
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BAYESIAN LEARNING OF ADAPTIVE KOOPMAN OPER-
ATOR WITH APPLICATION TO ROBUST MOTION PLAN-
NING FOR AUTONOMOUS TRUCKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Koopman theory has recently been shown to enable an efficient data-driven ap-
proach for modeling physical systems, offering a linear framework despite un-
derlying nonlinear dynamics. It is, however, not clear how to account for un-
certainty or temporal distributional shifts within this framework, both commonly
encountered in real-world autonomous driving with changing weather conditions
and time-varying vehicle dynamics. In this work, we introduce BLAK, Bayesian
Learning of Adaptive Koopman operator to address these limitations. Specifically,
we propose a Bayesian Koopman operator that incorporates uncertainty quantifi-
cation, enabling more robust predictions. To tackle distributional shifts, we pro-
pose an online adaptation mechanism, ensuring the operator remains responsive
to changes in system dynamics. Additionally, we apply the architecture to motion
planning and show that it gives fast and precise predictions. By leveraging uncer-
tainty awareness and real-time updates, our planner generates dynamically accu-
rate trajectories and makes more informed decisions. We evaluate our method on
real-world truck dynamics data under varying weather conditions—such as wet
roads, snow, and ice—where uncertainty and dynamic shifts are prominent, as
well as in other simulated environments. The results demonstrate our method’s
ability to deliver accurate, uncertainty-aware open-loop predictions for dynamic
systems.

1 INTRODUCTION

In the context of autonomous driving, a key challenge is ensuring reliable vehicle performance in
various weather conditions. Autonomous vehicles must navigate environments such as icy, wet, or
snowy roads. These conditions significantly alter vehicle behavior, making the driving task more
difficult and increasing the likelihood of safety-critical incidents. Reduced traction impacts the
vehicle’s ability to maintain grip, potentially resulting in skidding or sliding. Furthermore, steering
inputs become less reliable, often resulting in understeer, where the vehicle’s actual turning radius
exceeds the intended path, or makes it even infeasible to follow that path, complicating trajectory
tracking (Russell & Gerdes, 2014; Berntorp et al., 2020). On inclines, low traction makes climbing
hills hazardous, while descending can be even more treacherous, especially for heavy vehicles like
trucks, which face the added danger of jackknifing or trailer swings and instability. The constantly
shifting environmental factors lead to what is known as a distributional shift, where the underlying
conditions change in ways that were not anticipated during the initial modeling process. To add
to the complexity, vehicles with varying load distributions exhibit different inertia profiles, which
influence how the system behaves under different driving conditions. This makes it essential for
models to be adaptable, capable of accurately reflecting these changes in real time.

In severe weather conditions, autonomous motion planning must account for the significant impact
of environmental factors on vehicle behavior. On low-friction surfaces like icy or wet roads, a vehicle
may not behave as expected, rendering previously planned trajectories unsafe or entirely unfeasible.
For instance, extended braking distances are required to prevent accidents in low-traction scenarios,
while steering adjustments may be insufficient to maintain the intended path. These deviations from
normal vehicle behavior increase the complexity of navigating hazardous conditions, underscoring
the need for motion planning that goes beyond basic geometric or kinematic models. To address

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

these challenges, motion planning must be dynamically aware of the vehicle’s physical limitations
and the real-time conditions it faces (Hu et al., 2022; Svensson et al., 2021). This requires inte-
grating models that can adapt to changing weather conditions, load distributions, and vehicle inertia
(Svensson & Törngren, 2021).

Recently, learning-based approaches for modeling physical systems have emerged in a variety of
domains, such as robotics (Han et al., 2021; Shi & Meng, 2022), autonomous driving (Xiao et al.,
2024; Wang et al., 2024), and general system identification of dynamical systems (Atuonwu et al.,
2010; Nerrand et al., 1994; Baruch & Mariaca-Gaspar, 2009; Akpan & Hassapis, 2011). Among
these, the Koopman operator has emerged as a powerful data-driven tool for modeling nonlinear
systems with unknown dynamics (Koopman, 1931). By mapping nonlinear dynamics into a linear
framework through the propagation of observables in an embedded space, the Koopman operator
facilitates the application of linear analysis and control techniques (Mauroy et al., 2020; Bevanda
et al., 2021). However, significant challenges remain in data-driven Koopman modeling. These chal-
lenges are particularly evident when addressing rigorous uncertainty quantification, encompassing
both aleatoric and epistemic uncertainties, as well as managing distribution shifts in time-varying
dynamics. Such challenges become particularly evident in dynamic environments, like varying road
conditions, where Koopman-based models often struggle with real-time adaptation and effective
uncertainty quantification. These limitations pose critical obstacles to ensuring the safety and ro-
bustness of systems operating in unpredictable and evolving settings.

This work presents a novel framework that utilizes a stochastic Koopman operator to address the
challenges identified earlier. By placing a probability distribution over the Koopman operator, the
proposed approach explicitly models uncertainties in system dynamics, including both state tran-
sitions (model uncertainty) and observation noise (data uncertainty). Additionally, this probabilis-
tic formulation enables the model to adapt to distribution shifts, ensuring robust performance in
time-varying dynamic environments. Contrasting with traditional methods that estimate a single
deterministic Koopman operator, our approach learns a distribution over an infinite set of operators,
each weighted by its probability of explaining the observed data. This ensemble methodology in-
corporates multiple hypotheses about the system’s dynamics, enhancing adaptability and predictive
accuracy as new data becomes available.

The organization of this paper is as follows: in section 2 we go through the background and related
works. In section 3 we go through the proposed approach. In section 4 we demonstrate the effective-
ness of the proposed method on the evaluation datasets. Finally, section 5 addresses the challenges
of the current approach, discusses future directions, and concludes the paper.

2 BACKGROUND & RELATED WORK

Koopman operator theory (Koopman, 1931) offers a linear, though infinite-dimensional, framework
for studying nonlinear dynamical systems. By acting on observable functions, the Koopman operator
enables a linear representation of nonlinear dynamics in a lifted space. Traditional methods, such as
dynamic mode decomposition (DMD) (Schmid, 2010; Schmid et al., 2011) and extended dynamic
mode decomposition (EDMD) (Williams et al., 2015; Li et al., 2017), utilize a predefined library of
functions to map the system’s state to the observable space, where the dynamics can be approximated
by the Koopman operator. However, a key challenge remains in selecting suitable observables. To
overcome this, recent advancements incorporate deep learning techniques to automatically learn
observable functions (Lusch et al., 2018; Otto & Rowley, 2019; Yeung et al., 2019), with approaches
like deep-Koopman and deep-DMD dramatically enhancing the efficiency and scope of Koopman-
based analysis (Yeung et al., 2019; Takeishi et al., 2017).

Recent studies such as Proctor et al. (2016) have expanded the Koopman operator’s application into
control systems and robotics , where it has shown promise in mapping nonlinear systems into linear
representations, thus enabling real-time control strategies such as LQR and MPC (Mamakoukas
et al., 2021; Korda & Mezić, 2018; Abraham et al., 2017). Learning-based methods further enhance
the operator’s performance by optimizing the embedding functions for complex nonlinear systems.
This has led to improvements in control accuracy for systems like soft robots (Bruder et al., 2020;
Shi & Meng, 2022) and vehicular applications (Cibulka et al., 2020; Wang et al., 2021), underscoring
the Koopman operator’s potential in a variety of domains. These developments continue to push the
boundaries of how nonlinear systems can be modeled and controlled in real-world applications.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Uncertainty quantification (UQ) in deep learning is essential for assessing the reliability of pre-
dictions, especially in critical domains such as autonomous systems and scientific applications. UQ
methods allow models to provide not only predictions but also estimates of how confident they
are in these predictions. Techniques such as Bayesian neural networks, deep ensembles (Laksh-
minarayanan et al., 2017), Monte Carlo dropouts (Gal & Ghahramani, 2016), and evidential deep
learning (Sensoy et al., 2018; Amini et al., 2020) are commonly used to estimate uncertainties,
distinguishing between aleatoric uncertainty (stemming from noise in the data) and epistemic un-
certainty (arising from model limitations) (Abdar et al., 2021). These methods help improve the
robustness of deep learning models, making them more reliable for real-world decision-making
tasks such as planning for autonomous vehicles.

In Koopman-based frameworks, uncertainty quantification is becoming increasingly important for
modeling and controlling nonlinear dynamical systems. By incorporating uncertainty into the pre-
diction of Koopman eigenfunctions or observables, as demonstrated by Morton et al. (2019), We can
more effectively assess the reliability of system behavior predictions, especially in situations where
the training data is noisy or incomplete. In the Koopman framework, methods such as Bayesian
neural networks (Pan & Duraisamy, 2020) and deep ensembles (Frion et al., 2024) have been uti-
lized to address uncertainty; however, these approaches are not suitable for real-time applications.
Alternative strategies improve robustness in control and prediction tasks by introducing a probability
distribution over the embedding space (observables) for the initial state and tracking its propagation
over time (Han et al., 2021; Meyers et al., 2019). While effective, these methods fail to account for
uncertainties in the underlying system dynamics. In contrast, our approach directly addresses this
limitation by placing a probability distribution over the Koopman operator itself, offering a rigor-
ous and comprehensive framework for quantifying both aleatoric and epistemic uncertainties. This
integration of uncertainty quantification with Koopman operators enables a more robust modeling
paradigm, paving the way for advanced data-driven control of nonlinear systems while explicitly
accounting for inherent uncertainties.

Distribution Shifts refers to the condition where the statistical characteristics of the data vary spe-
cially at test time. These shifts can stem from evolving underlying processes, such as gradual tempo-
ral changes or sudden external events, leading to a mismatch between the data distribution a model
was trained on and the new, unseen conditions it encounters. This issue is especially prevalent in dy-
namic systems, such as vehicle navigation in varying road conditions (e.g., icy, wet, or dry surfaces),
where fluctuating environmental factors can significantly degrade model performance. Traditional
machine learning models, which often assume stationary data distributions, typically struggle to
generalize effectively across different time periods. To mitigate these challenges, some approaches,
such as Passalis et al. (2019), adaptively stationarize the inputs. Others, for instance Arik et al.
(2022), use test-time adaptation to tackle the distribution shifts problems. In the context of Koop-
man framework, other approaches, such as the Koopman Neural Forecaster (KNF) (Wang et al.,
2022) that was proposed for time series forecasting, utilize a combination of global and local opera-
tors to capture both stable and evolving dynamics, allowing for continuous adaptation and enhanced
robustness in the face of the non-stationary nature of real-world time series data. However, their ap-
proach is confined to time series forecasting and does not account for control inputs. In contrast, this
work introduces a framework that systematically addresses uncertainty quantification and manages
distribution shifts for dynamical systems with control inputs. Next, we present the methodology for
the proposed approach in detail.

3 METHODOLOGY

In the following section, we begin by outlining the modeling problem. Then, we present the pro-
posed architecture, followed by the Bayesian approach for learning the Koopman operator and quan-
tifying uncertainty. Afterward, we discuss the online adaptation of the learned operator. Finally, we
go through how the proposed method can be extended to allow real-time motion planning.

3.1 KOOPMAN THEORY FOR MODELING NONLINEAR DYNAMICAL SYSTEMS

An autonomous vehicle can be represented as a nonlinear dynamical system. Consider a physical
system whose state at time t is denoted by xt ∈ Rn. The evolution of the system can be modeled as
a discrete-time dynamical system:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

xt+1 = f(xt, ut) (1)

where ut ∈ Rm represents the external inputs or control actions applied to the system at time t,
and f is a nonlinear function that describes the system’s dynamics. For a future time horizon h, the
objective is to predict the future states of the system xt+1, xt+2, . . . , xt+h, given the sequence of
current and past states xt, xt−1, . . . , xt−q and past and future inputs ut+h, . . . , ut, . . . , ut−q for a
history window of size q.

The Koopman operator, denoted as K̄ : F̄ → F̄ , is an infinite-dimensional linear operator that
describes the evolution of a nonlinear dynamical system. Here, F̄ refers to the set of all measurement
functions or observables, which form an infinite-dimensional Hilbert space. More specifically, given
an observable function ψ, the evolution of the system using the Koopman operator can expressed as:

K̄ψ(xt, ut) = ψ(f(xt, ut), ut+1) = ψ(xt+1, ut+1) (2)

The primary challenge in utilizing the Koopman operator lies in identifying appropriate observable
functions that encapsulate the key dynamics of the system. To address this, we seek to identify
a subspace F ⊂ F̄ that approximately preserves invariance under the Koopman operator. This
subspace is spanned by a set of linearly independent basis functions, g : Rn × Rm → Rd, which
provide a finite-dimensional approximation of the Koopman operator, denoted as K. This finite-
dimensional operator advances the observable function g over time.

Applying these observables to the system’s state and control inputs at time t produces an embedding
vector z̃t ∈ Rd, which maps the original state xt and control input ut into a higher-dimensional
space, where d ≫ n + m. Specifically, we have z̃t = g(xt, ut). This embedding vector can be
decomposed into two parts: x̃t ∈ Rη , representing the state embedding, and ũt ∈ Rd−η , repre-
senting the control embedding. The system’s dynamics can then be approximated using the linear
operator K ∈ Rη×d, which provides a finite-dimensional approximation of the Koopman operator.
Specifically, given an embedding z̃t, the evolution of the system under the Koopman operator can
be expressed as:

x̃t+1 = Kz̃t (3)
This linear representation in the embedding space allows us to forecast future system states. By
learning the appropriate embedding function g, we can effectively capture the nonlinear dynam-
ics of the system in a linear framework, facilitating the prediction of future states by evolving the
embedding forward in time.

Previous methods for projecting the state-action space [xt, ut]T into the Koopman embedding space
z̃t typically process each time step independently. In contrast, we adopt a more general approach by
modeling the embeddings as a sequence that depends on consecutive state-action pairs. Specifically,
we aim to obtain a sequence of embedding vectors as follows:

[z̃t−q . . . z̃t−1 z̃t] = Gθ(xt−q, ut−q, . . . , xt−1, ut−1, xt, ut) (4)

where Gθ, the embedding function, is implemented as a neural network parameterized by θ. Unlike
previous works that perform embeddings for individual states, we construct embeddings for an entire
trajectory, as outlined in Eq. 4. Specifically, the embedding z̃t is not solely derived from the current
state-action pair [xt, ut]T , but also incorporates delayed state-action pairs. This formulation enables
the embedding vectors to capture dynamic relationships across multiple time steps, providing con-
textual information for each embedding. A key motivation for this approach is rooted in Takens’s
theorem (Takens, 2006), which suggests that the use of delayed coordinates can capture the under-
lying system dynamics more accurately. Empirically, we demonstrate that this method yields richer
and higher-quality embeddings. Additionally, this formulation facilitates an online model adapta-
tion using previously computed embeddings, a capability that will be further elaborated upon in
subsequent sections. The trajectory of consecutive states and actions is encoded using a transformer
encoder, which we refer to as the trajectory encoder (see Figure 1 for details).

To enable multi-step predictions, embeddings of future control inputs ut+1, ut+2, . . . , ut+h are ob-
tained using a dedicated encoder. These future input embeddings are conditioned on the current
trajectory, providing a consistent dynamical context to improve embedding quality. This is accom-
plished through a transformer decoder, where the cross-attention mechanism allows the future action

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: The proposed transformer architecture follows this sequence: (1) Encode past state-action
pairs with a trajectory encoder to produce Koopman embeddings. (2) These embeddings, except
for the current time step, are utilized to update the estimated Koopman operator and observation
matrix distributions. (3) Predict the next future state embedding by combining the current time-step
embedding with these updated distributions. This future state embedding is then concatenated with
action embeddings and then propagated using the Koopman operator iteratively. The probabilistic
observation matrix converts the state embeddings into the predicted future states.

embeddings to incorporate information from prior state-action pairs, enhancing the representation
of future actions. We refer to this module as the action encoder (illustrated in Figure 1). Finally, for
mapping from the Koopman latent space to the state space, we use a linear decoder to retrieve the
reconstructed state x̂t from the state embedding x̃t as follows:

x̂t = Cx̃t (5)

The loss function at each time-step t consists of two key components: the alignment loss, which
ensures that the embeddings are properly aligned through linear system dynamics, and the prediction
loss, which focuses on accurately reconstructing the state. These losses are formally expressed as
follows:

LAlign =

0∑
i=−q+1

∥x̃t+i −Kz̃t+i−1∥2, LPred =

h∑
i=−q

∥xt+i − Cx̃t+i∥2 (6)

3.2 BAYESIAN LEARNING OF ADAPTIVE STOCHASTIC KOOPMAN OPERATOR

To address system noise and uncertainty, we incorporate Bayesian modeling into the proposed ar-
chitecture. Our objective is to apply Bayesian techniques to both the Koopman operator and the
observation matrix in the embedding space. Our method follows a curriculum training approach:
we begin by training the trajectory and action encoders to produce the corresponding embeddings,
which are then used, along with ground truth data, within a Bayesian learning framework. Specif-
ically, the learned embeddings over all timesteps and trajectories create a dataset of temporal state
transitions z̃t → x̃t+1 and state reconstruction pairs x̃t → xt. It is important to note that the ground
truth for state reconstruction corresponds to the actual system state. Using the same notation for the
embeddings, the noise-adaptive system can then be described as follows:

x̃it+1 = Kz̃it + ϵi (7)

xit = Cx̃it + υi (8)

where i indexes each datapoint or transition in the dataset, K, C are the stochastic Koopman and
observation matrices, and the noise terms, ϵi ∼ N (0,Σ) and υi ∼ N (0,Φ), represent process and
observation noise, assumed to follow Gaussian distributions with covariances Σ and Φ respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Our objective is to learn two Bayesian regression models for both the stochastic Koopman operator,
and the observation matrix. For brevity, we will focus solely on modeling the stochastic Koopman
operator K, as the approach for the reconstruction (observation) matrix is analogous. Under the
assumption that the noise vectors are i.i.d sampled from a multivariate Gaussian distribution, the
likelihood of transitioning from z̃it to x̃it+1, given K and the covariance Σ, is:

p(X̃|K, Z̃,Σ) = 1

(2π)ηd|Σ| η2
exp

(
−1

2

N∑
i=1

((
x̃it+1 −Kz̃it

)⊤
Σ−1

(
x̃it+1 −Kz̃it

)))
(9)

where X̃ ∈ Rη×N , Z̃ ∈ Rd×N , Σ ∈ Rη×η , where N is the number of data points. The conjugate
prior for this likelihood is the matrix normal inverse Wishart distribution MNIW:

K,Σ ∼ MNIW(M̆, V̆ , ν̆, Ψ̆), (10)

where K|Σ ∼ MN (M̆,Σ, V̆), meaning that given the covariance Σ, the Koopman operator K
follows a matrix normal distribution with mean M̆ , and column covariance V̆ . The covariance
Σ ∼ IW(ν̆, Ψ̆) follows an inverse Wishart distribution, with parameters ν̆ and Ψ̆, where the former
is the degrees of freedom and the latter is the scale matrix.
Lemma 3.1. Given the likelihood (Eq.9), and the (MNIW) prior (Eq.(10))) , the posterior dis-
tribution of the stochastic koopman operator K follows MNIW distribution and can be given by:

K,Σ ∼ MNIW(“M, “V , “ν, “Ψ), (11)

with the posterior parameters given by:

“M = SxzS
−1
zz , “V = Szz, “ν = N + ν̆, “Ψ = Ψ̆ + Sx|z (12)

and

Sxz = X̃Z̃⊤ + M̆V̆ , Szz = Z̃Z̃⊤ + V̆ , Sxx = X̃X̃⊤ + M̆V̆ M̆⊤,

Sx|z = Sxx − SxzS
−1
zz S

⊤
xz (13)

Proof. The proof follows directly from Murphy (2023).

Lemma 3.2. Given the posterior distribution (Eq. 11) of K from Lemma 3.1, the posterior predictive
distribution for the state transition at time t+ 1, conditioned on the current state and control inputs
at time t, under the assumption that the number of datapoints N is large, follows a multivariate
Gaussian distribution:

x̃t+1|z̃t, X̃, Z̃ ∼ N
(
Kz̃t, “Ψ

(
1 + z̃⊤t “V z̃t

))
(14)

and the multi-step predictions for future states can be recursively computed as:

x̃t+k|z̃t, X̃, Z̃ ∼ N

(
Khz̃t,

h−1∑
i=0

Ki
(

“Ψ
(
1 + z̃⊤t “V z̃t

) (
Ki
)⊤))

(15)

Proof. The proof can be found in Appendix.

Adapting the Operator Online A significant challenge in our application is handling distribution
shifts—situations where the data encountered during deployment deviates from the data used in
initial offline training. To address this, we leverage a “change variable,” s, which detects distribution
changes based on recent observations. Rather than using a single observation, a history window of
size q is examined (as shown by the trajectory encoder in Fig. 1), enabling the model to distinguish
between shifts that require adaptation and transient noise, leading to a more robust update strategy.

In Bayesian modeling, the posterior distribution is computed by combining prior beliefs with new
data. For online model updates, we treat the old, offline-trained model as the prior. As new data

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

becomes available, the posterior distribution is updated according to (Eq. 11), which defines how we
combine this prior with the likelihood of the new observations to form the updated posterior. How-
ever, because of the extensive offline dataset, directly using the offline model as the prior can result
in an overconfident prior. Consequently, the posterior distribution becomes dominated by the prior,
making it challenging for new data to have any meaningful impact which results in slow adaptation.
To mitigate this problem, we apply a tempering operation (Li et al., 2021) which systematically
increases the prior variance, effectively broadening the prior distribution.

Tempering allows the model to “forget” outdated information while maintaining the flexibility to
learn from new data. The tempering process is formalized by scaling the prior covariance by a
factor β−1, where 0 < β < 1. Specifically, the tempered prior depends on whether a change is
detected. If no change is detected (s = 0), the prior remains as it is. However, when a change is
detected (st = 1), the prior is broadened using the temperature parameter β as follows:

p(K | s = 1,Σ) = MN (“M,β−1Σ, β−1 “V), (16)

By increasing the prior variance, the model reduces its confidence in prior data, allowing it to more
effectively learn from new, potentially shifted distributions.

For detecting changes, the update procedure is guided by the posterior of the change variable s,
which is modeled as a Bernoulli distribution. Following Li et al. (2021), the probability of a change
is determined through a likelihood ratio test, which compares the likelihood of the current embed-
ding zt under the assumption of a change (s = 1) against the likelihood assuming no change (s = 0).
The decision rule is formalized by the equation:

p(s = 1|z̃t−1:t−q) = σ

(
log

p(z̃t|s = 1)

p(z̃t|s = 0)
+ ϑ

)
(17)

where σ is the sigmoid function, and ϑ is a hyperparameter favoring either change or no change.
This change detection mechanism allows for precise and timely model updates, ensuring the model
remains responsive to dynamic environments.

3.3 INTEGRATION INTO MOTION PLANNING

To effectively integrate the proposed method into a
sampling-based motion planner, it is essential to gener-
ate a large number of trajectories by sampling from the
action space. This process enables the creation of dynam-
ically feasible trajectories in real time. However, in our
current framework, sampling actions requires computing
their corresponding Koopman embeddings through the ac-
tion encoder. This step is computationally intensive due
to the overhead of encoding each sampled action.

To address this limitation, we transform the action encoder
into a variational action encoder. The primary goal of this
modification is to learn a normalized Gaussian distribution
over the embedding space, enabling direct sampling from
this distribution without the need to pass actions through
the encoder during the planning phase. The variational
encoder modifies the deterministic mapping of the tradi-
tional encoder into a probabilistic one by mapping each
input action to a distribution over embeddings, parame-
terized by a zero mean vector and a unit standard devia-
tion vector. This allows us to sample embeddings directly
making the trajectory generation process and improving
computational efficiency.

Figure 2: We extend the previous ac-
tion encoder into a variational encoder
to learn a Gaussian distribution over the
embedded action space. This enables us
to sample directly from the latent space
at runtime, bypassing the encoding step
entirely.

To ensure that the learned embeddings approximate a Gaussian distribution with zero mean and unit
standard deviation, we incorporate a Kullback-Leibler (KL) divergence term into the loss function

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(Eq. 6) during training. By minimizing this divergence, we encourage the action encoder to pro-
duce embeddings that closely match the standard normal distribution. This alignment allows for
efficient and direct sampling of embeddings during the planning phase, as we can sample directly
from the standard normal distribution without relying on the encoder. Consequently, this modifi-
cation enhances the real-time capabilities of the motion planner through more efficient trajectory
generation.

4 EXPERIMENTAL RESULTS

In this section, we assess the performance of the proposed method across various highly nonlinear
environments, characterized by different dimensionalities and noise levels, including a truck dynam-
ics dataset under diverse weather conditions. We start by detailing the environments and baseline
models, followed by an evaluation of the prediction accuracy. Next, we analyze the uncertainty
quantification, and finally, provide an example of the method’s application in planning tasks.

Evaluation Datasets. The primary dataset used for evaluation is a truck and trailer dataset, specif-
ically aimed at learning an accurate dynamic model for a 37.5-ton, 17-meter-long Scania truck and
trailer (see Fig. 3). Data collection was carried out both during autonomous driving and with as-
sistance from a professional safety driver. State feedback signals were gathered from inertial and
navigation sensors during tests conducted on various surfaces, including dry asphalt, wet roads,
snow, and ice under winter conditions. To reduce high-frequency noise, the recorded state trajecto-
ries were processed using a 4th-order Butterworth lowpass filter with a 5 Hz cutoff frequency. All
input features were scaled between [-1, 1] to ensure the neural network assigns equal importance
to each data component. The state of the system is a seven dimensional vector containing the lon-
gitudinal and lateral velocities, longitudinal and lateral accelerations, yaw angle of the tractor, the
trailer angle with the tractor, and finally, the slip angle of the front wheel. As for the inputs, they
are the brake, thrust as well as the steering of the vehicle. Several environmental inputs are present
such as road grade, estimated road type, and other vehicle related characteristics. The processed
training dataset encompasses 10 hours of vehicle trajectory data, derived from real-world driving
tests conducted between March 2023 and March 2024. These tests were designed to include a wide
range of challenging scenarios, effectively capturing the intricate dynamics of trucks and trailers.

To ensure a robust and thorough evaluation of the
model’s performance, the test dataset was exclu-
sively collected during the dedicated winter testing
phase at Scania’s proving ground in northern Swe-
den in the winter of 2024. This dataset emphasizes
the unique challenges posed by harsh winter condi-
tions, providing a critical evaluation of the model’s
ability to navigate real-world complexities in vehi-
cle dynamics. It also serves as a highly realistic
dataset that introduces distribution shifts not present
in the training data, thereby enabling a more com-
prehensive assessment of the model’s adaptability
and robustness under previously unseen conditions.
It includes diverse scenarios like forward driv-
ing, sharp turns, U-turns, roundabouts, steep as-
cents/descents, and mu-split conditions, all com-
plicated by snow and ice. By focusing on winter-
specific challenges, this dataset rigorously tests the
model’s robustness and adaptability under condi-
tions impacting traction, stability, and control, pro-
viding valuable insights into performance in ex-
treme scenarios. More details are in Appendix B.

Figure 3: Truck and trailer heavy duty vehi-
cle in winter conditions.

To assess scalability, we evaluated our method on five additional Gym environments simulated us-
ing the MuJoCo physics engine: Hopper, HalfCheetah, Ant, InvertedPendulum, and Walker. The
data for these environments were collected using a TD3 expert agent trained for 1 million time steps
before being utilized for data collection. Each environment was tested under three conditions: with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

process noise, with observation noise, and without any noise. Further details about these environ-
ments and their configurations are provided in the appendix.

Baselines. We evaluate our method by comparing it against six baselines for both prediction ac-
curacy and uncertainty estimation: (1) Deep Stochastic Koopman Operator (Desko) (Han et al.,
2021), which uses an encoder to model a distribution over observable functions of the states and
incorporates linear control. (2) Deep Koopman Operator (DKO) (Shi & Meng, 2022), which em-
ploys a neural network to jointly learn observable functions and the Koopman operator, embedding
a single state-action pair rather than entire trajectories. (3) EMLP, an ensemble of 10 multi-layer
perceptrons providing uncertainty estimation through prediction variance across models. (4) Neu-
ral ODEs (NODE), (Chen et al., 2018) which use continuous-time dynamics modeled by neural
networks to capture smooth trajectory behavior. (5) MC Dropout, where uncertainty is estimated
by applying dropout at inference time across multiple forward passes. (6) Bayesian Neural Net-
works (BNNs), which estimate prediction uncertainty by learning posterior distributions over model
weights. Additionally, we evaluate our method in two configurations: one with a traditional action
encoder and another with a variational action encoder with a small embedding dimension, to assess
prediction performance in sampling-based planners.

Training Setup. To ensure a fair comparison, all models were configured with approximately
45,000 parameters, except for the ensemble of multi-layer perceptrons. Training was conducted
over 300 epochs across various datasets, as this was sufficient for the baselines to converge. Since
our approach (Blak) leverages a history window, it was provided with an additional 20 time-steps of
history. To ensure robustness, each method was run 10 times using different random seeds across all
environments. The prediction horizon for all methods was set to 200 time-steps, corresponding to a
10-second planning horizon at 20 Hz. This number reflects the frequency at which our planner op-
erates. Additionally, to evaluate generalization beyond the training sequence length, methods were
also tested on a prediction horizon of 300 time-steps to confirm that our method accurately learns
the underlying dynamics. The objective for all methods was to minimize the same prediction error
over these horizons. Training utilized a batch size of 1,024 and an initial learning rate of 0.003,
which decayed by one-third after each third of the training epochs. Additional Information can be
found in Appendix F.

Prediction Evaluation. For the truck dynamics dataset (additional simulated environments detailed
in Appendix D), Table 1 reports the mean squared error for multi-step predictions on the validation
set across all baselines. The proposed method demonstrates superior prediction accuracy compared
to other baselines when utilizing a standard encoder. With a variational action encoder, the perfor-
mance of our approach is comparable to that of DKO, while maintaining the capability to run in
real-time—a significant advantage over DKO. Traditional baselines such as Bayesian NN and MC
Dropout show higher loss, indicating difficulty in effectively modeling the underlying dynamics. Ar-
chitectures like DKO and NODE exhibit moderate errors, but their larger standard deviations reveal
inconsistencies in prediction quality. These results highlight the strength of the proposed architec-
ture in delivering both accurate and stable predictions for complex systems. Notably, the variational
action encoder can be scaled with additional parameters without compromising real-time perfor-
mance, however, a similar number of parameters to other baselines was chosen for comparison.

Baseline Final Loss (± Std)
MCDropout: 0.4373± 0.0867
Blak: 0.1016 ± 0.0519
BayesianNN: 0.5966± 0.0354
Dko: 0.1664± 0.0932
NODE: 0.2319± 0.2020
Desko: 0.4658± 0.0597
EMLP: 0.3064± 0.0301
BlakVar: 0.2002± 0.0776

Table 1: Final Loss (Mean ± Std) for Each Base-
line. Figure 4: Validation Loss Across Baselines.

Uncertainty Quantification. The accuracy of our uncertainty estimation is evaluated by exam-
ining the correlation between the predicted uncertainty and the error rates. A strong correlation

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: An example of a planned path using our dynamic model within an RRT framework.
Actions are sampled from the embedding space, and future states are predicted by the model to
evaluate trajectory costs, enabling dynamically accurate path planning.

suggests that the model expresses higher uncertainty when its predictions are less accurate, which
is a desirable characteristic. To test this, we conducted a correlation analysis between the predicted
uncertainty from each model and the error rates on 100,000 randomly selected points across vari-
ous trajectories and time-steps. As shown in Table 2, our model, along with EMLP, exhibits strong
correlation values, while the Desko method underperforms compared to both.

Table 2: Average correlation values of uncertainty with MSEs for each dataset. We see that both
EMLP and BLAK exhibit a strong correlation between prediction error and predicted uncertainty.

Dataset Desko EMLP BNN MC Dropout Blak (ours)
Truck .43 .68 0.56 0.48 .71
Walker .39 .59 0.53 0.45 .67
Ant .48 .64 0.52 0.49 .73
Half-Cheetah .46 .69 0.63 0.43 .69
Hopper .47 .53 0.29 0.27 .64

Application to Motion Planning. Finally, we demonstrate the applicability of our models in
dynamically-aware planning. To integrate the proposed architecture into sampling-based planning,
we employ the learned vehicle dynamics model within a Rapidly-exploring Random Tree (RRT)
algorithm, with a key modification: we sample from the action space instead of the state space.
By applying the learned dynamic model to these sampled actions, we compute new states. We then
apply cost functions to the resulting transitions, leading to dynamically accurate planned paths. Sam-
pling directly from the action embedding space allows us to efficiently generate new nodes in the
RRT algorithm by simply multiplying the Koopman matrix and the observation matrix with the cor-
responding embeddings. To further enhance planning efficiency, we compress the action embedding
space to just two dimensions, making sampling much more efficient. Figure 5 presents a visual-
ization of the results, demonstrating the effectiveness of the proposed method in sampling-based
planning. Additional information cab be found in the Appendix.

5 CONCLUSION & FUTURE WORK

In this work, we propose a Bayesian learning approach for an adaptive Koopman operator to model
vehicle dynamics while incorporating uncertainty estimation. Additionally, we showcase the appli-
cation of this method in sampling-based motion planning. Our approach offers accurate predictions
while maintaining real-time performance, and it scales efficiently, allowing for larger network sizes
with minimal impact on inference time. When applied to motion planning, it not only ensures real-
time execution but also generates more accurate, dynamic-aware paths that respect the vehicle’s
physical constraints. For future work, we aim to further explore this approach within the planning
domain and investigate ways to reduce the gap between variational and nominal inference. Addition-
ally, the model’s uncertainty estimation capabilities make it a promising candidate for model-based
reinforcement learning, where it could be leveraged to guide exploration and learn world models for
adaptive decision-making in stochastic environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information fusion, 76:243–297, 2021.

Ian Abraham, Gerardo De La Torre, and Todd D Murphey. Model-based control using koopman
operators. arXiv preprint arXiv:1709.01568, 2017.

Vincent A Akpan and George D Hassapis. Nonlinear model identification and adaptive model pre-
dictive control using neural networks. ISA transactions, 50(2):177–194, 2011.

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential regression.
Advances in neural information processing systems, 33:14927–14937, 2020.

Sercan O Arik, Nathanael C Yoder, and Tomas Pfister. Self-adaptive forecasting for improved deep
learning on non-stationary time-series. arXiv preprint arXiv:2202.02403, 2022.

JC Atuonwu, Yi Cao, GP Rangaiah, and MO Tadé. Identification and predictive control of a multi-
stage evaporator. Control Engineering Practice, 18(12):1418–1428, 2010.

Ieroham S Baruch and Carlos R Mariaca-Gaspar. A levenberg–marquardt learning applied for recur-
rent neural identification and control of a wastewater treatment bioprocess. International Journal
of Intelligent Systems, 24(11):1094–1114, 2009.

Karl Berntorp, Rien Quirynen, Tomoki Uno, and Stefano Di Cairano. Trajectory tracking for au-
tonomous vehicles on varying road surfaces by friction-adaptive nonlinear model predictive con-
trol. Vehicle System Dynamics, 58(5):705–725, 2020.

Petar Bevanda, Stefan Sosnowski, and Sandra Hirche. Koopman operator dynamical models: Learn-
ing, analysis and control. Annual Reviews in Control, 52:197–212, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016. URL https://arxiv.org/abs/1606.01540.

Daniel Bruder, Xun Fu, R Brent Gillespie, C David Remy, and Ram Vasudevan. Data-driven control
of soft robots using koopman operator theory. IEEE Transactions on Robotics, 37(3):948–961,
2020.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Vít Cibulka, Tomáš Haniš, Milan Korda, and Martin Hromčík. Model predictive control of a vehicle
using koopman operator. IFAC-PapersOnLine, 53(2):4228–4233, 2020.

Anthony Frion, Lucas Drumetz, Guillaume Tochon, Mauro Dalla Mura, and Albdeldjalil
Aïssa El Bey. Koopman ensembles for probabilistic time series forecasting. arXiv preprint
arXiv:2403.06757, 2024.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods, 2018. URL https://arxiv.org/abs/1802.09477.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Minghao Han, Jacob Euler-Rolle, and Robert K Katzschmann. Desko: Stability-assured robust
control with a deep stochastic koopman operator. In International Conference on Learning Rep-
resentations, 2021.

Juqi Hu, Youmin Zhang, and Subhash Rakheja. Adaptive lane change trajectory planning scheme
for autonomous vehicles under various road frictions and vehicle speeds. IEEE Transactions on
Intelligent Vehicles, 8(2):1252–1265, 2022.

11

https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1802.09477

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315–318, 1931.

Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control. Automatica, 93:149–160, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Aodong Li, Alex Boyd, Padhraic Smyth, and Stephan Mandt. Detecting and adapting to irregular
distribution shifts in bayesian online learning. Advances in neural information processing systems,
34:6816–6828, 2021.

Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis. Extended dynamic mode
decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the
koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10), 2017.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Giorgos Mamakoukas, Maria L Castano, Xiaobo Tan, and Todd D Murphey. Derivative-based koop-
man operators for real-time control of robotic systems. IEEE Transactions on Robotics, 37(6):
2173–2192, 2021.

Alexandre Mauroy, Y Susuki, and Igor Mezic. Koopman operator in systems and control. Springer,
2020.

Joseph J Meyers, Andrew M Leonard, Jonathan D Rogers, and Adam R Gerlach. Koopman operator
approach to optimal control selection under uncertainty. In 2019 American Control Conference
(ACC), pp. 2964–2971. IEEE, 2019.

Jeremy Morton, Freddie D Witherden, and Mykel J Kochenderfer. Deep variational koopman mod-
els: Inferring koopman observations for uncertainty-aware dynamics modeling and control. arXiv
preprint arXiv:1902.09742, 2019.

Kevin P Murphy. Probabilistic machine learning: Advanced topics. MIT press, 2023.

Olivier Nerrand, Pierre Roussel-Ragot, Dominique Urbani, Léon Personnaz, and Gérard Dreyfus.
Training recurrent neural networks: Why and how? an illustration in dynamical process modeling.
IEEE Transactions on Neural Networks, 5(2):178–184, 1994.

Samuel E Otto and Clarence W Rowley. Linearly recurrent autoencoder networks for learning
dynamics. SIAM Journal on Applied Dynamical Systems, 18(1):558–593, 2019.

Shaowu Pan and Karthik Duraisamy. Physics-informed probabilistic learning of linear embeddings
of nonlinear dynamics with guaranteed stability. SIAM Journal on Applied Dynamical Systems,
19(1):480–509, 2020.

Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, and Alexandros Iosifidis.
Deep adaptive input normalization for time series forecasting. IEEE transactions on neural net-
works and learning systems, 31(9):3760–3765, 2019.

Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decomposition with control.
SIAM Journal on Applied Dynamical Systems, 15(1):142–161, 2016.

Holly EB Russell and J Christian Gerdes. Low friction emulation of lateral vehicle dynamics using
four-wheel steer-by-wire. In 2014 American Control Conference, pp. 3924–3929. IEEE, 2014.

Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid
mechanics, 656:5–28, 2010.

Peter J Schmid, Larry Li, Matthew P Juniper, and Oliver Pust. Applications of the dynamic mode
decomposition. Theoretical and computational fluid dynamics, 25:249–259, 2011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classifica-
tion uncertainty. Advances in neural information processing systems, 31, 2018.

Haojie Shi and Max Q-H Meng. Deep koopman operator with control for nonlinear systems. IEEE
Robotics and Automation Letters, 7(3):7700–7707, 2022.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Lars Svensson and Martin Törngren. Fusion of heterogeneous friction estimates for traction adaptive
motion planning and control. In 2021 IEEE International Intelligent Transportation Systems
Conference (ITSC), pp. 424–431. IEEE, 2021.

Lars Svensson, Monimoy Bujarbaruah, Arpit Karsolia, Christian Berger, and Martin Törngren. Trac-
tion adaptive motion planning and control at the limits of handling. IEEE Transactions on Control
Systems Technology, 30(5):1888–1904, 2021.

Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invariant subspaces
for dynamic mode decomposition. Advances in neural information processing systems, 30, 2017.

Floris Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence,
Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80, pp. 366–
381. Springer, 2006.

Rongyao Wang, Yiqiang Han, and Umesh Vaidya. Deep koopman data-driven control framework for
autonomous racing. In Proc. Int. Conf. Robot. Autom.(ICRA) Workshop Opportunities Challenges
Auton. Racing, pp. 1–6, 2021.

Rui Wang, Yihe Dong, Sercan Ö Arik, and Rose Yu. Koopman neural forecaster for time series with
temporal distribution shifts. arXiv preprint arXiv:2210.03675, 2022.

Sean J Wang, Honghao Zhu, and Aaron M Johnson. Pay attention to how you drive: Safe and
adaptive model-based reinforcement learning for off-road driving. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp. 16954–16960. IEEE, 2024.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation
of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science,
25:1307–1346, 2015.

Wenli Xiao, Haoru Xue, Tony Tao, Dvij Kalaria, John M Dolan, and Guanya Shi. Anycar to
anywhere: Learning universal dynamics model for agile and adaptive mobility. arXiv preprint
arXiv:2409.15783, 2024.

Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network representations
for koopman operators of nonlinear dynamical systems. In 2019 American Control Conference
(ACC), pp. 4832–4839. IEEE, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A POSTERIOR PREDICTIVE DISTRIBUTION

Given an embedding z̃t in time t, the goal is to predict the probability over the state embedding for
the next time-step p(x̃t+1|z̃t,D), where D denotes the offline dataset.

p(x̃t+1|z̃t,D) =

∫∫
p(x̃t+1|K,Σ, z̃t,D)p(K|Σ)p(Σ) dKdΣ (18)

First, we look at
∫
p(x̃t+1|K,Σ, z̃t,D)p(K|Σ)dK. We know that:

p(K|Σ) = MN (“M,Σ, “V)

=
1

(2π)
ηk
2 |Σ| k2 | “V | η2

exp
[
−1

2
tr

((
K − “M

)⊤
Σ−1

(
K − “M

)
“V −1

)]
(19)

and,

p(x̃t+1|K,Σ, z̃t,D) =
1

(2π)
η
2 |Σ| 12

exp
[
−1

2
(x̃t+1 −Kz̃t)⊤Σ−1(x̃t+1 −Kz̃t)

]
(20)

Then:∫
p(x̃t+1|K,Σ, z̃t,D)p(K|Σ)dK

=

∫
1

(2π)
η+ηk

2 |Σ| 1+k
2 | “V | η2

exp
[
−1

2
tr

(
Σ−1

(
(x̃t+1 −Kz̃t)(x̃t+1 −Kz̃t)⊤ +

(
K − “M

)
“V −1

(
K − “M

)⊤))]

=

∫
1

(2π)
η+ηk

2 |Σ| 1+k
2 | “V | η2

exp

[
−1

2
tr

(
Σ−1

(
K
(
z̃tz̃

⊤
t + “V −1

)
K⊤ − 2

(
x̃t+1z̃

⊤
t + “M “V −1

)
K⊤

+ “M “V −1 “M⊤ + x̃t+1(x̃t+1)
⊤
))]

=

∫
1

(2π)
η+ηk

2 |Σ| 1+k
2 | “V | η2

exp

[
−1

2
tr

(
Σ−1

(
KSaaK⊤ − 2SabK⊤ + Sbb

))]

=

∫
1

(2π)
η+ηk

2 |Σ| 1+k
2 | “V | η2

exp

[
−1

2
tr

(
Σ−1

((
K − SabS

−1
aa

)
Saa

(
K − SabS

−1
aa

)⊤
+ Sa|b

))]

=
(2π)

kη
2 |Σ| k2 |Saa|−

η
2

(2π)
η+ηk

2 |Σ| 1+k
2 | “V | η2

exp
[
−1

2
tr
(
Σ−1Sa|b

)]
=

|Saa|−
η
2

(2π)
η
2 |Σ| 12 | “V | η2

exp
[
−1

2
tr
(
Σ−1Sa|b

)]
(21)

where:

Saa = z̃tz̃
⊤
t + “V −1

Sab = x̃t+1z̃
⊤
t + “M “V −1

Sbb = “M “V −1 “M⊤ + x̃t+1(x̃t+1)
⊤

Sa|b = Sbb − SabS
−1
aa S

⊤
ab

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Substituting Eq. 21 into Eq. 18 yields:

p(x̃t+1|z̃t,D) =

∫
|Saa|−

η
2 |“Ψ| “ν

2

(2π)
η
2 |Σ| 12 | “V | η2 2 “νη

2 Γη

(
“ν
2

) |Σ|− “ν+η+1
2 exp

[
−1

2
tr
(
Σ−1

(
Sa|b + “Ψ

))]
dΣ

=
|Saa|−

η
2 |“Ψ| “ν

2

(2π)
η
2 | “V | η2 2 “νη

2 Γη

(
“ν
2

) ∫ |Σ|−
“ν+η+1+1

2 exp
[
−1

2
tr
(
Σ−1

(
Sa|b + “Ψ

))]
dΣ

=
|Saa|−

η
2 |“Ψ| “ν

2

(2π)
η
2 | “V | η2 2 “νη

2 Γη

(
“ν
2

) 2 “νη
2 Γη

(
“ν+η
2

)
|Sa|b + “Ψ| “ν+η

2

=
Γη

(
“ν+η
2

)
|Saa|−

η
2 |“Ψ− η

2 |

(2π)
η
2 Γη

(
“ν
2

)
| “V | η2

|I + “Ψ−1Sa|b|−
“ν+η
2 (22)

Now, let’s break Sa|b first. We know that:

Sa|b = Sbb − SabS
−1
aa S

⊤
ab

= “M “V −1 “M⊤ + x̃t+1(x̃t+1)
⊤ −

(
x̃t+1z̃

⊤
t + “M “V −1

)(
z̃tz̃

⊤
t + “V −1

)−1

︸ ︷︷ ︸
C

(
x̃t+1z̃

⊤
t + “M “V −1

)⊤
= “M “V −1 “M⊤ + x̃t+1(x̃t+1)

⊤ − x̃t+1z̃
⊤
t Cz̃t(x̃t+1)

⊤ + x̃t+1z̃
⊤
t C “V −1 “M⊤ + “M “V −1Cz̃t(x̃t+1)

⊤ + “M “V −1C “V −1 “M⊤

= x̃t+1

(
I − z̃⊤t Cz̃t

)︸ ︷︷ ︸
Sii

(x̃t+1)
⊤ − 2 “M “V −1Cz̃t︸ ︷︷ ︸

Sij

(x̃t+1)
⊤ + “M “V −1 “M⊤ + “M “V −1C “V −1 “M⊤︸ ︷︷ ︸

Sjj

=
(
x̃t+1 − SijS

−1
ii

)⊤
Sii

(
x̃t+1 − SijS

−1
ii

)
+ Sj|i︸︷︷︸

=0

(23)

Now, we have reached a quadratic formula. We begin by using the Woodbury formula on S−1
ii :

S−1
ii =

(
I − z̃⊤t Cz̃t

)−1

= I + z̃⊤t
(
C−1 − z̃tz̃

⊤
t

)−1
z̃t

= I + z̃⊤t

(
z̃tz̃

⊤
t + “V −1 − z̃tz̃

⊤
t

)−1

z̃t

= 1 + z̃⊤t
“V z̃t (24)

Then,

SijS
−1
ii = “M “V −1Cz̃t

(
1 + z̃⊤t “V z̃t

)
= “M “V −1

(
“V − “V z̃t

(
1 + z̃⊤t

“V z̃t
)−1

z̃⊤t
“V

)
z̃t

(
1 + z̃⊤t

“V z̃t
)

= “M

(
I − z̃t

(
1 + z̃⊤t “V z̃t

)−1

z̃⊤t “V

)
z̃t

(
1 + z̃⊤t “V z̃t

)
= “M

(
z̃t

(
1 + z̃⊤t “V z̃t

)
− z̃t

(
1 + z̃⊤t “V z̃t

)−1

z̃⊤t “V z̃t
(
1 + z̃⊤t “V z̃t

))
= “M

(
z̃t

(
1 + z̃⊤t

“V z̃t
)
− z̃tz̃

⊤
t

“V z̃t
(
1 + z̃⊤t

“V z̃t
)−1 (

1 + z̃⊤t
“V z̃t
))

= “Mz̃t (25)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Substituting 25 and 23 into 22 yields:

p(x̃t+1|z̃t,D) =
Γη

(
“ν+η
2

)
|Saa|−

η
2 |“Ψ|−

η
2

(2π)
η
2 Γη

(
“ν
2

)
| “V | η2

|I + “Ψ−1
(
x̃t+1 − “Mz̃t

)⊤ (
1 + z̃⊤t “V z̃t

)−1 (
x̃t+1 − “Mz̃t

)
|−

“ν+η
2

Using the matrix determinant lemma, this equals to:

p(x̃t+1|z̃t,D) =
Γη

(
“ν+η
2

)
(2π)

η
2 Γη

(
“ν
2

) ∣∣∣∣∣ “Ψ

1 + z̃⊤t “V z̃t

∣∣∣∣∣
− η

2
∣∣∣∣∣I + (x̃t+1 − “Mz̃t

)⊤ “Ψ−1

1 + z̃⊤t “V z̃t

(
x̃t+1 − “Mz̃t

)∣∣∣∣∣
− “ν+η

2

= T“ν

(
“Mz̃t,Ψ

(
1 + z̃⊤t “V z̃t

))
(26)

Which is a multivariate t-distribution with mean “Mz̃t and scale matrix Ψ
(
1 + z̃⊤t “V z̃t

)
.

Under large number of degrees of freedom (large number of training examples in our case), this
distributions converges to a multivariate gaussian distribution with mean “Mz̃t and a covariance
Ψ
(
1 + z̃⊤t

“V z̃t
)

.

From this derivation, the posterior predictive distribution is a multivariate Student-t distribution
with mean M̂zt and scale matrix Ψ

(
1 + z⊤t V̂ zt

)
. As the degrees of freedom (ν) increase, this

distribution approaches a multivariate Gaussian. The assumption ’N is large’ refers to the degrees
of freedom in the Student-t distribution, equal to the number of data points N . For N ≥ 30,
the Student-t distribution closely approximates a multivariate Gaussian, with higher accuracy for
N ≥ 50–100. As our dataset size is orders of magnitude larger than 100, this assumption is well
justified.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B TRUCK AND TRAILER DATA COLLECTION

One of the key contributions of this work is the
application of motion planning techniques for au-
tonomous truck and trailer systems. Autonomous
driving datasets are typically expensive to acquire
and maintain, with access often restricted to se-
lect (OEMs) and their suppliers. This study in-
volved extensive data collection from a a real au-
tonomous truck and trailer platform to develop
test datasets that accurately reflect the complex
dynamics of these systems under diverse and chal-
lenging conditions, including harsh winter envi-
ronments. Data was gathered over 12 months
(March 2023 – March 2024) using a 37.5-ton, 17-
meter-long Scania autonomous tractor-semitrailer
in various driving and weather scenarios across
Sweden, covering all seasonal variations (see Fig.
6). Each session was supervised by a safety driver
and test engineer to ensure safety and system reli-
ability.

Figure 6: Truck and Semi-Trailer System.
Image Courtesy of Scania CV AB.

The dataset includes comprehensive autonomy-related logs from various high fidelity sensors. Spe-
cial emphasis was placed on capturing edge cases and distribution shifts, particularly under chal-
lenging winter conditions. Routine tests included maneuvers on a high-speed test track and test
drives on public highways in different weather conditions including sun, snow and rain. Driving
scenarios included straight line driving, negotiating curves and slopes, lane changes, cut-ins, stop-
ping, following other actors and highway driving. Data was collected for fully autonomous driving,
while more dangerous maneuvers were collected by manually driving the vehicle with sensors and
logging enabled.

To assess autonomous performance in harsh win-
ter conditions, specialized testing was conducted in
February and March 2024 on dedicated tracks in
northern Sweden. The vehicle underwent rigorous
autonomous evaluations on packed snow and ice,
navigating scenarios such as cornering on snow, re-
sponding to ice patches, executing sudden avoidance
maneuvers, and performing sharp braking. Further-
more, test driving and sudden braking maneuvers
were conducted on a mu-split track (see Fig. 7),
where one side of the truck operated on dry asphalt
while the other side navigated ice. This split-friction
setup, known for inducing yaw moments, increases
the risk of trailer swings and jackknifing. These tests
were instrumental in analyzing vehicle stability and
refining control strategies to mitigate such risks ef-
fectively.

Figure 7: Mu-split test scenario. Image cour-
tesy of Colmis AB.

After data collection, the dataset was filtered, normalized, and conditioned as outlined in Section
4. Long drives primarily consisted of straight-line driving interspersed with occasional steering
and braking maneuvers. From the collected data, 10 hours of representative samples from various
drives over the year were selected for training. The training dataset was curated to ensure diversity
in maneuver types, capping straight-line driving at 40% and including critical scenarios. The test
dataset, particularly winter test data, emphasized varied conditions such as road slopes, turns, and
mu-split scenarios. This approach highlights challenging scenarios and distribution shifts, providing
a rigorous evaluation of performance under diverse and difficult conditions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL SETUP (SIMULATED ENVIRONMENTS)

(a) Ant (b) Pendulum (c) HalfCheetah (d) Hopper (e) Walker

Figure 8: Environments: Ant, Inverted Pendulum, HalfCheetah, Hopper, Walker

C.1 SIMULATION ENVIRONMENTS

C.1.1 ANT - QUADRUPEDAL ROBOT

The Ant environment models a four-legged quadrupedal robot, based on OpenAI Gym Brockman
et al. (2016). The primary objective is for the robot to advance forward as quickly as possible
by learning to regulate the torques at its joints. Each of the robot’s legs is equipped with two
actuated joints, where the torque values are restricted within the range [−1, 1]. The aim is to achieve
maximum forward velocity while maintaining stability on flat terrain. An illustration of the Ant
environment is shown in Figure 8a.

C.1.2 INVERTED PENDULUM

The Inverted Pendulum environment, adapted from OpenAI Gym Brockman et al. (2016), focuses
on the challenge of balancing a pole mounted on a cart. The cart can move along a horizontal track,
while the pole, hinged at its base, must remain upright. The action space consists of a continuous
horizontal force applied to the cart, a ∈ [−10, 10], and the goal is to prevent the pole from falling. If
the pole’s angle θ exceeds a threshold of ±12◦, the episode terminates. Episodes are evaluated over
1000 time-steps, during which the system must maintain balance. An illustration of the Inverted
Pendulum environment is shown in Figure 8b.

C.1.3 HALFCHEETAH

The HalfCheetah environment simulates a two-legged running robot, modeled after locomotion
tasks in OpenAI Gym Brockman et al. (2016). The robot’s objective is to learn how to run forward
by applying torques to its leg joints, with torque values constrained within the range [−1, 1]. The
aim is to achieve maximum forward velocity while maintaining stability. Each episode spans 1000
steps, where performance is evaluated based on speed, with penalties for excessive energy usage.
An illustration of the HalfCheetah environment is shown in Figure 8c.

C.1.4 HOPPER

The Hopper environment, adapted from OpenAI Gym Brockman et al. (2016), simulates a one-
legged robot tasked with learning to hop forward. The robot features three actuated joints—foot,
knee, and hip—each controlled by continuous torque inputs within the range [−1, 1]. The goal
is to achieve efficient forward movement while preventing the robot from falling. Episodes span
1000 timesteps, with performance evaluated based on rewards for forward motion and penalties for
instability. An illustration of the Hopper environment is shown in Figure 8d.

C.1.5 WALKER

The Walker environment simulates a bipedal robot, inspired by OpenAI Gym’s locomotion tasks
Brockman et al. (2016), where the robot must learn to walk forward. The robot has two legs, each
equipped with actuated joints at the hip, knee, and ankle, with torques controlled by continuous
values in the range [−1, 1]. The objective is to move forward while maintaining balance and avoiding

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

falls. Episodes last for 1000 timesteps, and the robot is rewarded for forward progress, with penalties
applied for instability and excessive energy consumption. An illustration of the Walker environment
is shown in Figure 8e.

C.2 DATA COLLECTION USING TD3 AGENT

The data for these environments was collected using a trained expert agent, specifically a Twin
Delayed Deep Deterministic (TD3) agent Fujimoto et al. (2018). The TD3 agent was trained for 1
million timesteps before being used for data collection. A total of 100k trajectories were collected
for both training and testing, with 10k trajectories randomly selected from each set for the final
dataset.

Each environment was run under three different conditions: (1) with process noise, (2) with observa-
tion noise, and (3) without noise (clean). The resulting datasets were stored for future use in training
and evaluation purposes.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D ADDITIONAL RESULTS

The following section provides a detailed evaluation of the proposed methods, Blak and BlakVar,
across five simulated environments: Hopper, HalfCheetah, Ant, InvertedPendulum, and Walker2d.
Each environment is tested under three conditions: normal (no noise), observation noise, and process
noise. These settings are designed to assess the models’ robustness, adaptability, and overall perfor-
mance in dynamic and complex control tasks. Results are presented in two forms: validation loss
plots during the training process, which illustrate the learning dynamics over time, and consolidated
tables showing the final loss (mean ± standard deviation) for each environment and condition.

Blak, which leverages a robust transformer-based architecture, and BlakVar, designed for real-time
adaptability with a variational transformer decoder, are compared against a range of baseline meth-
ods, including MCDropout, BayesianNN, Dko, NODE, Desko, and EMLP. The following analysis
highlights the strengths of Blak and BlakVar, particularly in handling noise and maintaining low loss
across environments with varying levels of complexity.

D.1 INVERTEDPENDULUM

The InvertedPendulum environment, due to its simplicity, serves as a baseline for evaluating model
performance. The results are summarized in Table 3, and Figure 9 shows the loss/valid trends for
each condition.

Baseline Normal Observation Noise Process Noise
MCDropout 0.0093 ± 0.0008 0.0217 ± 0.0031 0.0175 ± 0.0023
Blak 0.0002 ± 0.0000 0.0009 ± 0.0001 0.0010 ± 0.0000
BayesianNN 0.0210 ± 0.0030 0.0182 ± 0.0006 0.0286 ± 0.0034
Dko 0.0001 ± 0.0000 0.0008 ± 0.0000 0.0009 ± 0.0000
NODE 0.0033 ± 0.0028 0.0093 ± 0.0021 0.0058 ± 0.0008
Desko 0.0006 ± 0.0001 0.0012 ± 0.0000 0.0022 ± 0.0000
EMLP 0.0001 ± 0.0000 0.0002 ± 0.0009 0.0012 ± 0.0001
BlakVar 0.0008 ± 0.0004 0.0012 ± 0.0008 0.0042 ± 0.0010

Table 3: Consolidated final loss (mean ± std) across noise conditions for InvertedPendulum. Best
results are highlighted in bold.

All methods performed well in the InvertedPendulum environment due to its simplicity, as reflected
in the uniformly low loss values. Blak demonstrated competitive performance across all condi-
tions, achieving consistently low losses, such as 0.0002 under normal conditions and , 0.0009 under
observation noise, and 0.0010 under process noise. BlakVar, optimized for real-time adaptability,
maintained reasonable performance with losses of 0.0012 under observation noise and 0.0042 under
process noise, despite its focus on generalization.

Figure 9: Loss/valid trends for the InvertedPendulum environment under different conditions. (Left)
Normal. (Right) Observation Noise. (Center) Process Noise.

D.2 WALKER2D

The Walker2d environment evaluates more complex dynamics compared to InvertedPendulum. The
results, shown in Table 4, highlight that Blak performs strongly across all noise conditions, with
BlakVar also showing competitive performance. Figure 10 visualizes the loss/valid trends.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Baseline Normal Observation Noise Process Noise
MCDropout 0.2532 ± 0.0220 0.2936 ± 0.0163 2.2414 ± 0.0266
Blak 0.0368 ± 0.0017 0.0596 ± 0.0021 0.9453 ± 0.0190
BayesianNN 0.2249 ± 0.0097 0.5475 ± 0.0071 1.9081 ± 0.0444
Dko 0.1694 ± 0.1615 0.2037 ± 0.1678 1.1754 ± 0.3908
NODE 0.1345 ± 0.0067 0.1596 ± 0.0077 1.3679 ± 0.0630
Desko 0.7040 ± 0.7137 0.4143 ± 0.0203 2.3168 ± 0.0155
EMLP 0.3110 ± 0.0223 0.3427 ± 0.0368 1.5425 ± 0.0292
BlakVar 0.1838 ± 0.0104 0.2098 ± 0.0024 1.0422 ± 0.0036

Table 4: Consolidated final loss (mean ± std) across noise conditions for Walker2d. Best results are
highlighted in bold.

Blak achieves the lowest final loss across all noise conditions, with notable margins under normal
conditions (0.0368) and observation noise (0.0596). BlakVar also performs well, achieving compet-
itive results such as 0.1838 under normal conditions and 1.0422 under process noise. While Blak
outperforms in most scenarios, the results of BlakVar demonstrate its adaptability and strength in
handling complex environments, particularly in noisy settings.

Figure 10: Loss/valid trends for the Walker2d environment under different conditions. (Left) Nor-
mal. (Center) Observation Noise. (Right) Process Noise.

A key observation is the overall robustness of both Blak and BlakVar under noise. While Blak con-
sistently achieves lower losses, BlakVar remains competitive, especially in scenarios with process
noise, where its final loss of 1.0422 is close to that of Blak. The gap between these methods and the
other baselines increases with noise, emphasizing their capability to handle challenging conditions
effectively.

D.3 HOPPER

The Hopper environment introduces moderately complex dynamics, making it a good benchmark for
evaluating robustness and adaptability. The results, summarized in Table 5, demonstrate that Blak
achieves the lowest loss across all conditions, while BlakVar shows competitive performance,
especially under noisy settings. Figure 11 illustrates the loss/valid trends across the three noise
conditions.

Baseline Normal Observation Noise Process Noise
MCDropout 0.3904 ± 0.0056 0.4813 ± 0.0153 0.8418 ± 0.0217
Blak 0.0478 ± 0.0026 0.0916 ± 0.0024 0.2581 ± 0.0051
BayesianNN 0.2923 ± 0.0121 0.6607 ± 0.0182 0.6950 ± 0.0113
Dko 0.0911 ± 0.0148 0.1321 ± 0.0158 0.3318 ± 0.0512
NODE 0.0887 ± 0.0146 0.1326 ± 0.0119 0.2766 ± 0.0182
Desko 0.4193 ± 0.0287 0.5291 ± 0.0089 1.0950 ± 0.0332
EMLP 0.1823 ± 0.0113 0.2723 ± 0.0345 0.4921 ± 0.0582
BlakVar 0.1604 ± 0.0128 0.1938 ± 0.0098 0.3127 ± 0.0196

Table 5: Consolidated final loss (mean ± std) across noise conditions for Hopper. Best results are
highlighted in bold.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Blak consistently achieves the lowest final loss under all conditions, with notable results such as
0.0478 under normal conditions and 0.0916 under observation noise. BlakVar, while slightly less
performant, remains competitive with results such as 0.1604 under normal conditions and 0.3127
under process noise. Among the baselines, NODE and Dko show relatively strong results, although
they consistently lag behind Blak.

Figure 11: Loss/valid trends for the Hopper environment under different conditions. (Left) Normal.
(Center) Observation Noise. (Right) Process Noise.

A key observation in this environment is that the gap between Blak and other methods widens
as noise increases, particularly under process noise. BlakVar, designed for real-time adaptability,
maintains strong performance and closes the gap to Blak in noisier conditions. Among the baselines,
NODE and Dko demonstrate robust performance but fail to match the adaptability of Blak and
BlakVar under higher noise levels.

D.4 ANT

The Ant environment represents a highly complex control scenario, testing the robustness of models
in handling intricate dynamics. The results, summarized in Table 6, show that Blak performs
consistently well across all conditions, while BlakVar demonstrates competitive performance,
particularly under noisier settings. Figure 12 visualizes the loss/valid trends for this environment.

Baseline Normal Observation Noise Process Noise
MCDropout 0.4005 ± 0.0038 0.4225 ± 0.0032 0.6478 ± 0.0045
Blak 0.2646 ± 0.0028 0.2846 ± 0.0046 0.4143 ± 0.0017
BayesianNN 0.4054 ± 0.0132 0.5756 ± 0.0116 0.6136 ± 0.0108
Dko 0.3340 ± 0.0331 0.3428 ± 0.0367 0.3255 ± 0.0315
NODE 0.6743 ± 0.0493 0.7446 ± 0.0699 0.7428 ± 0.0189
Desko 0.5318 ± 0.0036 0.5633 ± 0.0029 0.7746 ± 0.0099
EMLP 0.3159 ± 0.0112 x ± x 0.3966 ± 0.0396
BlakVar 0.3929 ± 0.0263 0.4721 ± 0.0249 0.6092 ± 0.0246

Table 6: Consolidated final loss (mean ± std) across noise conditions for Ant. Best results are
highlighted in bold. An x denotes that the method was unable to converge

Blak achieves the lowest loss in all noise conditions, with results such as 0.2646 under normal
conditions and 0.4143 under process noise. BlakVar maintains strong results, with losses of 0.3929
under normal conditions and 0.6092 under process noise, showing its adaptability to challenging
environments. Among the baselines, Dko and EMLP exhibit robust results but remain less effective
in high-noise scenarios.

A key observation in this environment is the stability of Blak’s performance across all noise condi-
tions, despite the complexity of the task. BlakVar, while not as consistent as Blak, remains compet-
itive and demonstrates its strength under process noise. Among the baselines, NODE struggles with
noise, while Dko and EMLP perform relatively well but show higher variability.

D.5 HALFCHEETAH

The HalfCheetah environment, known for its challenging dynamics and complexity, serves as a
benchmark for testing the resilience and adaptability of models. The results, shown in Table 7,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 12: Loss/valid trends for the Ant environment under different conditions. (Left) Normal.
(Center) Observation Noise. (Right) Process Noise.

Baseline Normal Observation Noise Process Noise
MCDropout 3.8633 ± 0.0444 5.2776 ± 0.2730 4.3792 ± 0.1295
Blak 0.7480 ± 0.0095 1.4726 ± 0.0101 0.8866 ± 0.0150
BayesianNN 1.7198 ± 0.0461 5.2428 ± 0.1864 2.1519 ± 0.3580
Dko 2.8472 ± 2.3590 2.7811 ± 1.5627 2.5508 ± 2.0130
NODE 4.8976 ± 0.6158 6.4289 ± 0.5980 6.3986 ± 1.1861
Desko 1.7308 ± 0.1716 3.4415 ± 0.2946 2.0143 ± 0.1917
EMLP x ± x x ± x x ± x
BlakVar 1.1722 ± 0.0192 1.7671 ± 0.1189 1.3070 ± 0.0140

Table 7: Loss/valid trends for the Half-Cheetah environment under different conditions. (Left)
Normal. (Center) Observation Noise. (Right) Process Noise.

indicate that both Blak and BlakVar exhibit strong performance across all conditions, with Blak
achieving the best results. Figure 13 illustrates the loss/valid trends.

Blak achieves the lowest loss in all conditions, demonstrating its ability to adapt to the environment’s
complexity. Notably, it records a final loss of 0.7480 under normal conditions, 1.4726 under obser-
vation noise, and 0.8866 under process noise. BlakVar also shows strong performance, with results
such as 1.1722 under normal conditions and 1.3070 under process noise, indicating its robustness
and adaptability to challenging conditions.

Figure 13: Loss/valid trends for the HalfCheetah environment under different conditions. (Left)
Normal. (Center) Observation Noise. (Right) Process Noise.

One key observation is the large performance gap between Blak and the baselines, especially under
noisy conditions. The results highlight Blak’s ability to maintain low losses even in complex scenar-
ios, while BlakVar remains competitive, particularly under process noise. Baselines like Dko and
NODE struggle with the complexity of this environment, showing higher variability and loss values.

D.6 MOTION PLANNING IMPLEMENTATION

To address the motion planning problem for our truck and trailer system, we employ a sampling-
based Rapidly-exploring Random Tree (RRT) algorithm. Unlike traditional RRT approaches that
sample directly from the state space, we sample actions from the action embedding space thanks to
the variational action encoder. The variational encoder maps the action space into a Gaussian latent
space, enabling efficient sampling that accounts for the dynamics of the system. Each sampled
action is then passed through the Bayesian Koopman dynamics model to predict the corresponding
future states over a specified planning horizon. This approach ensures that the generated paths

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

are dynamically feasible and consistent with the complex physical constraints of the truck-trailer
system.

The planner generates a tree of candidate trajectories by iteratively sampling actions, predicting
state sequences, and evaluating the cost associated with each trajectory. At each iteration, the al-
gorithm selects the trajectory that minimizes a cost function considering for example: proximity to
the goal, smoothness, and collision avoidance. By integrating the Koopman-based dynamics model,
the planner accurately predicts the tractor’s positions, velocities, and angles, as well as the tractor-
trailer articulation angle for the receding horizon lengths (10 seconds into the future in our case).
This ensures that the planned paths navigate toward the goal while avoiding obstacles and main-
taining dynamic feasibility. Algorithm 1 outlines the proposed planning approach. To validate our
planning algorithm we apply it to a motion planning problem that involves navigating a truck and
trailer system towards randomly generated goal states while ensuring dynamic feasibility and ob-
stacle avoidance. The goal states are randomly spawned within a predefined region of the planning
space, representing potential destinations the vehicle must reach. At each time step, the planner is
tasked with determining the positions, velocities, and angular configurations of the tractor, as well as
the articulation angle between the tractor and trailer, over a specified planning horizon. The planner
must not only compute a collision-free path to the goal but also ensure that the generated trajectory
respects the physical and dynamic constraints of the truck-trailer system. This requires precise han-
dling of the vehicle’s nonlinear dynamics, particularly in complex scenarios involving tight turns,
steep gradients, or low-traction surfaces. An example is illustrated in Fig. 5

Algorithm 1 RRT-based Motion Planning Using Variational Action Sampling

Require: Goal state sgoal, initial state sstart, planning horizon H , number of iterations N
Ensure: Dynamically feasible path from sstart to sgoal

1: Initialize tree T with root node sstart
2: for i = 1 to N do
3: Sample action a ∼ N (µ, σ2) from the variational action encoder
4: Predict future states st, st+1, . . . , st+H using Koopman dynamics model
5: if predicted trajectory reaches goal and avoids obstacles then
6: Add predicted trajectory to tree T
7: end if
8: end for
9: Select optimal trajectory from T that minimizes cost function J , considering:

• Distance to goal: ∥sH − sgoal∥
• Smoothness:

∑H
t=1 ∥at − at−1∥

• Collision avoidance: penalty for states near obstacles
10: return optimal trajectory

D.7 RUNTIME ANALYSIS

All runtime experiments were conducted on an NVIDIA A10 GPU to ensure consistency and com-
parability. The reported runtimes correspond to the inference phase on the Hopper environment,
chosen for its moderate complexity and suitability for benchmarking. Each method was evaluated
based on its average runtime per inference step.

For our method, BLAK, the runtime includes the complete inference process using the Bayesian
Koopman operator. For BLAKVar, the runtime reflects the efficiency of directly sampling from the
variational embedding space, bypassing the action encoding step. This modification significantly
improves computational efficiency while maintaining prediction accuracy. The runtimes for other
methods are measured under standard inference settings. All reported times represent the mean of
1,000 inference operations to ensure reliability and eliminate variability due to hardware fluctua-
tions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 8: Inference Runtime Analysis (Average Time per Step in milliseconds).

Method Runtime (ms)
BLAK .135
BLAKVar .097
Deep Koopman Operator (DKO) .206
Deep Stochastic Koopman (Desko) .110
Bayesian Neural Networks (BNNs) 1.35
MC Dropout .947
Neural ODEs (NODE) .209
Ensemble MLP (EMLP) .494

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E ABLATION STUDIES

In this section, we conduct ablation studies to analyze the impact of key components in our method.
Specifically, we evaluate the contribution of Bayesian learning across all environments and analyze
the effect of varying history lengths on prediction accuracy in both noise-free and noisy settings.
These experiments help identify configurations that offer the best trade-off between accuracy and
computational efficiency.

E.1 EFFECT OF BAYESIAN LEARNING

We compare the performance of our method with and without Bayesian learning across all six envi-
ronments, including both noise-free and noisy conditions. Table 9 summarizes the results, showcas-
ing the importance of Bayesian modeling in improving prediction accuracy and robustness across
diverse scenarios.

Table 9: Performance with and without Bayesian learning (Mean Squared Error ± Standard Devia-
tion).

Environment Without Bayesian Learning With Bayesian Learning
Truck Dynamics 0.1306 0.1016
Hopper 0.0482 0.0478
HalfCheetah 0.3064 0.2646
Ant 0.2131 0.2002
Walker2d 0.0383 0.0368
InvertedPendulum 0.0042 0.0002

E.2 EFFECT OF HISTORY LENGTH

To evaluate the impact of history length (q), we conduct experiments on four environments: two
noise-free settings (Hopper, HalfCheetah) and two noisy settings (Truck Dynamics, Ant with Pro-
cess Noise). The history length determines the amount of temporal context the trajectory encoder
incorporates, which can influence prediction accuracy. Table 10 reports the results for varying his-
tory lengths, highlighting the trade-offs between context size and accuracy.

Table 10: Effect of History Length on Prediction Accuracy (Mean Squared Error ± Standard Devia-
tion).

Environment 1 5 10 20
Hopper (Noise-Free) 0.0516 0.0509 0.0493 0.0478
HalfCheetah (Noise-Free) 0.8223 0.7952 0.7624 0.7480
Truck Dynamics (Noisy) 0.1142 0.1101 0.1060 0.1016
Ant (Process Noise) 0.4633 0.4521 0.4349 0.4143

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F IMPLEMENTATION DETAILS

This section provides comprehensive implementation details for the proposed method, Bayesian
Learning with Adaptive Koopman Operators (BLAK), as well as concise descriptions of the base-
lines used for comparison. We detail the architectural components and training hyperparameters
employed in the experiments. Common configurations across different experiments are grouped at
the end to avoid repetition.

F.1 PROPOSED METHOD: BAYESIAN LEARNING WITH ADAPTIVE KOOPMAN OPERATORS
(BLAK)

Our proposed method integrates Koopman operator theory with transformer-based architectures to
model system dynamics effectively. The implementation leverages Bayesian learning for uncer-
tainty quantification and adaptation to dynamic environments. We develop two architectures: Blak
and BlakVar, both leveraging a Transformer-based encoder-decoder framework to model state-action
dynamics. Blak employs deterministic decoder, while BlakVar extends this with variational decoder
for real-time opreation. Both methods use the same transformer-based encoder-decoder architecture.
Inputs are projected into the embedding dimension through linear layers. To effectively capture
position-dependent information, we employ Rotary Positional Encoding (RoPE) (Su et al., 2024)
to embed sequence positions. The encoder leverages regular self-attention mechanism. However,
for the decoder, we employ sliding-window causal attention with a window size of 8, restricting
attention to current and past context and ensuring causality in predictions. The encoder processes
historical state-action sequences of 20 time steps as concatenated state-action vectors of dimension
nx + na, where nx and na represent the state and action dimensions, respectively. A linear embed-
ding layer projects these inputs into a hidden dimension of 32. The decoder handles future action
sequences, which are similarly projected into the same hidden dimension using a linear embedding
layer. A learnable start token is prepended to the decoder input sequence to initialize decoding.

F.2 BASELINES IMPLEMENTATION DETAILS

Below, we provide concise implementation details for each baseline method. Common training
configurations are summarized in Section F.3.

Deep Koopman with Control (DKO) The DKO method models and controls nonlinear systems
using two encoder networks—for state and action embeddings—and the Koopman operator. The
state encoder maps input states to a higher-dimensional embedding concatenated with the original
state, using the following fully connected layers: [State Dimension → 32 → 64 → 128 → 64 →
32 → State Embedding Dimension] with ReLU activations (except output). The action encoder
processes state-control interactions through the layers: [State+Control Dimension → 32 → 64 →
128 → 64 → 32 → Control Embedding Dimension] with similar activations. The Koopman operator
comprises a linear operator A (initialized Gaussian and orthogonalized via SVD) and a control
matrix B.

Neural Ordinary Differential Equation (Neural ODE) The Neural ODE model captures
continuous-time dynamics by modeling the time derivative of the state as a neural network func-
tion, integrated over time using an ODE solver. The ODE function fθ(x, a) is parameterized by
a neural network. The input layer consists of concatenated state and action, dimension nx + na,
followed by a fully connected layer with 32 neurons. Hidden layers have sizes 32, 64, 96, 128, 96,
64, 32 neurons with ReLU activations. The output layer outputs the time derivative of the state,
dimension nx. We use a fourth order Runge-Kutta method as an ODE solver implemented using the
torchdiffeq library.

Monte Carlo Dropout (MC Dropout). The MC Dropout model estimates predictive means and
uncertainties by using dropout layers during training and inference. The dynamics function, param-
eterized by a neural network, takes a concatenated state-action input (nx+na), passes through fully
connected layers with sizes [32 → 32 → 64 → 96 → 128 → 96 → 64 → 32], uses ReLU activations,
a dropout rate of 0.15, and outputs the predicted next state (nx).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Ensemble Neural Networks. The Ensemble Neural Network model uses ten independently
trained feedforward networks to capture dynamics and estimate uncertainties via ensemble vari-
ance. Each network processes a concatenated state-action input (nx + na) through fully connected
layers [32 → 32 → 64 → 96 → 64 → 32] with ReLU activations and outputs the predicted next
state (nx).

Bayesian Neural Network (BNN) The Bayesian Neural Network (BNN) models predictive un-
certainty by treating weights as Gaussian distributions. The dynamics model uses Bayesian linear
layers with variational distributions over weights and biases. Input state-action vectors (nx + na)
pass through layers with dimensions: [32 → 64 → 128 → 64 → 32], ReLU activations, and output
the next state (nx). Priors are Gaussian with mean 0 and variance 1.

The loss combines mean squared error (MSE) and KL divergence between posterior and prior dis-
tributions:

L = Ldata + β KL(posterior ∥ prior),
where β = 10−5. During inference, Monte Carlo sampling provides mean predictions and variances,
constructing diagonal covariance matrices for uncertainty estimation.

F.3 COMMON IMPLEMENTATION DETAILS

Certain implementation aspects are common across all models, summarized here to avoid repetition.

All models (unless otherwise stated) are trained using the AdamW optimizer with a learning rate of
3× 10−3 and a weight decay of 1× 10−2. A StepLR scheduler is employed to reduce the learning
rate by a factor of 0.3 at every one-third of the total training epochs. Training is conducted over 300
epochs with a batch size of 1024. The training horizon is set to 200 timesteps, and the prediction
horizon extends to 300 timesteps. Input states and actions are standardized to have zero mean and
unit variance.

The Mean Squared Error (MSE) between predicted and actual future states serves as the primary
loss function. For BlakVar and Bayesian neural networks, an additional KL divergence loss is in-
corporated alongside the MSE loss. To ensure training stability, gradient clipping with a maximum
norm of 1.0 is applied to all feedforward networks.

28

	Introduction
	Background & Related Work
	Methodology
	Koopman Theory for Modeling Nonlinear Dynamical Systems
	Bayesian Learning of Adaptive Stochastic Koopman Operator
	Integration into Motion Planning

	Experimental Results
	Conclusion & Future Work
	Posterior Predictive Distribution
	Truck and Trailer Data Collection
	Experimental Setup (Simulated Environments)
	Simulation Environments
	Ant - Quadrupedal Robot
	Inverted Pendulum
	HalfCheetah
	Hopper
	Walker

	Data Collection using TD3 Agent

	Additional Results
	InvertedPendulum
	Walker2d
	Hopper
	Ant
	HalfCheetah
	Motion Planning Implementation
	Runtime Analysis

	Ablation Studies
	Effect of Bayesian Learning
	Effect of History Length

	Implementation Details
	Proposed Method: Bayesian Learning with Adaptive Koopman Operators (BLAK)
	Baselines Implementation Details
	Common Implementation Details

