GradDiff-N-Tab: Gradient Noise Tabular Data
Diffusion Model Imputation

Ari Wibisono
Faculty of Computer Science,
Universitas Indonesia
Indonesia
ari.w@cs.ui.ac.id

Denny
Faculty of Computer Science,
Universitas Indonesia
Indonesia
denny@cs.ui.ac.id

Petrus Mursanto
Faculty of Computer Science,
Universitas Indonesia
Indonesia
santo@cs.ui.ac.id

Simon See
NVIDIA, Senior Member IEEE
Singapore
ssee@nvidia.com

Abstract—Imputation is one of the methods to improve the
quality of a dataset. The imputation problem can be solved using
statistical techniques, machine learning algorithms, and
generative models. This research proposes improving the standard
imputation algorithm based on the Diffusion Model. We propose
to use Perlin noise or gradient noise generation to generate noise
at each step of the diffusion mode and propose a scheduler to
improve the performance of the diffusion model-based imputation
algorithm. Perlin noise generation and cosine scheduler have a
positive influence on improving the performance of non-normal
data imputation. Four real-world datasets are used to evaluate our
proposed methods. Based on the evaluation tests of the RMSE
value, our proposed method produces a 10% lower RMSE value
than the baseline imputation algorithms based on diffusion
models, GAN, and VAE.

Index Terms— Tabular data, Imputation, Cosine Scheduler,
Stable Diffusion Models, Gradient Noise

. INTRODUCTION

Data processing should be improved [1]. Missing data can
occur due to incomplete form filling and questionnaire

questions needing to be filled in [2]. Other causes of
missing data include sensors that fail to record data [3]. The
missing data will affect the statistics and data analysis [4]. To
accommodate the problem of missing data, the primary
reference that can be used is to categorize data based on the
MCAR (Missing Completely at Random), MNAR (Missing not
at random), and MAR (missing at random) categories [5].

The simplest way to deal with missing data is by not using
the data. Disposing of the data will cause a new bias in the data.
So, the researchers tried to impute artificial values into the data.
The simplest imputation method is by using statistics [7]. Some
of the machine learning algorithms used are K-Nearest
Neighbor (KNN) [6], MICE [9], and Missforest [8].

Furthermore, researchers also try to use neural network
techniques in imputing data. One of the algorithms is Multi-
Layer Perceptron [18]. Deep-learning techniques perform
imputations based on Auto Encoder [30]. The development of
generative modeling also supports solutions to imputation

problems. The generative algorithm used for imputation is
GAIN [43]. Testing several imputation techniques against
various datasets has been carried out by Miao et al. [10]. The
diffusion model technique is also used to overcome the problem
of missing data. The diffusion model technique used is CSDI
(Conditional Score Diffusion Model Imputation) [11].

Score-based generative models have shown competitive
outcomes compared to state-of-the-art methods across various
implementation tasks. These tasks include generative images
[20][21], audio processing [22], and shape generation [23]
Song. et al. contrast the performance of score-based diffusion
models with vanilla Continuous Normalizing Flows and state-
of-the-art methods [20]. The framework of score-based
diffusion models proposes the gradual diffusion of distributions
based on noise distribution. Stochastic differential equations are
employed to learn from the distribution of sampled data. Score-
based diffusion models exhibit advantages during training
compared to the vanilla Continuous Normalizing Flows (CNF)
method [20]. The reason is that the maximum likelihood
objective for CNF training requires an expensive Ordinary
Differential Equation (ODE) solver for each optimization step.
In contrast, score-based diffusion models utilize a weighted
score-matching loss combination for score matching, which is
less computationally expensive. Evaluation results of score-
based models show likelihood outcomes that compete favorably
with recent autoregressive models, with minor degradation
observed in Fréchet Inception Distances [24].

Algorithms developed to impute data are numerous, but most
real-world data have an abnormal distribution. This anomalous
data causes the results of some algorithms to fail to work well.
The process of machine learning, deep learning, and generative
models makes the conversion of abnormal data into a normal
distribution so that machine learning calculations can get the
best results. In this research, the author will propose an
imputation method in the diffusion models algorithm for non-
normal or extreme data. The improvement process involves
noise generation, loss function, and noise scheduler changes.

Il. BACKGROUND & PROBLEM FORMULATION

A. Diffusion models imputation

Assume a sample x, that has missing values. Based on Song.
etal. [11], we formulate to produce imputation target x{* e x§°
by using known data x§° € x=". Then, we can assume that the
goal of the probabilistic model is to estimate the distribution of
q (x6* 1 x§°) by modeling pg (x5* | x5°). So, we can notate
all known values as x$° and missing values as x§%, so the

backward imputation process will be as in formula 2.

T
4o Cely 1 %6°) 1= k) | [po Gt i, 26,
t=1

xt ~N (0,D).
1)
Po (xf2y | x£%, x6°) =
=NV (x¢2y; g (% t | x5°), 09 (x4t | x§O)D).
(2)
B. Gaussian Noise
Gaussian noise or noise based on normal distribution is made

based on a probability density function (pdf) with normal
distribution parameters [29].

)= —— 5t
Z) = e 20
¢ o2
3)

In formula 3, the notation o is the standard deviation, z
represents the gray level, u is the average value. Gaussian noise
can be minimized in image processing with several filtering and
smoothing techniques [31].

C. Perlin Noise / Gradient Noise

To create noise, we generate pseudo-random numbers
[12][13]. This generator is a form of smooth function. We can
add noise functions with different frequencies and amplitudes
in Perlin noise [49]. We try to create functions with increasing
frequency variations: noise(t), noise(2t), noise(4t),
...noise(2it). In this case, we do not change the function; we
only change the frequency parameter.

High frequencies usually have low amplitudes. In Perlin
noise, we can configure the amplitude of each frequency. The
value that helps to configure this is persistence. p*. The
persistence value is between 0 and 1. The higher the persistence
value, the more visible the high frequencies will be. In formula
4, p* isthe amplitude at the it" stage. The final noise is the sum
of the persistence defined by perlin(t).

The user can change or control the octave value by changing
the value of 2¢ and the persistence value p'.

k
perlin(t) = Zpi noise(2L.t)
i=0
4

I1l. PROPOSED METHOD

We proposed Perlin noise imputation & scheduling for
diffusion models. A good noise is a noise that has a
homogeneous pattern visualization random characteristics, and

its value changes slowly. Generally, noise features are similar
in size between one noise and another. Perlin noise can have
better noise characteristics than normal noise. In normal noise,
we try to interpolate a random value along the line with a
random integer. These values are randomly degenerate; some
deals have the same pattern, but the noise changes quickly in
some parts. The place where the noise changes very fast is said
to be high frequency. While the place where the noise changes
slowly is said to be low frequency. We can conclude that normal
noise is built on high and low frequencies.

Perlin noise also does the same thing in producing random
integer values. However, Perlin noise uses a gradient tangent to
the 1D noise function to create noise values. No matter the
direction of the gradient produced by Perlin noise, the value will
increase and decrease along with the previous value. If two
lattice points have opposite gradient directions, the noise
function will produce an S-shape. By using this construction,
the frequencies of Perlin noise have a similar size. Thus, the
frequency spectrum of Perlin noise is more generalized than
normal noise with high and low frequencies. Perlin noise uses
gradient measurements to generate noise, while normal noise
only uses random values.

A. Perlin Noise Imputation
In Gaussian noise, we have a forward process function.

X¢ = dtxo-l-,ll—th
©®)

Where € is Gaussian noise with an objective function
mianimple

. — — 2
min Lsimple = IEt,xO,e“E — €9/ xo+ J1— @€, t)”
(6)
We try to introduce Perlin noise into the forward process
equation of diffusion models,

xf =\ xo + Eperlin(\/ 1-a,)
()

Following the standard diffusion model objective function, we
can denote the forward process of Perlin noise in this form.

Xf = dt Xo + Eperlin(\/ 1- &t)
©)

This approach will prevent noisy data from degenerating by
multiplying. &, with €, but the noise fusion process is produced
when the Perlin function generates the noise directly
€periin (/1 — @) With this approach, the noise fraction at each
t is no longer rigidly degenerate but has a softer specification.
With the approach of input noise with a more stable frequency,
the input of noisy data into the network also becomes stable. So,
the distribution of input data also has implications for the
stability of the data. Noisy data using Perlin noise is closer to
normal distribution characteristics than Gaussian normal. As
we know, to produce perfect features as input into the network,
researchers try to make the input data into the network have a
normal distribution. One of the ways used is by using a
logarithmic function so that the values entering the deep

TABLE I. DIFFUSION MODELS EXPERIMENT PARAMETERS

Parameters Value Parameters Value
epochs 200 Diffusion Embedding | 128
batch_size 36 beta_start 0.0001
Learning rate: 0.001 beta_end 0.5
Diffusion layers: 4 num_steps 100
Diffusion channels: 64

learning network can be optimally trained for feature
representation.

B. Scheduling

The diffusion model process [14] is a process where the input
given is a noise sample. The noise sample is slowly input into
the diffusion model based on the fraction schedule. The noise
fraction will be input into the diffusion model process in the
forward and backward processes.

The forward process is the training process, where the data
is slowly given noise and inputted with an alpha value that
increases with each step. At the same time, the backward
process is a generative process, where the input into the
diffusion model process is the opposite of the forward or
training process. So, the diffusion model that has been trained
will be inputted with the full noise and iterated in as many steps
as previously initialized. If in the previous example using step
10 and fraction between 0 and 1, then the backward process will
do scheduling from alpha 1, 0.9, 0.8 . ., 0.1. So that after this
backward process, the data generated from the model with full
noise input will be obtained, which will slowly decrease the full
noise fraction scheduling.

Chent. et al. tried to evaluate various noise scheduling
variations to be affiliated with the diffusion models technique
[15]. Lin et al. have also tried to contribute to their findings by
scheduling weaknesses at the beginning and end of scheduling
in the diffusion model, where the improvements made can
increase the image contrast in the generative model results [16].

The scheduler in the diffusion model is represented in the
notation &, in Equation (8). The value of @, will be produced
as a parameter for the formation of noisy data with Perlin noise
xP. In this research, we propose to use the cosine function to
maximize and improve the
performance of Perlin noise. Using the cosine function can
maximize the input forwarding information during training.

q (x1.71%0)
(9)

Changing data from the original data x, to data with
maximum noise x;.r can be slowed down by the cosine
function. With a slower step process, the deep learning network
will obtain information about the noisy data at step t before it
becomes maximum noise. So, the deep learning network
obtains more information about the data before it becomes noise
compared to the standard approach.

In this research, we propose to use a cosine scheduler to
maximize our proposed Perlin noise generation. This approach
is chosen because the adapted step cosine function allows the
deep learning model to obtain more data information before it

slowly becomes noise. There are 100 steps to reach maximum
alpha or full noise (1). Information from the data can still be
maximized very slowly up to step 85 by the cosine scheduler.
After step 85, cosine starts adding alpha with a value of 0.2 and
continues to increase until full noise one at step 100. So, at steps
0 to 85, the network model can learn data with minimal noise,
so the deep learning network model obtains information about
the data better than other schedulers. If we compare quadratic
and linear at step 60, the alpha values are 0.2 and 0.6. With these
values, the amount of noise incorporated into the data becomes
quite large. While in cosine, the alpha value at step 60 is only
0.03, so the deep learning network model still has enough
information compared to the influence of noise.

O]
IO

Lttt sm
fo= ot (5 3)

(10)
t is a step, s is a floating number parameter to form the cosine
function.

In looking at the loss diffusion model perspective, we need
to see how the model learns from complete noise to degenerate
data. So, the perspective of thinking is that at the beginning of
the epoch, the model does not know about the data (high loss),
but at the end of the epoch iteration, it manages to understand
the data (low loss).

IV. RESULTS AND DISCUSSIONS

There are four datasets used in this experiment. The datasets
were obtained from the OpenMI repository [27] and the UCI
machine learning dataset [26]. Each dataset is normalized to a
value between 0 and 1. Each scenario is tested ten times to get
the consistency of the value obtained. The properties of each
dataset can be seen in Table 1.

To prove the consistency of our proposed method against
non-normal data, we tested our proposed method algorithm
with two types of dataset categories. The first dataset category
distribution is a dataset that has a normal distribution (frog,
satellite). The second dataset category distribution is a non-
normal dataset (bike and credit card dataset). To evaluate our
proposed method, we compare our proposed algorithm with
GAIN (GAN)-based imputation [17], VAE [28], and CSDI
(Imputation based on Diffusion models [11]. Based on Table. I.
Datasets are normal and non-normal based on the Shapiro-Walk
test with alpha 0.05 [31].

We use three scenarios to simulate the missing rate of data
[30]: Missing Completely at Random (MCAR): Data absences
are identified as MCAR (Missing Completely At Random)
when the occurrence of missing data is entirely unrelated and
independent of the available dataset. Missing Not At Random
(MNAR): Incomplete data is considered MNAR (Missing Not
At Random) when, despite having access to all available
observed information, the probability of missing data is
contingent upon the unobserved values. Missing at Random
(MAR): In instances of missing data being categorized as MAR
(Missing At Random), this classification indicates that the
likelihood of data absence is unrelated to the missing values,
given the already observed data.

TABLE II. (RMSE) NON-NORMAL DATASET BIKE | CPU

dts | sce | mod Missing Ratio dts | sce | mod Missing Ratio
20% 40% 60% 80% 20% 40% 60% 80%
enh 0.0792 | 0.1000 | 0.1246 | 0.1799 enh 0.0854 | 0.0926 | 0.1080 | 0.1293
3 |std 0.0979 | 0.1208 | 0.1393 | 0.1870 3 std 0.0968 | 0.1027 | 0.1203 | 0.1376
g GAIN | 0.2054 | 0.2270 | 0.2650 | 0.2934 = GAIN | 0.1789 | 0.1887 | 0.2062 | 0.2376
VAE 0.2179 | 0.2566 | 0.2876 | 0.3102 VAE 0.1537 | 0.1697 | 0.1879 | 0.2045
enh 0.0723 | 0.1094 | 0.1433 | 0.1768 % enh 0.0720 | 0.1081 | 0.1422 | 0.1770
=3 3 | std 0.0921 | 0.1220 | 0.1576 | 0.1879 | & 3 std 0.0925 | 0.1241 | 0.1567 | 0.1880
) 2 GAIN | 0.2356 | 0.2640 | 0.2822 | 0.2973 g 2 GAIN | 0.2463 | 0.2562 | 0.2460 | 0.2824
VAE 0.2304 | 0.2559 | 0.2873 | 0.3183 | & VAE 0.1528 | 0.1735 | 0.1848 | 0.2038
enh 0.0726 | 0.1027 | 0.0852 | 0.1443 enh 0.0878 | 0.0897 | 0.0979 | 0.1024
3 std 0.0893 | 0.1105 | 0.1016 | 0.1601 3 std 0.0960 | 0.1024 | 0.1091 | 0.1096
2 GAIN | 0.2172 | 0.2539 | 0.2712 | 0.2937 2 GAIN | 0.1952 | 0.1946 | 0.2268 | 0.2381
VAE 0.2380 | 0.2484 | 0.2884 | 0.2733 VAE 0.1590 | 0.1842 | 0.1816 | 0.1666
TABLE I1l. (RMSE) NORMAL DATASET — FROG | SATE
dts | sce | mod Missing Ratio dts | sce | mod Missing Ratio
20% 40% 60% 80% 20% 40% 60% 80%
enh 0.0559 | 0.0568 | 0.0618 | 0.0771 enh 0.0392 | 0.0419 | 0.0486 | 0.0615
3 [std 0.0590 | 0.0622 | 0.0682 | 0.0832 3 std 0.0406 | 0.0427 | 0.0491 | 0.0624
2 GAIN | 0.0757 | 0.1079 | 0.1977 | 0.2005 S GAIN | 0.0515 | 0.0864 | 0.1553 | 0.1958
VAE 0.1118 | 0.1199 | 0.1229 | 0.1267 VAE 0.1541 | 0.2438 | 0.3346 | 0.4233
enh 0.0585 | 0.0570 | 0.0605 | 0.0761 enh 0.0416 | 0.0422 | 0.0481 | 0.0597
3 3 | s 0.0621 | 0.0636 | 0.0661 | 0.0812 | & 3 std 0.0430 | 0.0425 | 0.0487 | 0.0614
& 2 GAIN | 0.1163 | 0.1380 | 0.1832 | 0.2248 | & 2 GAIN | 0.1023 | 0.1564 | 0.2508 | 0.2776
VAE 0.1166 | 0.1172 | 0.1161 | 0.1283 VAE 0.1458 | 0.2353 | 0.3293 | 0.4101
enh 0.0544 | 0.0493 | 0.0533 | 0.0604 enh 0.0367 | 0.0390 | 0.0418 | 0.0454
3 | std 0.0569 | 0.0536 | 0.0589 | 0.0662 3 std 0.0372 | 0.0399 | 0.0426 | 0.0458
2 GAIN | 0.1102 | 0.1095 | 0.1801 | 0.2224 2 GAIN | 0.1062 | 0.1276 | 0.1718 | 0.2421
VAE 0.1174 | 0.1157 | 0.1288 | 0.1328 VAE 0.1497 | 0.2247 | 0.3086 | 0.3921
bike-mcar bike-mnar bike-mar
0.29 0.29 0.29
w 021 W 021 W 021
——
0.13 ~—a 0.13 0.13
-
0.05 0.05 0.05
20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%
Missing Ratio Missing Ratio Missing Ratio
—#—mcar-enh mcar-std GAIN VAE —#—mnar-enh mnar-std GAIN VAE —#—mar-enh mar-std GAIN VAE

Fig 1. Bike Dataset Visualization (Result)

Each scenario is treated equally, with various missing rates
of 20%, 40%, 60%, and 80%. We identified that Perlin noise
could make noisy data more stable on non-normal data than
normal noise. Furthermore, to validate the results of the
proposed method, we conducted experiments with several
datasets. The experiment was conducted ten times for each
scenario with the standard scheduler CSDI algorithm (std). We
take the average value to be displayed in Table.lll and Table.
V.

Table. Il and Table. IV compare the proposed method (Perlin
noise generation and cosine scheduler), standard CSDI (normal
noise generation), GAN's method for imputation (GAIN), and
imputation based on Variational Auto Encoder (VAE). Denote
by enh, std, GAIN, and VAE, respectively. We tried to compare
our proposed method with the state-of-the-art imputation
method with CSDI. CSDI imputation is an imputation
algorithm based on a diffusion model.

We modified and utilized the implementation of CSDI in
TabCSDI [25].

The results in Table.lll shows that the RMSE results in the
proposed method have consistently smaller values than those
RMSE values in the CSDI and GAIN—the test in Table.lll is
on non-normal data. Using the normal dataset, we also tested
the proposed method (Perlin noise generation). The results of
this test are shown in Table V. The test is conducted in an
identical environment. On the normal dataset, the performance
of Perlin noise is almost the same as that in the standard method.
Thus, the effect of Perlin noise is not very influential on the
imputed normal dataset.

We descriptively and visually examine the comparative error
performance, specifically the Root Mean Square Error (RMSE),
in experimental scenarios involving different types of missing
data mechanisms: Missing Completely at Random (MCAR),
Missing Not at Random (MNAR), and Missing at Random

TABLE IV. ABLATION STUDY | BIKE, CREDIT CARD

No Perlin Cosine RMSE (20% missing

Noise Scheduler ratio - MCAR)
Bike Credit

Dataset Card

Dataset

1 X X 0.0930 0.0951
2 Vv x 0.0870 0.0916
3 X N 0.0835 0.0849
4 Vv Vv 0.0747 0.0817

TABLE V. ABLATION STUDY | FROG, SATELLITE

No Perlin Cosine RMSE (20% missing
Noise Scheduler ratio - MCAR)
Frog Satellite
Dataset Dataset
1 x x 0.0593 0.0402
2 N x 0.0598 0.0461
3 x N 0.0544 0.0391
4 N N 0.0562 0.0416

(MAR). Each missing data scenario involved varying levels of
missingness at rates of 20%, 40%, 60%, and 80%. These
analyses were conducted on non-normally distributed data,
exemplified by the Bike dataset as visualized in Fig 1.

The RMSE values obtained from the proposed method (enh)
consistently demonstrated the lowest RMSE values compared
to those of the baseline algorithm (std), GAIN, and VAE. This
consistent trend across different missing data scenarios suggests
the ability of the proposed method (enh) to minimize errors
within these datasets. Visual representations in Fig 1 elucidate
that Perlin noise generation consistently yields lower RMSE
values than the standard algorithm (std), GAIN, and VAE
across various missing mechanisms and rates. This consistency
underscores the efficacy of Perlin noise in reducing error
values.

This advantageous characteristic of Perlin noise can be
attributed to its high slope normal distribution within the
dataset, compelling non-normally distributed data to adopt a
form closer to normality through noisy data contamination.
However, this effect is not observed in datasets with a normally
distributed structure. In cases where the dataset is normally
distributed, Perlin Noise does not confer any advantage in
normalizing the data, as the dataset already exists in a normal
distribution state. Through testing the RMSE value, we can
conclude that the proposed method (enh) has a lower RMSE
value than the baseline (std) on data with non-normal values.

A. Ablation Analysis.

Table.VI and Table.VII shows the effect of each of our
proposed noise generation schedulers. We compare the
proposed method with the standard condition on the non-
normal, categorical, and normal datasets. It compares the result
of the 20% missing rate average on MCAR, MNAR, and MAR
scenarios.

In Table. VI rows 1 and 2, we show the results without using
the cosine scheduler, but we added Perlin Noise in row 2. In
rows 3 and 4, we compare the algorithm with the enhancement

of the Cosine scheduler in Table. V1, Bike dataset using Perlin
noise produces RMSE = 0.0870, smaller than the RMSE at row
1 (without Perlin noise) with RMSE = 0.0930. Also, in row 2
of the Credit Card dataset (CC), Perlin noise produces RMSE =
0.0916, smaller than the RMSE at row 1 (without Perlin noise)
with RMSE = 0.0951. In summary, the difference RMSE value
of Perlin Noise Components: Bike dataset = 6.4 % and Credit
card dataset: 3.6 %. For the Cosine scheduler components: Bike
dataset = 10.2 % and Credit card dataset = 10.7%. Additionally,
when incorporating the cosine scheduler component, the RMSE
value becomes 10% lower than the baseline method. Here, we
can conclude that Perlin noise can improve the performance of
RMSE on non-normal datasets.

The result of the ablation study on the normal dataset is
explained in the Frog and Satellite dataset. The Perlin noise
component's effect cannot help improve the performance of the
RMSE value for a normal dataset. On the contrary, in the cosine
scheduler, the component can help improve the RMSE
performance consistently on the normal dataset. In row 3 of
Table VII, the resulting RMSE value is 0.391 on the Satellite
Dataset. For this value, if we compare row 1 (without cosine
scheduler), the RMSE value is greater, which is 0.0402.

The ablation study test for the Frog and Satellite dataset
(normal data distribution) Perlin noise generation cannot help
increase RMSE performance on diffusion model imputation.
However, a cosine scheduler can improve RMSE performance
in normal and non-normal data. The differences in RMSE
values for datasets incorporating Cosine scheduler components
were as follows: the Frog dataset exhibited a decrease of 8.2%,
and the Satellite dataset experienced a decline of 2.7%

In row 4 of Table.VI, we can see that adding Perlin noise
generation and cosine scheduler components results in the
smallest RMSE value compared to those without these
components—the RMSE value of the Credit Card dataset in
row 4 of Table.VI has a value of 0.0817. This value is smaller
than the value of the Credit Card dataset in row 1 without the
Perlin noise and cosine scheduler components, with an RMSE
value of 0.0951. From the ablation study test in Table.VI and
Table.VII, it can be explained that adding the Perlin noise
generation component with a cosine scheduler consistently
lowers the RMSE imputation value on non-normal datasets.

V. CONCLUSION

Perlin noise generation and cosine scheduler have a positive
influence on improving the performance of non-normal data
imputation. Based on the Perlin noise generation evaluation,
our tests have decreased the RMSE error value. Our scheduler
component changes also improved performance compared to
the standard baseline on non-normal data. Based on the
evaluation, analysis, and experiments conducted, the
characteristic of Perlin noise can be attributed to its high slope
normal distribution within the dataset, compelling non-
normally distributed data to adopt a form closer to normality
through the imposition of noisy data contamination. Perlin
noise distribution makes the noisy data added with noise more
normal when entering the deep learning network in the
imputation diffusion model. Loss function calculation in
normal noise generation makes calculations based on the
fraction of noise with data. However, with the change of loss

function in Perlin noise, the noise portion is given directly when
the noise is generated in the Perlin noise formula. Thus, Perlin
noise can be utilized to improve imputation on non-normal data.
The ablation study of non-normal data explains that Perlin noise
generation coupled with a cosine scheduler can consistently
have a lower RMSE value of 10.7 % than the standard CSDI
algorithm. Our plan for future research is to explore how
continual learning can improve the performance of deep
learning algorithms. However, whether the improvement is
practical or can be applied in general needs to be examined
more carefully.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to
the Faculty of Computer Science Unviersitas Indonesia and
DIKTI-Al-Center for providing the computational resources
and support. The access to advanced significantly contributed
to the successful completion of this research.

REFERENCES

[1] X. Miao, Y. Gao, B. Zheng, G. Chen, and H. Cui, “Top-k dominat-
ing queries on incomplete data,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 1, pp. 252-266, Jan. 2015.

[2] A.A. Qahtan, A. EImagarmid, R. C. Fernandez, M. Ouzzani, and N.

Tang, “FAHES: A robust disguised missing values detector,” in
Proc. SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018, pp.
2100-2109.

[3] H. Song and D. A. Szafir, “Where’s my data? Evaluating
visualizations with missing data,” IEEE Trans. Vis. Comput.
Graphics, vol. 25, no. 1, pp. 914-924, Jan. 2019.

[4] B.Zhao, B. Wu, T. Wu, and Y. Wang, “Zero-shot learning posed as
a missing data problem,” in Proc. Int. Conf. Comput. Vis., 2017, pp.
2616-2622.

[5] D.B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no.
3, pp. 581-592, 1976.

[6] N. S. Altman, “An introduction to kernel and nearest -neighbor
nonparametric regression,” Amer. Statistician, vol. 46, no. 3, pp.
175-185, 1992.

[7] B. Twala, M. Cartwright, and M. Shepperd, “Comparison of vari-
ous methods for handling incomplete data in software engineer-ing
databases,” in Proc. Int. Symp. Empir. Softw. Eng., 2005, pp. 234—
239.

[8] D. J. Stekhoven and P. B€uhlmann, “MissForest non parametric
missing value imputation for mixed-type data,” Bioinformatics, vol.
28,no. 1, pp. 112-118, 2011.

[9] P. Royston and I. R. White, “Multiple imputation by chained
equations (MICE): Implementation in stata,” J. Statist. Softw., vol.
45, no. 4, pp. 1-20, 2011.

[10] X. Miao, Y. Wu, L. Chen, Y. Gao and J. Yin, "An Experimental
Survey of Missing Data Imputation Algorithms,” in IEEE
Transactions on Knowledge and Data Engineering, vol. 35, no. 7,
pp. 6630-6650, 1 July 2023, doi: 10.1109/TKDE.2022.3186498.

[11]
[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]

[31]

Tashiro, Yusuke, et al. "Csdi: Conditional score-based diffusion
models for probabilistic time series imputation." Advances in
Neural Information Processing Systems 34 (2021): 24804-24816.
Perlin, Ken. "An image synthesizer." ACM Siggraph Computer
Graphics 19.3 (1985): 287-296.

Hugo Elias, Mount.D, Eastman.R, CMSC 425: Lecture 12 :
Procedural Generation: 1D Perlin Noise, Lecture Notes,
https://iwww.cs.umd.edu /class/spring2018/c msc425/Lects/lect12-
1d-perlin.pdf, Accessed on : 2023, June,30

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion
Probabilistic Models. NeurIPS, 2020.

Chen, Ting. "On the importance of noise scheduling for diffusion
models." arXiv preprint arXiv:2301.10972 (2023).

Lin, Shanchuan, et al. "Common Diffusion Noise Schedules and
Sample Steps are Flawed." arXiv preprint arXiv:2305.08891 (2023).
J. Yoon, J. Jordon, and M. Schaar, “GAIN: Missing data imputa-
tion using generative adversarial nets,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 5675-5684.

S. Migjalili, S. M. Mirjalili, and A. Lewis, “Let a biogeography-
based optimizer train your multi-layer perceptron,” Inf. Sci., vol.
269, no. 1, pp. 188-209, 2014.

A. Majumdar, “Blind denoising autoencoder,” IEEE Trans. Neu-ral
Netw. Learn. Syst., vol. 30, no. 1, pp. 312-317, Jan. 2019.

Song, Yang, et al. "Score-based generative modeling through
stochastic differential equations.” arXiv preprint arXiv:2011.13456
(2020).

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat
gans on image synthesis." Advances in neural information
processing systems 34 (2021): 8780-8794.

Chen, Jianfei, et al. "Vflow: More expressive generative flows with
variational data augmentation.” International Conference on
Machine Learning. PMLR, 2020.

Cai, Ruojin, et al. "Learning gradient fields for shape generation."
Computer Vision-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part Il 16.
Springer International Publishing, 2020.

Heusel, Martin, et al. "Gans trained by a two time-scale update rule
converge to a local nash equilibrium." Advances in neural
information processing systems 30 (2017).

Zheng, Shuhan, and Nontawat Charoenphakdee. "Diffusion models
for missing value imputation in tabular data." arXiv preprint
arXiv:2210.17128 (2022).

UC Irvine Machine learning Repository, https://archive.ics.uci.edu/,
Accessed on :2023, October, 2023.

OpenMI Dataset, https://www.openml.org/, Accessed on :2023,
May, 20.

Gondara, Lovedeep, and Ke Wang. "Mida: Multiple imputation
using denoising autoencoders." Advances in Knowledge Discovery
and Data Mining: 22nd Pacific-Asia Conference, PAKDD 2018,
Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part 111 22.
Springer International Publishing, 2018.

Fisher, Robert, et al. "Image Synthesis—Noise Generation."(2013)
Van Buuren, Stef. "Multiple imputation of multilevel data."
Handbook of advanced multilevel analysis 10 (2011): 173-196.
Shapiro, S. S.; Wilk, M. B. (1965). "An analysis of variance test for
normality. Biometrika. 52 (3-4): 591-611. JSTOR 2333709.

