

Abstract—Imputation is one of the methods to improve the

quality of a dataset. The imputation problem can be solved using

statistical techniques, machine learning algorithms, and

generative models. This research proposes improving the standard

imputation algorithm based on the Diffusion Model. We propose

to use Perlin noise or gradient noise generation to generate noise

at each step of the diffusion mode and propose a scheduler to

improve the performance of the diffusion model-based imputation

algorithm. Perlin noise generation and cosine scheduler have a

positive influence on improving the performance of non-normal

data imputation. Four real-world datasets are used to evaluate our

proposed methods. Based on the evaluation tests of the RMSE

value, our proposed method produces a 10% lower RMSE value

than the baseline imputation algorithms based on diffusion

models, GAN, and VAE.

Index Terms— Tabular data, Imputation, Cosine Scheduler,

Stable Diffusion Models, Gradient Noise

I. INTRODUCTION

ata processing should be improved [1]. Missing data can

occur due to incomplete form filling and questionnaire

questions needing to be filled in [2]. Other causes of

missing data include sensors that fail to record data [3]. The

missing data will affect the statistics and data analysis [4]. To

accommodate the problem of missing data, the primary

reference that can be used is to categorize data based on the

MCAR (Missing Completely at Random), MNAR (Missing not

at random), and MAR (missing at random) categories [5].

The simplest way to deal with missing data is by not using

the data. Disposing of the data will cause a new bias in the data.

So, the researchers tried to impute artificial values into the data.

The simplest imputation method is by using statistics [7]. Some

of the machine learning algorithms used are K-Nearest

Neighbor (KNN) [6], MICE [9], and Missforest [8].

Furthermore, researchers also try to use neural network

techniques in imputing data. One of the algorithms is Multi-

Layer Perceptron [18]. Deep-learning techniques perform

imputations based on Auto Encoder [30]. The development of

generative modeling also supports solutions to imputation

problems. The generative algorithm used for imputation is

GAIN [43]. Testing several imputation techniques against

various datasets has been carried out by Miao et al. [10]. The

diffusion model technique is also used to overcome the problem

of missing data. The diffusion model technique used is CSDI

(Conditional Score Diffusion Model Imputation) [11].

Score-based generative models have shown competitive

outcomes compared to state-of-the-art methods across various

implementation tasks. These tasks include generative images

[20][21], audio processing [22], and shape generation [23]

Song. et al. contrast the performance of score-based diffusion

models with vanilla Continuous Normalizing Flows and state-

of-the-art methods [20]. The framework of score-based

diffusion models proposes the gradual diffusion of distributions

based on noise distribution. Stochastic differential equations are

employed to learn from the distribution of sampled data. Score-

based diffusion models exhibit advantages during training

compared to the vanilla Continuous Normalizing Flows (CNF)

method [20]. The reason is that the maximum likelihood

objective for CNF training requires an expensive Ordinary

Differential Equation (ODE) solver for each optimization step.

In contrast, score-based diffusion models utilize a weighted

score-matching loss combination for score matching, which is

less computationally expensive. Evaluation results of score-

based models show likelihood outcomes that compete favorably

with recent autoregressive models, with minor degradation

observed in Fréchet Inception Distances [24].

Algorithms developed to impute data are numerous, but most

real-world data have an abnormal distribution. This anomalous

data causes the results of some algorithms to fail to work well.

The process of machine learning, deep learning, and generative

models makes the conversion of abnormal data into a normal

distribution so that machine learning calculations can get the

best results. In this research, the author will propose an

imputation method in the diffusion models algorithm for non-

normal or extreme data. The improvement process involves

noise generation, loss function, and noise scheduler changes.

GradDiff-N-Tab: Gradient Noise Tabular Data

Diffusion Model Imputation

Ari Wibisono

Faculty of Computer Science,

Universitas Indonesia

Indonesia

ari.w@cs.ui.ac.id

Denny

Faculty of Computer Science,

Universitas Indonesia

Indonesia

denny@cs.ui.ac.id

Petrus Mursanto

Faculty of Computer Science,

Universitas Indonesia

Indonesia

santo@cs.ui.ac.id

 Simon See

NVIDIA, Senior Member IEEE

Singapore

ssee@nvidia.com

D

II. BACKGROUND & PROBLEM FORMULATION

A. Diffusion models imputation

Assume a sample 𝑥0 that has missing values. Based on Song.

et al. [11], we formulate to produce imputation target 𝑥𝑡
𝑡𝑎 𝜖 𝑥0

𝑐𝑜

by using known data 𝑥0
𝑐𝑜 𝜖 𝑥⬚

𝑡𝑎. Then, we can assume that the

goal of the probabilistic model is to estimate the distribution of

 𝑞 (𝑥0
𝑡𝑎 | 𝑥0

𝑐𝑜) by modeling 𝑝𝜃(𝑥0
𝑡𝑎 | 𝑥0

𝑐𝑜). So, we can notate

all known values as 𝑥0
𝑐𝑜 and missing values as 𝑥0

𝑡𝑎, so the

backward imputation process will be as in formula 2.

𝑞𝜃(𝑥0:𝑇
𝑡𝑎 | 𝑥0

𝑐𝑜) ∶= 𝑝(𝑥0:𝑇
𝑡𝑎) ∏ 𝑝𝜃(𝑥𝑡−1

𝑡𝑎 |𝑥𝑡
𝑡𝑎, 𝑥0

𝑐𝑜),

𝑇

𝑡=1

𝑥𝑇
𝑡𝑎 ~𝒩 (0, Ι).

(1)

𝑝𝜃(𝑥𝑡−1
𝑡𝑎 | 𝑥𝑡

𝑡𝑎, 𝑥0
𝑐𝑜) ∶

= 𝒩 (𝑥𝑡−1
𝑡𝑎 ; 𝜇𝜃 (𝑥𝑡

𝑡𝑎, 𝑡 | 𝑥0
𝑐𝑜), 𝜎𝜃 (𝑥𝑡

𝑡𝑎, 𝑡 | 𝑥0
𝑐𝑜)Ι).

(2)

B. Gaussian Noise

Gaussian noise or noise based on normal distribution is made

based on a probability density function (pdf) with normal

distribution parameters [29].

𝜑 (𝑧) =
1

𝜎 √2𝜋
 𝑒

−(𝑧−𝜇)2

2𝜎2

(3)

In formula 3, the notation 𝜎 is the standard deviation, 𝑧

represents the gray level, 𝜇 is the average value. Gaussian noise

can be minimized in image processing with several filtering and

smoothing techniques [31].

C. Perlin Noise / Gradient Noise

To create noise, we generate pseudo-random numbers

[12][13]. This generator is a form of smooth function. We can

add noise functions with different frequencies and amplitudes

in Perlin noise [49]. We try to create functions with increasing

frequency variations: 𝑛𝑜𝑖𝑠𝑒(𝑡), 𝑛𝑜𝑖𝑠𝑒(2𝑡), 𝑛𝑜𝑖𝑠𝑒(4𝑡),
… 𝑛𝑜𝑖𝑠𝑒(2𝑖𝑡). In this case, we do not change the function; we

only change the frequency parameter.

High frequencies usually have low amplitudes. In Perlin

noise, we can configure the amplitude of each frequency. The

value that helps to configure this is persistence. 𝑝⬚. The

persistence value is between 0 and 1. The higher the persistence

value, the more visible the high frequencies will be. In formula

4, 𝑝𝑖 is the amplitude at the 𝑖𝑡ℎ stage. The final noise is the sum

of the persistence defined by 𝑝𝑒𝑟𝑙𝑖𝑛(𝑡).

The user can change or control the octave value by changing

the value of 2𝑖 and the persistence value 𝑝𝑖.

𝑝𝑒𝑟𝑙𝑖𝑛(𝑡) = ∑ 𝑝𝑖

𝑘

𝑖=0

 𝑛𝑜𝑖𝑠𝑒(2𝑖 . 𝑡)

(4)

III. PROPOSED METHOD

We proposed Perlin noise imputation & scheduling for

diffusion models. A good noise is a noise that has a

homogeneous pattern visualization random characteristics, and

its value changes slowly. Generally, noise features are similar

in size between one noise and another. Perlin noise can have

better noise characteristics than normal noise. In normal noise,

we try to interpolate a random value along the line with a

random integer. These values are randomly degenerate; some

deals have the same pattern, but the noise changes quickly in

some parts. The place where the noise changes very fast is said

to be high frequency. While the place where the noise changes

slowly is said to be low frequency. We can conclude that normal

noise is built on high and low frequencies.

Perlin noise also does the same thing in producing random

integer values. However, Perlin noise uses a gradient tangent to

the 1D noise function to create noise values. No matter the

direction of the gradient produced by Perlin noise, the value will

increase and decrease along with the previous value. If two

lattice points have opposite gradient directions, the noise

function will produce an S-shape. By using this construction,

the frequencies of Perlin noise have a similar size. Thus, the

frequency spectrum of Perlin noise is more generalized than

normal noise with high and low frequencies. Perlin noise uses

gradient measurements to generate noise, while normal noise

only uses random values.

A. Perlin Noise Imputation

In Gaussian noise, we have a forward process function.

𝑥𝑡 = √𝛼̃𝑡 𝑥0 + √1 − 𝛼̃𝑡 𝜖

(5)

Where 𝜖 is Gaussian noise with an objective function

min 𝐿𝑠𝑖𝑚𝑝𝑙𝑒

min 𝐿𝑠𝑖𝑚𝑝𝑙𝑒 = 𝔼𝑡,𝑥0,𝜖‖𝜖 − 𝜖𝜃(√𝛼̃𝑡 𝑥0 + √1 − 𝛼̃𝑡 𝜖, 𝑡)‖
2

(6)

We try to introduce Perlin noise into the forward process

equation of diffusion models,

𝑥𝑡
𝑝

= √𝛼̃𝑡 𝑥0 + 𝜖𝑝𝑒𝑟𝑙𝑖𝑛(√1 − 𝛼̃𝑡)

(7)

Following the standard diffusion model objective function, we

can denote the forward process of Perlin noise in this form.

𝑥𝑡
𝑝

= √𝛼̃𝑡 𝑥0 + 𝜖𝑝𝑒𝑟𝑙𝑖𝑛(√1 − 𝛼̃𝑡)
(8)

 This approach will prevent noisy data from degenerating by

multiplying. 𝛼̃𝑡 with ϵ, but the noise fusion process is produced

when the Perlin function generates the noise directly

 𝜖𝑝𝑒𝑟𝑙𝑖𝑛(√1 − 𝛼̃𝑡) With this approach, the noise fraction at each

t is no longer rigidly degenerate but has a softer specification.

With the approach of input noise with a more stable frequency,

the input of noisy data into the network also becomes stable. So,

the distribution of input data also has implications for the

stability of the data. Noisy data using Perlin noise is closer to

normal distribution characteristics than Gaussian normal. As

we know, to produce perfect features as input into the network,

researchers try to make the input data into the network have a

normal distribution. One of the ways used is by using a

logarithmic function so that the values entering the deep

learning network can be optimally trained for feature

representation.

B. Scheduling

The diffusion model process [14] is a process where the input

given is a noise sample. The noise sample is slowly input into

the diffusion model based on the fraction schedule. The noise

fraction will be input into the diffusion model process in the

forward and backward processes.

 The forward process is the training process, where the data

is slowly given noise and inputted with an alpha value that

increases with each step. At the same time, the backward

process is a generative process, where the input into the

diffusion model process is the opposite of the forward or

training process. So, the diffusion model that has been trained

will be inputted with the full noise and iterated in as many steps

as previously initialized. If in the previous example using step

10 and fraction between 0 and 1, then the backward process will

do scheduling from alpha 1, 0.9, 0.8 . . , 0.1. So that after this

backward process, the data generated from the model with full

noise input will be obtained, which will slowly decrease the full

noise fraction scheduling.

Chent. et al. tried to evaluate various noise scheduling

variations to be affiliated with the diffusion models technique

[15]. Lin et al. have also tried to contribute to their findings by

scheduling weaknesses at the beginning and end of scheduling

in the diffusion model, where the improvements made can

increase the image contrast in the generative model results [16].

The scheduler in the diffusion model is represented in the

notation 𝛼̃𝑡 in Equation (8). The value of 𝛼̃𝑡 will be produced

as a parameter for the formation of noisy data with Perlin noise

𝑥𝑡
𝑝
. In this research, we propose to use the cosine function to

maximize and improve the

performance of Perlin noise. Using the cosine function can

maximize the input forwarding information during training.

𝑞 (𝑥1:𝑇|𝑥0)

(9)

Changing data from the original data 𝑥0 to data with

maximum noise 𝑥1:𝑇 can be slowed down by the cosine

function. With a slower step process, the deep learning network

will obtain information about the noisy data at step t before it

becomes maximum noise. So, the deep learning network

obtains more information about the data before it becomes noise

compared to the standard approach.

In this research, we propose to use a cosine scheduler to

maximize our proposed Perlin noise generation. This approach

is chosen because the adapted step cosine function allows the

deep learning model to obtain more data information before it

slowly becomes noise. There are 100 steps to reach maximum

alpha or full noise (1). Information from the data can still be

maximized very slowly up to step 85 by the cosine scheduler.

After step 85, cosine starts adding alpha with a value of 0.2 and

continues to increase until full noise one at step 100. So, at steps

0 to 85, the network model can learn data with minimal noise,

so the deep learning network model obtains information about

the data better than other schedulers. If we compare quadratic

and linear at step 60, the alpha values are 0.2 and 0.6. With these

values, the amount of noise incorporated into the data becomes

quite large. While in cosine, the alpha value at step 60 is only

0.03, so the deep learning network model still has enough

information compared to the influence of noise.

𝛼̅𝑡 =
𝑓(𝑡)

𝑓(0)
, 𝑓𝑡 = cos2 (

𝑡 + 𝑠

1 + 𝑠
.

𝜋

2
)

(10)

𝑡 is a step, 𝑠 is a floating number parameter to form the cosine

function.

In looking at the loss diffusion model perspective, we need

to see how the model learns from complete noise to degenerate

data. So, the perspective of thinking is that at the beginning of

the epoch, the model does not know about the data (high loss),

but at the end of the epoch iteration, it manages to understand

the data (low loss).

IV. RESULTS AND DISCUSSIONS

There are four datasets used in this experiment. The datasets

were obtained from the OpenMl repository [27] and the UCI

machine learning dataset [26]. Each dataset is normalized to a

value between 0 and 1. Each scenario is tested ten times to get

the consistency of the value obtained. The properties of each

dataset can be seen in Table 1.

To prove the consistency of our proposed method against

non-normal data, we tested our proposed method algorithm

with two types of dataset categories. The first dataset category

distribution is a dataset that has a normal distribution (frog,

satellite). The second dataset category distribution is a non-

normal dataset (bike and credit card dataset). To evaluate our

proposed method, we compare our proposed algorithm with

GAIN (GAN)-based imputation [17], VAE [28], and CSDI

(Imputation based on Diffusion models [11]. Based on Table. I.

Datasets are normal and non-normal based on the Shapiro-Walk

test with alpha 0.05 [31].

We use three scenarios to simulate the missing rate of data

[30]: Missing Completely at Random (MCAR): Data absences

are identified as MCAR (Missing Completely At Random)

when the occurrence of missing data is entirely unrelated and

independent of the available dataset. Missing Not At Random

(MNAR): Incomplete data is considered MNAR (Missing Not

At Random) when, despite having access to all available

observed information, the probability of missing data is

contingent upon the unobserved values. Missing at Random

(MAR): In instances of missing data being categorized as MAR

(Missing At Random), this classification indicates that the

likelihood of data absence is unrelated to the missing values,

given the already observed data.

TABLE I. DIFFUSION MODELS EXPERIMENT PARAMETERS

Parameters Value Parameters Value

epochs 200 Diffusion Embedding 128

batch_size 36 beta_start 0.0001

Learning rate: 0.001 beta_end 0.5

Diffusion layers: 4 num_steps 100

Diffusion channels: 64

Each scenario is treated equally, with various missing rates

of 20%, 40%, 60%, and 80%. We identified that Perlin noise

could make noisy data more stable on non-normal data than

normal noise. Furthermore, to validate the results of the

proposed method, we conducted experiments with several

datasets. The experiment was conducted ten times for each

scenario with the standard scheduler CSDI algorithm (std). We

take the average value to be displayed in Table.III and Table.

IV.

Table. III and Table. IV compare the proposed method (Perlin

noise generation and cosine scheduler), standard CSDI (normal

noise generation), GAN's method for imputation (GAIN), and

imputation based on Variational Auto Encoder (VAE). Denote

by enh, std, GAIN, and VAE, respectively. We tried to compare

our proposed method with the state-of-the-art imputation

method with CSDI. CSDI imputation is an imputation

algorithm based on a diffusion model.

We modified and utilized the implementation of CSDI in

TabCSDI [25].

The results in Table.III shows that the RMSE results in the

proposed method have consistently smaller values than those

RMSE values in the CSDI and GAIN—the test in Table.III is

on non-normal data. Using the normal dataset, we also tested

the proposed method (Perlin noise generation). The results of

this test are shown in Table IV. The test is conducted in an

identical environment. On the normal dataset, the performance

of Perlin noise is almost the same as that in the standard method.

Thus, the effect of Perlin noise is not very influential on the

imputed normal dataset.

We descriptively and visually examine the comparative error

performance, specifically the Root Mean Square Error (RMSE),

in experimental scenarios involving different types of missing

data mechanisms: Missing Completely at Random (MCAR),

Missing Not at Random (MNAR), and Missing at Random

TABLE II. (RMSE) NON-NORMAL DATASET BIKE | CPU

dts sce mod
Missing Ratio

dts sce mod
Missing Ratio

20% 40% 60% 80% 20% 40% 60% 80%

b
ik

e

m
ca

r

enh 0.0792 0.1000 0.1246 0.1799

c
r
e
d

it-c
a
r
d

m
ca

r

enh 0.0854 0.0926 0.1080 0.1293

std 0.0979 0.1208 0.1393 0.1870 std 0.0968 0.1027 0.1203 0.1376

GAIN 0.2054 0.2270 0.2650 0.2934 GAIN 0.1789 0.1887 0.2062 0.2376

VAE 0.2179 0.2566 0.2876 0.3102 VAE 0.1537 0.1697 0.1879 0.2045

m
n

a
r

enh 0.0723 0.1094 0.1433 0.1768 m
n

a
r

enh 0.0720 0.1081 0.1422 0.1770

std 0.0921 0.1220 0.1576 0.1879 std 0.0925 0.1241 0.1567 0.1880

GAIN 0.2356 0.2640 0.2822 0.2973 GAIN 0.2463 0.2562 0.2460 0.2824

VAE 0.2304 0.2559 0.2873 0.3183 VAE 0.1528 0.1735 0.1848 0.2038

m
a

r

enh 0.0726 0.1027 0.0852 0.1443

m
a

r

enh 0.0878 0.0897 0.0979 0.1024

std 0.0893 0.1105 0.1016 0.1601 std 0.0960 0.1024 0.1091 0.1096

GAIN 0.2172 0.2539 0.2712 0.2937 GAIN 0.1952 0.1946 0.2268 0.2381

VAE 0.2380 0.2484 0.2884 0.2733 VAE 0.1590 0.1842 0.1816 0.1666

TABLE III. (RMSE) NORMAL DATASET – FROG | SATE

dts sce mod
Missing Ratio

dts sce mod
Missing Ratio

20% 40% 60% 80% 20% 40% 60% 80%

fr
o
g

m
ca

r

enh 0.0559 0.0568 0.0618 0.0771

sa
te

m
ca

r

enh 0.0392 0.0419 0.0486 0.0615

std 0.0590 0.0622 0.0682 0.0832 std 0.0406 0.0427 0.0491 0.0624

GAIN 0.0757 0.1079 0.1977 0.2005 GAIN 0.0515 0.0864 0.1553 0.1958

VAE 0.1118 0.1199 0.1229 0.1267 VAE 0.1541 0.2438 0.3346 0.4233

m
n

a
r

enh 0.0585 0.0570 0.0605 0.0761 m
n

a
r

enh 0.0416 0.0422 0.0481 0.0597

std 0.0621 0.0636 0.0661 0.0812 std 0.0430 0.0425 0.0487 0.0614

GAIN 0.1163 0.1380 0.1832 0.2248 GAIN 0.1023 0.1564 0.2508 0.2776

VAE 0.1166 0.1172 0.1161 0.1283 VAE 0.1458 0.2353 0.3293 0.4101

m
a

r

enh 0.0544 0.0493 0.0533 0.0604

m
a

r

enh 0.0367 0.0390 0.0418 0.0454

std 0.0569 0.0536 0.0589 0.0662 std 0.0372 0.0399 0.0426 0.0458

GAIN 0.1102 0.1095 0.1801 0.2224 GAIN 0.1062 0.1276 0.1718 0.2421

VAE 0.1174 0.1157 0.1288 0.1328 VAE 0.1497 0.2247 0.3086 0.3921

Fig 1. Bike Dataset Visualization (Result)

0.05

0.13

0.21

0.29

20% 40% 60% 80%

R
M

SE

Missing Ratio

bike-mcar

mcar-enh mcar-std GAIN VAE

0.05

0.13

0.21

0.29

20% 40% 60% 80%

R
M

SE

Missing Ratio

bike-mnar

mnar-enh mnar-std GAIN VAE

0.05

0.13

0.21

0.29

20% 40% 60% 80%

R
M

SE

Missing Ratio

bike-mar

mar-enh mar-std GAIN VAE

(MAR). Each missing data scenario involved varying levels of

missingness at rates of 20%, 40%, 60%, and 80%. These

analyses were conducted on non-normally distributed data,

exemplified by the Bike dataset as visualized in Fig 1.

The RMSE values obtained from the proposed method (enh)

consistently demonstrated the lowest RMSE values compared

to those of the baseline algorithm (std), GAIN, and VAE. This

consistent trend across different missing data scenarios suggests

the ability of the proposed method (enh) to minimize errors

within these datasets. Visual representations in Fig 1 elucidate

that Perlin noise generation consistently yields lower RMSE

values than the standard algorithm (std), GAIN, and VAE

across various missing mechanisms and rates. This consistency

underscores the efficacy of Perlin noise in reducing error

values.

This advantageous characteristic of Perlin noise can be

attributed to its high slope normal distribution within the

dataset, compelling non-normally distributed data to adopt a

form closer to normality through noisy data contamination.

However, this effect is not observed in datasets with a normally

distributed structure. In cases where the dataset is normally

distributed, Perlin Noise does not confer any advantage in

normalizing the data, as the dataset already exists in a normal

distribution state. Through testing the RMSE value, we can

conclude that the proposed method (enh) has a lower RMSE

value than the baseline (std) on data with non-normal values.

A. Ablation Analysis.

Table.VI and Table.VII shows the effect of each of our

proposed noise generation schedulers. We compare the

proposed method with the standard condition on the non-

normal, categorical, and normal datasets. It compares the result

of the 20% missing rate average on MCAR, MNAR, and MAR

scenarios.

In Table. VI rows 1 and 2, we show the results without using

the cosine scheduler, but we added Perlin Noise in row 2. In

rows 3 and 4, we compare the algorithm with the enhancement

of the Cosine scheduler in Table. VI, Bike dataset using Perlin

noise produces RMSE = 0.0870, smaller than the RMSE at row

1 (without Perlin noise) with RMSE = 0.0930. Also, in row 2

of the Credit Card dataset (CC), Perlin noise produces RMSE =

0.0916, smaller than the RMSE at row 1 (without Perlin noise)

with RMSE = 0.0951. In summary, the difference RMSE value

of Perlin Noise Components: Bike dataset = 6.4 % and Credit

card dataset: 3.6 %. For the Cosine scheduler components: Bike

dataset = 10.2 % and Credit card dataset = 10.7%. Additionally,

when incorporating the cosine scheduler component, the RMSE

value becomes 10% lower than the baseline method. Here, we

can conclude that Perlin noise can improve the performance of

RMSE on non-normal datasets.

The result of the ablation study on the normal dataset is

explained in the Frog and Satellite dataset. The Perlin noise

component's effect cannot help improve the performance of the

RMSE value for a normal dataset. On the contrary, in the cosine

scheduler, the component can help improve the RMSE

performance consistently on the normal dataset. In row 3 of

Table VII, the resulting RMSE value is 0.391 on the Satellite

Dataset. For this value, if we compare row 1 (without cosine

scheduler), the RMSE value is greater, which is 0.0402.

The ablation study test for the Frog and Satellite dataset

(normal data distribution) Perlin noise generation cannot help

increase RMSE performance on diffusion model imputation.

However, a cosine scheduler can improve RMSE performance

in normal and non-normal data. The differences in RMSE

values for datasets incorporating Cosine scheduler components

were as follows: the Frog dataset exhibited a decrease of 8.2%,

and the Satellite dataset experienced a decline of 2.7%

In row 4 of Table.VI, we can see that adding Perlin noise

generation and cosine scheduler components results in the

smallest RMSE value compared to those without these

components—the RMSE value of the Credit Card dataset in

row 4 of Table.VI has a value of 0.0817. This value is smaller

than the value of the Credit Card dataset in row 1 without the

Perlin noise and cosine scheduler components, with an RMSE

value of 0.0951. From the ablation study test in Table.VI and

Table.VII, it can be explained that adding the Perlin noise

generation component with a cosine scheduler consistently

lowers the RMSE imputation value on non-normal datasets.

V. CONCLUSION

Perlin noise generation and cosine scheduler have a positive

influence on improving the performance of non-normal data

imputation. Based on the Perlin noise generation evaluation,

our tests have decreased the RMSE error value. Our scheduler

component changes also improved performance compared to

the standard baseline on non-normal data. Based on the

evaluation, analysis, and experiments conducted, the

characteristic of Perlin noise can be attributed to its high slope

normal distribution within the dataset, compelling non-

normally distributed data to adopt a form closer to normality

through the imposition of noisy data contamination. Perlin

noise distribution makes the noisy data added with noise more

normal when entering the deep learning network in the

imputation diffusion model. Loss function calculation in

normal noise generation makes calculations based on the

fraction of noise with data. However, with the change of loss

TABLE IV. ABLATION STUDY | BIKE, CREDIT CARD

No Perlin

Noise

Cosine

Scheduler

RMSE (20% missing

ratio - MCAR)

Bike

Dataset

Credit

Card

Dataset

1 𝑥 𝑥 0.0930 0.0951

2 √ 𝑥 0.0870 0.0916

3 𝑥 √ 0.0835 0.0849

4 √ √ 0.0747 0.0817

TABLE V. ABLATION STUDY | FROG, SATELLITE

No Perlin

Noise

Cosine

Scheduler

RMSE (20% missing

ratio - MCAR)

Frog

Dataset

Satellite

Dataset

1 𝑥 𝑥 0.0593 0.0402

2 √ 𝑥 0.0598 0.0461

3 𝑥 √ 0.0544 0.0391

4 √ √ 0.0562 0.0416

function in Perlin noise, the noise portion is given directly when

the noise is generated in the Perlin noise formula. Thus, Perlin

noise can be utilized to improve imputation on non-normal data.

The ablation study of non-normal data explains that Perlin noise

generation coupled with a cosine scheduler can consistently

have a lower RMSE value of 10.7 % than the standard CSDI

algorithm. Our plan for future research is to explore how

continual learning can improve the performance of deep

learning algorithms. However, whether the improvement is

practical or can be applied in general needs to be examined

more carefully.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to

the Faculty of Computer Science Unviersitas Indonesia and

DIKTI-AI-Center for providing the computational resources

and support. The access to advanced significantly contributed

to the successful completion of this research.

REFERENCES

[1] X. Miao, Y. Gao, B. Zheng, G. Chen, and H. Cui, “Top-k dominat-

ing queries on incomplete data,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 1, pp. 252–266, Jan. 2015.

[2] A. A. Qahtan, A. Elmagarmid, R. C. Fernandez, M. Ouzzani, and N.

 Tang, “FAHES: A robust disguised missing values detector,” in
Proc. SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018, pp.

2100–2109.

[3] H. Song and D. A. Szafir, “Where’s my data? Evaluating
visualizations with missing data,” IEEE Trans. Vis. Comput.

Graphics, vol. 25, no. 1, pp. 914–924, Jan. 2019.

[4] B. Zhao, B. Wu, T. Wu, and Y. Wang, “Zero-shot learning posed as
a missing data problem,” in Proc. Int. Conf. Comput. Vis., 2017, pp.

2616–2622.

[5] D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no.
3, pp. 581–592, 1976.

[6] N. S. Altman, “An introduction to kernel and nearest -neighbor

nonparametric regression,” Amer. Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[7] B. Twala, M. Cartwright, and M. Shepperd, “Comparison of vari-

ous methods for handling incomplete data in software engineer-ing
databases,” in Proc. Int. Symp. Empir. Softw. Eng., 2005, pp. 234–

239.

[8] D. J. Stekhoven and P. B€uhlmann, “MissForest non parametric

missing value imputation for mixed-type data,” Bioinformatics, vol.

28, no. 1, pp. 112–118, 2011.

[9] P. Royston and I. R. White, “Multiple imputation by chained
equations (MICE): Implementation in stata,” J. Statist. Softw., vol.

45, no. 4, pp. 1–20, 2011.

[10] X. Miao, Y. Wu, L. Chen, Y. Gao and J. Yin, "An Experimental
Survey of Missing Data Imputation Algorithms," in IEEE

Transactions on Knowledge and Data Engineering, vol. 35, no. 7,

pp. 6630-6650, 1 July 2023, doi: 10.1109/TKDE.2022.3186498.

[11] Tashiro, Yusuke, et al. "Csdi: Conditional score-based diffusion
models for probabilistic time series imputation." Advances in

Neural Information Processing Systems 34 (2021): 24804-24816.

[12] Perlin, Ken. "An image synthesizer." ACM Siggraph Computer
Graphics 19.3 (1985): 287-296.

[13] Hugo Elias, Mount.D, Eastman.R, CMSC 425: Lecture 12 :

Procedural Generation: 1D Perlin Noise, Lecture Notes,
https://www.cs.umd.edu /class/spring2018/c msc425/Lects/lect12-

1d-perlin.pdf, Accessed on : 2023, June,30

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion
Probabilistic Models. NeurIPS, 2020.

[15] Chen, Ting. "On the importance of noise scheduling for diffusion

models." arXiv preprint arXiv:2301.10972 (2023).
[16] Lin, Shanchuan, et al. "Common Diffusion Noise Schedules and

Sample Steps are Flawed." arXiv preprint arXiv:2305.08891 (2023).

[17] J. Yoon, J. Jordon, and M. Schaar, “GAIN: Missing data imputa-
tion using generative adversarial nets,” in Proc. Int. Conf. Mach.

Learn., 2018, pp. 5675–5684.

[18] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Let a biogeography-
based optimizer train your multi-layer perceptron,” Inf. Sci., vol.

269, no. 1, pp. 188–209, 2014.

[19] A. Majumdar, “Blind denoising autoencoder,” IEEE Trans. Neu-ral
Netw. Learn. Syst., vol. 30, no. 1, pp. 312–317, Jan. 2019.

[20] Song, Yang, et al. "Score-based generative modeling through

stochastic differential equations." arXiv preprint arXiv:2011.13456
(2020).

[21] Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat
gans on image synthesis." Advances in neural information

processing systems 34 (2021): 8780-8794.

[22] Chen, Jianfei, et al. "Vflow: More expressive generative flows with
variational data augmentation." International Conference on

Machine Learning. PMLR, 2020.

[23] Cai, Ruojin, et al. "Learning gradient fields for shape generation."

Computer Vision–ECCV 2020: 16th European Conference,

Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16.

Springer International Publishing, 2020.
[24] Heusel, Martin, et al. "Gans trained by a two time-scale update rule

converge to a local nash equilibrium." Advances in neural

information processing systems 30 (2017).
[25] Zheng, Shuhan, and Nontawat Charoenphakdee. "Diffusion models

for missing value imputation in tabular data." arXiv preprint

arXiv:2210.17128 (2022).
[26] UC Irvine Machine learning Repository, https://archive.ics.uci.edu/,

Accessed on :2023, October, 2023.

[27] OpenMl Dataset, https://www.openml.org/, Accessed on :2023,
May, 20.

[28] Gondara, Lovedeep, and Ke Wang. "Mida: Multiple imputation

using denoising autoencoders." Advances in Knowledge Discovery
and Data Mining: 22nd Pacific-Asia Conference, PAKDD 2018,

Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part III 22.

Springer International Publishing, 2018.
[29] Fisher, Robert, et al. "Image Synthesis—Noise Generation."(2013)

[30] Van Buuren, Stef. "Multiple imputation of multilevel data."

Handbook of advanced multilevel analysis 10 (2011): 173-196.
[31] Shapiro, S. S.; Wilk, M. B. (1965). "An analysis of variance test for

normality. Biometrika. 52 (3–4): 591–611. JSTOR 2333709.

