kernel in all the examples, and all
the experiments are replicated 100 times in the synthetic data analysis.

4.1 Synthetic data analysis

We investigate the performance of KQR under covariate shift with the following generating model

y = f0(x) +
(
1 + r (x− 0.5)

2
)
σ(ε− Φ−1(τ)),

where f0(x) = sin(πx) with x ∈ R, Φ denotes the CDF function of the standard normal distribution
and ε ∼ N(0, 1). We consider ρSx ∼ N(µ1, σ

2
1) and ρTx ∼ N(µ2, σ

2
2) with µ1 = 0, σ2

1 = 0.4, µ2 =
0.5, σ2

2 = 0.3 for the uniformly bounded case and µ1 = 0, σ2
1 = 0.3, µ2 = 1, σ2

2 = 0.5 for the
moment bounded case, respectively. Moreover, we set r = 0 and σ = 0.5 for the homoscedastic case,
and r = 1 and σ = 0.3 for the heteroscedastic case, respectively. Note that the simulation results
for the case that τ = 0.3 and r = 1 are presented in Figure 2 under the uniformly bounded case and
in Figure 3 under the moment bounded case; completed results for other cases are provided in the
supplementary material. We compare the averaged mean square error (MSE) and empirical excess
risk of the unweighted estimator and weighted estimator, either with true or estimated weights across
different choices of regularization parameter λ, source sample size n, and target sample size m.

(a) (b) (c)

(d) (e) (f)

Figure 2: Averaged MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated weight, respectively. Note that in (a) and (d), the curves are plotted with respect to log10 λ with
n = 500,m = 1000; in (b) and (e) the curves are plotted with respect to n with fixed m = 1000, λ = 10−4; in
(c) and (f), the curves are plotted with respect to m with fixed n = 500, λ = 10−4.

From (a) and (d) in Figure 2, we can conclude that the error of the unweighted estimator is very
close to that of the weighted estimator for the uniformly bounded case, which is consistent with our
theoretical findings in Section 3. For the moment bounded case as demonstrated in (a) and (d) of
Figure 3, the weighted estimator consistently outperforms its unweighted counterpart for all choices
of λ. Even when λ is far from its optimal choice, the weighted estimator still maintains a lower
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(a) (b) (c)

(d) (e) (f)

Figure 3: Averaged MSE and empirical excess risk for unweighted KQR, TIRW KQR with true weight and
estimated weight, respectively. Note that in (a) and (d), the curves are plotted with respect to log10 λ with
n = 500,m = 1000; in (b) and (e) the curves are plotted with respect to n with fixed m = 1000, λ = 10−4; in
(c) and (f), the curves are plotted with respect to m with fixed n = 500, λ = 10−4.

error level with significant improvement over the unweighted estimator whose error is on occasion
extremely high for small choices of λ. Additionally, it is clear from Panels (b) and (e) of Figures 2
and 3 that in the moment bounded case, the error curves for the unweighted estimator have some
significant gaps with those of the weighted estimator, while in the bounded case, these curves tend to
coincide as n grows. It is also clear from the table 1 that the trends in Figure 2 (b)-(e) and Figure 3
(b)-(e) almost agree with the explicit convergence rate where the Gaussian kernel with exponential
decay is used. This phenomenon is consistent with our theoretical conclusion that the unweighted
estimator can only achieve sub-optimal rates when the importance ratio is moment bounded and
attain optimal rates when uniformly bounded. Finally, we note that the target sample size has a subtle
influence on all the estimators, as demonstrated in Panels (c) and (f) of Figures 2 and 3.

4.2 Real case study

We consider the binary classification problem on the Raisin dataset, which is available in https:
//archive.ics.uci.edu/ml/datasets.php. The dataset contains 900 instances and 7 attributes.
After standardization, the data are first randomly split into source and target datasets. We introduce
a binary random variable s that serves as a labeling indicator and assign it to the source dataset
if s = 0. To ensure that the conditional distribution of different datasets remains invariant, we
require s to be conditionally independent with the response y given the covariate x (Zadrozny, 2004;
Quinonero-Candela et al., 2008). We implement KSVM in which the covariate shift only exists
in the first covariate. Specifically, for ℓ > 0, we conduct the splitting rule as P (si = 1 | xi) =
min(1, (xi,0 − c)2/ℓ), where xi,0 is the first element of xi and c = mini{xi,0}. We refer to ℓ as the
shift level that a smaller value of ℓ favors a greater distinction between source and target datasets. We
set the turning parameter Cλ = (nλ)−1. For the TIRW estimator, we use importance weighted cross
validation (IWCV) (Sugiyama et al., 2007a) to tune the truncation parameter γn. We refer to Section
A in the supplementary material for the details of the adopted method.

Figure 4 summarizes the accuracy rate and standard error in different settings. As shown in this figure,
the unweighted estimator has poor performance on target data, even for the optimal choice of Cλ.
Nevertheless, the weighted estimator has a significant improvement in performance. Surprisingly,
the weighted estimator is relatively stable with respect to the choices of Cλ, which is consistent with
our results on synthetic data. Moreover, we can find that a proper truncation slightly improves the
accuracy rate of the weighted estimator while reducing its variation.
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(a) ℓ = 6 (b) ℓ = 8 (c) ℓ = 10

Figure 4: Averaged accuracy rate for unweighted KSVM, IRW KSVM and TIRW KSVM with different shift
levels ℓ, respectively.

5 Conclusion

In this work, we propose a unified analyzing framework for kernel-based methods under covariate
shift and show that the predictive function can be better estimated by using the distribution infor-
mation of the covariates from both aspects of theory and numerical performance. The established
theoretical results fulfill the gap in understanding the influence of the covariate shift under various
kernel-based learning problems, both researchers and practitioners may benefit from our theoretical
findings. Extensive numerical studies also provide empirical evidence and confirm the established
theoretical results. Note that it is very interesting to test if there exists a distribution shift in practical
applications and if the distribution shift satisfies the uniformly bounded or moment bounded assump-
tions. Unfortunately, the relevant approaches have remained lacking to our best knowledge. And it is
interesting to note that as shown in our real applications, the TIRW estimator always outperforms the
unweighted estimator, and thus we suggest using the TIRW estimator to analyze the real-life dataset.
Moreover, in the theory, we directly use the true importance ratio, and it is difficult to derive the
consistency of the estimated ratio and plug it into our theoretical analysis. In the machine learning
literature, there exist several measures to quantify the divergence between two distributions, including
but not limited to f -divergence, Wasserstein distance and kernel mean matching. It is still an open
problem if it still works when we use other measures rather than the importance ratio. We leave such
promising and interesting topics as potential future work.
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