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Abstract
Behavioral diversity, expert imitation, fairness,
safety goals and others give rise to preferences in
sequential decision making domains that do not
decompose additively across time. We introduce
the class of convex Markov games that allow
general convex preferences over occupancy mea-
sures. Despite infinite time horizon and strictly
higher generality than Markov games, pure strat-
egy Nash equilibria exist. Furthermore, equilib-
ria can be approximated empirically by perform-
ing gradient descent on an upper bound of ex-
ploitability. Our experiments reveal novel so-
lutions to classic repeated normal-form games,
find fair solutions in a repeated asymmetric co-
ordination game, and prioritize safe long-term
behavior in a robot warehouse environment. In
the prisoner’s dilemma, our algorithm leverages
transient imitation to find a policy profile that de-
viates from observed human play only slightly,
yet achieves higher per-player utility while also
being three orders of magnitude less exploitable.

1. Introduction
Modern solutions to (perfect-information) multi-agent re-
inforcement learning (MARL) typically build upon the
Markov game (MG) model (Littman, 1994), a generaliza-
tion of the classical single agent Markov decision process
(MDP) to the multi-agent setting (see Table 1, Linear Loss).

Similarly, the MDP has provided the foundation for devel-
opment of single agent RL research. However, modern
solutions to single agent RL now build upon the convex
MDP (cMDP), an extension of the MDP that allows for
more expressive preferences over agent behavior that do
not decompose additively across time (Zhang et al., 2020).
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# of Agents Linear Loss Convex Loss (Concave u)

n = 1 MDP [1] convex MDP [2]

n > 1 MG [3] (Ours) convex MG

Table 1. We introduce the convex Markov Game (cMG) to fill a
gap at the intersection of multi-agent and reinforcement learning
research. We demonstrate how to use cMGs to model a variety of
utilities u for a linear reward function r: (a) Creativity, using an
entropy bonus, (b) Imitation, using a divergence from a reference
occupancy measure, (c) Fairness, using a state-wise penalty, and
(d) Safety, with a non-smooth loss. This paper establishes exis-
tence of equilibria for such utilities, proposes a (sub)differentiable
loss for its computation, and demonstrates its use in selecting de-
sirable multi-agent behaviors in each setting, at times by tracing a
homotopy from a cMG back to an MG. References: [1] Bellman
(1966); [2] Zahavy et al. (2021); [3] Shapley (1953).

Mathematically, convex MDPs allow agent goals to be ex-
pressed as general convex functions of their long run occu-
pancy measure (the frequency with which the agent takes
a given action in a given state). An exemplar is the goal
of maximizing the entropy of an agent’s occupancy mea-
sure to encourage exploration (Hazan et al., 2019); imi-
tation, risk-aversion, robustness, and other goals are also
common (Mutti et al., 2022; Garcıa & Fernández, 2015).
In the case where the goal is expressed as a linear function
of the occupancy measure, cMDPs reduce to MDPs.

Naturally, MARL researchers have adopted this general-
ization empirically in their work, for example to encourage
agent curiosity and the discovery of new and interesting
strategies in games like Chess (Zahavy et al., 2023). We
remark (†) on the advantages of these more general objec-
tives in selecting desireable equilibria in experiments.

However, there has yet to be a formal definition of a frame-
work extending cMDPs to the multi-agent setting (Table 1).
More troubling is the the lack of any analysis proving Nash
equilibria, the central solution concept in multi-agent and
game theory research, even exist in this setting.

In this work, we formally define the convex Markov game
(cMG) and prove the existence of pure Nash equilibria
by appealing to topological arguments. From a theoret-
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ical perspective, this result is interesting as properties of
cMGs break the assumptions leveraged by prior work on
Markov games (e.g., convex best response correspondences
and existence of value functions). In addition, we derive
a (sub)differentiable upper bound on the exploitability of
a policy profile that can be efficiently computed and op-
timized. Lastly, we describe several use cases for cMGs
beyond just curiosity, including imitation, fairness, and
safety. Using our derived upper bound, we solve for ap-
proximate Nash equilibria in each of these settings, show-
ing improved performance over sensible baselines. In some
cases, we construct a deformation (homotopy) from a cMG
to an MG that allows us to derive police profiles that de-
spite being similar to observed human play, exhibit higher
welfare and orders of magnitude lower exploitability.

The article is structured as follows. We define the class of
convex Markov games in section 2. We show that pure-
strategy Nash equilibria exist in section 3. Our analysis of
a loss for equilibrium computation is in section 4, which we
put to practice in our experiments in section 5. We discuss
related literature in section 6 and conclude in section 7.

2. Convex Markov Games
The main definition of this article is the convex Markov
Game (cMG).

Definition 1. A convex Markov game is given by a 6-tuple
G = ⟨S,A = "n

i=1Ai, P, u, γ, µ0⟩:

• Players i = 1, 2, . . . , n,
• a finite state space S and initial distribution µ0 ∈ ∆S ,
• finite action spaces A1,A2, . . . ,An

1,
• a state transition function P : S ×A → ∆S ,
• a discount factor γ ∈ [0, 1), and
• a set of real-valued utilities, ui(µi, π−i), each con-

tinuous and concave in player i’s occupancy measure,
µi ∈ ∆S×Ai , and continuous in each policy πj ̸=i.

The Policy View Players i = 1, . . . , n choose (station-
ary) policies πi : S → ∆Ai . A policy profile π =
(π1, π2, . . . , πn) induces a sequence of states and joint ac-
tions (st)t∈N and (at)t∈N, and a state-action occupancy
measure

µπ(s, a) = (1− γ)

∞∑
t=0

γtP(st = s, at = a|µ0, π, P ).

We can recover state-action occupancies from a matrix
equation. Let Pπ be the state transition matrix under π.
Then the state occupancy measure µs(s) =

∑
a µ(s, a) can

be written as a function of π in matrix notation as

µs(π) = (1− γ)
(
[I − γPπ]−1µ0

)
, (1)

1Action spaces can be generalized to have state-dependence.

and the state-action occupancy can be recovered as
µ(s, a) = µs(s) · π(a|s). The marginal on this probability
for only agent i’s actions can be recovered as

µi(πi, π−i) = (1− γ)([I − γPπ]−1µ01
⊤
|Ai|)⊙ πi, (2)

where ⊙ denotes the Hadamard product and π−i indicates
all policies except player i’s. Hence, we can also write
ui(µi(πi, π−i), π−i) purely with policies as ui(πi, π−i).

Players may choose to randomize over stochastic policies.
We say that a player’s strategy ρi is a mixed-strategy if it is
a distribution over policies. For example, let π(a)

i and π
(b)
i

both be stochastic policies. Then an example of a mixed-
strategy is one in which player i plays π

(a)
i and π

(b)
i with

equal probability 1/2. If ρi puts all mass on a single policy
πi, we call ρi a pure-strategy and write πi directly.

We say that a (random) policy profile ρ = (ρ1, ρ2, . . . , ρn)
is a (mixed-strategy) Nash equilibrium if for all players i,

Eπ∼ρ[ui(πi, π−i)] ≥ Eπ′
i∼ρ′

i,π−i∼ρ−i
[ui(π

′
i, π−i)],

for any policy ρ′i. If ρ is a pure strategy profile as defined
above, we call it a pure-strategy Nash equilibrium.

We call any policy π̃i (or occupancy measure µ̃i) player i’s
best response to a profile ρ if it achieves an expected utility
that is maximal among all policies (respectively, occupancy
measures). Note best responses are the solutions to each
individual player’s MDP with all other player policies held
fixed, and so they necessarily can exist as pure strategies:
π̃ ∈ argmaxπ′

i
Eπ−i∼ρ−i [ui(π

′
i, π−i)]

The Occupancy Measure View In our analysis and the
algorithms proposed in this article, it will be helpful to
frame and solve problems directly in the space of occu-
pancy measures U .

Given opponent policy profiles π−i we can define the prob-
ability kernel Pπ−i

i as

P
π−i

i (s′|s, ai) =
∑

a−i∈A−i

P (s′|s, ai, a−i)
∏
j ̸=i

πj(aj |s).

Given these, we can reformulate an individual agent’s de-
cision problem as

max
µi∈R|S|×|Ai|

ui(µi, π−i) (3)

s.t. µi ≥ 0 (4)∑
ai∈Ai

(
I − γP

π−i

i (·|·, ai)
)
µi(·, ai) = (1− γ)µ0 (5)

where P
π−i

i (·|·, ai) is a next-state by state transition ma-
trix and µi(·, ai) is a vector denoting the probability of tak-
ing action ai in every state. Because ui are concave in µi,
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(a) Occupancy Measure Space (U1) (b) Policy Space (Π1) (c) Joint Occupancy Measure Space (U)

Figure 1. (A convex Markov Game) A 2-player, 2-state, 2-action convex Markov game. Colors help visualize the effect of the nonlinear
transformation from occupancy space to policy space (7). Full environment details are in Appendix F.2. (a) The feasible set of occupancy
measures for player 1 given a fixed policy for player 2 with best response region shown in black. Player 1’s occupancy gradient ∇i

µi

points off the 3-simplex so is not shown. Instead, we show ∇i
µi

projected onto the tangent space of the feasible set in white, i.e.,
ΠTUi(∇i

µi
). The vector shadowing the white one is ∇i

µi
projected onto the tangent space of the 3-simplex; note this vector points off

the feasible set (into the page). (b) A 2-d slice of player 1’s feasible policy space. The set of player 1’s best response policies to π2

(white dot) in black is non-convex when viewed in policy space. (c) We consider the joint occupancy measure space U where π1 = π2

(implies µ1 = µ2). Black dots indicate µ1 where the maximum Bellman flow constraint violation (5) is less than 0.01. The line connects
two points from the feasible set whose midpoint (in red) lies outside the set, revealing the non-convexity of U .

and given the linearity of the constraints in (4) and (5), this
problem is convex, motivating the name of convex Markov
Games (cMGs). If ui(µi, π−i) = ri(π−i)

⊤µi where ri is a
flattened state-action reward vector and µi is similarly flat-
tened, we recover Littman’s Markov game framework (as
mentioned in Table 1), however cMGs allow a much wider
class of utilities (e.g., ones that include entropy of the occu-
pancy measure). Notice that the feasible set in (5) is defined
by constraints that depend on π−i. For convenience, we de-
fine the so-called action correspondence, Ui = Mi(π−i),
which maps every profile of opponent policies to the feasi-
ble set of occupancy measures for player i, i.e, problem (5)
can be succinctly written

max
µi∈Mi(π−i)

ui(µi, π−i). (6)

We will use the feature that policies can be partially recov-
ered from occupancy measures as

πi(µi)(a|s) =

{
µi(s,a)∑
a′ µi(s,a′) if

∑
a′ µi(s, a

′) > 0

any πs
i ∈ ∆|Ai| otherwise.

(7)

3. Existence of Nash Equilibrium
We first show that under fairly general assumptions, mixed
Nash equilibria exist. We then argue that for the purposes
of learning, pure-strategy Nash equilibria are particularly
desirable, and show that these exist as well.

Proposition 1. Mixed-strategy Nash equilibria exist in
convex Markov Games.

This statement follows easily by using the policy view.

Each player’s optimization problem in terms of policies is:

max
πi∈("|S|

s=1 ∆Ai )

ui(µi(πi, π−i), π−i). (8)

Appendix B shows that all ui are continuous, differentiable
functions of (πi, π−i), and since the strategy sets are com-
pact metric spaces, the existence of mixed-strategy NE fol-
lows from classical existence results (Glicksberg, 1952; Fu-
denberg & Tirole, 1991, Theorem 1.3, p. 35).

While existence of mixed-strategy equilibria are a descrip-
tively helpful tool, they have limitations for applications in
learning. In particular, learning a continuous distribution
over stochastic policies would practically require function
approximation or discretizing the space, greatly increasing
the complexity of the learning problem; this challenge has
been broached but not sufficiently solved in the context of,
for example, generative adversarial networks (Arora et al.,
2017). Therefore, we provide another statement that en-
sures the existence of pure-strategy Nash equilibria.

Theorem 1. Pure-strategy Nash equilibria exist in convex
Markov Games.

The proof of this statement is in Appendix A and relies on
topological arguments, in particular the contractibility of
best response sets (Debreu, 1952; Kosowsky, 2023). While
best response sets are convex in occupancy measure space,
they are non-convex in policy space (Figure 1a-b). This
breaks the assumptions of the Kakutani (1941) fixed point
theorem, which provides the foundation for many equi-
librium existence results in multi-agent games including
cMG’s parent framework of Markov games (Fink, 1964),
and is one reason why we must appeal to more general the-
ory here.
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A set is contractible if there exists a continuous homo-
topy (deformation) that shrinks that set to a point. Intu-
itively, if best response sets are contractible then they be-
have topologically similarly to points, and so one would
expect the principles of the Brouwer (1911) fixed point the-
orem that Nash (1950) famously applied in his own exis-
tence proof should apply. In fact, all convex sets are con-
tractible, and so Kakutani’s fixed point theorem also fol-
lows from this argument. Despite their non-convexity, best
response sets in cMGs are contractible, which the reader
can confirm visually for the example in Figure 1b.

One additional obstruction to the analysis of cMGs is the
forfeiture, in the underlying cMDPs, of the recurrence rela-
tion known as the Bellman equation, which gives rise to the
notion of a value function. In fact, Fink (1964) used the ex-
istence of value functions along with Kakutani’s fixed point
theorem to prove existence of NE in Markov (stochastic)
games. We circumvented this obstruction with more gen-
eral equilibrium arguments, but the lack of access to tradi-
tional value functions presents a further obstacle to design-
ing efficient algorithms which we broach next.

4. Computation of Equilibria
While equilibria exist, even computing NEs in (vanilla)
MGs is PPAD-hard (Rubinstein, 2015; Daskalakis et al.,
2023)—since cMGs generalize MGs, computing NEs in
cMGs is at least as hard. Nevertheless, we present a prac-
tical gradient-based approach for approximating equilibria
that we find works well empirically.

The most common notion of approximation for NEs is ex-
ploitability (ϵ), defined as

ϵ = max
i=1,...,n

ϵi (9)

where ϵi = max
z∈Mi(π−i)

ui(z, π−i)− ui(µi, π−i). (10)

Exploitability measures the most any player can gain by
unilaterally deviating to another policy (equiv., occupancy
measure). Mechanistically, in cMGs, it corresponds to each
player solving problem (6)—a constrained, convex opti-
mization problem—and then reporting the value they at-
tained beyond that of their strategy under the approximate
equilibrium profile π. In particular, a policy profile π with
vanishing exploitability (ϵ = 0) is a pure-strategy Nash
equilibrium.

High Level Approach: It should also be clear from the
max in (10) that exploitability (9) is always non-negative.
Therefore, one can imagine solving for an NE (where
ϵ = 0) by minimizing exploitability, i.e., using it as a loss
function. Exploitability is relatively expensive to compute
as it requires solving n convex programs, so we instead
derive a cheap upper bound whose gap is controlled by

a hyperparameter τ . Exploitability (as well as our upper
bound) is non-convex and hence naive gradient descent is
not guaranteed to find a global minimum. However, in what
follows, we leverage “temperature annealing” ideas that
have been successful in several other game classes (normal-
form/extensive-form/Markov) and find them beneficial em-
pirically for cMGs as well.

The next result extends that of Gemp et al. (2024) from
the normal-form game setting to show that exploitability
is bounded from above by a constant depending on the
action space size, and a projected gradient (compare the
white vector to the one behind it in Figure 1a). The fol-
lowing result bounds the exploitability of a cMG with util-
ities ui using players’ utility-gradients of a cMG with a
small amount of entropy regularization, i.e. uτ

i (µi, π−i) =
ui(µi, π−i) + τH(µi), where H denotes Shannon entropy.

Theorem 2 (Low Temperature Approximate Equilibria are
Approximate Nash Equilibria). Let ∇iτ

µi
be player i’s en-

tropy regularized gradient and π be an approximate equi-
librium of the entropy-regularized game with τ > 0. Then,

ϵi(π) ≤ τ log(|S||Ai|) +
√
2∥ΠTUi

(∇iτ
µi
)∥,

where ΠTUi
is a projection onto the tangent space of Ui,

and ∇iτ
µi

is the gradient of uτ
i with respect to µi.

We can give more intuition for the analysis of the pro-
jection operator. If A(π−i) ∈ R|S|×(|S|·|Ai|) such that
A(π−i)µi = (1 − γ)µ0 represents the linear equality con-
straints in (5), then the projection matrix is given by

ΠTUi(π−i) = I|S|×|S| −A⊤(AA⊤)−1A. (11)

For ease of notation, we omit the dependence of A on π−i.
ΠTUi(π−i) is differentiable if and only if A(π−i) has full
row rank (i.e., rank |S|). Lemma 1 in Appendix B shows
that A(π−i) has full row rank.

Inspired by the bound in Theorem 2, we define the follow-
ing projected-gradient loss function for cMGs:

Lτ (π) =
∑
i

||ΠTUi(∇iτ
µi
)||2. (12)

As a consequence of Theorem 2, we obtain Corollary 1

ϵ(π) ≤ τ log(|S|max
i
|Ai|) +

√
2nLτ (π). (13)

We can directly minimize Lτ over the space of policy pro-
files π. Each player’s policy is subject to simplex con-
straints that are independent of the other players. In this
way, we combine the two distinct strengths of the policy
and occupancy measure views. In the policy view, player
strategy sets (Πi) are independent and convex, making for
simple independent updates and projections back to the fea-
sible sets. In the occupancy measure view (Ui), we enjoy
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Figure 2. (Approximate PGL Equilibrium) Arrows indicate each player’s most likely action (4 cardinal directions & “Stay”) with their
color indicating their probability. Moves to the same location are awarded randomly to one of the agents. The goal state is marked by B
and G where green achieves the top right corner and blue, the top left, simultaneously. Note that in last grid, π(↓) = 0.

convexity of player losses which enable derivation of upper
bounds on exploitability.

Note that our proposed loss is composed of a projection
operator ΠTUi , the gradients of our concave utilities ui, and
the mapping from policies to occupancy measures (2). All
of these components are differentiable assuming that the
utilities are also differentiable2.

This yields a differentiable loss and allows for optimiza-
tion using automatic differentiation. If we represent agent
policies in an unconstrained space with logits, we can then
minimize Lτ directly with respect to agent policies using
our preferred unconstrained optimizer “Opt”, e.g., Adam.
In addition, we repeatedly anneal τ , intended to mimic
standard protocols for normal-form, extensive-form, and
(vanilla) Markov games (McKelvey & Palfrey, 1995; 1998;
Gemp et al., 2022; Eibelshäuser & Poensgen, 2023). We
refer to this approach as projected-gradient loss minimiza-
tion (PGL), with pseudocode in Algorithm 1.
Algorithm 1 Projected-Gradient Loss Minimization (PGL)

1: Given: Initial profile π, temperature schedule τt
2: for t = 0, . . . , T do
3: π ← Opt(π,∇πLτt)
4: end for
5: Output: π

Note that Algorithm 1 does not come with any convergence
guarantees. Although we take inspiration from previous
approaches which carefully trace a continuum of equilib-
ria throughout the annealing process (Turocy, 2005), cMGs
introduce a distinct challenge to precisely replicating this
family of homotopy methods. The family of homotopy (an-
nealing) methods we imitate rely on first solving for the
equilibrium of a transformed game. In prior game classes,
this meant solving for the maximum entropy profile which
is easy (all players play uniform strategies). In cMGs, even
this step is complex. While the objective of maximizing
the sum of the entropy of each player’s occupancy mea-
sure is concave, the feasible set of joint occupancy mea-
sures is non-convex (see Figure 1c). Hence, even defining
the starting point for a homotopy process that imitates prior
approaches is difficult.

2Strict differentiability of utilities is not required by autodiff
libraries, e.g., JaX (Bradbury et al., 2018).

5. Experiments
We test a variety of nonlinear utilities in several domains.
In the first set of (creativity-based) domains, we compare
against four baseline algorithms, and discuss and contrast
the resulting exploitability and policy profiles. The re-
sulting experiments demonstrate other distinct use cases of
cMGs.

Baselines. The first baseline, min ϵ, directly minimizes
exploitability using a differentiable convex optimization
package CVXPYLAYERS in JAX (Agrawal et al., 2019;
Bradbury et al., 2018). In the second baseline, Sim, all
players simultaneously run gradient descent on their losses
with respect to their policies and we report the perfor-
mance of the running average of the policy trajectory. Poli-
cies at each state are represented in R|Ai|−1 as a soft-
max over |Ai| − 1 logits with the last logit fixed as 0.
In the third, RR, agents alternate gradient descent steps in
round-robin fashion. We also compare against the SGAME-
SOLVER (Eibelshäuser & Poensgen, 2023) package of ho-
motopy methods for Markov games.

Hyperparameters. We minimize Lτt(π) with Adam; its
internal state is not reset after annealing. Three types of
annealing schedules τt are used for entropy regularization
(Appendix E). Each policy πi is initialized to uniform un-
less otherwise specified. All experiments except pathfind-
ing were run on a single CPU and take about a minute
to solve although exact exploitability reporting via CVX-
OPT (Diamond & Boyd, 2016) increases runtime approxi-
mately 10×; pathfinding used 1 GPU.

Domains. We consider seven domains: one synthetic,
two grid worlds, and four iterated normal-form games
(NFGs). The first is a multi-agent pathfinding problem.
The second domain is the classic two-player, iterated pris-
oner’s dilemma (compare Tucker & Straffin Jr (1983))
where agents may choose to cooperate or defect with their
partner. The third domain is a three-player, public goods
game where agents may choose to contribute all or none
of their savings to a public pool which is then redistributed
evenly with a growth multiplier of 1.3 (compare Janssen &
Ahn (2003)); payoff is measured in terms of player prof-
its. In the fourth, we consider a three-player El Farol bar
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Figure 3. (Convergence to Nash equilibria) RR and PGL descent yield the lowest exploitability yet converge to different equilibria. PGL
drops coincide with temperature annealing. min ϵ crashes, marked by stars. All algorithms performed best with a learning rate of 0.1

problem where players choose whether to go to a bar or
stay home (Arthur, 1994). Agents receive maximum pay-
off (2) for attending an uncrowded bar (fewer than 3 peo-
ple), followed by staying home (1), followed by attending
a crowded bar (0). The fifth domain is the classic Bach-
Stravinsky game where agents must coordinate to attend a
performance despite different preferences. The synthetic
domain was presented in Figure 1 and is described in Ap-
pendix F.2. Lastly, we consider a robotic warehouse in-
spired grid world. We set γ = 0.99 in all domains. Iterated
NFGs use the last joint action selected by each player as
state, i.e., S = A.

5.1. Creativity

Our first application considers utilities that value solutions
that cover more than a small subset of the state-action
space, which leads to “creative” equilibria, as we show.
We get such outcomes for utilities that incorporate entropy
bonuses for high (Shannon) entropy occupancy measures,
ui(µi, π−i) = ri(π−i)

⊤µi + τH(µi) where ri(π−i) =
Ea−i∼π−i

[ri(s, ai, a−i)] as an abuse of notation.

To find equilibria of the original game, we anneal the
weight on this entropy bonus towards zero, emulating
prior work on homotopy methods for equilibria in Markov
games (Eibelshäuser & Poensgen, 2019).

First, we consider a multi-agent pathfinding problem. Two
agents must coordinate to pass through a bottleneck door-
way on their way to a joint goal state. The reward for reach-
ing the goal state is 100 for both players;−0.01 reward oth-
erwise. Upon reaching the goal state, the agents are reset
to the start state (leftmost grid in Figure 2). Our algorithm
returned an approximate equilibrium where the final util-
ity for each agent was 24.5 and the exploitability was 1.7
(approximately 7% of their utility).

A single rollout of the final learned policy is shown in Fig-
ure 2. The agents race to cross the doorway, after which,

one agent takes the center position and the other steps aside.
In the third and fourth to last frames, the blue agent moves
downward due to the small remaining entropy bonus. Both
agents then move upward towards the goal state. In the
final frame, green executes a “no-op” action to the right
as blue moves into goal position. Despite learning a fac-
torized Nash equilibrium policy profile, the agents exhibit
coordinated actions at certain steps (e.g., Figure 2, frame
3). This coordination is achieved through observations of
partner players’ grid locations, but richer coordination is
theoretically possible with richer observation spaces.

Next, we examine three iterated NFGs. Figure 3 shows
our algorithm has vanishing exploitability for all of them.
In each game, directly minimizing exploitability in CVX-
PYLAYERS crashes due to numerical instabilities. Round-
robin descent exhibits similar qualitative behavior to our
method, and faster convergence than simultaneous descent.

For a study of creativity, it is valuable to inspect the equi-
libria the methods found. Round-robin descent converges
to an asymmetric NE in iterated El Farol where one player
goes to the bar every night, while the two other players al-
ternate. Like PGL, SGAMESOLVER converges to the sym-
metric, state-independent NE of the underlying NFG (at-
tending the bar with probability 0.707). In IPD and IPGG,
round-robin and SGAMESOLVER similarly converge to the
state-independent NE policies of the underlying NFGs (DD
for IPD, zero contribution for IPGG). In contrast, our ap-
proach reveals more nuanced, symmetric policies in IPD
and IPGG which we explain and discuss below.

Remark (†): The entropy of a player’s occupancy mea-
sure is different from the entropy of their policy; the latter
only measures entropy of action distributions in each state,
ignoring the distribution across states. Interestingly, this
difference manifests in the structure of the equilibria we
discover. At high entropy, agents must explore the entire
state space, which includes joint cooperation in the iterated
prisoner’s dilemma (IPD) and joint donation in the iterated
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State s = (at−1
1 , at−1

2 ) a∗ π1(a
∗|s)

(C, C) C 0.73
(C, D) D 0.74
(D, C) C 0.66
(D, D) D 0.81

Table 2. (Approximate PGL Equilibrium on IPD) The best re-
sponse is denoted a∗ = argmaxa π1(a|s); C denotes Cooper-
ate; D denotes Defect. The utility per-player is 0.47 compared
to that of other classic IPD strategies: tit-for-tat (0.5), win-stay,
lose-shift (0.67), grim trigger (0.42), defect-defect (0.33).

public goods game (IPGG). As temperature is annealed, the
players receive less of a bonus for exploration, however,
this transient introduction to mutually beneficial play has a
lasting impact on equilibrium selection.

In IPD, PGL finds a symmetric policy, shown in Table 2,
that is quite similar to the famous tit-for-tat policy. If both
players cooperated on the last round, then they are likely to
continue cooperating. If player 2 defected, then player 1 is
likely to defect (even more likely if 1 defected previously).
If 1 defected and 2 cooperated, 1 is actually more likely to
cooperate in the next round, in an act of reciprocation.

In IPGG, PGL finds a symmetric policy as well, shown in
Table 3. In contrast to the zero contribution policies found
by all other methods, PGL finds a policy that, intuitively, is
more likely to contribute funds when other agents do.

5.2. Imitation

Our second application considers utilities that value poli-
cies similar to policies observed in human experiments. In
this experiment, we build on the homotopy experiment in
the creativity section where we annealed our entropy co-
efficient τ , but instead of annealing entropy, we anneal a
KL penalty to the human state-action occupancy measure,
ui(µi, π−i) = ri(π−i)

⊤µi − τdKL(µi∥µref
i ).

Remark (†): Matching occupancy measures is akin to
matching long-run trajectories whereas matching policies
does not necessarily match trajectories when other agents
adjust their policies during learning as is the case here.

The reference human policies µref
i were derived from ex-

periments where subjects played the iterated prisoner’s
dilemma, selecting cooperate (C) or defect (D) in each pe-
riod (Romero & Rosokha, 2023, Table 1, Current, Direct-
Response). Subjects were required to confirm their op-
ponent’s action after each period. This ensured that they
were capable of representing a policy that conditions on the
previous action. Table 4 reports the symmetric policy we
learned while regularizing to the human occupancy mea-

State s = (at−1
1 , at−1

2 , at−1
3 ) a∗ π1(a

∗|s)
(None, None, None) None 0.99
(None, None, All-In) None 0.66
(None, All-In, None) None 0.66
(None, All-In, All-In) All-In 0.60
(All-In, None, None) None 0.80
(All-In, None, All-In) All-In 0.56
(All-In, All-In, None) All-In 0.56
(All-In, All-In, All-In) All-In 0.86

Table 3. (Approximate PGL Equilibrium on IPGG) The best re-
sponse is denoted a∗ = argmaxa π1(a|s). Per-player utility is
0.03 versus 0 for zero contribution policies.

State s = (at−1
1 , at−1

2 ) a∗ π1(a
∗|s) πh

1 (a
∗|s)

(C, C) C 0.83 0.86
(C, D) D 0.52 0.65
(D, C) D 0.53 0.55
(D, D) D 0.86 0.87

Table 4. Approximate Nash equilibrium recovered by our algo-
rithm in IPD after annealing KL regularization to the human pol-
icy reported in the rightmost column (Romero & Rosokha, 2023,
Table 1, Current, Direct-Response). The best response is denoted
a∗ = argmaxa π1(a|s); C denotes Cooperate; D denotes De-
fect. The utility per-player under our learned symmetric pol-
icy profile is 0.48 versus 0.46 for the human policy. In addi-
tion, our learned policy profile is 1.4 × 10−4-exploitable at ev-
ery state, whereas the human policy profile is substantially more
exploitable, being 0.47-exploitable over any initial state. Ex-
ploitability over all initial states may be seen as an analogue of
Markov perfection in Markov games (Maskin & Tirole, 2001).

sure. Note that this new policy profile has slightly higher
utility for all agents and is very close to an equilibrium,
independent of the starting state.

After two scenarios where we used a sequence of cMGs to
discover creative and human-like equilibria, we consider a
setting in which the utilities are not annealed, but are con-
stant across time.

5.3. Fairness

We now consider utilities that value fair visitation of states.
In the Bach-Stravinsky game, two players must choose
whether to attend a performance by Bach or Stravinsky. If
they misalign, they get zero reward. However, one player
prefers Bach to Stravinsky (3 vs. 2), whereas the other
player prefers Stravinsky to Bach (3 vs. 2). We incorpo-
rate a term into both player’s objectives that penalizes any
difference in long-run attendance of Bach versus Stravin-

7



Convex Markov Games

sky to incentivize fair, equal attendance of the two shows,
ui(µi, π−i) = ri(π−i)

⊤µi − (
∑

a∈{S,B} µi((B,B), a) −∑
a∈{S,B} µi((S,S), a))

2.

We initialize logits for both players’ policies with a stan-
dard normal. We set temperature τ to zero and then opti-
mize with a learning rate of 0.1 for 1000 iterations.

In 10 random trials, both players converge to the same ap-
proximate NE where they vote for their favored event 60%
of the time regardless of their actions on the previous day.
The maximum exploitability ϵ over the 10 trials is 2.5 ×
10−5, and the max difference between

∑
a µi((B,B), a)

and
∑

a µi((S,S), a) is 2.14 × 10−5, implying this is a
“fair” behavioral profile by our fairness metric.

5.4. Safety

Lastly, we explore applications where a “safe” long-run
behavior of the multi-agent system is desired (Miryoosefi
et al., 2019). Our algorithm is able to find an exact NE in
the synthetic convex loss domain (i.e., ϵ = 0) discussed
in the motivating example of Figure 1. Recall the loss for
each agent is zero if their µi lies in the given “safe” region
marked in black. There are no conventional “rewards” ri in
this synthetic domain. See Appendix F.2 for details.

In addition, we demonstrate a safety application with a grid
world where two robots pick up and drop off packages in
a warehouse. Packages can only be picked up at a central
location where it is potentially dangerous for the robots to
move quickly if they happen to share the pickup space si-
multaneously. At the same time, they are incentivized to
drop off as many packages as possible.

Agents maximize their discounted return minus a con-
vex safety loss, which penalizes them for the frequency
they take the fast action in the pickup state beyond 10%:
100 ·max

(
0, µi(s = (pickup, pickup), a = fast) − 0.10

)
.

In other words, any frequency below 10% is deemed suffi-
ciently safe, but beyond that a linear penalty is applied.

Our algorithm is able to find an approximate NE in this
warehouse domain with and without the safety loss, achiev-
ing low exploitability, ϵ ≤ 3.4 × 10−2 and 1.0 × 10−3

respectively. In either domain, the learned policy always
chooses the fast action in all states except for when both
agents are picking up a package. When the safety loss is
not included, the agents select to move fast 69% of the
time. With the safety loss, fast is chosen 42% of the time
reflecting the convex penalty for unsafe behavior.

6. Related Work
Our work relates to the single-agent literature on convex
Markov games and equilibrium selection in Markov games.
We rely on NE existence-proof techniques from topology,

loss minimization for equilibrium computation, and use ho-
motopy methods as inspiration for our experiments. Fi-
nally, we unify approaches to creativity, imitation, fairness,
and safety from multi-agent learning.

Convex Markov Decision Processes Markov decision
processes (MDPs) are the predominant framework for
modeling sequential decision making problems, especially
in infinite-horizon settings (Puterman, 2014, §6.9). The
goal of a decision maker in an MDP is typically to max-
imize a γ-discounted sum of rewards earned throughout
the sequential decision process. In the infinite-horizon set-
ting, recent research has exploited an alternative, but equiv-
alent view of maximizing the expected reward under the
agent’s stationary state-action occupancy measure (Zhang
et al., 2020)—the probability of being in a given state and
taking a given action. This viewpoint reveals an opti-
mization problem with a linear objective (maximize return)
and linear constraints (valid occupancy measure); from
this launchpad, research has generalized to convex objec-
tives that incorporate, for example, the (neg)entropy of
the occupancy measure in order to maximize exploration
of the MDP (Zahavy et al., 2021) or maximize robust-
ness (Grand-Clément & Petrik, 2022). Research on cMDPs
has recently surged, however, formulations and solutions to
nonstandard Markovian control problems have a long his-
tory (Kallenberg, 1994; Takács, 1966).

A number of works have explored solutions to MDPs with
similarly complex objectives and in a variety of settings.
For example, prior research has looked beyond concave
utilities to multi-objective (Cheung, 2019b) or submodular
objectives (Prajapat et al.; De Santi et al., 2024). Mutti et al.
(2022) pointed out practical concerns with the infinite-trials
assumption baked-in to the standard convex MDP formula-
tion, motivating the study of finite trials (Mutti et al., 2023).
Others have considered the non-stationary (Marin Moreno
et al., 2024b) and online (Cheung, 2019a) settings as well.
Designing scalable algorithms for convex MDPs is a chal-
lenge. Zhang et al. (2020) proposed a model-free (vari-
ational) policy gradient approach for general utilities that
was then combined with variance reduction techniques for
improved performance in subsequent work (Barakat et al.,
2023). Marin Moreno et al. (2024a) developed an effi-
cient model-based RL approach for the finite horizon set-
ting, and Geist et al. (2022) shed light on a connection to
mean-field games, enabling the design of new algorithms
for cMDPs. This mean-field games connection also in-
spired other work to extend inverse-RL to cMDPs where
the aim is to uncover an agent’s utility function from ob-
served behavior (Çelikok et al., 2024). Recent work de-
veloped a practical, supervised learning approach for the
continuous time setting applicable to training flow and dif-
fusion models (De Santi et al.).
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Markov Games. When multiple agents’ decision mak-
ing problems interact, the MDP framework is extended to
a Markov game, also known as a stochastic game (Thui-
jsman, 1997; Littman, 1994). In the game setting, we
seek equilibria, a notion of simultaneous optimality for
all agents. Fink (1964) proved the existence of station-
ary (time-independent) γ-discounted Nash equilibria in n-
player, general-sum stochastic games. A homotopy ap-
proach that traces the continuum of quantal response equi-
libria performs well at approximating Nash equilibria in
the limit of zero temperature (Eibelshäuser & Poensgen,
2019). Other approaches are tailored for more restricted
two-player, zero-sum settings (Daskalakis et al., 2020;
Goktas et al., 2023) or settings where agent incentives are
a priori aligned such as Markov potential games (Leonar-
dos et al., 2021). Prior work proved a negative result for
value iteration based approaches stating it is not possible
to derive a stationary equilibrium policy from Q-values
in general Markov games (Zinkevich et al., 2005); how-
ever, in IPD specifically, self-play Q-learners converge to
win-stay, lose-shift (Bertrand et al., 2025). Lastly, re-
cent work extends the Markov game, a Markov chain of
normal-form games, to a chain of abstract economies (or
pseudo-games) (Goktas et al., 2025), games with jointly
constrained strategy spaces. In contrast, our cMG can al-
most be seen as generalizing a Markov game to an abstract
economy, however, this leads to an unnatural interpretation
of unilateral deviations in terms of occupancy measures.

Techniques. Our proposed loss function extends
that designed in recent work for normal-form games
(NFGs) (Gemp et al., 2024) to the convex Markov game
setting. In their work, the focus was on constructing a loss
amenable to unbiased estimation. In NFGs, the feasible set
Ui = ∆Ai is fixed, independent of other players’ strate-
gies. This allows the construction of an unbiased estimator
of their loss assuming access to unbiased gradients of
player’s utilities. Our loss applies to a more general class
of games, but sacrifices unbiasedness.

Our applications anneal the temperature of an entropy
bonus and/or a Kullback-Leibler divergence penalty. Such
approaches relate to homotopy continuation-based ap-
proaches to equilibrium computation (Harsanyi et al.,
1988). McKelvey & Palfrey (1995) introduced quantal re-
sponse equilibria along with a homotopy from infinite to
zero temperature defining their limiting logit equilibrium in
normal-form games (and also extensive-form (McKelvey &
Palfrey, 1998)). More recent work extended this approach
to Markov games (Eibelshäuser & Poensgen, 2019).

Applications. Our goals of creativity, imitation, fairness,
and safety are not new to multi-agent applications. Za-
havy et al. (2022; 2023) leveraged convex MDPs to dis-

cover more creative play in Chess. Bakhtin et al. (2022);
Jacob et al. (2022) used KL-regularization towards human
play to recover strategically superior policies in Diplomacy.
Hughes et al. (2018) models inequity aversion in complex
MARL domains. And Shalev-Shwartz et al. (2016) for-
goes the Markovian assumption altogether to tackle safe
autonomous driving. Zamboni et al. (2025) formulates a
cMG with identical payoffs to specifically target group ex-
ploration in, for example, robotics domains. In contrast
to these applications, our framework of convex Markov
games allows for a unified analysis of several domains us-
ing a common language and algorithmic principles.

7. Conclusion
Convex Markov Games are a versatile framework for multi-
agent reinforcement learning. The cMG framework in-
duces equilibria that exhibit diverse state visitation, em-
ulate human data, optimize notions of fairness, or avoid
unsafe system states. Not only do pure-strategy equilibria
exist despite non-convex best response correspondences,
there is also a differentiable upper bound that can be min-
imized to find them. In several domains, we show how
deforming a cMG over training can help to pick out novel
approximate equilibria with properties more desirable than
those found by baseline techniques such as higher welfare,
symmetry, reciprocation, and state-dependent behaviors.

Our work opens up several directions for future research in-
cluding theoretical questions around other possible solution
concepts (e.g., correlated or coarse-correlated equilibria) as
well as studying more specific game classes under more
restrictive assumptions (e.g., potential or identical payoff
settings). In a similar vein, we have, in concurrent work,
constructed an efficient, convergent, model-free approach
to solving cMGs in the two-player, zero-sum setting (Kalo-
giannis et al., 2025).

Under the n-player, general-sum setting we investigate in
this work, we proposed a centralized approach that assumes
knowledge of the transition dynamics. If dynamics are esti-
mated, we pointed out issues obtaining unbiased estimates
of the projection operator ΠTMi(µ−i). A model-free, de-
centralized training approach could scale to more complex
domains and richer policies.

The entropy of agents’ occupancy measures is already uti-
lized in multi-agent applications, particularly in robotics
domains to enhance multi-agent exploration (Burgard
et al., 2000; Rogers et al., 2013; Tan et al., 2022; Zam-
boni et al., 2025). Unrelatedly, the tuning of large language
models (LLMs) to align with human feedback has been re-
cently formulated as a Markov game (Wu et al., 2025). We
hope cMGs can help provide a framework from which to
better understand these and other problems in the future.
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A. Equilibrium Proof

ui(µi, π−i) = ⟨ri, µi⟩ − 100 ·max
(
0, µi(s = (pickup, pickup), a = fast)− 0.10

)
(14)

Theorem 3 (Corollary 8, Kosowsky (2023)). Suppose that (Πi) is a finite collection of compact and connected manifolds,
and suppose we have continuous utility functions ui : Π → R with Π = "n

i=1 Πi satisfying the following properties for
every player i:

1. Player i’s best response is a continuous function BRi : Π−i → C(Πi) where C is the set of nonempty, closed subsets of
Πi (equipped with the upper Vietoris topology), i.e., BRi is a compact-valued, upper-hemicontinuous correspondence;

2. Every output value BRi(π−i) is contractible and has a contractible neighborhood in Πi;

3. There exists a homotopy that takes BRi to a constant map and whose output values —which are elements of C(Πi)
—are all contractible and have a contractible neighborhood in Πi.

Then the game has a pure-strategy Nash equilibrium.

Theorem 1. Pure-strategy Nash equilibria exist in convex Markov Games.

Proof. This proof uses the Nash equilibrium existence result in Corollary 8 by Kosowsky (2023) (restated as Theorem 3
above). For a slightly simpler proof that follows Debreu (1952), see Theorem 5 below.

We will first confirm the premise of Theorem 3 holds for convex Markov games. In cMGs, each player’s strategy set Πi is
the simplex-product, "s∈S ∆|Ai|−1, a compact, convex set. All convex sets are connected. The joint strategy set is simply
the product space of the player’s individual strategy sets matching Theorem 3: Π = "n

i=1 Πi. In addition, definition 1
of cMGs assumes each ui is continuous in players’ occupancy measures µj for all j. Lemma 2 proves each µj is a
differentiable (hence continuous) function of π = (π1, . . . , πn), therefore continuity of ui in occupancy measures implies
continuity in policies.

We will next prove each property required by Theorem 3 in order.

Player i’s feasible set in policy space is the simplex-product Πi (regardless of π−i). Player i’s occupancy measure
µi(πi, π−i) is continuous in π−i, hence the feasible set Mi(π−i) in occupancy space (i.e., the image of µi(πi, π−i) under
Πi for each π−i) is continuous in π−i. The set Mi(π−i) is also always non-empty (any policy is always feasible and
we can map any policy to an occupancy measure) and compact (it is the intersection of a hyperplane with the simplex).
Recall player i’s utility function ui is continuous in µi. By Berge’s maximum theorem (Aliprantis & Border, 2006, The-
orem 17.31), the best-response occupancy set for player i is upper hemicontinuous in π−i with non-empty and compact
values. The mapping from occupancies to policies is upper hemicontinuous. The composition of upper hemicontinuous
maps remains upper hemicontinuous (Aliprantis & Border, 2006, Theorem 17.23). Therefore, BRi is a compact-valued,
upper-hemicontinuous correspondence satisfying property 1.

Moving to the next property, every player’s best (occupancy measure) response problem is a convex optimization problem,
whose solutions always form a convex set. Convex sets are contractible (this is where concave utilities play the most
critical role in the proof). The mapping from occupancies to policies is upper hemicontinuous. The set of best (policy)
responses therefore remains contractible after mapping. Lastly, all of Πi can serve as a contractible neighborhood for each
BRi, confirming property 2.

To satisfy the last property, define H(t, π−i) = BRi((1− t)π−i+ tπ0
−i), satisfying the endpoint conditions where π0 is any

valid strategy profile, e.g., uniform. Π−i is convex so every linear interpolation between π−i and π0
−i is in Π−i. Recall, BRi

is upper hemicontinuous. The interpolated strategy is obviously upper hemicontinuous in both t and π−i. Therefore, their
composition forming H proves H is upper hemicontinuous in t and π−i. Recall that every best response set is contractible
with a contractible neighborhood. Every set returned by H(t, π−i) is a BRi(π

′
−i) for some π′

−i ∈ Π−i. Hence H(t, π−i)
is contractible with a contractible neighborhood for every t and π−i completing the claim.

Theorem 4 (Debreu (1952)). Suppose that (Πi) is a finite collection of contractible polyhedra, and suppose player i’s
choice of action πi ∈ Πi is further restricted to a non-empty, compact subset Π′

i(π−i) ⊆ Πi. Also denote Π = "n
i=1 Πi
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and suppose we have utility functions ui : Π → R continuous on Π′
i(π−i) for all π−i satisfying the following properties

for every player i:

1. Player i’s utility at their best response, maxπi∈Π′
i(π−i) ui(πi, π−i) is a continuous function;

2. Every output value BRi(π−i) is contractible.

Then the game has a pure-strategy Nash equilibrium.
Theorem 5. Pure-strategy Nash equilibria exist in convex Markov Games.

Proof. Each Πi is a simplex product, hence a contractible polyhedron. In cMGs, Π′
i(π−i) = Πi for all π−i, so Theorem 4

is actually more general than what is needed here. Each ui is continous in πi by Lemma 2. By Berge’s maximum
theorem (Aliprantis & Border, 2006, Theorem 17.31), player i’s utility at their best response is a continuous function.
Lastly, each BRi is contractible as already proven for property 2 in Theorem 1.

B. Occupancy from Policy is Differentiable
Lemma 1. The Bellman flow constraint matrix has full row-rank (|S|) and is fixed independent of other player policies.

Proof. Note the Bellman flow constraints can be written in matrix form as∑
a∈Ai

(Is′×s − γPi,a)µi,a = (1− γ)µ0 (15)

where Pi = P (s′|s, a) denotes the S × S ×Ai tensor of transition probabilities and Pi,a = Pi,a(s
′|s) selects out a single

action, leaving an S × S matrix.

This constraint can be written without the
∑

a∈Ai
by constructing the rectangular block matrices

Is′×(sa) =
[
Is′×s, . . . , Is′×s

]
(16)

and

Pi,s′×(sa) =
[
Pi,a1

, . . . , Pi,am

]
. (17)

Then

(Is′×(sa) − γPi,s′×(sa))µi = (1− γ)µ0 (18)

We can examine the first s′ × s block of (Is′×(sa) − γPi,s′×(sa)) and show that this matrix is full rank, i.e., of rank |S|.
If this matrix is full rank, then its rows are linearly independent. Extending our view to the full matrix, i.e., all columns,
cannot render any of these original rows linearly dependent.

Note that the first block is represented by (Is′×s − γPi,a) for some action a. Using the Gershgorin circle theorem, we can
bound the eigenvalues of this matrix to lie in a union of circles which all exclude the origin. Consider any column c, then
every circle has a center in R+. In addition, the leftmost point of every circle lies in R+:

(1− γPi,a(c|c)−
∑
s′ ̸=c

|γPi,a(s
′|c)| (19)

= (1− γPi,a(c|c)− γ
∑
s′ ̸=c

Pi,a(s
′|c) (20)

= 1− γ
∑
s′

Pi,a(s
′|c) (21)

= 1− γ > 0. (22)

Therefore, this matrix is non-singular, i.e., full-rank. There are only |S| rows, hence the row-rank cannot increase, which
proves the claim.
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Lemma 2. Player i’s state-action occupancy measure µi is a differentiable (and hence continuous) function of the player
policies π.

Proof. Recall

µi(π) = (1− γ)
(
[I − γPπ]−1µ01

⊤
ai

)
⊙ πi (23)

where

Pπ(s′, s) = ⟨Pπ−j

j (s′, s, :), πj(s, :)⟩ (24)

and

P
π−j

j (s′, s, :) =
∑
a−j

P (s′|s, ai, a−j)
∏
k ̸=j

πk(s, ak) (25)

so

Pπ(s′, s) =
∑
a

P (s′|s,a)
∏
j

πj(s, aj). (26)

Then,

∂µi(x, y)

∂πj(x′, y′)
= (1− γ)

[
[I − γPπ]−1µ0(s)

]
x
1(x = x′, y = y′, j = i)

+ (1− γ)
∂

∂πj(x′, y′)

(
[I − γPπ]−1

)
(µ01

⊤
ai
)⊙ πi (27)

where

∂

∂πj(x′, y′)

(
[I − γPπ]−1

)
= γ[I − γPπ]−1 ∂Pπ

∂πj(x′, y′)
[I − γPπ]−1 (28)

and

∂Pπ

∂πj(x′, y′)
=

{
0 if x ̸= x′

P
π−j

j (s′, x, y) else.
(29)

Clearly, this requires inverting the matrix [I − γPπ]. Note that Pπ is a square state transition matrix with distributions on
columns. By the same argument as Lemma 1, this matrix has full-row rank, and since it is square, it is non-singular, and
hence invertible. Therefore, the derivative (27) always exists.

C. KKT Conditions Imply Fixed Point Sufficiency
Consider the following constrained optimization problem:

max
x∈Rd

f(x) (30a)

s.t. gi(x) ≤ 0 ∀i (30b)
hj(x) = 0 ∀j (30c)

where f is concave and gi and hj represent inequality and equality constraints respectively. If gi and hi are affine functions,
then any maximizer x∗ of f must satisfy the following necessary and sufficient KKT conditions (Ghojogh et al., 2021; Boyd
& Vandenberghe, 2004):

• Stationarity: 0 ∈ ∂f(x∗)−
∑

j λj∂hj(x
∗)−

∑
i µi∂gi(x

∗)
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• Primal feasibility: hj(x
∗) = 0 for all j and gi(x

∗) ≤ 0 for all i

• Dual feasibility: µi ≥ 0 for all i

• Complementary slackness: µigi(x
∗) = 0 for all i.

Lemma 3. Assuming player k’s utility, uk(xk, x−k), is concave in its own strategy xk, a strictly-positive primal-feasible
strategy is a best response BRk if and only if it has zero projected-gradient norm.

Proof. Consider the problem of formally computing ϵk(x) = maxz≥0,Az=b uk(z, x−k)− uk(xk, x−k):

max
z∈Rd

uk(z, x−k)− uk(xk, x−k) (31a)

s.t.− zk ≤ 0 ∀k (31b)
Ajz − bj = 0 ∀j. (31c)

Note that the objective is linear (concave) in z and the constraints are affine, therefore the KKT conditions are necessary
and sufficient for optimality. Recall that we assume that the solution z∗ is positive, z∗k > 0 for each k. Also, let ek be a
onehot vector, i.e., a zeros vector except with a 1 at index k. Mapping the KKT conditions onto this problem yields the
following:

• Stationarity: 0 ∈ ∂uk(z
∗, x−k)−

∑
j λjAj +

∑
k µkek

• Primal feasibility: Ajz = bj for all j

• Dual feasibility: µi ≥ 0 for all k

• Complementary slackness: −µkz
∗
k = 0 for all k

where ∂uk(z, ·) is the subdifferential at z. Consider any primal-feasible point Az∗ = b. Given our assumption that z∗k > 0,
by complementary slackness and dual feasibility, each µk must be identically zero. This implies the stationarity condition
can be simplified to 0 ∈ ∂uk(z

∗, x−k) −
∑

j λjAj = ∂uk(z
∗, x−k) − A⊤λ. Rearranging terms we find that for any z∗,

there exists λ such that ∑
j

λjAj ∈ ∂uk(z
∗, x−k). (32)

Equivalently, elements of ∂uk(z
∗, x−k) are in the row-span of A.

For the rest of the proof, we follow the derivation of the gradient projection method (Luenberger et al., 1984, Sec 12.4, p
364). Let∇k ∈ ∂uk be a subderivative (gradient), i.e., an element of the subdifferential.

Note that, in general, we can write any gradient as a sum of elements from the row-span of A and its orthogonal complement
dk, which lies in the tangent space of the feasible set:

∇k = dk +A⊤λ. (33)

We may solve for λ through the requirement that Adk = 0, i.e., any movement within the tangent space of the feasible set
remains feasible. Thus

Adk = A∇k − (AA⊤)λ = 0 (34)

=⇒ λ = (AA⊤)−1A∇k (35)

=⇒ dk = ∇k −A⊤λ = [I −A⊤(AA⊤)−1A]∇k (36)
= ΠTA(∇k) (37)

where ΠTA[I − A⊤(AA⊤)−1A] is the matrix that projects any gradient vector onto the tangent space of the feasible set
given by the constraint matrix A.

The fact that elements of ∂uk(z
∗, x−k) are in the row-span of A implies that 0 = dk = ΠTA(∇k) necessarily, completing

the claim.
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D. Entropy Regularized Loss Bounds Exploitability
Our derived exploitability bound only requires concavity of the utility, bounded diameter of the feasible set, and linearity
of feasible constraints (i.e., feasible set is subset of hyperplane). In what follow, let player k’s loss be the negative of their
utility, i.e., ℓk = −uk.

Lemma 4. The amount a player can gain by deviating is upper bounded by a quantity proportional to the norm of the
projected-gradient:

ϵk(µ) ≤
√
2||ΠTUk

(∇k
µk
)||. (38)

Proof. Let z be any point in the feasible set. First note that ΠTUk
(z) = Bz where B is an orthogonal projection matrix;

this implies B2 = B = B⊤. Then by convexity of ℓk with respect to z,

ℓk(µ)− ℓk(z, µ−k) ≤ (∇k
µk
)⊤(µk − z) (39a)

= (∇k
µk
)⊤ΠTUk

(µk − z︸ ︷︷ ︸
∈TU

) (39b)

= (ΠTUk
(∇k

µk
)︸ ︷︷ ︸

Bz=B⊤z

)⊤ (µk − z)︸ ︷︷ ︸
Diam(Mk)≤

√
2

(39c)

≤
√
2||ΠTUk

(∇k
µk
)|| (39d)

where the first equality follows from the fact any two points z and µk lying in the same hyperplane, by definition, form
a direction lying in the tangent space of the hyperplane. The second equality follows from symmetry of the projection
operator and simply grouping its application to the left hand term; we also note that the feasible set is a subset of the
simplex, which has a diameter of

√
2. Finally, the last step follows from Cauchy-Schwarz.

Theorem 2 (Low Temperature Approximate Equilibria are Approximate Nash Equilibria). Let∇kτ
µk

be player k’s entropy
regularized gradient and µ be an approximate equilibrium of the entropy regularized game. Then it holds that

ϵk = ℓk(µ)− ℓk(BRk, µ−k) ≤ τ log(|S||Ak|) +
√
2||ΠTUk

(∇kτ
µk
)||. (40)

Proof. Beginning with the definition of exploitability, we find

ℓk(µ)− ℓk(BRk, µ−k) =
(
ℓk(x) + τS(µk)− τS(µk)

)
(41a)

−
(
ℓk(BRk, µ−k) + τS(BRk)− τS(BRk)

)
= ℓτk(µ)− ℓτk(BRk, µ−k) + τ

(
S(µk)− S(BRk)

)
(41b)

≤ ℓτk(µ)− min
z∈Mk

ℓτk(z, µ−k) + τ max
z′∈Mk

S(z′) (41c)

≤
√
2||ΠTUk

(∇kτ
µk
)||+ τ max

z′∈Mk

S(z′) (41d)

≤
√
2||ΠTUk

(∇kτ
µk
)||+ τ log(|S||Ak|) (41e)

where the second equality follows from the definition of player k’s entropy regularized loss ℓτk, the first inequality from
nonnegativity of entropy S, the second inequality from convexity of ℓτk with respect to its first argument (Lemma 4), and
the last from the maximum possible value of Shannon entropy over distributions on |S||Ak| elements.

Corollary 1 (Lτ Scores Nash Equilibria). Let Lτ (µ) be our proposed entropy regularized loss function and µ be any
strategy profile. Then it holds that

ϵ ≤ τ log(|S|max
k
|Ak|) +

√
2nLτ (µ). (42)
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Proof. Beginning with the definition of exploitability and applying Lemma 2, we find

ϵ = max
k

max
z

ℓk(µ)− ℓk(z, µ−k) (recall each ϵk ≥ 0) (43a)

≤ max
k

[
τ log(|S||Ak|) +

√
2||ΠTUk

(∇kτ
µk
)||
]

(43b)

≤ τ max
k

log(|S||Ak|) +
√
2max

k
||ΠTUk

(∇kτ
µk
)|| (43c)

≤ τ max
k

log(|S||Ak|) +
√
2
∑
k

||ΠTUk
(∇kτ

µk
)|| (43d)

= τ log(|S|max
k
|Ak|) +

√
2
∣∣∣∣∣∣||ΠTU1(∇1τ

µ1
)||2, . . . , ||ΠTUn

(∇nτ
µn

)||2
∣∣∣∣∣∣
1

(43e)

≤ τ log(|S|max
k
|Ak|) +

√
2n

∣∣∣∣∣∣||ΠTU1(∇1τ
µ1
)||2, . . . , ||ΠTUn(∇nτ

µn
)||2

∣∣∣∣∣∣
2

(43f)

≤ τ log(|S|max
k
|Ak|) +

√
2n

√∑
k

||ΠTUk
(∇kτ

µk
)||22 (43g)

= τ log(|S|max
k
|Ak|) +

√
2nLτ (µ). (43h)

E. PGL Hyperparameters
Table 5 lists out the three types of annealing schedules used in the experiments. Table 6 lists out the learning rate used in
each domain as well as the type of annealing schedule used. All experiments were run with Adam (Kingma & Ba, 2015).

Requirements to Anneal
Minimum Temperature τt ← max(τt,min τ) 10−2

Minimum Iterations Per Temperature min∆t{τt − τt+∆t|τt − τt+∆t > 0} 50
Loss Threshold Requirement for Annealing Lτt ≤ ϵ 10−1

Anneal Rule (When Requirements Met)
Type 1 Anneal Rate τt τ = 10−⌊t/1000⌋

Type 2 Anneal Rate τt+1/τt 0.8
Type 3 Anneal Rule τt+1 τt +

1
10 · L

τt/min(∂L
τ

∂τ ,−Lτ )

Table 5. Annealing Schedules
Domain / Hyperparameter Learning Rate Anneal Type Iterations (T )

IPD (Creativity) 10−1 Type 1 8× 103

IPD (Imitation) 10−2 Type 1 8× 103

IPGG 10−1 Type 1 8× 103

El Farol 10−1 Type 1 8× 103

Bach-Stravnisky 10−1 Type 1 1× 103

Synthetic 10−1 Type 2 8× 103

Robot Warehouse 10−2 Type 2 8× 103

Pathfinding 10−2 Type 3 1× 106

Table 6. Learning Rate and Annealing Schedule by Domain.

F. Descriptions of Domains
Here, we provide further details on the domains we used in experiments.

F.1. Iterated Normal-form Games

We provide the payoffs for the iterated prisoner’s dilemma and Bach-Stravinsky game used in experiments. See section 5
in the main body for a description of the iterated public goods game and El Farol bar problem.
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C D
C −1,−1 −3, 0
D 0,−3 −2,−2

=⇒
C D

C 2/3, 2/3 0, 1
D 1, 0 1/3, 1/3

Figure 4. Prisoner’s Dilemma Game: We shift and normalize the payoffs of the prisoner’s dilemma game (left) to be non-negative and
with maximum value 1 (right).

C D
C 3, 2 0, 0
D 0, 0 2, 3

Figure 5. Bach-Stravinsky Game.

F.2. Grid World Domains

Pathfinding We use OpenSpiel’s (Lanctot et al., 2019) pathfinding game with a horizon of 1000: https://
openspiel.readthedocs.io/en/latest/games.html. See Figure 2 for a visual of the grid specification.
To enable the game with an infinite horizon, we transition all agents back to their starting positions (left most grid in
Figure 2) after they reach the goal state. All positive rewards in OpenSpiel’s variant are replaced with +100.

Synthetic Illustrative Safety Domain We consider a simple 2-player, 2-state, 2-action, symmetric convex Markov game.
If both agents select action 0, they transition from their current state to the other state; otherwise, they remain put. We set
γ = 0.95 and the initial state measure µ0 to be uniform.

For this domain, we pose a “safe” MARL objective; we designate a set of safe long-run visitation measures for certain
states and usage of certain actions; equivalently, we rule out certain unsafe states and actions. As an example of “safe”
MARL, define the following convex loss (negative utility) over occupancy measures for player 1:

−ui(µi) = ℓi(µi) = max(0, ||µa − ta||∞ − 1/20) + max(0, ||µs − ts||∞ − 1/4) (44)

where µa and µs are player 1’s action and state marginals respectively. The target measures ta and ts are used along with
the radii 1/20 and 1/4 to encode the regions of “safe” occupancy measures. If player 1 deviates from either region by more
than the radius (as measured by the infinity norm), then they accrue a loss. Otherwise, player 1’s loss is zero.

In Figure 1, we fix player 2 to use the following policy:

πI
2(a0|s) =

{
0.40 if s = s0

0.80 else
,

We provide numpy code describing the transition kernel P and reward function r(s, a) (denoted by pt for “payoff tensor”
below) for the synthetic safety domain used in Figure 1.

ns = 2
npl = 2
na = np.ones(npl, dtype=int) * 2

epsilon = 0.0
transition_env = np.zeros((ns, ns) + tuple(na))

# a=0 (coordinate), a=1 (not coordinate)
transition_env[1, 0, 0, 0] = 1 - epsilon
transition_env[1, 0, 0, 1] = epsilon
transition_env[1, 0, 1, 0] = epsilon
transition_env[1, 0, 1, 1] = 0

transition_env[0, 1, 0, 0] = 1 - epsilon
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transition_env[0, 1, 0, 1] = epsilon
transition_env[0, 1, 1, 0] = epsilon
transition_env[0, 1, 1, 1] = 0

# only two states so prob of one is 1 minus prob of other
transition_env[0, 0, :, :] = 1 - transition_env[1, 0, :, :]
transition_env[1, 1, :, :] = 1 - transition_env[0, 1, :, :]

assert np.all(np.sum(transition_env, axis=0) == 1)

self.transition_env = transition_env.astype(float)
self.pt = np.zeros((npl, ns) + tuple(na), dtype=float)

Robot Warehouse Safety Grid World Domain We provide numpy code describing the transition kernel P and reward
function r(s, a) (denoted by pt for “payoff tensor” below) for the robot warehouse safety domain described in section 5.

This domain represents a 3-cell grid world where two robots pick up and drop off packages (Left Drop-off ↔ Package
Pickup↔ Right Drop-off). The pickup point is the middle cell and the two robots drop off in the cells on either side. The
left robot always drops off on the left; the right always drops off on the right. They can move slow or fast (2 actions each).
They get +1 for slowly dropping off package, +2 for quickly dropping of a package. They always alternate between
picking up and dropping off, but their chosen speed affects their probability of moving from the pickup to the drop-off
point. Two robots attempting fast pickups is dangerous, so we construct a convex loss to penalize that behavior. At the
same time, the robots are incentivized to move fast at the pickup point (to move to the drop-off and earn more reward). The
domain exhibits an additional complexity given by the following social dilemma. Moving fast at the pickup point when the
other is moving slowly increases the probability of successfully picking up a package and moving to the drop off; moving
slow with a fast partner results in much lower probability. This simulates a scenario where packages arrive at the drop-off
at a constant rate.

ns = 4
npl = 2
na = np.ones(npl, dtype=int) * 2

transition_env = np.zeros((ns, ns) + tuple(na))

# s=0: (pickup, pickup)
# s=1: (pickup, dropoff)
# s=2: (dropoff, pickup)
# s=3: (dropoff, dropoff)

# probability of moving from dropoff to pickup is independent of the other
# agent
p_reset = 1.0
# probability of moving from pickup to dropoff is independent of other agent
# if alone at pickup point
p_drop_alone_slow = 0.7
p_drop_alone_fast = 0.8
# generic low, medium, and high probabilities
p_low = 0.2
p_mid = 0.5
p_high = 0.8

# a=0 (slow), a=1 (fast)

# reward is +1 for visiting dropoff state, else 0
reward = np.zeros((npl, ns,) + tuple(na))
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# reward[1, 1] = 1.0
# reward[0, 2] = 1.0
# reward[:, 3] = 1.0
reward[1, 1, :, 0] = 1.0
reward[1, 1, :, 1] = 2.0
reward[0, 2, 0, :] = 1.0
reward[0, 2, 1, :] = 2.0
reward[0, 3, 0, :] = 1.0
reward[0, 3, 1, :] = 2.0
reward[1, 3, :, 0] = 1.0
reward[1, 3, :, 1] = 2.0

#### s’=0 #####
# s=0 --> s’=0: (pickup, pickup) --> (pickup, pickup)
# define s’= 1, 2, 3 first
# skip
# transition_env[0, 0, 0, 0] =
# transition_env[0, 0, 0, 1] =
# transition_env[0, 0, 1, 0] =
# transition_env[0, 0, 1, 1] =

# s=1 --> s’=0: (pickup, dropoff) --> (pickup, pickup)
transition_env[0, 1, 0, 0] = (1.0 - p_drop_alone_slow) * p_reset
transition_env[0, 1, 0, 1] = (1.0 - p_drop_alone_slow) * p_reset
transition_env[0, 1, 1, 0] = (1.0 - p_drop_alone_fast) * p_reset
transition_env[0, 1, 1, 1] = (1.0 - p_drop_alone_fast) * p_reset

# s=2 --> s’=0: (dropoff, pickup) --> (pickup, pickup)
transition_env[0, 2, 0, 0] = p_reset * (1.0 - p_drop_alone_slow)
transition_env[0, 2, 0, 1] = p_reset * (1.0 - p_drop_alone_fast)
transition_env[0, 2, 1, 0] = p_reset * (1.0 - p_drop_alone_slow)
transition_env[0, 2, 1, 1] = p_reset * (1.0 - p_drop_alone_fast)

# s=3 --> s’=0: (dropoff, dropoff) --> (pickup, pickup)
transition_env[0, 3, 0, 0] = p_reset
transition_env[0, 3, 0, 1] = p_reset
transition_env[0, 3, 1, 0] = p_reset
transition_env[0, 3, 1, 1] = p_reset

#### s’=1 #####
# s=0 --> s’=1: (pickup, pickup) --> (pickup, dropoff)
transition_env[1, 0, 0, 0] = (1 - p_mid) * p_mid
transition_env[1, 0, 0, 1] = p_high
transition_env[1, 0, 1, 0] = p_low
transition_env[1, 0, 1, 1] = p_low

# s=1 --> s’=1: (pickup, dropoff) --> (pickup, dropoff)
transition_env[1, 1, 0, 0] = (1 - p_drop_alone_slow) * (1.0 - p_reset)
transition_env[1, 1, 0, 1] = (1 - p_drop_alone_slow) * (1.0 - p_reset)
transition_env[1, 1, 1, 0] = (1 - p_drop_alone_fast) * (1.0 - p_reset)
transition_env[1, 1, 1, 1] = (1 - p_drop_alone_fast) * (1.0 - p_reset)

# s=2 --> s’=1: (dropoff, pickup) --> (pickup, dropoff)
transition_env[1, 2, 0, 0] = p_reset * p_drop_alone_slow
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transition_env[1, 2, 0, 1] = p_reset * p_drop_alone_fast
transition_env[1, 2, 1, 0] = p_reset * p_drop_alone_slow
transition_env[1, 2, 1, 1] = p_reset * p_drop_alone_fast

# s=3 --> s’=1: (dropoff, dropoff) --> (pickup, dropoff)
transition_env[1, 3, 0, 0] = p_reset * (1.0 - p_reset)
transition_env[1, 3, 0, 1] = p_reset * (1.0 - p_reset)
transition_env[1, 3, 1, 0] = p_reset * (1.0 - p_reset)
transition_env[1, 3, 1, 1] = p_reset * (1.0 - p_reset)

#### s’=2 #####
# s=0 --> s’=2: (pickup, pickup) --> (dropoff, pickup)
transition_env[2, 0, 0, 0] = p_mid * (1 - p_mid)
transition_env[2, 0, 0, 1] = p_low
transition_env[2, 0, 1, 0] = p_high
transition_env[2, 0, 1, 1] = p_low

# s=1 --> s’=2: (pickup, dropoff) --> (dropoff, pickup)
transition_env[2, 1, 0, 0] = p_drop_alone_slow * p_reset
transition_env[2, 1, 0, 1] = p_drop_alone_slow * p_reset
transition_env[2, 1, 1, 0] = p_drop_alone_fast * p_reset
transition_env[2, 1, 1, 1] = p_drop_alone_fast * p_reset

# s=2 --> s’=2: (dropoff, pickup) --> (dropoff, pickup)
transition_env[2, 2, 0, 0] = (1.0 - p_reset) * (1.0 - p_drop_alone_slow)
transition_env[2, 2, 0, 1] = (1.0 - p_reset) * (1.0 - p_drop_alone_fast)
transition_env[2, 2, 1, 0] = (1.0 - p_reset) * (1.0 - p_drop_alone_slow)
transition_env[2, 2, 1, 1] = (1.0 - p_reset) * (1.0 - p_drop_alone_fast)

# s=3 --> s’=2: (dropoff, dropoff) --> (dropoff, pickup)
transition_env[2, 3, 0, 0] = (1.0 - p_reset) * p_reset
transition_env[2, 3, 0, 1] = (1.0 - p_reset) * p_reset
transition_env[2, 3, 1, 0] = (1.0 - p_reset) * p_reset
transition_env[2, 3, 1, 1] = (1.0 - p_reset) * p_reset

#### s’=3 #####
# s=0 --> s’=3: (pickup, pickup) --> (dropoff, dropoff)
transition_env[3, 0, 0, 0] = p_mid
transition_env[3, 0, 0, 1] = p_low
transition_env[3, 0, 1, 0] = p_low
transition_env[3, 0, 1, 1] = p_low

# s=1 --> s’=3: (pickup, dropoff) --> (dropoff, dropoff)
transition_env[3, 1, 0, 0] = 1.0 - transition_env[:, 1, 0, 0].sum()
transition_env[3, 1, 0, 1] = 1.0 - transition_env[:, 1, 0, 1].sum()
transition_env[3, 1, 1, 0] = 1.0 - transition_env[:, 1, 1, 0].sum()
transition_env[3, 1, 1, 1] = 1.0 - transition_env[:, 1, 1, 1].sum()

# s=2 --> s’=3: (dropoff, pickup) --> (dropoff, dropoff)
transition_env[3, 2, 0, 0] = 1.0 - transition_env[:, 2, 0, 0].sum()
transition_env[3, 2, 0, 1] = 1.0 - transition_env[:, 2, 0, 1].sum()
transition_env[3, 2, 1, 0] = 1.0 - transition_env[:, 2, 1, 0].sum()
transition_env[3, 2, 1, 1] = 1.0 - transition_env[:, 2, 1, 1].sum()
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# s=3 --> s’=3: (dropoff, dropoff) --> (dropoff, dropoff)
transition_env[3, 3, 0, 0] = 1.0 - transition_env[:, 3, 0, 0].sum()
transition_env[3, 3, 0, 1] = 1.0 - transition_env[:, 3, 0, 1].sum()
transition_env[3, 3, 1, 0] = 1.0 - transition_env[:, 3, 1, 0].sum()
transition_env[3, 3, 1, 1] = 1.0 - transition_env[:, 3, 1, 1].sum()

#### s’=0 #####
# s=0 --> s’=0: (pickup, pickup) --> (pickup, pickup)
transition_env[0, 0, 0, 0] = 1.0 - transition_env[:, 0, 0, 0].sum()
transition_env[0, 0, 0, 1] = 1.0 - transition_env[:, 0, 0, 1].sum()
transition_env[0, 0, 1, 0] = 1.0 - transition_env[:, 0, 1, 0].sum()
transition_env[0, 0, 1, 1] = 1.0 - transition_env[:, 0, 1, 1].sum()

assert np.allclose(np.sum(transition_env, axis=0), 1.0)

self.transition_env = transition_env.astype(float)
self.pt = reward.astype(float)
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