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Abstract
This paper introduces a second-order hyperplane search, a novel optimization step that gener-
alizes a second-order line search from a line to a K-dimensional hyperplane. This, combined
with the forward-mode stochastic gradient method, yields a second-order optimization algorithm
that consists of forward passes only, completely avoiding the storage overhead of backpropaga-
tion. Unlike recent work that relies on directional derivatives (or Jacobian–Vector Products, JVPs),
we use hyper-dual numbers to jointly evaluate both directional derivatives and their second-order
quadratic terms. As a result, we introduce forward-mode weight perturbation with Hessian infor-
mation for K-dimensional hyperplane search (FoMoH-KD). We derive the convergence properties
of FoMoH-KD and show how it generalizes to Newton’s method for K = D. We also compare
its convergence rate to forward gradient descent (FGD) and show FoMoH-KD has an exponential
convergence rate compared to FGD’s sub-linear convergence for positive definite quadratic func-
tions. We illustrate the utility of this extension and how it might be used to overcome some of the
recent challenges of optimizing machine learning models without backpropagation.

1. Introduction

There is a growing interest in investigating the practical plausibility of forward-mode automatic
differentiation (AD) as an alternative to reverse-mode AD (aka backpropagation (BP)) for opti-
mization. Forward gradient descent (FGD) [1] relies on sampling tangent vectors to update func-
tion parameters. These parameters are updated by subtracting the tangents that are scaled by their
directional derivatives. As a result, their approach only requires forward passes, and avoids the
computation and memory costs associated with implementing the backwards pass of reverse-mode
AD. While there is still an accuracy gap between forward-mode and reverse-mode optimization
approaches [16], there are several recent efforts that have explored alternative ways of leveraging
forward-mode AD, with a focus of reducing the variance of the gradient estimator with the increase
in dimensions [5, 13]. Thus, the large performance gap between the forward-mode approaches and
BP has been shrinking.
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In this paper, we explore introducing Hessian information to forward-mode AD for optimiza-
tion. Second-order derivative information provides optimization routines with information about the
local curvature. These methods often require access to the Hessian, whose storage is not feasible for
high-dimensional problems. Instead of building the full Hessian, we introduce a new second-order
approach that leverages a partial Hessian. Our approach, FoMoH-KD, builds a K ×K Hessian in
a sub-space of the full function space. FoMoH-KD is a forward-mode AD approach that outper-
forms the previous forward-mode-only first-order gradient descent method, FGD. We demonstrate
and prove that our approach bridges the gap between a line search and a full Newton step. By incor-
porating Hessian information, FoMoH-KD leverages second-order derivatives to provide curvature
approximations of the objective function. This allows the method to adjust the step size and direc-
tion with greater precision compared to a simple line search. Simultaneously, FoMoH-KD avoids
the computational complexity of a full Newton step, which requires calculation of the inverse Hes-
sian gradient multiplication. Our approach balances the efficiency of a line search with the accuracy
of a full Newton method, offering a robust and versatile optimization technique. In summary:

Approach: We introduce FoMoH-KD, a novel forward-mode-only hyperplane search that uses
second-order information.

Theory: We show and prove that FoMoH-KD generalizes to Newton’s method, without the need
for backpropagation. We also compare the convergence rate of FGD, to FoMoH-KD.

Experiments: We demonstrate FoMoH-KD on optimization problems of different parameter sizes
and difficulty to show the advantage of second-order information.

Open-Source Code: We release an AD backend in PyTorch that implements nested forward AD
and interfaces with PyTorch models at https://github.com/SRI-CSL/fomoh.

2. Related Work

There has been considerable interest in developing approaches that avoid reverse-mode AD and its
backwards pass. In moving away from BP, it might be possible to build optimization algorithms
that more closely align with biological systems [2, 8], or enable neural networks to run on emerging
hardware architectures, such as analog optical systems [12]. Baydin et al. [1] introduced FGD as
a possible replacement for BP in neural network training by relying on weight perturbations. This
removed the truncation error of previous weight perturbation approaches [10] by moving to forward-
mode AD. While FGD is a promising BP-free approach, the scaling of FGD to high-dimensional
models is challenging due the variance of the gradient estimator (see derivation in §B.4). This
challenge has led to multiple efforts that have focused on reducing this variance [5, 13, 16]. In
particular, a common approach has been to rely on local BP steps to reduce the variance and/or to
provide a better guess for the perturbation direction. In our work, we focus on second-order forward-
mode optimization approaches, but highlight that these other approaches on variance reduction are
orthogonal to our approach and could also be combined together and generalized to FoMoH-KD.

3. Forward-Mode Automatic Differentiation

In this section we focus on forward-mode AD and build to second-order forward-mode AD. For a
complete introduction, please refer to Griewank and Walther [7]. x ∈ RD denotes a column vector.
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Forward-Mode AD [18] applies the chain rule in the forward direction. The forward-mode
evaluation, F (θ,v), requires an additional tangent vector, v ∈ RD, along with the parameter vector
θ ∈ RD for a function f : RD → RO. The result of the evaluation, [f(θ),∇f(θ)v], is a function
evaluation and the corresponding Jacobian vector product (JVP), where ∇f(θ) ∈ RO×D. For a
unidimensional output function, the JVP is the directional derivative, ∇f(θ) ·v. The time and space
(memory cost) complexity are linear, both approximately twice that of a single function evaluation.1

A common implementation of forward-mode AD is to use dual numbers. A dual number a + bϵ ∈
D(R) contains a real (primal) component, a ∈ R, and a dual component, b ∈ R. We can think of
this as representing a truncated Taylor series, a + bϵ + O(ϵ2), notationally simplified by the rule
ϵ2 = 0. Using this, f(a+ bϵ) = f(a)+∇f(a)bϵ. A simple example can be shown for the function,
f(a1, a2) = a1×a2. Using dual numbers, (a1+ b1ϵ)(a2+ b2ϵ), we retrieve the function evaluation
and the corresponding familiar product rule: a1a2+(a1b2+b1a2)ϵ. This can be extended to multiple
dimensions, and is the basis of forward-mode AD: lift all real numbers R to dual numbers D(R).

Higher-Order Forward-Mode AD extends dual numbers to truncate at a higher order, or to
not truncate at all; and to allow nesting by supporting multiple distinct formal ϵ variables [11].
Specifically focusing on second-order terms is often referred to as hyper-dual numbers (for example
in the Aeronautics and Astronautics community [4]). A hyper-dual number is made up from four
components, which is written as θ + v1ϵ1 + v2ϵ2 + v12ϵ1ϵ2. In the same manner that we look at
imaginary and real parts of complex numbers, we can look at the first derivative parts of a hyper-
dual number by inspecting the ϵ1 and ϵ2 components, and we can look at the second derivative
by inspecting the ϵ1ϵ2 component. To understand how this formulation arises, we can introduce
the definitions ϵ21 = ϵ22 = (ϵ1ϵ2)

2 = 0 and replace the Taylor series expansion of a function,
f : RD → R around θ with an evaluation of a hyper-dual number:

f(θ + v1ϵ1 + v2ϵ2 + v12ϵ1ϵ2) = f(θ) +∇f(θ)v1ϵ1 +∇f(θ)v2ϵ2

+∇f(θ)v12ϵ1ϵ2 + v⊤
1 ∇2f(θ)v2ϵ1ϵ2 + · · · .

An alternative but isomorphic view is to regard a+bϵ1+cϵ2+dϵ1ϵ2 = (a+bϵ1)+(c+dϵ1)ϵ2 as an
element of D(D(R)), with subscripts to distinguish the inner vs outer Ds; from an implementation
perspective, hyperduals can be regarded as inlining the nested structures into a single flat structure.

4. Forward-Mode Optimization with Second Order Information

We now introduce FoMoH-KD, our new Forward-Mode Second-Order Hyperplane Search. Rather
than performing a second order line search along direction v, we perform a K-dimensional hyper-
plane search. Starting with the K = 2 example, if we take two search directions, v1 and v2, we
build a 2 × 2 matrix to form a Hessian in the affine hyperplane defined by θ + κ1v1 + κ2v2. We
evaluate a function, f(·), with a hyper-dual number using the pairs {v1,v1}, {v1,v2}, and {v2,v2}
for the ϵ1, ϵ2 coefficients. The result is the Hessian, H̃2×2, in the 2 × 2 plane, and corresponding
step sizes, κ1 and κ2, to take in each search direction for minimization:

H̃2×2 =

[
v⊤
1 ∇2f(θ)v1 v⊤

1 ∇2f(θ)v2

v⊤
2 ∇2f(θ)v1 v⊤

2 ∇2f(θ)v2

]
,

[
κ1
κ2

]
= −H̃−1

2×2

[
v⊤
1 ∇f(θ)

v⊤
2 ∇f(θ)

]
(1)

1. The basic time complexity of a forward evaluation is constant ∈ [2, 2.5] times that of the function call [7].
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As a result, we formulate a new update step,

θ′ = θ + κ1v1 + κ2v2.

We then extend the above result to any K-dimensional hyperplane by sampling K search directions
and evaluating the corresponding update step:

θ′ = θ + η
K∑
k=1

κkvk. (2)

This resulting generalized hyperplane update step allows one to trade-off computational cost with
the size of the search space. For example, the cost of evaluating a K-dimensional Hessian and
then invert it is O(K3), which is feasible for small enough K.2 Our new forward-mode hyperplane
search, FoMoH-KD, opens up the possibility of transitioning between a line search, when K = 1,
all the way to a full Newton step, when K = D, where we include a theorem in §4.1 (with proof
in §B.1) and demonstrate empirically in §5. The pseudo-code for a single update step is given in
Algorithm 1. The overall FoMoH-KD routine is given in Algorithm 2.

4.1. Convergence Properties of FoMoH-KD

Here, we will simply state convergence properties of FoMoH-KD, where we provide proofs in §B.

Theorem 1 Let f : RD → R be a convex quadratic function with a global minimizer θ∗. Then
min

t∈{1,...,∞}
E[θt] = θ∗ (see §B.1).

Theorem 2 Let f : RD → R be a convex quadratic function with a global minimizer θ∗ and
Hessian 2Q. Then the norm of the expected error converges geometrically with bounds,

D −K

D

(√
cond(Q)

)−1
∥et∥2 ≤ ∥E[et+1]∥2 ≤

D −K

D

√
cond(Q)∥et∥2,

that depend on the condition number of Q where ∥et+1∥ = ∥θt+1 − θ∗∥ and K is the dimension of
the hyperplane (see §B.1).

As a direct consequence of Theorem 2, we have the following corollaries:

Corollary 3 When D = K, the update step of FoMoH-KD follows Newton’s method.

Corollary 4 FoMoH-KD’s convergence is exponential in expectation with the rate D−K
D .

Corollary 4 can be directly compared with the sub-linear convergence (in expectation) of FGD that
we derive in §B.5, where we also derive the variance in FGD’s estimator.

2. For instances where H̃K×K is not invertible, we add jitter to the diagonal. This seems to work well.
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5. Experiments

In this section, we summarize the main empirical results, where we include all the details in §C.
Rosenbrock Function [14] is a challenging non-convex optimization problem. Figure 1 illus-

trates the behavior of a single update step in expectation. This figure highlights the sensitivity of
first-order FGD to the step size and shows that for the 2D function, FoMoH-2D takes the same step
as Newton’s method. The figure also overlays the scatter of the individual sampled update steps.
Figure 2 shows the performance of FoMoH-KD as we increase K from 2 to the input dimension
of the function. Figure 2 shows this comparison for the 10D Rosenbrock function, where we use
10 random initializations for the different K. The median performance for each K is then shown,
where we see a perfect ordering of performance that aligns with the dimension of the hyperplane.
The best performing FoMoH-KD is for K = D, directly aligning with Newton’s method, consistent
with Corollary 3. Further experiments in §C compare to reverse-mode optimization approaches.
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Figure 1: Comparison of forward-
mode update steps.
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Figure 2: FoMoH-KD’s generalization to New-
ton’s method.

Multinomial Logistic Regression increases the dimension of the optimization problem to 784
when applied to the MNIST dataset [9]. Table 1 and Figure 4 in the Appendix display the training
and validation performance for the forward-mode approaches as well as the additional reverse-mode
approaches. We see an improvement in speed of convergence as K increases. However, we also
see that FoMoH-KD, with a fixed learning rate, can degrade in performance after reaching a local
minimum. We therefore introduce a learning rate scheduler to improve on this behavior. For this
task, FGD is competitive with the FoMoH variants but is slower to converge.

Convolutional Neural Network (CNN) applied to MNIST has 431,080 parameters. Both Ta-
ble 3 and Figure 6 in the appendix highlight the advantage of FoMoH-KD over FGD. For the
larger parameter space FGD requires more epochs to converge compared to all FoMoH variants.
The learning rate scheduler further improves FoMoH and FoMoH-KD by helping to avoid getting
stuck in low performance regions. Here, we see the clear trend that the best performing forward-
mode-only approach comes from the largest K, which was K = 3 for this experiment. Overall,
these results highlight that second-order information helps scale the performance of forward-mode
optimization to larger dimensions.
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6. Conclusion

The results in §5 highlight the potential of the use of second-order forward-mode AD for optimiza-
tion tasks. For the Rosenbrock function, we directly showed how FoMoH-KD tends to Newton’s
method, which is consistent with our theory. This significant result is shown in Figure 2. For
logistic regression and CNN classification, we see how the first-order optimization approach of
FGD degrades with increasing dimension of the parameter space. We do not see this degradation
for FoMoH-KD, and we also observe that the second-order information means fewer epochs are
needed to reach a better performance. This has the broader impact of improving efficiency, reduc-
ing cost, and increasing accuracy in ML optimization routines. In conclusion, we introduced a novel
approach that uses second-order forward-mode AD for optimization and demonstrated strong em-
pirical performance compared to FGD. We also made a contribution to the theory and we provide
the Python package, Fomoh,3 that implements the AD backend and interfaces with PyTorch.
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Supplementary Materials

Appendix A. FoMoH-KD Algorithm

Algorithm 1 FoMoH-KD, hyperplane update step for function, f , and parameters, θ ∈ RD.

Define: HyperPlaneStep(f,θ,K)
Set: N = (K2 +K)/2, Θ ∈ RN×D, V ∈ RK×D, V1 ∈ RN×D, V2 ∈ RN×D

% For loop vectorized in code.
for n = 1, . . . , N do
Θ[n, :] = θ % Repeat current parameter values for vectorized evaluation.

end for
for k = 1, . . . ,K do

V [k, :] = v ∼ N (0, I) % Sample K tangent vectors to build hyperplane.
end for
% Vectorize tangent vectors for evaluation of all N elements of H̃K×K .
l = 1
for i = 1, . . . ,K do

for j = i, . . . ,K do
V1[l, :] = V [i, :]
V2[l, :] = V [j, :]
l = l + 1

end for
end for
z0 + z1ϵ1 + z2ϵ2 + z12ϵ1ϵ2 = f(Θ+ V1ϵ1 + V2ϵ2 + 0ϵ1ϵ2)
% Build H̃K×K and directional derivatives vector, G̃K , in order to evaluate Eq. (2).
Set: H̃K×K ∈ RK×K , G̃K ∈ RK×1

l = 1
for i = 1, . . . ,K do
G̃K [i] = z1[l]
for j = i, . . . ,K do
H̃K×K [i, j] = z12[k]
H̃K×K [j, i] = z12[k]
l = l + 1

end for
end for
% Returns update direction of vector size D
return

∑
k((−H̃−1

K×KG̃K)[k] · V [k, :])

Appendix B. Theory

The first two subsections are concerned with proving Theorem’s 1 and 2 for FoMoH-KD. The latter
two are concerned with the variance and convergence properties of FGD..
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Algorithm 2 FoMoH-KD

Require: Objective function f(θ), initial point θ, step size η, hyperplane dimension K.
for t = 0, 1, 2, . . . until convergence do

d = HyperPlaneStep(f,θ,K) % See Algorithm 1
θ = θ + ηd

end for

B.1. Convergence Analysis of FoMoH-KD

Theorem 1 Let f : RD → R be a convex quadratic function with a global minimizer θ∗. Then
min

t∈{1,...,∞}
E[θt] = θ∗.

Proof Assuming a convex quadratic function f : RD → R, of form f(θ) = θ⊤Qθ + b⊤θ and
defining an affine subspace,

VK
x =

{
x+

K∑
k=1

κkvk

∣∣∣∣k ∈ N,vk ∈ RD, κ ∈ R,x ∈ RD

}
,

we derive a new function g(κ) for κ ∈ RK that represents f(θ) for when θ ∈ VK
x (θ restricted to

the hyperplane4). As a result, the linear map is given by θ = Vκ, where V ∈ RD×K .
We explicitly write the FoMoH-KD update step from (1) as:

κt+1 = κt −
(
[v1,v2, ...,vK ]⊤∇2f(θt)[v1, ...,vK ]

)−1
[v1 · ∇f(θt), ...,vK · ∇f(θt)]

⊤

= κt −
(
V⊤∇2f(θt)V

)−1
V⊤∇f(θt),

which is equivalent to Newton’s method in κ:

κt+1 = κt −
(
∇2g(κt)

)−1∇g(κt),

where each kth component of ∇g(κt) corresponds to the derivative of f(θt) along vk by definition.
Following (2), we use V to project back to θ:

Vκt+1 = Vκt −V
(
V⊤∇2f(θt)V

)−1
V⊤∇f(θt),

θt+1 = θt −V
(
V⊤∇2f(θt)V

)−1
V⊤∇f(θt). (3)

The global minmizer θ∗ occurs at −1
2Q

−1b for the quadratic function, f(θ) = θ⊤Qθ+b⊤θ. The
minimizer in the hyperplane with the change of variables occurs at κ∗ = −

(
V⊤2QV

)−1
V⊤b.

For a quadratic convex f , g is also convex and quadratic. Therefore, Newton’s method in κ, results
in a single step to the minimizer in the sampled hyperplane such that κt+1 = κ∗. We use the
spanning matrix, V ∈ RD×K , to transform from κt+1 ∈ RK , into RD, such that θt+1 = V⊤κt+1.

4. E.g., for K = 2, g(κ1, κ2) = f(x+ κ1v1 + κ2v2)
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At location κt, corresponding to θt, if the column vectors of V are sampled such that θ∗ ∈ VK
θt

,
then θt+1 = θ∗ as θt+1 = Vκ∗. Since the span is sampled according to an isotropic Gaussian dis-
tribution, vi ∼ N (0, ID), there is full support over the entire unit sphere, which gives the following
FoMoH-KD convergence result,

min
t∈{1,...,∞}

E[θt] = θ∗.

B.2. Convergence Rate Analysis of FoMoH-KD

After showing that FoMoH-KD is guaranteed to converge for a convex quadratic function, the next
step is to analyze how the convergence rate is affected by the size of the span, K, and the parameter
dimension, D. Restating Theorem 2:

Theorem 2 Let f : RD → R be a convex quadratic function with a global minimizer θ∗ and
Hessian 2Q. Then the norm of the expected error converges geometrically with bounds,

D −K

D

(√
cond(Q)

)−1
∥et∥2 ≤ ∥E[et+1]∥2 ≤

D −K

D

√
cond(Q)∥et∥2,

that depend on the condition number of Q where ∥et+1∥ = ∥θt+1 − θ∗∥ and K is the dimension of
the hyperplane.

Proof Assuming a convex quadratic function f : RD → R, of form f(θ) = θ⊤Qθ + b⊤θ, we
measure distance on the function space using the Hessian, H = 2Q, as the metric. Since Q is
positive definite, we can diagonalize Q using an eigenvalue decomposition, Q = GΛG⊤. As such,
without loss of generality, we transform our variables to θ̃ = Λ1/2G⊤θ. In the transformed space,
the location of the closest point, p, in a randomly sampled affine hyperplane, VK

θ̃t
to the point θ̃∗, is

given by p = θ̃t +P(θ̃∗ − θ̃t), where P is the projection matrix defined by P = V(V⊤V)−1V⊤.
We now show that the closest point on the affine hyperplane to θ̃∗, is equivalent to the FoMoH-

KD update step, where p = Vκ̃t+1 = θ̃t+1. We start from the FoMoH-KD update step (see (3))
applied to the transformed space θ̃:

θ̃t+1 = θ̃t −V
(
V⊤∇2f(θ̃t)V

)−1
V⊤∇f(θ̃t),

and then using ∇2f(θ̃t) = 2I, and ∇f(θ̃t) = 2θ̃t + b⊤GΛ−1/2 gives:

θ̃t+1 = θ̃t −
1

2
V

(
V⊤V

)−1
V⊤

(
2θ̃t + b⊤GΛ−1/2

)
,

Finally, noting that θ̃∗ = −1
2b

⊤GΛ−1/2 from setting the gradient to zero, we get

θ̃t+1 = θ̃t −
1

2
V

(
V⊤V

)−1
V⊤

(
2θ̃t − 2θ̃∗

)
,

= θ̃t +P
(
θ̃∗ − θ̃t

)
.
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Therefore, we have arrived at the same update rule as in (2) for FoMoH-KD via an alternative
route that uses knowledge of the true minimizer along with the use of projection matrices. We can
use the equivalence of this rule, θ̃t+1 = θ̃t + P(θ̃∗ − θ̃t), to show how the convergence rate of
FoMoH-KD relates to K and D. We use the definition of the expectation of the projection matrix
E[P] = K

D I (see §B.3 for proof), such that

E[θ̃t+1] = E[θ̃t +P(θ̃∗ − θ̃t)]

= θ̃t +
K

D
(θ̃∗ − θ̃t). (4)

This key result is consistent with our observation that FoMoH-KD generalizes to Newton’s method,
as when K = D Equation (4) reduces to θ̃t+1 = θ̃∗, and therefore θt+1 = θ∗ (See Corollary 3).
Furthermore, we remove θ̃∗ from both sides of the equation and transform back to the original
parameter space:

E[θ̃t+1 − θ̃∗] =θ̃t +
K

D
(θ̃∗ − θ̃t)− θ̃∗

∥E[θ̃t+1 − θ̃∗]∥ =
D −K

D
∥θ̃t − θ̃∗∥

∥E[Λ1/2G⊤θt+1 −Λ1/2G⊤θ∗]∥ =
D −K

D
∥Λ1/2G⊤θt −Λ1/2G⊤θ∗∥

∥E[Λ1/2G⊤(θt+1 − θ∗)]∥ =
D −K

D
∥Λ1/2G⊤(θt − θ∗)∥

∥E[et+1]∥Q =
D −K

D
∥et∥Q (5)

This implies that the Euclidean norm of the expected error converges geometrically, but with bounds
that depend on the eigenvalues of Q. Using the relation

√
λmin∥x∥2 ≤ ∥x∥Q ≤

√
λmax∥x∥2, where

λmin, λmax are the maximum and minimum Eigenvalues of Q, we have the following bounds on the
norm of the errors, et, and E[et+1]:

D −K

D

√
λmin(Q)∥et∥2 ≤

D −K

D
∥et∥Q ≤ D −K

D

√
λmax(Q)∥et∥2,√

λmin(Q)∥E[et+1]∥2 ≤ ∥E[et+1]∥Q ≤
√
λmax(Q)∥E[et+1]∥2.

We use Eq. (5) to rearrange the above inequalities to bound the Euclidean norm of the update step,
∥E[et+1]∥2, in terms of the current error norm, giving an upper bound:√

λmin(Q)∥E[et+1]∥2 ≤
D −K

D

√
λmax(Q)∥et∥2,

∥E[et+1]∥2 ≤
D −K

D

√
λmax(Q)√
λmin(Q)

∥et∥2,

and a lower bound:
D −K

D

√
λmin(Q)∥et∥2 ≤

√
λmax(Q)∥E[et+1]∥2,

D −K

D

√
λmin(Q)√
λmax(Q)

∥et∥2 ≤ ∥E[et+1]∥2,

11
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leading to the final bounds on the Euclidean norm of the expected error at t+1, where the condition
number, cond(Q) =λmax(Q) /λmin(Q):

D −K

D

(√
cond(Q)

)−1
∥et∥2 ≤ ∥E[et+1]∥2 ≤

D −K

D

(√
cond(Q)

)
∥et∥2 (6)

This result shows that the update step reduces the error by the fraction 0 ≤ D−K
D < 1, with a

linear decrease in the rate of reduction in the error as K increases, and with bounds that depend on
the geometry of the function. Therefore FoMoH-KD’s convergence is exponential in expectation
with the rate D−K

D . This compares to the sub-linear convergence (in expectation) of FGD that we
derive in §B.5.

B.3. Expectation of Projection Matrix

In Theorem 2, we used the identity E[P] = K
D ID, where we subscript the identity matrix with its

corresponding dimension. Here, we prove this identity.

Theorem 3 Let V ∈ RD×K be a matrix where each element, Vij ∼ N (0, 1). Then the expectation
of the projection matrix, P = V(V⊤V)−1V⊤, is given by E[P] = K

D ID.

Proof Let R ∈ RD×D be an orthogonal matrix such that RR⊤ = ID. Then rotating V gives
V′ = RV. We then use the rotational invariance property of the normal distribution (see Prop. 3.3.2
of [17]) to give V

d
=RV, where d

= denotes equality in distribution. We now define a transformed
projection matrix:

P′ = V′(V′⊤V′)−1V′⊤ = RV(V⊤R⊤RV)−1V⊤R⊤ = RPR⊤.

Since V′ d=V, then P
d
=P′, and E[P′] = E[RPR⊤] = RE[P]R⊤ = E[P]. As a result of the

last equation, we get the relation RE[P] = E[P]R by post-multiplying by R. Therefore, E[P]
commutes with all R in the orthogonal group. Then using Schur’s Lemma (e.g. as stated in §1.2 of
[6])

E[P] = cID

for some constant c. To determine c, we take the trace of both sides, and use linearity of expectation
to move the trace inside the expectation:

tr(E[P]) = tr(cID)

E[tr(V(V⊤V)−1V⊤)] = cD

Then, using the identity tr(AB) = tr(BA) for A ∈ RD×K and B ∈ RK×D:

E[tr(V⊤V(V⊤V)−1)] = cD

E[tr(IK)] = cD

K = cD =⇒ c = K/D

Thus,

E[P] =
K

D
ID

12
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B.4. Variance Analysis of Forward Gradient Descent

If we start with the definition from [1] of the forward gradient:

gi(θ) =
∂f

∂θi
v2i +

∑
j ̸=i

∂f

∂θj
vivj ,

The expectation is given by E [gi(θ)] =
∂f
∂θi

. It is of interest as to how the variance of this estimate
behaves, i.e. Var (gi(θ)). Using the definition, Var (X) = E[X2] − E2[X], we can derive each
component as:

E2[gi(θ)] =

[
∂f

∂θi

]2
,

and

E[gi(θ)2] = E

[ ∂f
∂θi

]2
v4i + 2

∂f

∂θi

∑
j ̸=i

∂f

∂θj
v3i vj +

∑
j ̸=i

∂f

∂θj
vivj

2 .

We can expand the last term as:∑
j ̸=i

∂f

∂θj
vivj

2

= v2i

∑
j ̸=i

[
∂f

∂θj

]2
v2j + 2

∑
j ̸=i

∑
k ̸=i,k>j

∂f

∂θj

∂f

∂θk
vjvk

 ,

then moving the expectation inside the square brackets and using the identities, E[X2] = 1, E[X4] =
3, E[X3Y ] = 0, E[X2Y 2] = 1, and E[X2Y Z] = 0 for the normal distribution gives:

E[gi(θ)2] =
[
∂f

∂θi

]2
[3] + 2

∂f

∂θi

∑
j ̸=i

∂f

∂θj
[0] +

∑
j ̸=i

[
∂f

∂θj

]2
[1] + 2

∑
j ̸=i

∑
k ̸=i,k>j

∂f

∂θj

∂f

∂θk
[0]

= 3

[
∂f

∂θi

]2
+
∑
j ̸=i

[
∂f

∂θj

]2
.

Finally, the variance is given by

Var (gi(θ)) = 2

[
∂f

∂θi

]2
+
∑
j ̸=i

[
∂f

∂θj

]2
.

B.5. Convergence Analysis of FGD

Using the following assumptions:

• f : RD → R is a convex function with minimum f(θ∗).

• The update step (minimization) is: θt+1 = θt − ηg(θ).

• E [g(θ)] = ∇f(θ), E
[
g(θ)2

]
≤ G2 for some constant G. We derived this form above.

• f has an L-Lipschitz continuous gradient: ||∇f(x)−∇f(y)|| ≤ L||x− y||.

13



SECOND-ORDER FORWARD-MODE AUTOMATIC DIFFERENTIATION FOR OPTIMIZATION

We start with a first-order Taylor series expansion and input the update rule:

f(θt+1) ≈ f(θt) +∇f(θt) · (θt+1 − θt) +
1

2
(θt+1 − θt)

⊤∇2f(θt)(θt+1 − θt)

≈ f(θt)− η∇f(θt) · g(θt) +
1

2
η2g(θt)

⊤∇2f(θt)g(θt).

Since the rate of change of the gradient is bounded due to the L-Lipschitz continuous gradient
assumption, the curvature along any direction follows g(θt)

⊤∇2f(θt)g(θt) ≤ L∥g(θt)∥2. The
next step is to combine this upper bound on the curvature with expectation operator to give the
expected decrease in the function value:

E [f(θt+1)|θt] ≤ E
[
f(θt)− η∇f(θt) · g(θt) +

Lη2

2
∥g(θt)∥2

∣∣∣θt]
E [f(θt+1)− f(θt)|θt] ≤ −η∥∇f(θt)∥2 +

G2Lη2

2
.

To infer the convergence rate, we want to see the rate in which the square of the gradient norm tends
to zero since a magnitude of zero means the update rule has approaches a critical point, which will
be the minimum, f(θ∗), due to the convexity assumption. Following the outlined approach of [15],
we usually want to know how many iterations we need to get to ∥∇f(θt)∥2 ≤ ϵ. Therefore we can
rearrange the above to bound ∥∇f(θt)∥2 as

η∥∇f(θt)∥2 ≤ f(θt)− E [f(θt+1)|θt] +
G2Lη2

2
.

Introducing the summation over T steps of the squared norms while using the fact that the first
two terms on the right make up a telescoping series, such that

∑T
t=1 E [f(θt)− f(θt+1)|θt] =

E [f(θ1)− f(θT+1)|θ1], and assuming f(θT+1) ≥ f(θ∗), gives
T∑
t=1

η∥∇f(θt)∥2 ≤ f(θ1)− f(θ∗) +
T∑
t=1

G2Lη2

2
.

Finally, we know that
∑T

t=1 ∥∇f(θt)∥2 ≥ min
t∈{1,...,T}

{
∥∇f(θt)∥2

}
, giving

min
t∈{1,...,T}

{
∥∇f(θt)∥2

} T∑
t=1

η ≤ f(θ1)− f(θ∗) +

T∑
t=1

G2Lη2

2

min
t∈{1,...,T}

{
∥∇f(θt)∥2

}
≤ f(θ1)− f(θ∗)∑T

t=1 η
+

G2L

2

∑T
t=1 η

2∑T
t=1 η

.

Since we have implicitly assumed a constant step size, we get the following bound:

min
t∈{1,...,T}

{
∥∇f(θt)∥2

}
≤ f(θ1)− f(θ∗)

Tη
+

G2Lη

2
.

If we want the error to be below ϵ, then

f(θ1)− f(θ∗)

Tη
+

G2Lη

2
≤ ϵ,

Therefore error at T is O(1/T ) + O(η), meaning that we get sub-linear convergence up to some
constant that depends on the learning rate. If the learning rate is set to be step dependent, then we
can remove the constant and get different learning rates.

14
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Appendix C. Detailed Results

C.1. Rosenbrock Function: Additional Results

As an initial illustration of the behavior of each forward-mode approach, we show how a single step
looks from a randomly chosen starting point in Figure 1 for FGD, FoMoH-1D, and FoMoH-BP,
where FoMoH-BP corresponds to FoMoH-1D with the direction being the exact gradient. We plot
the expected (average) step across 10,000 samples for all approaches in the 2D Rosenbrock func-
tion. These steps are shown with solid lines. For each approach, we also plot the sampled steps
by superimposing a scatter plot in the corresponding approach’s color. All methods are compared
to the Newton step, (∇2f(θ))−1∇f(θ) shown in red. For FGD, we see that the expected descent
direction is the same as the gradient at that point, hence the alignment with FoMoH-BP that di-
rectly calculates the gradient. This plot highlights the reliance on a well-chosen learning rate for
FGD, whereas FoMoH-BP’s step size is automatically normalized by the local curvature along the
gradient. FoMoH-1D (green), on the overhand, has an expected descent direction that differs from
the gradient and is governed by the distribution of samples that fall on the ellipse defined by the
Hessian, ∇2f(θ). For this point, the Newton step is the descent direction that falls on this ellipse
and corresponds to the local minimum of the quadratic approximation. Another insight gained from
this figure is that the variance of FGD’s descent direction is less constrained than FoMoH’s descent
direction (blue), where the sample direction is controlled by the local Hessian. FoMoH-2D directly
aligns with the Newton step.

In Figure 3, we now compare the performance of the competing optimization routines for the 2D
Rosenbrock function. These results are shown for the same 10 randomly sampled starting locations
for all approaches initialized with different random seeds. We highlight with the thicker line the
median performing run. Both axes are on the log scale and show the significant advantage of
FoMoH-KD, with K = 2. We also note the advantage (at least for this 2D example) of all FoMoH
approaches that use second-order information. Additionally, the two forward-mode only approaches
actually outperform the optimization routines that include backpropagation.
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Adam, lr = 0.2
FoMoH-1D
FGD, lr = 0.002
FGD, lr = 0.001
FoMoH-2D
FoMoH-BP

Figure 3: Comparison of the stochastic approaches in minimization of the Rosenbrock function.
Average performance (median) is shown over 10 random initial conditions. FoMoH outperforms all
first-order approaches, with FoMoH-2D converging in orders of magnitude faster than all methods.
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10D Rosenbrock Function. We now focus on the performance of FoMoH-KD as we increase
K from 2 to the input dimension of the function. Figure 2 shows this comparison for the 10D
Rosenbrock function, where we use 10 random initializations for the different K. The median
performance for each K is then shown, where we see a perfect ordering of performance that aligns
with the dimension of the hyperplane. The best performing FoMoH-KD is for K = D, with the
worst corresponding to the lowest dimension implemented, K = 2. Overall this figure highlights
how FoMoH-KD trends towards Newton’s method as K tends to D, where we actually see the
median performances of FoMoH-10D and Newton’s method aligned.

C.2. Multinomial Logistic Regression

Table 1 displays mean and standard deviation performance for each approach, where the forward-
mode-only approaches are highlighted separately from the methods that include reverse-mode steps.
Table 2 includes the final hyperparameter selection. We used [3] to perform a grid search with 100
iterations, where the batch size choice was between [128, 512, 1024, 2048] (see Table 2 for the
final hyperparameter selection). For the learning rate scheduler, we reduced the learning rate at the
epoch where the NLL starts to increase. For FoMoH-3D we multiplied the learning rate by 0.8,
whereas for the other approaches we multiplied the learning rate by 0.1. Figures 4 and 5 display the
training and validation curves, where we include a separate plot to focus on the forward-mode-only
approaches.

Table 1: Multinomial Logistic regression results for MNIST. When comparing the forward-mode-
only approaches in the upper section of the table, we see improvement in performance with increas-
ing hyperplane dimension for FoMoH-KD. For this logistic regression example, FoMoH-3D and
FoMoH-2D with learning rate schedulers, are competitive with FGD. However we see this result
change with a larger dimensional problem in Table §3 for the CNN results. Both reverse-mode ap-
proaches in the lower section of the table have similar performance, and are included for reference.

APPROACH TRAINING LOSS VALIDATION LOSS TRAINING ACCURACY VALIDATION ACCURACY

FGD 0.2976± 0.0007 0.2949± 0.0017 0.9154± 0.0003 0.9163± 0.0019
FOMOH-1D 0.3223± 0.0013 0.3186± 0.0019 0.9073± 0.0011 0.9110± 0.0021
FOMOH-1D (LR-SCH.) 0.3192± 0.0012 0.3160± 0.0025 0.9085± 0.0011 0.9118± 0.0021
FOMOH-2D 0.3010± 0.0018 0.3015± 0.0031 0.9144± 0.0009 0.9149± 0.0015
FOMOH-2D (LR-SCH.) 0.2921± 0.0014 0.2951± 0.0027 0.9174± 0.0005 0.9170± 0.0010
FOMOH-3D 0.3449± 0.0017 0.3343± 0.0034 0.8999± 0.0008 0.9036± 0.0023
FOMOH-3D (LR-SCH.) 0.2893± 0.0017 0.3054± 0.0034 0.9195± 0.0007 0.9153± 0.0010

FOMOH-BP 0.2312± 0.0001 0.2679± 0.0003 0.9366± 0.0001 0.9267± 0.0002
BACKPROPAGATION 0.2265± 0.0000 0.2710± 0.0001 0.9381± 0.0001 0.9267± 0.0003

C.3. CNN

We now move from a model with 7,850 parameters to a convolutional neural network (CNN) with
431,080 parameters. As before we use the MNIST dataset and we now perform hyperparameter
optimization using Bayesian optimization. Both Table 3 and Figure 6 highlight the advantage of
FoMoH-KD over FGD. For the larger parameter space FGD requires more epochs to converge
compared to all FoMoH-KD variants. The learning rate scheduler further improves FoMoH-KD
by helping to avoid getting stuck in low performance regions. Here, we see the clear trend that
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Figure 4: Forward-Mode: Training and validation curves for logistic regression model on the
MNIST dataset. Average and standard deviation is shown for five random initializations.
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Figure 5: Forward-Mode and Reverse-Mode: Training and validation curves for logistic regres-
sion model on the MNIST dataset. Average and standard deviation is shown for five random initial-
izations.

Table 2: Hyperparameter Optimization for Logistic Regression.

APPROACH LEARNING RATE LEARNING RATE BOUNDS BATCH SIZE

FGD 0.00006497 [0.00001, 0.1] 128
FOMOH-1D 0.1362 [0.001, 1.0] 1024
FOMOH-1D (LR-SCH.) 0.1362 [0.001, 1.0] 1024
FOMOH-2D 0.04221 [0.001, 1.0] 512
FOMOH-2D (LR-SCH.) 0.04221 [0.001, 1.0] 512
FOMOH-3D 0.1 [0.001, 1.0] 512
FOMOH-3D (LR-SCH.) 0.1 [0.001, 1.0] 512

FOMOH-BP 0.04688 [0.01, 1.0] 2048
BACKPROPAGATION 0.03561 [0.01, 0.5] 2048

the best performing forward-mode-only approach comes from the largest K, which was K = 3
for this experiment. As expected, both optimizers FoMoH-BP and Backpropagation outperform the
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forward-mode-only approaches. Overall, these results highlight that second-order information helps
scale the performance of forward-mode optimization to larger dimensions.

Table 3: CNN results for MNIST. The forward-mode-only approaches in the upper section of the
table show that FoMoH’s performance improves with the dimension of K, especially when used
with the learning rate scheduler. FoMoH-3D outperforms FoMoH-2D, FoMoH, and FGD. The
reverse-mode approaches in the lower section outperform forward-mode, with BP slightly better
than FoMoH-BP.

APPROACH TRAINING LOSS VALIDATION LOSS TRAINING ACCURACY VALIDATION ACCURACY

FGD 0.1211± 0.0097 0.1104± 0.0086 0.9641± 0.0038 0.9677± 0.0030
FOMOH-1D 0.1663± 0.0069 0.1571± 0.0092 0.9518± 0.0011 0.9550± 0.0002
FOMOH-1D (LR-SCH.) 0.1617± 0.0119 0.1575± 0.0158 0.9515± 0.0035 0.9539± 0.0034
FOMOH-2D 0.1015± 0.0041 0.1016± 0.0066 0.9691± 0.0011 0.9693± 0.0020
FOMOH-2D (LR-SCH.) 0.0900± 0.0070 0.0913± 0.0041 0.9731± 0.0022 0.9718± 0.0014
FOMOH-3D 0.1085± 0.0105 0.1073± 0.0133 0.9674± 0.0022 0.9686± 0.0028
FOMOH-3D (LR-SCH.) 0.0809± 0.0061 0.0923± 0.0132 0.9759± 0.0014 0.9734± 0.0022

FOMOH-BP 0.0093± 0.0016 0.0310± 0.0006 0.9981± 0.0005 0.9903± 0.0003
BACKPROPAGATION 0.0053± 0.0034 0.0329± 0.0032 0.9990± 0.0009 0.9909± 0.0004
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Figure 6: Forward-mode training and validation curves for the CNN on the MNIST dataset. Average
and standard deviation is shown for three random initializations. Note how FGD (blue) is much
slower to converge, with FoMoH-KD improving in performance with increasing K.

Table 4 includes the final hyperparameter selection for the experimental results. We used [3] to
perform Bayesian optimization with 100 iterations, where the batch size choice was fixed to 2048.
For FoMoH-3D, we used the same hyperparameters as for FoMoH-2D as this gave sufficient per-
formance (and still outperformed the other forward-mode approaches). All learning rate schedulers
reduced the learning rate by 10 every 1000 epochs.

Figure 7 includes the reverse-mode training and validation curves for Backpropagation and
FoMoH-BP in addition to the curves shown in Figure 6.
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Table 4: Hyperparameter Optimization for Logistic Regression.

APPROACH LEARNING RATE LEARNING RATE BOUNDS BATCH SIZE

FGD 0.0001376 [0.00001, 0.1] 2048
FOMOH-1D 0.542 [0.001, 1.0] 2048
FOMOH-1D (LR-SCH.) 0.542 [0.001, 1.0] 2048
FOMOH-2D 0.3032 [0.001, 1.0] 2048
FOMOH-2D (LR-SCH.) 0.3032 [0.001, 1.0] 2048
FOMOH-3D 0.3032 [0.001, 1.0] 512
FOMOH-3D (LR-SCH.) 0.3032 [0.001, 1.0] 2048

FOMOH-BP 0.04688 [0.01, 1.0] 2048
BACKPROPAGATION 0.03561 [0.005, 0.2] 2048
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Figure 7: Training and validation curves for CNN on the MNIST dataset. Average and standard
deviation is shown for three random initializations.

C.4. Computational Resources

All experiments are run on a NVIDIA RTX 6000 GPU. The main compute cost came from both the
grid search and the Bayesian optimization that we ran over the six different optimization routines
for the different experiments.

19


	Introduction
	Related Work
	Forward-Mode Automatic Differentiation
	Forward-Mode Optimization with Second Order Information
	Convergence Properties of FoMoH-KD

	Experiments
	Conclusion
	FoMoH-KD Algorithm
	Theory
	Convergence Analysis of FoMoH-KD
	Convergence Rate Analysis of FoMoH-KD
	Expectation of Projection Matrix
	Variance Analysis of Forward Gradient Descent
	Convergence Analysis of FGD

	Detailed Results
	Rosenbrock Function: Additional Results
	Multinomial Logistic Regression
	CNN
	Computational Resources


