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ABSTRACT

In autonomous driving, end-to-end planners directly utilize raw sensor data, en-
abling them to extract richer scene features and reduce information loss compared
to traditional planners. This raises a crucial research question: how can we develop
better scene feature representations to fully leverage sensor data in end-to-end
driving? Self-supervised learning methods show great success in learning rich
feature representations in NLP and computer vision. Inspired by this, we propose
a novel self-supervised learning approach using the LAtent World model (LAW)
for end-to-end driving. LAW predicts future scene features based on current fea-
tures and ego trajectories. This self-supervised task can be seamlessly integrated
into perception-free and perception-based frameworks, improving scene feature
learning and optimizing trajectory prediction. LAW achieves state-of-the-art per-
formance across multiple benchmarks, including real-world open-loop benchmark
nuScenes, NAVSIM, and simulator-based closed-loop benchmark CARLA. The
code will be released.

1 INTRODUCTION

End-to-end planners (Hu et al., 2022c; Jiang et al., 2023; Prakash et al., 2021; Wu et al., 2022; Hu
et al., 2022b; Zhang et al., 2022; Wu et al., 2023) have garnered significant attention due to their
distinct advantages over traditional planners. Traditional planners operate on pre-processed outputs
from perception modules, such as bounding boxes and trajectories. In contrast, end-to-end planners
directly utilize raw sensor data to extract scene features, minimizing information loss. This direct
use of sensor data raises an important research question: how can we develop more effective scene
feature representations to fully leverage the richness of sensor data in end-to-end driving?

In recent years, self-supervised learning has emerged as a powerful method for extracting compre-
hensive feature representations from large-scale datasets, particularly in fields like NLP (Devlin,
2018) and computer vision (He et al., 2022). Building on this success, we aim to enrich scene
feature learning and further improve end-to-end driving performance through self-supervised learning.
Traditional self-supervised methods in computer vision(He et al., 2022; Chen et al., 2020b) often
focus on static, single-frame images. However, autonomous driving relies on continuous video
input, so effectively using temporal data is crucial. Temporal self-supervised tasks, such as future
prediction (Han et al., 2019; 2020), have shown promise. Traditional future prediction tasks often
overlook the impact of ego actions, which play a crucial role in shaping the future in autonomous
driving.

Given the crucial factor of ego action, we propose a self-supervised task that leverages a latent
world model to predict future states based on the current state and ego action, as illustrated in Fig. 1.
Specifically, given images, a visual encoder extracts scene features (current state), which are then fed
into an action decoder to predict ego trajectory. Based on the current state and action, the latent world
model predicts the scene feature of the future frame. During training, the predicted future features are
supervised using the extracted features from the future frame. By supervising the predicted future
feature, this self-supervised method jointly optimizes the current scene feature learning and ego
trajectory prediction.

After introducing the concept of the latent world model, we turn our attention to its universality
across various end-to-end autonomous driving frameworks. In end-to-end autonomous driving,
the frameworks can generally be categorized into two types: perception-free and perception-based.
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Figure 1: The illustration of our self-supervised method. Traditional methods utilize perception
annotations to assist with scene feature learning. In contrast, our self-supervised approach uses
temporal information to guide feature learning. Pred.: predicted. Seg.: segmentation. The blue part
indicates the pipeline of an end-to-end planner.

Perception-free approaches (Toromanoff et al., 2020; Chen et al., 2020a; Wu et al., 2022) bypass
explicit perception tasks, relying solely on trajectory supervision. Prior work Wu et al. (2022) in
this category typically extracts perspective-view features to predict future trajectory. In contrast,
perception-based approaches (Prakash et al., 2021; Hu et al., 2022c; Jiang et al., 2023; Hu et al.,
2022b) incorporate perception tasks, such as detection, tracking, and map segmentation, to guide
scene feature learning. These methods generally use BEV feature maps as a unified representation for
these perception tasks. Our latent world model accommodates both frameworks. It can either predict
perspective-view features in the perception-free setting or predict BEV features in the perception-
based setting, showcasing its universality across different autonomous driving paradigms.

Experiments show that our latent world model enhances performance in both perception-free and
perception-based frameworks. Furthermore, we achieve state-of-the-art performance on multi-
ple benchmarks, including the real-world open-loop datasets nuScenes (Caesar et al., 2020) and
NAVSIM (Dauner et al., 2024) (based on nuPlan (Caesar et al., 2021)), as well as the simulator-
based closed-loop CARLA benchmark (Dosovitskiy et al., 2017). These results underscore the
efficacy of our approach and highlight the potential of self-supervised learning to advance end-to-end
autonomous driving research. In summary, our contributions are threefold:

• Future prediction by latent world model: We introduce the LAtent World model (LAW)
to predict future scene latents from current scene latents and ego trajectories. This self-
supervised task jointly enhances scene representation learning and trajectory prediction in
end-to-end driving.

• Cross-framework universality: LAW demonstrates universality across various common au-
tonomous driving paradigms. It can either predict perspective-view features in the perception-
free framework or predict BEV features in the perception-based framework.

• State-of-the-art performance: Our self-supervised approach achieves state-of-the-art
results on the real-world open-loop nuScenes, NAVSIM, and the simulator-based close-loop
CARLA benchmark.
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2 RELATED WORKS

2.1 END-TO-END AUTONOMOUS DRIVING

We divide end-to-end autonomous driving methods (Hu et al., 2022c; Jiang et al., 2023; Renz
et al., 2022; Toromanoff et al., 2020) into two categories, perception-based methods and perception-
free methods, depending on whether performing perception tasks. Perception-based end-to-end
methods (Casas et al., 2021; Prakash et al., 2021; Jaeger et al., 2023; Shao et al., 2023; Hu et al.,
2022b; Sadat et al., 2020) perform multiple perception tasks simultaneously, such as detection (Li
et al., 2022; Huang et al., 2021), tracking (Zhou et al., 2020; Wang et al., 2021), map segmentation (Hu
et al., 2022c; Jiang et al., 2023) and occupancy prediction (Wang et al., 2023a; Huang et al., 2023).
As a representative, UniAD (Hu et al., 2022c) integrates multiple modules, including tracking and
motion prediction, to support goal-driven planning. VAD (Jiang et al., 2023) explores vectorized
scene representation for planning purposes. There are also some frameworks using languages to
help perceptions and thus enhance scene understanding. For instance, DriveVLM (Tian et al., 2024)
utilizes Vision-Language Models (VLMs) to improve comprehension of complex scenes and to
optimize planning processes. EMMA (Hwang et al., 2024) integrates multiple driving-related tasks
into a unified language framework, employing task-specific prompts to generate the respective outputs.
VLP (Pan et al., 2024) advances autonomous driving by enhancing the foundational memory of the
source model and improving the contextual awareness of self-driving systems. OmniDrive (Wang
et al., 2024) presents a comprehensive approach that ensures robust alignment between agent models
and the requirements of 3D driving scenarios.

Perception-free end-to-end methods (Toromanoff et al., 2020; Chen et al., 2020a; Zhang et al., 2021;
Wu et al., 2022) present a promising direction as they avoid utilizing a large number of perception
annotations. Early perception-free end-to-end methods (Zhang et al., 2021; Toromanoff et al., 2020)
primarily relied on reinforcement learning. For instance, MaRLn (Toromanoff et al., 2020) designed
a reinforcement learning algorithm based on implicit affordances, while LBC (Chen et al., 2020a)
trained a reinforcement learning expert using privileged (ground-truth perception) information. Using
trajectory data generated by the reinforcement learning expert, TCP (Wu et al., 2022) combined
a trajectory waypoint branch with a direct control branch, achieving good performance. However,
perception-free end-to-end methods often suffer from inadequate scene representation capabilities.
Our work aims to address this issue through the latent world model.

2.2 WORLD MODEL IN AUTONOMOUS DRIVING

Existing world models in autonomous driving can be categorized into two types: image-based world
models and occupancy-based world models. Image-based world models (Hu et al., 2022a; Wang
et al., 2023b; Hu et al., 2023a) aim to enrich the autonomous driving dataset through generative
approaches. GAIA-1 (Hu et al., 2023a) is a generative world model that utilizes video, text, and action
inputs to create realistic driving scenarios. MILE (Hu et al., 2022a) produces urban driving videos by
leveraging 3D geometry as an inductive bias. Drive-WM (Wang et al., 2023b) utilizes a diffusion
model to predict future images and then plans based on these predicted images. Copilot4D (Zhang
et al., 2023) tokenizes sensor observations with VQVAE (Van Den Oord et al., 2017) and then predicts
the future via discrete diffusion. Another category involves occupancy-based world models (Zheng
et al., 2023; Min et al., 2024). OccWorld (Zheng et al., 2023) and DriveWorld (Min et al., 2024) use
the world model to predict the occupancy, which requires occupancy annotations. On the contrary,
our proposed latent world model requires no manual annotations.

3 PRELIMINARY

Vision-based End-to-end Autonomous Driving In the task of end-to-end autonomous driving, the
objective is to estimate the future trajectory of the ego vehicle in the form of waypoints. Formally,
let It = {I1t , I2t , . . . , INt } be the set of N surrounding multi-view images captured at time step t.
We expect the model to predict a sequence of waypoints Wt = {w1

t ,w
2
t , . . . ,w

M
t }, where each

waypoint wi
t = (xi

t, y
i
t) represents the predicted BEV position of the ego vehicle at time step t+ i.

M represents the number of future positions of the ego vehicle that the model aims to predict.
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Figure 2: The Overall Framework. The encoder extracts visual latents from the images, while the
decoder predicts waypoints based on these latents. Our latent world model predicts future visual
latents using the visual latents and waypoints of the current frame. During training, the predicted
visual latents are supervised by the extracted latents from the future frame. The latent world model is
compatible with both perception-free and perception-based frameworks, which differ in their encoder
and decoder structures. In the perception-based framework, the supervision icon indicates that map
annotations supervise the output of the map construction module, while the agent’s future trajectory
supervises the output of the motion prediction module. Pred.: predicted.

World Model A world model aims to predict future states based on the current state and action. In
the autonomous driving task, let St represent the states at time step t, Wt = {w1

t ,w
2
t , . . . ,w

M
t }

denote the sequence of predicted waypoints by the planner, the world model predicts state St+1 at
time step t+ 1 using St and Wt.

4 METHODOLOGY

Our methodology is composed of three key components: i) Latent World Model: We utilize the
latent world model to realize the self-supervised task. This model takes two inputs: latent features
extracted by the visual encoder and waypoints predicted by the waypoint decoder. This task is
compatible with two common frameworks. ii) Perception-free framework with perspective-view
latents: it consists of the perspective-view encoder and perception-free decoder within this framework.
iii) Perception-based framework with BEV latents: it contains the BEV encoder and perception-based
decoder within this framework.

4.1 LATENT WORLD MODEL

In this section, we utilize the latent world model to predict the visual latents of the future frame based
on the current visual latents and waypoints.

Visual Latents and Waypoints Extraction The visual encoder processes the images from the current
t time step to produce the corresponding visual latent feature set

Vt = {v1
t ,v

2
t , . . . ,v

L
t },

where L denotes the number of feature vectors, and each vector vi
t ∈ RD, with D representing the

number of feature channels. These feature vectors can be derived from various sources, such as a
flattened image feature map or a flattened BEV feature map. Based on the Vt, the waypoint decoder
predicts the waypoints Wt = {w1

t ,w
2
t , . . . ,w

M
t }. M represents the number of waypoints, where

each waypoint wi
t = (xi

t, y
i
t).
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Action-aware Latents Construction We produce action-aware latents by integrating visual latents
and waypoints. The action-aware latents are then used as input to the latent world model. Let
M represent the number of waypoints, with each waypoint wi

t = (xi
t, y

i
t). We first reshape Wt,

which has the shape [M, 2], into a one-dimensional vector w̃t ∈ R2M . Then, we concatenate each
visual latent vi

t with the waypoint vector w̃t along the feature channel dimension. The resulting
concatenated vector is passed through an MLP to produce the action-aware latent ait, which has the
same shape as vi

t. Formally, the action-aware latent for the i-th feature vector is expressed as

ait = MLP([vi
t, w̃t]), (1)

where [·, ·] denotes the concatenating operation. The full set of action-aware latents is denoted as
At = {a1t ,a2t , . . . ,aLt }, where L denotes the number of feature vectors.

Future Latent Prediction The latent world model utilizes the action-aware latents to predict the
future visual latents as follows. Given At, we predict visual latents V̂t+1 of the frame t+ 1 by the
latent world model:

V̂t+1 = LatentWorldModel(At). (2)
The network architecture of the latent world model consists of two transformer blocks. Each block
contains a self-attention and feed-forward module. The self-attention is performed across the latent
feature vectors.

Future Latent Supervision During training, we extract the visual latents Vt+1 = {v1
t+1, . . . ,v

L
t+1

from the images of frame t+ 1, which are used as the ground truth to supervise the V̂t+1 using a
Mean Squared Error (MSE) loss function as

Llatent =
1

L

L∑
i=1

∥v̂i
t+1 − vi

t+1∥2. (3)

The latent world model is compatible with both perception-free and perception-based frameworks. In
the following sections, we detail the implementation of these two frameworks.

4.2 PERCEPTION-FREE FRAMEWORK WITH PERSPECTIVE-VIEW LATENTS

First, we introduce our perception-free framework. Previous perception-free frameworks (Wu et al.,
2022) typically employ a perspective-view encoder for visual latent extraction and a perception-free
decoder for waypoint prediction. Our framework is built upon this established paradigm.

Perspective-view Encoder In the perspective-view encoder, we produce visual latents based on
multi-view images. Initially, multi-view images are processed by an image backbone to obtain
their corresponding image features. Following PETR (Liu et al., 2022), we generate 3D position
embeddings for these image features, which are then added to the image features to uniquely
distinguish each feature vector. The enriched image features are denoted as F = {f1, f2, . . . , fN},
where N represents the number of views. The shape of f i is [H,W,D], where H,W represents the
height and width of the image feature map and D is the number of feature channels.

To encode the image features into high-level visual latents suitable for planning, we apply a view
attention mechanism. To be specific, for N views, there are N corresponding learnable view
queries Qview = {q1

view,q
2
view, . . . ,q

N
view}. Each view query qi

view undergoes a cross-attention with
its corresponding image feature f i, resulting in N visual latent Vpf = {v1

pf,v
2
pf, . . . ,v

N
pf }, where the

subscript “pf” stands for perception-free. Formally,

vi
pf = CrossAttention(qi

view, f
i, f i), (4)

where f i serves as the key and value of the cross attention. Vpf are then used as input for the
perception-free decoder, which we describe next.

Perception-free Decoder The perception-free decoder deocdes waypoint from Vpf. Specifically,
we initialize M waypoint queries, Qwp = {q1

wp,q
2
wp, . . . ,q

M
wp}, where each query is a learnable

embedding. These waypoint queries interact with Vpf through a cross-attention mechanism. The
updated waypoint queries are then passed through an MLP head to predict the waypoints W =
{w1,w2, . . . ,wM}, which is formulated as

W = MLP(CrossAttention(Qwp,Vpf,Vpf)). (5)

5
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Perception-free Supervision In the perception-free framework, we rely solely on ground truth
waypoints for supervision, as no additional perception annotations are provided. We employ an L1
loss to measure the discrepancy between the predicted waypoints W and the ground truth waypoints
W̃ = {w̃1, w̃2, . . . , w̃M} as

Lwaypoint =
1

M

M∑
j=1

∥wj
t − w̃j

t∥1, (6)

Thus, the final loss for the perception-free framework is

Lpf = Llatent + Lwaypoint. (7)

4.3 PERCEPTION-BASED FRAMEWORK WITH BEV LATENTS

Our latent world model is also compatible with perception-based frameworks, which commonly
utilize BEV feature maps for perception tasks. We adhere to this paradigm and the perception-based
framework is composed of two key components: a BEV encoder and a perception-based decoder.
The BEV encoder generates BEV feature maps from images, while the perception-based decoder uses
these maps for perception tasks such as motion prediction and map construction. The final waypoints
are then predicted based on the outputs of these perception tasks.

BEV Encoder We follow Li et al. (2022) to encode the BEV feature map. First, we encode the image
features using a backbone network. Then, a set of BEV queries projects these image features into
BEV features. The resulting BEV feature map is flattened into a shape of [K,D], where K represents
the number of feature vectors in the BEV feature map and D is the number of feature channels.
The flattened features are denoted as Vpb = {v1

pb,v
2
pb, . . . ,v

K
pb}, where the subscript “pb”refers to

perception-based.

Perception-based Decoder Following Jiang et al. (2023), the decoder predicts waypoints with the
help of perception tasks, namely motion prediction and map construction. For motion prediction,
Nagent learnable queries interact with Vpb via cross-attention to generate agent features Fagent. Fagent
are then used to predict agent trajectories. Similarly, for map construction, Nmap learnable queries
perform cross-attention with Vpb to extract map features Fmap. Fmap are then used to predict map
vectors. Finally, the learnable waypoint queries perform cross-attention with Fagent and Fmap. The
output is then passed through an MLP head to predict the waypoints.

Perception-based Supervision The perception-based framework uses the same waypoint supervision
as in equation 6. In addition, it includes losses from perception tasks as

Lperception = Lagent + Lmap. (8)

Here, Lagent is s the loss for motion prediction and Lmap is the loss for map construction, as defined in
(Jiang et al., 2023). The final loss for the perception-based framework is

Lpb = Llatent + Lwaypoint + Lperception. (9)

5 EXPERIMENTS

5.1 BENCHMARKS

nuScenes (Caesar et al., 2020) The nuScenes dataset contains 1,000 driving scenes. In line with
previous works (Hu et al., 2022b; 2023b; Jiang et al., 2023), we use L2 displacement error and
collision rate as comprehensive metrics to evaluate planning performance. L2 displacement error
measures the L2 distance between the predicted and ground truth trajectories, while collision rate
quantifies the frequency of collisions with other objects along the predicted trajectory.

NAVSIM (Dauner et al., 2024) We conducted further experiments using the NAVSIM benchmark,
as the nuScenes dataset proved to be overly simplistic. The NAVSIM dataset (Dauner et al., 2024)
is built on OpenScene (Contributors, 2023), which provides 120 hours of driving logs condensed
from the nuPlan dataset (Caesar et al., 2021). NAVSIM enhances OpenScene by resampling the data
to reduce the occurrence of simple scenarios, such as straight-line driving. As a result, traditional
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ego status modeling becomes inadequate under the NAVSIM benchmark. NAVSIM evaluates model
performance using the predictive driver model score (PDMS), which is calculated based on five
factors: no at-fault collision (NC), drivable area compliance (DAC), time-to-collision (TTC), comfort
(Comf.) and ego progress (EP).

CARLA (Dosovitskiy et al., 2017) Closed-loop evaluation is essential to autonomous driving as it
constantly updates the sensor inputs based on the driving actions. For the closed-loop benchmark, the
training dataset is collected from the CARLA (Dosovitskiy et al., 2017) simulator (version 0.9.10.1)
using the teacher model Roach (Zhang et al., 2021) following (Wu et al., 2022; Jia et al., 2023a),
resulting in 189K frames. We use the widely-used Town05 Long benchmark (Jia et al., 2023a; Shao
et al., 2022; Hu et al., 2022a) to assess the closed-loop driving performance. For metric, Route
Completion (RC) represents the percentage of the route completed by the autonomous driving model.
Infraction Score (IS) quantifies the number of infractions as well as violations of traffic rules. A
higher Infraction Score indicates better adherence to safe driving practices. Driving Score (DS) is
the primary metric used to evaluate overall performance. It is calculated as the product of Route
Completion and Infraction Score.

5.2 IMPLEMENTATION DETAILS

nuScenes Benchmark We implement both perception-free and perception-based frameworks. In the
perception-free framework, Swin-Transformer-Tiny (Swin-T)(Liu et al., 2021) is used as the backbone.
Input images are resized to 800×320. We adopt a Cosine Annealing learning rate schedule(Loshchilov
& Hutter, 2016), starting at 5e-5. The model is trained using the AdamW optimizer (Loshchilov
& Hutter, 2017) with a weight decay of 0.01, batch size 8, and 12 epochs across 8 A6000 GPUs.
The waypoint and latent prediction losses are equally weighted at 1.0. For the perception-based
framework, following Jiang et al. (2023), we train the model in two stages. In the first stage, we
train the encoder and perception head using only perception loss for 48 epochs. In the second stage,
we introduce waypoint and latent prediction losses for training another 12 epochs. The network
architecture of the latent world model utilizes deformable self-attention for improved convergence.

NAVSIM Benchmark The perception-free framework is implemented on NAVSIM. Specifically, We
employ a ResNet-34 backbone, training for 20 epochs in line with Prakash et al. (2021) to ensure a
fair comparison. Input images are resized to 640×320. The Adam optimizer is used with a learning
rate of 1e-4 and a batch size of 32.

CARLA Benchmark We follow Wu et al. (2022) to implement a perception-free framework on
CARLA. To be specific, we use ResNet-34 as the backbone and employ the TCP head (Wu et al.,
2022) as in Jia et al. (2023a). Input images are resized to 900×256. The Adam optimizer is used with
a learning rate of 1e-4 and weight decay of 1e-7. The model is trained for 60 epochs with a batch size
of 128. After 30 epochs, the learning rate is halved.

5.3 COMPARISON WITH STATE-OF-THE-ART METHODS

For the nuScenes benchmark, we compare our proposed framework with several state-of-the-art
methods, including BEV-Planner (Li et al., 2024) and VAD (Jiang et al., 2023). The results are
summarized in Table 1. Our perception-free framework demonstrates competitive performance,
while the perception-based framework achieves state-of-the-art results in both L2 displacement and
collision rates. For the NAVSIM benchmark, detailed in Table 2, our method achieves state-of-the-art
results in overall PDMS. Additionally, it performs exceptionally well on metrics like drivable area
compliance and ego progress, further highlighting the superiority of our approach. For the CARLA
benchmark, as shown in Table 3, our proposed method outperforms all existing methods. Notably,
our perception-free approach surpasses previous leading methods such as ThinkTwice (Jia et al.,
2023b) and DriveAdapter (Jia et al., 2023a), which incorporate extensive supervision from depth
estimation, semantic segmentation, and map segmentation.

5.4 ABLATION STUDY

All experiments are conducted within the perception-free framework unless otherwise specified.
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Table 1: Performance on the nuScenes (Caesar et al., 2020). The overall collision results are
computed by the traditional computation way used in Jiang et al. (2023). ‡: The collision results are
computed by the way in Li et al. (2024). We do not utilize the historical ego status information.

Method L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

NMP (Zeng et al., 2019) - - 2.31 - - - 1.92 -
SA-NMP (Zeng et al., 2019) - - 2.05 - - - 1.59 -
FF (Hu et al., 2021) 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43
EO (Khurana et al., 2022) 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33
ST-P3 (Hu et al., 2022b) 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD (Hu et al., 2022c) 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31
VAD (Jiang et al., 2023) 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22
BEV-Planner (Li et al., 2024) 0.30 0.52 0.83 0.55 0.10‡ 0.37‡ 1.30‡ 0.59‡
LAW (perception-free) 0.26 0.57 1.01 0.61 0.14 0.21 0.54 0.30
LAW (perception-based) 0.24 0.46 0.76 0.49 0.08 0.10 0.39 0.19

Table 2: Performance on NAVSIM test set. NC: no at-fault collision. DAC: drivable area compliance.
TTC: time-to-collision. Comf.: comfort. EP: ego progress. PDMS: the predictive driver model score.
LAW is in the perception-free setting.

Method NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑
Human 100 100 100 99.9 87.5 94.8

Constant Velocity 69.9 58.8 49.3 100 49.3 21.6
Ego Status MLP 93.0 77.3 83.6 100 62.8 65.6
TransFuser (Prakash et al., 2021) 97.7 92.8 92.8 100 79.2 84.0
UniAD (Hu et al., 2022c) 97.8 91.9 92.9 100 78.8 83.4
PARA-Drive (Weng et al., 2024) 97.9 92.4 93.0 99.8 79.3 84.0

LAW 96.4 95.4 88.7 99.9 81.7 84.6

Table 3: Performance on Town05 Long benchmark on CARLA. Expert: Imitation learning
from the driving trajectories of a privileged expert. Seg.: semantic segmentation. Map.: BEV map
segmentation. Dep.: depth estimation. Det.: 3D object detection. Latent Prediction: our proposed
self-supervised task. RC: route completion. IS: infraction score. DS: driving score. LAW is in the
perception-free setting.

Method Supervision RC↑ IS↑ DS↑
CILRS (Codevilla et al., 2019) Expert 10.3±0.0 0.75±0.05 7.8±0.3
LBC (Chen et al., 2020a) Expert 31.9±2.2 0.66±0.02 12.3±2.0
Transfuser (Prakash et al., 2021) Expert, Dep., Seg., Map., Det. 47.5±5.3 0.77±0.04 31.0±3.6
Roach (Zhang et al., 2021) Expert 96.4±2.1 0.43±0.03 41.6±1.8
LAV (Chen & Krähenbühl, 2022) Expert, Seg., Map., Det. 69.8±2.3 0.73±0.02 46.5±2.3
TCP (Wu et al., 2022) Expert 80.4±1.5 0.73±0.02 57.2±1.5
MILE (Hu et al., 2022a) Expert, Map., Det. 97.4±0.8 0.63±0.03 61.1±3.2
ThinkTwice (Jia et al., 2023b) Expert, Dep., Seg., Det. 95.5±2.0 0.69±0.05 65.0±1.7
DriveAdapter (Jia et al., 2023a) Expert, Map., Det. 94.4±- 0.72±- 65.9±-
Interfuser (Shao et al., 2022) Expert, Map., Det. 95.0±2.9 - 68.3±1.9

LAW Expert, Latent Prediction 97.8±0.9 0.72±0.03 70.1±2.6

Ablation Study on Latent World Model In this ablation study, we assess the effectiveness of our
proposed latent world model. For the nuScenes benchmark, the results are shown in Table 1. We
ablate the latent prediction task in both the perception-free and perception-based frameworks, and
further investigate the contribution of each input to the latent world model. The findings demonstrate
that accurate future latent predictions depend on incorporating driving actions, supporting the validity
of the latent world model. We also present ablation studies on NAVSIM and CARLA, as detailed
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Table 4: Effectiveness of latent prediction on nuScenes benchmark. The latent world model
receives two types of inputs: visual latents and predicted trajectory. No input refers to not utilizing
the world model. Pred.: predicted. Traj.: trajectory. Avg.: average.

Framework Input of Latent World Model L2 (m) ↓ Collision (%) ↓
Visual Latent Pred. Traj. 1s 2s 3s Avg. 1s 2s 3s Avg.

Perception-free
- - 0.32 0.67 1.14 0.71 0.20 0.30 0.73 0.41
✓ - 0.30 0.64 1.12 0.68 0.18 0.27 0.66 0.37
✓ ✓ 0.26 0.57 1.01 0.61 0.14 0.21 0.54 0.30

Perception-based
- - 0.30 0.52 0.80 0.54 0.09 0.17 0.48 0.25
✓ - 0.27 0.49 0.80 0.52 0.08 0.12 0.42 0.21
✓ ✓ 0.24 0.46 0.76 0.49 0.08 0.10 0.39 0.19

Table 5: Ablation study on latent prediction on NAVSIM and CARLA benchmark. NC: no
at-fault collision. DAC: drivable area compliance. TTC: time-to-collision. Comf.: comfort. EP: ego
progress. PDMS: the predictive driver model score. RC: route Completion. IS: infraction Score. DS:
driving Score. LAW is in the perception-free setting.

Latent Prediction NAVSIM CARLA

NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑ RC ↑ IS ↑ DS ↑
× 94.4 89.4 84.8 100.0 75.1 77.5 98.6±0.8 0.68±0.02 67.9±2.1
✓ 96.4 95.4 88.7 99.9 81.7 84.6 97.8±0.9 0.72±0.03 70.1±2.6

in Table 5. In NAVSIM, we observed a significant improvement in PDMS, mainly driven by the
enhancements in drivable area compliance (DAC) and Ego progress (EP) metrics. This suggests
that our self-supervised task effectively enhances the quality of the driving trajectory. Similarly, in
CARLA, we observed notable improvements in the Driving Score.

The Time Horizon of Latent World Model In this experiment, the world model predicts latent
features at three distinct future time horizons: 0.5 seconds, 1.5 seconds, and 3.0 seconds. This
corresponds to the first, third, and sixth future frames from the current frame, given that keyframes
occur every 0.5 seconds in the nuScenes dataset. The results, displayed in Table 6, show that the
model achieves the best performance at the 1.5-second horizon. In comparison, the 0.5-second
interval typically presents scenes with minimal changes, providing insufficient dynamic content
to improve feature learning. In contrast, the 3.0-second interval often presents scenes that may
significantly differ from the current frame, making accurate future predictions more challenging. This
conclusion aligns with observations from MAE (He et al., 2022), where both excessively low and
high mask ratios negatively impact the ability of the network.

Table 6: Different time horizons for latent prediction. The time intervals of 0.5, 1.5, and 3.0
seconds correspond to the first, third, and sixth future frames from the current frame, as keyframes
occur every 0.5 seconds in the nuScenes dataset.

Time Horizon L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

0.5s 0.26 0.57 1.01 0.61 0.14 0.21 0.54 0.30
1.5s 0.26 0.54 0.93 0.58 0.14 0.17 0.45 0.25
3.0s 0.28 0.59 1.01 0.63 0.13 0.20 0.48 0.27

Network Architecture of Latent World Model To validate the impact of the network architecture
of the latent world model, we conduct experiments as shown in Table 7. Firstly, it is evident that
a single-layer neural network, represented as Linear Projection, is not adequate for fulfilling the
functions of the world model, resulting in significantly degraded performance. The two-layer MLP
shows considerable improvement in performance. However, it lacks the capability to facilitate
interactions among different latent vectors. Therefore, we use the stacked transformer blocks as our
default network architecture, which achieves the best results among the tested architectures. This
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Ours

VAD

Figure 3: Visualization. This figure compares LAW in the perception-based setting with VAD (Jiang
et al., 2023). On the right side of this figure, we display the results of ego trajectory prediction,
agent motion prediction, and map construction in BEV. As indicated by the red circles, our method
captures more crucial scene information, which VAD overlooks. Consequently, VAD predicts a
forward trajectory that results in a rear-end collision, as highlighted by the yellow circles.

indicates that interactions between feature vectors from different positions are important for future
prediction.

Table 7: Different network architecture of the latent world model. Linear Projection means a
single-layer network.

Architecture L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

Linear Projection 0.31 0.65 1.14 0.70 0.26 0.34 0.66 0.42
Two-layer MLP 0.27 0.58 1.07 0.64 0.17 0.23 0.59 0.33

Transformer Blocks 0.26 0.57 1.01 0.61 0.14 0.21 0.54 0.30

5.5 VISUALIZATION

Figure 3 compares the results of LAW in perception-based setting with VAD (Jiang et al., 2023).
Leveraging our latent world model, our approach acquires more comprehensive scene representations.
Consequently, it achieves superior performance on downstream tasks, including agent prediction and
map construction (highlighted in the red circle), and effectively avoids collisions (highlighted in the
yellow circle).

6 CONCLUSION

In conclusion, we present the latent world model to predict future features from current features
and ego trajectories, which is a novel self-supervised learning method for end-to-end autonomous
driving. This method jointly enhances scene representation learning and ego trajectory prediction.
Our approach demonstrates universality by accommodating both perception-free and perception-
based frameworks, predicting perspective-view features and BEV features respectively. We achieve
state-of-the-art results on benchmarks like nuScenes, NAVSIM, and CARLA.

10
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A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

Data Augmentation: To enhance the robustness of our model and prevent overfitting, we apply the
following series of augmentation techniques in order:

1. Random brightness adjustment.
2. Random contrast adjustment.
3. Conversion of color space from BGR to HSV.
4. Random saturation adjustment.
5. Random hue adjustment.
6. Conversion of color space from HSV back to BGR.

A.2 MORE VISUALIZATION

In the appendix, we provide more visualization figures. We also provide a demo based on the CARLA
simulator in the supplementary materials.

Ours

VAD

Ours

VAD

Figure 4: Visualization. As shown in the red circle, our map construction results are noticeably
better than those of VAD.
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Ours

VAD

Ours

VAD

Figure 5: Visualization. As shown in the red circle, our agent motion prediction results are noticeably
better than those of VAD.
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Ours

VAD

Ours

VAD

Figure 6: Visualization. As shown in the red circle, our map construction and agent motion prediction
results are noticeably better than those of VAD, especially in heavily occluded and crowded conditions.
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