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Abstract

Simulation is a powerful tool to better understand
physical systems, but generally requires compu-
tationally expensive numerical methods. Down-
stream applications of such simulations can be-
come computationally infeasible if they require
many forward solves, for example in the case
of inverse design with many degrees of freedom.
In this work, we investigate and extend neural
PDE solvers as a tool to aid in scaling simulations
for two-phase flow problems, and simulations of
oil expulsion from a pore specifically. We ex-
tend existing numerical methods for this problem
to a more complex setting involving varying ge-
ometries of the domain to generate a challenging
dataset. Further, we investigate three prominent
neural PDE solver methods, namely the UNet,
DRN, and U-FNO, and extend them for charac-
teristics of the oil-expulsion problem: (1) spatial
conditioning on the geometry; (2) periodicity in
the boundary; (3) approximate mass conservation.
We scale all methods and benchmark their speed-
accuracy trade-off, evaluate qualitative properties,
and perform an ablation study. We find that the
investigated methods can accurately model the
droplet dynamics with up to three orders of magni-
tude speed-up, that our extensions improve perfor-
mance over the baselines, and that the introduced
varying geometries constitute a significantly more
challenging setting over the previously considered
oil expulsion problem.

*Equal contribution 1Swiss Plasma Center, École Polytech-
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1. Introduction
Multiphysics phenomena emerge from the interplay of dif-
ferent physical aspects in a system. Such phenomena ap-
pear naturally in various domains, such as digital microflu-
idics and reservoir engineering, among many others (Pollack
et al., 2002; Linga et al., 2019). In this work, we focus on a
particular type of multiphysics process, namely multiphase
electrohydrodynamics (Linga et al., 2019). Specifically, we
investigate the industrially relevant application of oil ex-
pulsion from a pore. A two-phase flow of water and oil is
modeled, where electrowetting is applied to an oil droplet
to change the droplet’s properties using an electrical charge.
An illustration of this process can be found in Figure 1.

Some of the key challenges in this application are to control
the spatiotemporal evolution of the dynamics, alongside the
coalescence and break-down of the oil droplets. Generally
we desire a specific dynamic response, which makes con-
figuring operating conditions like electrical charge and rate
of flow in the presence of varying geometries a challenging
task. It is essentially an ill-posed inverse problem, requiring
several forward solves to find a good solution. However,
solving a high-fidelity forward model requires substantial
computational resources, making it unpractical for multi-
query optimization or real-time control.

Moreover, while extensive studies have been done to obtain
stable, accurate, robust, and efficient high-fidelity numer-
ical methods for simulating the aforementioned phenom-
ena (Linga et al., 2019; 2020; Almasi et al., 2021), these
methods were deployed in a setting without geometrical
obstacles. To create a more challenging setting, we adapt
these methods for obstacles in the domain. However, this
extension leads to a further increase in computational cost,
making the need for fast approximate methods significant.

To alleviate the issue of computationally expensive simu-
lations, we propose the use of neural PDE solvers for fast
surrogate modeling. We employ these models in an au-
toregressive manner by approximating the time-stepping
operator of the system. While constructing approximate
solutions of PDEs with neural networks has gained consid-
erable traction (Azizzadenesheli et al., 2024), there is no
comprehensive study of neural PDE surrogates applied to
two-phase flows modeling oil extraction. In this work, we
conduct such an investigation. In summary, our contribu-
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Figure 1. The oil expulsion problem illustrated. Top: Numerical solver reference. Bottom: Neural surrogate model (UNet) prediction.

tions are as follows:

• We extend the numerical method for the oil expulsion
problem as introduced in (Linga et al., 2019) to account
for geometrical obstacles in the spatial domain;

• We generate a dataset of approximately 1000 simula-
tions, alongside a simplified dataset without geomet-
rical obstacles of approximately 500 simulations as a
baseline setting, following Linga et al. (2019);

• We extend three prevalent neural PDE surrogate model-
ing methods (Stachenfeld et al., 2022; Gupta & Brand-
stetter, 2023; Wen et al., 2022) to account for the char-
acteristics specific to the oil expulsion problem;

• We provide a benchmark of these models, evaluating
their scaling in terms of accuracy and inference speed,
and provide a sensitivity analysis comparing the surro-
gate models with the baseline high-fidelity solver.

2. Background and related work
2.1. Oil expulsion problem

The oil expulsion problem is modeled as a multiphase elec-
trohydrodynamical system. Specifically, it is governed by
the following system of coupled PDEs:

∂t(ρ(ϕ)v) +∇ · (ρ(ϕ)v ⊗ v)

−∇ · [2µ(ϕ)Dv + v ⊗ ρ′(ϕ)M(ϕ)∇gϕ] +∇p

=− ϕ∇gϕ −
∑
i

ci∇gci ,
(1)

∇ · v = 0, (2)
∂tϕ+ v · ∇ϕ−∇ · (M(ϕ)∇gϕ) = 0, (3)

∂tcj + v · ∇cj −∇ ·
(
Kj(ϕ)cj∇gcj

)
= 0, (4)

∇ · (ε(ϕ)∇V ) = −ρe, (5)

where t refers to time, v to the velocity field, p to the pres-
sure field, ϕ to the phase field, ρ to the density (ρe the charge

density), µ to the viscosity, cj to the solute concentration of
species j ∈ {H±}, gcj to the electrochemical potential of
a species, gϕ to the electrochemical potential of the phase
field, Kj to the species’ diffusivities, M to the phase field
mobility, V to the electrostatic potential, ε to the permissiv-
ity, and Dv to the symmetric velocity gradient. Equation 1
describes the momentum balance, Equation 2 the continuity
equation, Equation 3 the conservative evolution of the phase
field, Equation 4 governs the transport of the concentration
field of species, and Equation 5 describes Gauss’s law.

To obtain high-fidelity solutions, we employ a linear opera-
tor splitting scheme (Linga et al., 2019) that results in three
different subproblems - (i) hydrodynamic flow, (ii) phase
field transport, and (iii) chemical transport under an electric
field. We build on the implementation in BERNAISE (Linga
et al., 2019), a FEniCS-based (Alnæs et al., 2015) high-
fidelity solver, and adapt it to account for multiple geomet-
rical obstacles and different practically relevant boundary
conditions. For more details on the initial conditions, bound-
ary conditions and the employed numerical method, we refer
to Linga et al. (2019), to which we added boundaries around
the obstacles. In particular, we have a non-zero Neumann
condition for the electric potential, and a no-slip condition
for the velocity field.

2.2. Neural PDE surrogate modeling

Constructing approximate solutions of PDEs with neural
networks has seen a surge in interest over the past few
years, with example applications in fluid dynamics (Li
et al., 2021; Brandstetter et al., 2022; Gupta & Brandstetter,
2023), climate and weather modeling (Nguyen et al., 2023;
Bonev et al., 2023; Gao et al., 2023), and thermonuclear
fusion (Poels et al., 2023; Gopakumar et al., 2024), among
others. However, compared to these settings, the simulation
of two-phase flow problems with neural networks that we
consider is relatively underexplored.

One relatively popular used approach for solving two-phase
flow problems with neural networks is Physics-Informed
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Neural Networks (PINNs) (Raissi et al., 2019). In this
context, example applications of PINNs include the sim-
ulation of two-phase flows in porous media (Zhang et al.,
2023; Hanna et al., 2022), simulation of the interface of
two fluids (Zhu et al., 2023), simulating two-phase material
microstructures (Ren & Lyu, 2024), and the simulation of
the dynamics of bubbles (Lin et al., 2021b; Zhai et al., 2022;
Buhendwa et al., 2021). Although PINNs inherently exploit
domain knowledge by minimizing the residual of the PDE
directly, they generally need to be optimized from scratch
for every PDE instance and parameterization. As one of
the main goals of our work is accelerating two-phase flow
simulations, this makes them impractical for our setting.

Consequently, we focus on a different approach, namely
autoregressive models and neural operators. We will refer
to these methods as neural surrogate models. Compared
to PINNs, neural surrogate models typically cannot exploit
domain knowledge as easily, and rely more on the avail-
ability of data. However, once trained, they can be used
to get approximate solutions to multiple parameterizations
of the system of PDEs in question. There have been vari-
ous applications of popular neural surrogate architectures to
two-phase flow and multiphase flow problems, for example
Deep-O-Nets (Lu et al., 2024; Lin et al., 2021a), Fourier
Neural Operators (FNOs) (Hassan et al., 2023; Jiang et al.,
2023), and convolutional architectures (Hassan et al., 2023).
However, none of these works provide a comprehensive,
independent and consistent comparison of neural PDE ar-
chitectures in this setting.

3. Method
3.1. Model formulation

We first introduce some notation and describe the general
formulation along which we design the surrogate models.
We denote the state of the system at time t by xt. Further, a
sequence of k states, spanning from sequence element t up
to but not including t+ k is denoted as xt:t+k. Regarding
the autoregressive approach, rather than using a model to
predict a single timestep at a time, we formulate the model
fθ to operate on a bundle of k timesteps for both its input
and output:

x̂t:t+k = fθ(x
t−k:t). (6)

Notably, operating on the bundle level as opposed to sin-
gle timesteps has been shown to improve performance,
both in terms of computational efficiency as well as ac-
curacy (Brandstetter et al., 2022).

3.2. Model designs

We structure the model design space along the Encode-
Process-Decode framework (Sanchez-Gonzalez et al., 2020).
Here, the task of the encoder is to map the input bundle

xt−k:t to an abstract embedding ht, representing the entire
bundle xt−k:t. The processor then operates on ht to produce
an output embedding ot. Finally, the decoder maps ot to
a prediction for the next bundle x̂t:t+k. The architectural
choices for the encoder, processor, and decoder components
that we consider in this work are shortly described below.

Encoder. As encoder we consider a simple convolutional
neural network with a 1-by-1 kernel. Specifically, the dif-
ferent timepoints in the bundle are first flattened and taken
as channels for the convolutional layer. Then, two convolu-
tional layers are applied that operate on single grid points.

Processor. For the processor module, we consider three
popular neural PDE surrogate modeling architectures;
schematic overviews can be found in Figure 2. The first
architecture is the Dilated ResNet (DRN) (Stachenfeld et al.,
2022), illustrated in Figure 2a. The DRN is a convolutional
model which effectively integrates information at different
spatial scales by varying the dilation of subsequent convolu-
tional layers: with larger dilations, long-range interactions
can be modeled in a parameter-efficient manner.

The second architecture is the U-FNO (Wen et al., 2022),
which is based on the Fourier Neural Operator (FNO) (Li
et al., 2021); see Figure 2b. The FNO primarily relies on
transforming the spatial signal to a frequency representation
using the Fast Fourier Transform (FFT), and subsequently
multiplying the spectral coefficients with a learned weight
matrix R. Notably, this operation is equivalent to a global
convolution, enabling the FNO to model long-range interac-
tions. The U-FNO adds another parallel UNet branch, en-
abling it to better model high-frequency information, which
is prominent in our setting near droplet boundaries. We
either use only U-FNO layers or alternate them with regular
FNO layers, as proposed in Wen et al. (2022).

The third architecture we consider is the UNet (Ronneberger
et al., 2015), see Figure 2c. The UNet processes the input
in two phases. In the downsampling phase, convolutional
layers and strided convolutions are applied to downsample
the grid to coarser representations. In the upsampling phase,
transposed convolutions upsample the coarse grids to finer
resolutions. These are concatenated with the outputs from
the downsampling phase and processed by convolutional
layers. We consider a UNet variant including residual blocks
and normalization layers, which has achieved state-of-the-
art performance in neural PDE surrogate modeling (Gupta
& Brandstetter, 2023; Lippe et al., 2023).

Decoder. As decoder we consider a temporal convolu-
tional model, which first reshapes ot appropriately and then
applies a learned convolution along the temporal axis. This
structure has shown to improve predictions by smoothing the
output signal across the bundle (Brandstetter et al., 2022).
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(a) Dilated ResNet (Stachenfeld et al., 2022).

FFT FFT

FNO

U-FNO

(b) Fourier Neural Operator and U-FNO (Li et al., 2021;
Wen et al., 2022).

(c) UNet (Ronneberger et al., 2015; Gupta & Brandstetter, 2023).
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Figure 2. Schematic overview of model architectures.

3.3. Adaptations for two-phase flow problems.

While the aforementioned architectures have shown great
results on various datasets, typical problems like turbulence
and climate modeling do not necessarily share the same
characteristics as two-phase flow problems. To tailor the
methods to this specific task, we introduce several modifica-
tions that are compatible with all model architectures.

First, we condition the models on the geometry of the sys-
tem. At each autoregressive step the field describing the
boundaries – the obstacles and the pore – is concatenated
along the channel axis, both for the encoder input and for
the hidden layers in the processor. For the latter it is re-
sampled to match the hidden representations’ spatial grid if
necessary, which only concerns UNet among the considered
architectures. Additionally, after each step, the output is
post-processed to zero out the non-fluid areas. This follows
a similar approach to channel-based conditioning techniques
for scalar PDE parameters, for example as in Takamoto et al.
(2023), but additionally preserves the spatial structure of
the conditioning signal internally throughout all processor
layers.

Second, all of the architectures are adapted to respect the hor-
izontal periodic boundary conditions of the problem setting.
For the convolutional models, adding appropriate circular
padding takes care of this property. For the spectral com-

ponent of the U-FNO, the FFT already respects periodicity,
requiring no further adaptations.

Third, we know that the mass of both phases should be pre-
served over time. However, in practice, the reference solver
accumulates small numerical errors that slightly change the
balance. To account for this we apply a correction after
each prediction step, similar to McGreivy & Hakim (2023),
but rather than enforcing exact mass conservation we only
do so approximately. We apply a smooth clipping using a
hyperbolic tangent, scaled according to the mass deviation
and a maximum allowed deviation. For the total mass mt+i

at future step t + i, using as reference the mass mt at last
input timestep t, we renormalize as follows:

m̂t+i = mt ·
(
1 + i · ϵ tanh

(mt+i/mt − 1

i · ϵ

))
, (7)

where ϵ denotes the fraction of maximum mass deviation
per timestep. Near perfect conservation results in almost no
rescaling due do the linear behavior around 0, with a smooth
clipping in the limits.

4. Experiments
4.1. Data

We construct a dataset consisting of simulations of water
flowing over a dead-end pore filled with oil, similar to Linga
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et al. (2019). We simulate up to physical time T = 50. The
spatial domain consists of a tube with a width of 3 and a
height of 1, with a pore of a radius uniformly sampled from
[0.05, 0.25] at the top. Horizontal boundaries are periodic,
effectively making it an infinite length tube. A surface
charge is applied to induce electrowetting; charge values
are sampled from the range [−10,−1], biased towards more
negative charges. The reasoning is that greater amplitudes
result in more interesting behavior (Linga et al., 2019); at
lower charges the droplet sometimes does not leave the pore.

To further increase the problem complexity we extend the
numerical solver such that each simulation has one or two
circular obstacles added to the internal domain. These cir-
cles have radii uniformly sampled from [0.05, 0.25] and
have uniformly sampled center coordinates, while ensuring
that they do not overlap, and taking into account a small
minimum distance from the domain boundaries. We gener-
ate 920 simulations for this dataset, where 70% is used for
training, 10% for validation, and 20% for testing. In order
to illustrate the comparative complexity, we also generate a
baseline dataset with no obstacles, for which we generate
552 simulations with the same data split. For both datasets
we model the phase field ϕ, which describes the composi-
tion of the liquid as a value in [−1, 1]: -1 denotes only water,
1 only oil, and other values indicate a mix of both.

The solver’s temporal discretization dt = 0.02 is sampled
every 5 timesteps resulting in 500 timesteps per simula-
tion. The finite element mesh with a resolution of 60 cells
across the diameter is interpolated to an equidistant spatial
grid of 96-by-64. The horizontal dimension is fixed, the
vertical dimension is padded depending on the size of the
pore, to unify all samples in the dataset to the same spatial
dimension.

4.2. Experimental setup

The neural surrogate models fθ learn to approximate a
time-stepping operator acting on time bundles of the solu-
tion’s phase field. Each bundle consists of 25 timesteps.
Models are optimized using the MSE. To avoid overfit-
ting on single-step predictions, we use pushforward train-
ing (Brandstetter et al., 2022). Rather than unrolling once
and computing the loss, we do multiple forward predictions
of the model and compute the loss using the final predic-
tion, where the loss is propagated only through the last
prediction step. Starting at a single unrolling, the number
of forward passes is increased by 1 each 25 epochs, up to
a maximum of 8 (making the total unrolling window span
200 timesteps). We train for 500 epochs using the Adam
optimizer (Kingma & Ba, 2015) with an initial learning rate
of 10−4, which is decayed by 0.4 at epochs 25, 125, 250
and 375. All models end with a hyperbolic tangent acti-
vation to map to the [-1, 1] phase field range. After each
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(a) Results on the GPU (NVIDIA RTX 3080).
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(b) Results on the CPU (AMD Ryzen 9 5900X), with the compute
cost of the ground-truth solver as reference. Note that hyperpa-
rameter ranges were picked for GPU inference, and there may be
settings yielding similar test errors better suited for CPU inference.

Figure 3. Work-precision diagrams for full rollout MSE on the test
set versus the inference time of 25 timesteps (1 block), for the GPU
and CPU. All models share the same general architecture with the
processor parameters scaled. Parameter ranges were scanned to
find ranges that scaled well w.r.t. both MSE and inference speed
on the GPU; Pareto-optimal settings are plotted.

prediction we enforce boundary conditions within the do-
main and apply approximate mass conservation with a max-
imum deviation fraction of ϵ = 4 · 10−4 per timestep. The
data and code can be found on https://github.com/
yoeripoels/neural-pde-surrogates.

4.3. Results

Model comparison. As main performance metrics we con-
sider inference speed and the test-set MSE of the phase field,
calculated over full simulation unrollings. Specifically, the
initial block of t = 0 up to t = 25 is provided as input,
after which the model autoregressively predicts t = 25 to
t = 500. Computation time is measured as the inference
time of 25 timesteps (1 block) using an NVIDIA RTX 3080
GPU and AMD Ryzen 9 5900X CPU. Models are imple-
mented in PyTorch 2 and make use of torch.compile
to speed up inference (Ansel et al., 2024). At the time of
writing, compilation for complex operators is not supported,
making the computation time comparison somewhat unfa-
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(b) Distributions of the droplet’s horizontal position at various timesteps. A position exceeding the
domain length (i.e. 3) indicates looping around due to the periodic BCs. The DRN is missing from the
last plot due to the droplet having disintegrated at this timestep in multiple cases.

Figure 4. Comparison of distributions with small variations of the charge parameter, for a charge of -8.65 ± 20% (± 15 simulations). At
earlier times the distributions mostly overlap, however in the final case there is a significant deviation. The multi-modal behavior – where
in some cases the droplet gets stuck on the obstacle, and in others it moves past – is recovered in most cases, but not very precisely.

vorable for U-FNO models.

We compare the different models and their respective speed-
accuracy trade-offs in Figure 3. All reported results are on
the test set, and hyperparameters were selected such that
they scale well with performance on the validation set; see
Appendix A for details. In general the UNet seems to pro-
vide the most favorable scaling. To place the computation
time in context, we also plot the reference solvers cost for an
equal timeframe, on equal hardware, in Figure 3b. We see
that the neural surrogates can perform inference orders of
magnitude faster than the numerical solver even on the same
hardware. Futhermore, it is highly non-trivial to adapt exist-
ing numerical codes to exploit the parallel computation of
GPUs, whereas neural surrogates can exploit this out-of-the-
box. We note that this comparison needs to be viewed in the
context of neural surrogates introducing some simulation
error and requiring the generation of high-quality training
data, as opposed to the numerical solver. Nonetheless, neu-
ral surrogates could enable many use cases, such as inverse
design, where approximate solutions for a large search space
of parameters that lie within the training distribution suffice.

In addition to low MSE, in almost all cases the surrogates
also produce simulations that qualitatively match well with
the numerical solver. See for example Figure 1, depicting
a test set simulation alongside the best-performing UNet’s
predictions. For more qualitative results we refer to Ap-
pendix B.

Parameter sensitivity. As mentioned before, small changes
in the input parameters can lead to significant changes in
the spatiotemporal profile of the droplet behavior. An exam-
ple of this bifurcating behavior occurs when, given certain
charge parameters, the droplet gets stuck on an obstacle, but
detaches after some time. This detachment time depends
on the exact values of the electrical charge. In these cases,
the pixel-wise MSE is a poor metric to evaluate whether the
neural surrogate qualitatively matches the behavior of the
numerical solver, as a small error in the predicted time of
detachment would already lead to a large MSE.

In Figure 4 we evaluate such a case from the test set. We
investigate the droplet movement for various perturbations
of the surface charge parameter, with otherwise identical
conditions. Each neural surrogate model architecture is
evaluated using the configuration with the lowest MSE of
Figure 3. To compare whether they qualitatively match
the reference simulations, we track the droplet’s center and
plot the distribution of the horizontal coordinate at several
points in time. Over smaller time windows the distribution
clearly matches the one generated by the numerical solver
for most models. However, near the end of the simulation,
the bimodal distribution is only approximately recovered,
suggesting that neural PDE surrogates struggle to model
such bifurcating dynamics over long time horizons.

Ablations. Finally, we confirm the benefit of the adaptations
made to each of the model architectures. Table 1 denotes
these results: for each model, we take the best architectures
(column ‘All’) and disable the made adaptations. Column
‘\Inv’ denotes models with the invariances one can reason-
ably learn from data disabled. That is, these models do
not have periodic boundary conditions enforced through the
architecture, and do not have any mass conservation built
in. For all models adding periodicity and mass conserva-
tion improved model performance. Column ‘\BC’ denotes
models with no enforced spatial boundary conditions within
the domain, that is, obstacles within the domain are not
explicitly passed as conditioning in the internal model lay-
ers, and are not corrected after each autoregressive step.
In most cases disabling this adaptation led to significant
performance degradation. Finally, to confirm the relative
complexity of the adaptations that were made to the original
oil expulsion setting, we benchmark all models on a dataset
with no obstacles, as in Linga et al. (2019). The results are
shown in column ‘\Obs’. Besides the absence of obstacles,
the domains and simulation conditions are identical, making
the error metrics lie on the same scale. The no-obstacle
dataset contains approximately half of the number of train-
ing set simulations, and model hyperparameters were not
optimized for this setting. Nevertheless, the test errors are
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Table 1. Evaluations using the settings with the lowest errors. Mid-
dle: Ablations of the introduced adaptations. \Inv denotes the
enforced (approximate) invariances disabled, that is, no enforced
periodicity and approximate mass conservation. \BC denotes no
enforcement of the spatial boundary conditions of the geometry.
Right: Results when applying the model to the dataset with no
obstacles, denoted as \Obs. Even with no hyperparameter opti-
mization, these models have considerably lower errors, indicating
the challenging nature of the more complex setting we consider.

Model All \Inv \BC \Obs
DRN 0.0535 0.0647 0.362 0.0168
U-FNO 0.0479 0.0513 0.395 0.0186
U-FNO+FNO 0.0447 0.0573 0.059 0.0167
UNet 0.0439 0.0465 0.112 0.0199

two to three times lower, indicating that the dynamics get
significantly more challenging by varying the geometry.

5. Conclusion
We investigated neural PDE solvers for two-phase flows,
more precisely for the expulsion of oil droplets using elec-
trowetting. We extended the existing simulation setting
of Linga et al. (2019) to more complex scenarios by intro-
ducing varying complex geometries in the domain. Here,
the computational cost of for example inverse design tasks
becomes prohibitively expensive using high-fidelity forward
solves, making fast surrogate modeling approaches crucial.
Further, the setting forms a harder and consequently more
interesting benchmark for neural surrogate approaches. We
investigated and extended three prevalent neural PDE solver
methods in terms of their speed-accuracy trade-off, where
we found the UNet to scale most favorably. Further, the
UNet and U-FNO models both showed comparatively good
qualitative performance when comparing aggregate prop-
erties of the droplet dynamics. Still, all models struggled
to preserve these properties over long simulation horizons.
Lastly, we showed the benefits of the introduced model
extensions for the oil expulsion setting.

A future research direction would be to investigate more
two-phase flow datasets (Linga et al., 2019; 2020; Almasi
et al., 2021) and to evaluate more neural PDE solver archi-
tectures, for example a selection of Lu et al. (2021); Cao
(2021); Brandstetter et al. (2022); Tran et al. (2023); Li
et al. (2023); Hao et al. (2023); Hagnberger et al. (2024);
Serrano et al. (2023). Additionally, a probabilistic approach
could help in taking the uncertainties in bifurcating dynam-
ics into account (Cachay et al., 2023; Yang & Sommer,
2023; Minartz et al., 2023; Bergamin et al., 2024) or to miti-
gate autoregressive error accumulation (Lippe et al., 2023).
Finally, one could investigate the speed-up compared to
reference numerical solvers and their scalability in more de-

tail. In particular, while inference of the resulting networks
is significantly faster, a dataset of expensive simulations
must be generated up front. An interesting question is to
consider the amortized cost of using neural surrogates in a
downstream application. For example, one could do a large
number of inverse problem optimizations using either only
the high-fidelity numerical method, or by first generating a
dataset, training a neural surrogate, and then consequently
using a combination of both for the optimization. Such an
evaluation could better evaluate the real-world applicability
of the investigated methods.
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A. Hyperparameters and results
This appendix contains the hyperparameters and exact figures for runtime and accuracy for models that lie on the pareto
fronts shown in Figure 3a. For UNets, unless otherwise mentioned, we use a fixed kernel size of 3 and a residual block depth
of 1. For the DRN, the per-block dilation rates are fixed at (1, 2, 4, 8, 4, 2, 1). We refer to the respective papers (Stachenfeld
et al., 2022; Gupta & Brandstetter, 2023; Wen et al., 2022) and our code for more details.

Table 2. Pareto-optimal hyperparameters and results for DRN.
Layers Kernel size Hidden features MSE GPU runtime (ms) CPU runtime (ms)

2 5 384 0.053 27.9 488.8
2 5 192 0.055 9.0 129.4
2 5 128 0.055 4.7 63.1
4 5 64 0.066 3.5 39.0

Table 3. Pareto-optimal hyperparameters and results for U-FNO.
Layers FNO modes Hidden features UNet channel multipliers MSE GPU runtime (ms) CPU runtime (ms)

3 10 192 (1,1) 0.048 21.4 233.7
2 10 192 (1,1) 0.048 14.5 158.3
2 10 192 (1) 0.054 10.4 144.2
1 10 192 (1, 1) 0.077 5.5 80.8

Table 4. Pareto-optimal hyperparameters and results for U-FNO + FNO.
Layers FNO modes Hidden features UNet channel multipliers MSE GPU runtime (ms) CPU runtime (ms)

(FNO, U-FNO) ×2 10 256 (1,1,1,1) 0.045 30.2 455.3
(FNO, U-FNO) ×2 10 256 (1,1) 0.049 23.0 276.3

(FNO, U-FNO) 10 192 (1,1) 0.051 8.7 93.5
(FNO, U-FNO) 6 64 (1) 0.067 5.4 18.5

Table 5. Pareto-optimal hyperparameters and results for UNet.
Channel multipliers Residual block depth Hidden features (1st layer) MSE GPU runtime (ms) CPU runtime (ms)

(2,2,1,2) 2 32 0.044 18.0 53.0
(2,2,2) 2 32 0.048 13.8 42.8
(2,2) 2 64 0.051 10.6 66.0
(2,2) 1 32 0.055 7.4 20.2
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B. Additional qualitative results
This appendix contains additional qualitative results for all model architectures. For each model architecture we use the
hyperparameters that resulted in the lowest MSE. We plot three examples: a case that works well for all in Figure 5a, a
mixed case in Figure 5b, and a failure case in Figure 5c. In the last, one can clearly see that the models struggle with the
outlier case of an even split of the droplet into two separate droplets.
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(a) Example with two obstacles; all models qualitatively match the reference solution.
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(b) Example with two obstacles; here, the DRN struggles to reproduce the behavior near the final timestep.
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(c) Failure mode for the neural PDE surrogates: they cannot accurately reproduce the outlier case of an evenly splitting droplet. At some
point during the simulation all models merge the two droplets back into one, which does not happen in the reference solution.

Figure 5. Test set example with predictions of all model classes considered, using the settings within each class that led to the lowest MSE.
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