
 

 

Abstract—Imputation is one of the methods to improve the 

quality of a dataset. The imputation problem can be solved using 

statistical techniques, machine learning algorithms, and 

generative models. This research proposes improving the standard 

imputation algorithm based on the Diffusion Model. We propose 

to use Perlin noise or gradient noise generation to generate noise 

at each step of the diffusion mode and propose a scheduler to 

improve the performance of the diffusion model-based imputation 

algorithm. Perlin noise generation and cosine scheduler have a 

positive influence on improving the performance of non-normal 

data imputation. Four real-world datasets are used to evaluate our 

proposed methods. Based on the evaluation tests of the RMSE 

value, our proposed method produces a 10% lower RMSE value 

than the baseline imputation algorithms based on diffusion 

models, GAN, and VAE. 

 
Index Terms— Tabular data, Imputation, Cosine Scheduler, 

Stable Diffusion Models, Gradient Noise 

I. INTRODUCTION 

ata processing should be improved [1]. Missing data can 

occur due to incomplete form filling and questionnaire 

questions needing to be filled in [2]. Other causes of 

missing data include sensors that fail to record data [3]. The 

missing data will affect the statistics and data analysis [4]. To 

accommodate the problem of missing data, the primary 

reference that can be used is to categorize data based on the 

MCAR (Missing Completely at Random), MNAR (Missing not 

at random), and MAR (missing at random) categories [5].  

The simplest way to deal with missing data is by not using 

the data. Disposing of the data will cause a new bias in the data. 

So, the researchers tried to impute artificial values into the data. 

The simplest imputation method is by using statistics [7]. Some 

of the machine learning algorithms used are K-Nearest 

Neighbor (KNN) [6], MICE [9], and Missforest [8].  

Furthermore, researchers also try to use neural network 

techniques in imputing data. One of the algorithms is Multi-

Layer Perceptron [18]. Deep-learning techniques perform 

imputations based on Auto Encoder [30]. The development of 

generative modeling also supports solutions to imputation 

problems. The generative algorithm used for imputation is 

GAIN [43]. Testing several imputation techniques against 

various datasets has been carried out by Miao et al. [10]. The 

diffusion model technique is also used to overcome the problem 

of missing data. The diffusion model technique used is CSDI 

(Conditional Score Diffusion Model Imputation) [11]. 

Score-based generative models have shown competitive 

outcomes compared to state-of-the-art methods across various 

implementation tasks. These tasks include generative images 

[20][21], audio processing [22], and shape generation [23] 

Song. et al. contrast the performance of score-based diffusion 

models with vanilla Continuous Normalizing Flows and state-

of-the-art methods [20]. The framework of score-based 

diffusion models proposes the gradual diffusion of distributions 

based on noise distribution. Stochastic differential equations are 

employed to learn from the distribution of sampled data. Score-

based diffusion models exhibit advantages during training 

compared to the vanilla Continuous Normalizing Flows (CNF) 

method [20]. The reason is that the maximum likelihood 

objective for CNF training requires an expensive Ordinary 

Differential Equation (ODE) solver for each optimization step. 

In contrast, score-based diffusion models utilize a weighted 

score-matching loss combination for score matching, which is 

less computationally expensive. Evaluation results of score-

based models show likelihood outcomes that compete favorably 

with recent autoregressive models, with minor degradation 

observed in Fréchet Inception Distances [24]. 

Algorithms developed to impute data are numerous, but most 

real-world data have an abnormal distribution. This anomalous 

data causes the results of some algorithms to fail to work well. 

The process of machine learning, deep learning, and generative 

models makes the conversion of abnormal data into a normal 

distribution so that machine learning calculations can get the 

best results. In this research, the author will propose an 

imputation method in the diffusion models algorithm for non-

normal or extreme data. The improvement process involves 

noise generation, loss function, and noise scheduler changes. 
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II. BACKGROUND & PROBLEM FORMULATION 

A. Diffusion models imputation 

Assume a sample 𝑥0 that has missing values. Based on Song. 

et al. [11], we formulate to produce imputation target  𝑥𝑡
𝑡𝑎 𝜖 𝑥0

𝑐𝑜 

by using known data  𝑥0
𝑐𝑜  𝜖 𝑥⬚

𝑡𝑎. Then, we can assume that the 

goal of the probabilistic model is to estimate the distribution of 

 𝑞 (𝑥0
𝑡𝑎 | 𝑥0

𝑐𝑜 )  by modeling  𝑝𝜃(𝑥0
𝑡𝑎 | 𝑥0

𝑐𝑜  ). So, we can notate 

all known values as 𝑥0
𝑐𝑜  and missing values as  𝑥0

𝑡𝑎, so the 

backward imputation process will be as in formula 2. 

𝑞𝜃(𝑥0:𝑇
𝑡𝑎  | 𝑥0

𝑐𝑜) ∶= 𝑝(𝑥0:𝑇
𝑡𝑎 ) ∏ 𝑝𝜃( 𝑥𝑡−1

𝑡𝑎 |𝑥𝑡
𝑡𝑎, 𝑥0

𝑐𝑜),

𝑇

𝑡=1

𝑥𝑇
𝑡𝑎 ~𝒩 (0, Ι). 

(1) 

𝑝𝜃(𝑥𝑡−1
𝑡𝑎  | 𝑥𝑡

𝑡𝑎, 𝑥0
𝑐𝑜) ∶

= 𝒩 (𝑥𝑡−1
𝑡𝑎 ;  𝜇𝜃 (𝑥𝑡

𝑡𝑎, 𝑡 | 𝑥0
𝑐𝑜), 𝜎𝜃  (𝑥𝑡

𝑡𝑎, 𝑡 | 𝑥0
𝑐𝑜)Ι). 

(2) 

B. Gaussian Noise 

Gaussian noise or noise based on normal distribution is made 

based on a probability density function (pdf) with normal 

distribution parameters [29]. 

𝜑 (𝑧) =  
1

𝜎 √2𝜋
 𝑒

−(𝑧−𝜇)2

2𝜎2  

(3) 

In formula 3, the notation 𝜎 is the standard deviation,  𝑧 

represents the gray level, 𝜇 is the average value. Gaussian noise 

can be minimized in image processing with several filtering and 

smoothing techniques [31]. 

C. Perlin Noise / Gradient Noise 

To create noise, we generate pseudo-random numbers 

[12][13]. This generator is a form of smooth function. We can 

add noise functions with different frequencies and amplitudes 

in Perlin noise [49]. We try to create functions with increasing 

frequency variations: 𝑛𝑜𝑖𝑠𝑒(𝑡), 𝑛𝑜𝑖𝑠𝑒(2𝑡), 𝑛𝑜𝑖𝑠𝑒(4𝑡),
… 𝑛𝑜𝑖𝑠𝑒(2𝑖𝑡). In this case, we do not change the function; we 

only change the frequency parameter. 

High frequencies usually have low amplitudes. In Perlin 

noise, we can configure the amplitude of each frequency. The 

value that helps to configure this is persistence. 𝑝⬚. The 

persistence value is between 0 and 1. The higher the persistence 

value, the more visible the high frequencies will be. In formula 

4, 𝑝𝑖  is the amplitude at the 𝑖𝑡ℎ stage. The final noise is the sum 

of the persistence defined by 𝑝𝑒𝑟𝑙𝑖𝑛(𝑡). 

The user can change or control the octave value by changing 

the value of 2𝑖  and the persistence value 𝑝𝑖. 

𝑝𝑒𝑟𝑙𝑖𝑛(𝑡) =  ∑ 𝑝𝑖

𝑘

𝑖=0

 𝑛𝑜𝑖𝑠𝑒(2𝑖 . 𝑡) 

(4) 

III. PROPOSED METHOD 

We proposed Perlin noise imputation & scheduling for 

diffusion models. A good noise is a noise that has a 

homogeneous pattern visualization random characteristics, and 

its value changes slowly. Generally, noise features are similar 

in size between one noise and another. Perlin noise can have 

better noise characteristics than normal noise. In normal noise, 

we try to interpolate a random value along the line with a 

random integer. These values are randomly degenerate; some 

deals have the same pattern, but the noise changes quickly in 

some parts. The place where the noise changes very fast is said 

to be high frequency. While the place where the noise changes 

slowly is said to be low frequency. We can conclude that normal 

noise is built on high and low frequencies. 

Perlin noise also does the same thing in producing random 

integer values. However, Perlin noise uses a gradient tangent to 

the 1D noise function to create noise values. No matter the 

direction of the gradient produced by Perlin noise, the value will 

increase and decrease along with the previous value. If two 

lattice points have opposite gradient directions, the noise 

function will produce an S-shape. By using this construction, 

the frequencies of Perlin noise have a similar size. Thus, the 

frequency spectrum of Perlin noise is more generalized than 

normal noise with high and low frequencies. Perlin noise uses 

gradient measurements to generate noise, while normal noise 

only uses random values. 

A. Perlin Noise Imputation 

In Gaussian noise, we have a forward process function. 

𝑥𝑡 = √𝛼̃𝑡   𝑥0 +  √1 − 𝛼̃𝑡  𝜖  

(5) 

Where 𝜖 is Gaussian noise with an objective function 

min 𝐿𝑠𝑖𝑚𝑝𝑙𝑒   

min 𝐿𝑠𝑖𝑚𝑝𝑙𝑒 =  𝔼𝑡,𝑥0,𝜖‖𝜖 −  𝜖𝜃(√𝛼̃𝑡   𝑥0 +  √1 − 𝛼̃𝑡  𝜖, 𝑡)‖
2
 

(6) 

We try to introduce Perlin noise into the forward process 

equation of diffusion models, 

𝑥𝑡
𝑝

= √𝛼̃𝑡   𝑥0 + 𝜖𝑝𝑒𝑟𝑙𝑖𝑛(√1 − 𝛼̃𝑡) 

(7)  

Following the standard diffusion model objective function, we 

can denote the forward process of Perlin noise in this form.  

 

𝑥𝑡
𝑝

= √𝛼̃𝑡   𝑥0 + 𝜖𝑝𝑒𝑟𝑙𝑖𝑛(√1 − 𝛼̃𝑡) 
(8) 

 

 This approach will prevent noisy data from degenerating by 

multiplying. 𝛼̃𝑡 with ϵ, but the noise fusion process is produced 

when the Perlin function generates the noise directly 

 𝜖𝑝𝑒𝑟𝑙𝑖𝑛(√1 − 𝛼̃𝑡) With this approach, the noise fraction at each 

t is no longer rigidly degenerate but has a softer specification. 

With the approach of input noise with a more stable frequency, 

the input of noisy data into the network also becomes stable. So, 

the distribution of input data also has implications for the 

stability of the data. Noisy data using Perlin noise is closer to 

normal distribution characteristics than Gaussian normal. As 

we know, to produce perfect features as input into the network, 

researchers try to make the input data into the network have a 

normal distribution. One of the ways used is by using a 

logarithmic function so that the values entering the deep  



 

 

 
learning network can be optimally trained for feature 

representation.  

B. Scheduling 

The diffusion model process [14] is a process where the input 

given is a noise sample. The noise sample is slowly input into 

the diffusion model based on the fraction schedule. The noise 

fraction will be input into the diffusion model process in the 

forward and backward processes. 

 The forward process is the training process, where the data 

is slowly given noise and inputted with an alpha value that 

increases with each step. At the same time, the backward 

process is a generative process, where the input into the 

diffusion model process is the opposite of the forward or 

training process. So, the diffusion model that has been trained 

will be inputted with the full noise and iterated in as many steps 

as previously initialized. If in the previous example using step 

10 and fraction between 0 and 1, then the backward process will 

do scheduling from alpha 1, 0.9, 0.8 . . , 0.1. So that after this 

backward process, the data generated from the model with full 

noise input will be obtained, which will slowly decrease the full 

noise fraction scheduling. 

Chent. et al. tried to evaluate various noise scheduling 

variations to be affiliated with the diffusion models technique 

[15]. Lin et al. have also tried to contribute to their findings by 

scheduling weaknesses at the beginning and end of scheduling 

in the diffusion model, where the improvements made can 

increase the image contrast in the generative model results [16]. 

The scheduler in the diffusion model is represented in the 

notation 𝛼̃𝑡 in Equation (8). The value of 𝛼̃𝑡 will be produced 

as a parameter for the formation of noisy data with Perlin noise 

𝑥𝑡
𝑝
. In this research, we propose to use the cosine function to 

maximize and improve the 

performance of Perlin noise. Using the cosine function can 

maximize the input forwarding information during training. 

 

𝑞 (𝑥1:𝑇|𝑥0) 

(9) 

Changing data from the original data 𝑥0  to data with 

maximum noise 𝑥1:𝑇  can be slowed down by the cosine 

function. With a slower step process, the deep learning network 

will obtain information about the noisy data at step t before it 

becomes maximum noise. So, the deep learning network 

obtains more information about the data before it becomes noise 

compared to the standard approach. 

In this research, we propose to use a cosine scheduler to 

maximize our proposed Perlin noise generation. This approach 

is chosen because the adapted step cosine function allows the 

deep learning model to obtain more data information before it 

slowly becomes noise. There are 100 steps to reach maximum 

alpha or full noise (1). Information from the data can still be 

maximized very slowly up to step 85 by the cosine scheduler. 

After step 85, cosine starts adding alpha with a value of 0.2 and 

continues to increase until full noise one at step 100. So, at steps 

0 to 85, the network model can learn data with minimal noise, 

so the deep learning network model obtains information about 

the data better than other schedulers. If we compare quadratic 

and linear at step 60, the alpha values are 0.2 and 0.6. With these 

values, the amount of noise incorporated into the data becomes 

quite large. While in cosine, the alpha value at step 60 is only 

0.03, so the deep learning network model still has enough 

information compared to the influence of noise. 

𝛼̅𝑡 =  
𝑓(𝑡)

𝑓(0)
, 𝑓𝑡 = cos2 (

𝑡 +  𝑠

1 + 𝑠
.  

𝜋

2
) 

(10) 

𝑡 is a step, 𝑠 is a floating number parameter to form the cosine 

function.  

In looking at the loss diffusion model perspective, we need 

to see how the model learns from complete noise to degenerate 

data. So, the perspective of thinking is that at the beginning of 

the epoch, the model does not know about the data (high loss), 

but at the end of the epoch iteration, it manages to understand 

the data (low loss). 

 

IV. RESULTS AND DISCUSSIONS 

There are four datasets used in this experiment. The datasets 

were obtained from the OpenMl repository [27] and the UCI 

machine learning dataset [26]. Each dataset is normalized to a 

value between 0 and 1. Each scenario is tested ten times to get 

the consistency of the value obtained. The properties of each 

dataset can be seen in Table 1. 

To prove the consistency of our proposed method against 

non-normal data, we tested our proposed method algorithm 

with two types of dataset categories. The first dataset category 

distribution is a dataset that has a normal distribution (frog, 

satellite). The second dataset category distribution is a non-

normal dataset (bike and credit card dataset). To evaluate our 

proposed method, we compare our proposed algorithm with 

GAIN (GAN )-based imputation [17], VAE [28], and CSDI 

(Imputation based on Diffusion models [11]. Based on Table. I. 

Datasets are normal and non-normal based on the Shapiro-Walk 

test with alpha 0.05 [31]. 

We use three scenarios to simulate the missing rate of data 

[30]: Missing Completely at Random (MCAR): Data absences 

are identified as MCAR (Missing Completely At Random) 

when the occurrence of missing data is entirely unrelated and 

independent of the available dataset. Missing Not At Random 

(MNAR): Incomplete data is considered MNAR (Missing Not 

At Random) when, despite having access to all available 

observed information, the probability of missing data is 

contingent upon the unobserved values. Missing at Random 

(MAR): In instances of missing data being categorized as MAR 

(Missing At Random), this classification indicates that the 

likelihood of data absence is unrelated to the missing values, 

given the already observed data. 

TABLE I. DIFFUSION MODELS EXPERIMENT PARAMETERS 

Parameters Value Parameters Value 

epochs 200 Diffusion Embedding  128 

batch_size 36 beta_start 0.0001 

Learning rate: 0.001 beta_end 0.5 

Diffusion layers:  4 num_steps 100 

Diffusion channels:  64   

 

 



 

Each scenario is treated equally, with various missing rates 

of 20%, 40%, 60%, and 80%. We identified that Perlin noise 

could make noisy data more stable on non-normal data than 

normal noise. Furthermore, to validate the results of the 

proposed method, we conducted experiments with several 

datasets. The experiment was conducted ten times for each 

scenario with the standard scheduler CSDI algorithm (std). We 

take the average value to be displayed in Table.III and Table. 

IV. 

Table. III and Table. IV compare the proposed method (Perlin 

noise generation and cosine scheduler), standard CSDI (normal 

noise generation), GAN's method for imputation (GAIN), and 

imputation based on Variational Auto Encoder (VAE). Denote 

by enh, std, GAIN, and VAE, respectively. We tried to compare 

our proposed method with the state-of-the-art imputation 

method with CSDI. CSDI imputation is an imputation 

algorithm based on a diffusion model.  

We modified and utilized the implementation of CSDI in 

TabCSDI [25]. 

The results in Table.III shows that the RMSE results in the 

proposed method have consistently smaller values than those 

RMSE values in the CSDI and GAIN—the test in Table.III is 

on non-normal data. Using the normal dataset, we also tested 

the proposed method (Perlin noise generation). The results of 

this test are shown in Table IV. The test is conducted in an 

identical environment. On the normal dataset, the performance 

of Perlin noise is almost the same as that in the standard method. 

Thus, the effect of Perlin noise is not very influential on the 

imputed normal dataset.  

We descriptively and visually examine the comparative error 

performance, specifically the Root Mean Square Error (RMSE), 

in experimental scenarios involving different types of missing 

data mechanisms: Missing Completely at Random (MCAR), 

Missing Not at Random (MNAR), and Missing at Random  

TABLE II. (RMSE) NON-NORMAL DATASET BIKE | CPU 

dts sce mod 
Missing Ratio 

dts sce mod 
Missing Ratio 

20% 40% 60% 80% 20% 40% 60% 80% 

b
ik

e 

m
ca

r 

enh 0.0792 0.1000 0.1246 0.1799 

c
r
e
d

it-c
a
r
d

 

m
ca

r 

enh 0.0854 0.0926 0.1080 0.1293 

std 0.0979 0.1208 0.1393 0.1870 std 0.0968 0.1027 0.1203 0.1376 

GAIN 0.2054 0.2270 0.2650 0.2934 GAIN 0.1789 0.1887 0.2062 0.2376 

VAE 0.2179 0.2566 0.2876 0.3102 VAE 0.1537 0.1697 0.1879 0.2045 

m
n

a
r 

enh 0.0723 0.1094 0.1433 0.1768 m
n

a
r 

enh 0.0720 0.1081 0.1422 0.1770 

std 0.0921 0.1220 0.1576 0.1879 std 0.0925 0.1241 0.1567 0.1880 

GAIN 0.2356 0.2640 0.2822 0.2973 GAIN 0.2463 0.2562 0.2460 0.2824 

VAE 0.2304 0.2559 0.2873 0.3183 VAE 0.1528 0.1735 0.1848 0.2038 

m
a

r 

enh 0.0726 0.1027 0.0852 0.1443 

m
a

r 

enh 0.0878 0.0897 0.0979 0.1024 

std 0.0893 0.1105 0.1016 0.1601 std 0.0960 0.1024 0.1091 0.1096 

GAIN 0.2172 0.2539 0.2712 0.2937 GAIN 0.1952 0.1946 0.2268 0.2381 

VAE 0.2380 0.2484 0.2884 0.2733 VAE 0.1590 0.1842 0.1816 0.1666 

 
TABLE III. (RMSE) NORMAL DATASET – FROG | SATE 

dts sce mod 
Missing Ratio 

dts sce mod 
Missing Ratio 

20% 40% 60% 80% 20% 40% 60% 80% 

fr
o
g
 

m
ca

r 

enh 0.0559 0.0568 0.0618 0.0771 

sa
te 

m
ca

r 

enh 0.0392 0.0419 0.0486 0.0615 

std 0.0590 0.0622 0.0682 0.0832 std 0.0406 0.0427 0.0491 0.0624 

GAIN 0.0757 0.1079 0.1977 0.2005 GAIN 0.0515 0.0864 0.1553 0.1958 

VAE 0.1118 0.1199 0.1229 0.1267 VAE 0.1541 0.2438 0.3346 0.4233 

m
n

a
r 

enh 0.0585 0.0570 0.0605 0.0761 m
n

a
r 

enh 0.0416 0.0422 0.0481 0.0597 

std 0.0621 0.0636 0.0661 0.0812 std 0.0430 0.0425 0.0487 0.0614 

GAIN 0.1163 0.1380 0.1832 0.2248 GAIN 0.1023 0.1564 0.2508 0.2776 

VAE 0.1166 0.1172 0.1161 0.1283 VAE 0.1458 0.2353 0.3293 0.4101 

m
a

r 

enh 0.0544 0.0493 0.0533 0.0604 

m
a

r 

enh 0.0367 0.0390 0.0418 0.0454 

std 0.0569 0.0536 0.0589 0.0662 std 0.0372 0.0399 0.0426 0.0458 

GAIN 0.1102 0.1095 0.1801 0.2224 GAIN 0.1062 0.1276 0.1718 0.2421 

VAE 0.1174 0.1157 0.1288 0.1328 VAE 0.1497 0.2247 0.3086 0.3921 

 

 
Fig 1. Bike Dataset Visualization (Result) 
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(MAR). Each missing data scenario involved varying levels of 

missingness at rates of 20%, 40%, 60%, and 80%. These 

analyses were conducted on non-normally distributed data, 

exemplified by the Bike dataset as visualized in Fig 1. 

The RMSE values obtained from the proposed method (enh) 

consistently demonstrated the lowest RMSE values compared 

to those of the baseline algorithm (std), GAIN, and VAE. This 

consistent trend across different missing data scenarios suggests 

the ability of the proposed method (enh) to minimize errors 

within these datasets. Visual representations in Fig 1 elucidate 

that Perlin noise generation consistently yields lower RMSE 

values than the standard algorithm (std), GAIN, and VAE 

across various missing mechanisms and rates. This consistency 

underscores the efficacy of Perlin noise in reducing error 

values. 

This advantageous characteristic of Perlin noise can be 

attributed to its high slope normal distribution within the 

dataset, compelling non-normally distributed data to adopt a 

form closer to normality through noisy data contamination. 

However, this effect is not observed in datasets with a normally 

distributed structure. In cases where the dataset is normally 

distributed, Perlin Noise does not confer any advantage in 

normalizing the data, as the dataset already exists in a normal 

distribution state. Through testing the RMSE value, we can 

conclude that the proposed method (enh) has a lower RMSE 

value than the baseline (std) on data with non-normal values.   

A. Ablation Analysis. 

Table.VI and Table.VII shows the effect of each of our 

proposed noise generation schedulers. We compare the 

proposed method with the standard condition on the non-

normal, categorical, and normal datasets. It compares the result 

of the 20% missing rate average on MCAR, MNAR, and MAR 

scenarios. 

In Table. VI rows 1 and 2, we show the results without using 

the cosine scheduler, but we added Perlin Noise in row 2. In 

rows 3 and 4, we compare the algorithm with the enhancement 

of the Cosine scheduler in Table. VI, Bike dataset using Perlin 

noise produces RMSE = 0.0870, smaller than the RMSE at row 

1 (without Perlin noise) with RMSE = 0.0930. Also, in row 2 

of the Credit Card dataset (CC), Perlin noise produces RMSE = 

0.0916, smaller than the RMSE at row 1 (without Perlin noise) 

with RMSE = 0.0951. In summary, the difference RMSE value 

of Perlin Noise Components: Bike dataset = 6.4 % and Credit 

card dataset: 3.6 %. For the Cosine scheduler components: Bike 

dataset = 10.2 % and Credit card dataset = 10.7%. Additionally, 

when incorporating the cosine scheduler component, the RMSE 

value becomes 10% lower than the baseline method. Here, we 

can conclude that Perlin noise can improve the performance of 

RMSE on non-normal datasets.   

The result of the ablation study on the normal dataset is 

explained in the Frog and Satellite dataset. The Perlin noise 

component's effect cannot help improve the performance of the 

RMSE value for a normal dataset. On the contrary, in the cosine 

scheduler, the component can help improve the RMSE 

performance consistently on the normal dataset. In row 3 of 

Table VII, the resulting RMSE value is 0.391 on the Satellite 

Dataset. For this value, if we compare row 1 (without cosine 

scheduler), the RMSE value is greater, which is 0.0402.  

The ablation study test for the Frog and Satellite dataset 

(normal data distribution) Perlin noise generation cannot help 

increase RMSE performance on diffusion model imputation. 

However, a cosine scheduler can improve RMSE performance 

in normal and non-normal data. The differences in RMSE 

values for datasets incorporating Cosine scheduler components 

were as follows: the Frog dataset exhibited a decrease of 8.2%, 

and the Satellite dataset experienced a decline of 2.7% 

In row 4 of Table.VI, we can see that adding Perlin noise 

generation and cosine scheduler components results in the 

smallest RMSE value compared to those without these 

components—the RMSE value of the Credit Card dataset in 

row 4 of Table.VI has a value of 0.0817. This value is smaller 

than the value of the Credit Card dataset in row 1 without the 

Perlin noise and cosine scheduler components, with an RMSE 

value of 0.0951. From the ablation study test in Table.VI and 

Table.VII, it can be explained that adding the Perlin noise 

generation component with a cosine scheduler consistently 

lowers the RMSE imputation value on non-normal datasets. 

V. CONCLUSION 

Perlin noise generation and cosine scheduler have a positive 

influence on improving the performance of non-normal data 

imputation. Based on the Perlin noise generation evaluation, 

our tests have decreased the RMSE error value. Our scheduler 

component changes also improved performance compared to 

the standard baseline on non-normal data. Based on the 

evaluation, analysis, and experiments conducted, the 

characteristic of Perlin noise can be attributed to its high slope 

normal distribution within the dataset, compelling non-

normally distributed data to adopt a form closer to normality 

through the imposition of noisy data contamination. Perlin 

noise distribution makes the noisy data added with noise more 

normal when entering the deep learning network in the 

imputation diffusion model. Loss function calculation in 

normal noise generation makes calculations based on the 

fraction of noise with data. However, with the change of loss 

TABLE IV. ABLATION STUDY | BIKE, CREDIT CARD 

No Perlin 

Noise  

Cosine 

Scheduler 

RMSE (20% missing 

ratio - MCAR) 

Bike 

Dataset 

Credit 

Card 

Dataset 

1 𝑥 𝑥 0.0930 0.0951 

2 √ 𝑥 0.0870 0.0916 

3 𝑥 √ 0.0835 0.0849 

4 √ √ 0.0747 0.0817 

 
TABLE V. ABLATION STUDY | FROG, SATELLITE 

No Perlin 

Noise  

Cosine 

Scheduler 

RMSE (20% missing 

ratio - MCAR) 

Frog 

Dataset 

Satellite 

Dataset 

1 𝑥 𝑥 0.0593 0.0402 

2 √ 𝑥 0.0598 0.0461 

3 𝑥 √ 0.0544 0.0391 

4 √ √ 0.0562 0.0416 

 



 

function in Perlin noise, the noise portion is given directly when 

the noise is generated in the Perlin noise formula. Thus, Perlin 

noise can be utilized to improve imputation on non-normal data. 

The ablation study of non-normal data explains that Perlin noise 

generation coupled with a cosine scheduler can consistently 

have a lower RMSE value of 10.7 % than the standard CSDI 

algorithm. Our plan for future research is to explore how 

continual learning can improve the performance of deep 

learning algorithms. However, whether the improvement is 

practical or can be applied in general needs to be examined 

more carefully. 
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