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Abstract

Self-supervised pre-training has achieved remarkable success in NLP and 2D vision. How-
ever, these advances have yet to translate to 3D data. Techniques like masked reconstruc-
tion face inherent challenges on unstructured point clouds, while many contrastive learning
tasks lack in complexity and informative value. In this paper, we present Pic@Point,
an effective contrastive learning method based on structural 2D-3D correspondences. We
leverage image cues rich in semantic and contextual knowledge to provide a guiding sig-
nal for point cloud representations at various abstraction levels. Our lightweight approach
outperforms state-of-the-art pre-training methods on several 3D benchmarks.

Keywords: self-supervised pre-training; cross-modal; 2D-3D correspondence; point clouds

1. Introduction

Point clouds are the preferred 3D representation for many applications, including au-
tonomous driving, robotics, AR/VR, and various sensor technologies (LIDAR, SFM, Kinect
Structured Light, etc). However, the annotation of point clouds is associated with high costs,
and labeled 3D scans are scarce. This poses an obstacle to the development of robust, scal-
able deep learning models for point cloud analysis.

Recent progress in self-supervised learning has led to significant advances in the areas
of image recognition and natural language processing (NLP). By using parts of the input
data itself as a guiding signal, self-supervised learning bypasses the annotation bottleneck
associated with training large neural networks. This strategy reflects a shift from tradi-
tional task-specific training towards pre-training general-purpose representations that are
applicable across a wide range of tasks. Extending these advances to 3D data remains
challenging due to factors such as irregular information density and the unordered nature
of point clouds.

Generative modeling has seen a number of adaptations to 3D data using transformer-
style architectures (Yu et al., 2022; Pang et al., 2022; Zhang et al., 2022a). However, these
approaches have yet to replace traditional architecture-based methods (Ma et al., 2022; Qian
et al., 2022a). Two factors that contribute to the underperformance on point clouds are the
lack of inductive biases in Standard Transformers and the use of point set similarity metrics
(e.g., Chamfer Distance) in reconstruction, which are imprecise and hard to optimize (Wu
et al., 2021; Huang et al., 2023).
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Figure 1: Illustration of the proposed structural 2D-3D correspondence. Point
cloud and image features of various scales are projected into a shared,
representation-invariant latent space, where cross-modal correspondence is en-
forced.

Contrastive learning approaches, on the other hand, typically aim at learning invariances
to transformations or augmentations. They have been shown to be highly competitive
to generative modeling (Oord et al., 2018; Chen et al., 2020). However, the quality of
learned representations is highly dependent on the complexity and informative value of the
contrastive task (Goyal et al., 2019), and many contrastive models only consider global
views, neglecting local relationships (Qi et al., 2023).

To address these limitations, we propose leveraging 2D-3D correspondences for con-
trastive representation learning on point clouds. We present the Pic@Point model, which
aims to learn point cloud representations by exploiting structural features of pictures at
various point cloud abstraction levels. Specifically, we extract 3D and 2D features at both
global and local scales using a generic 3D backbone and a pre-trained 2D backbone, respec-
tively. We then employ global and local, pose-conditioned projection heads to project these
features into a common, representation-invariant latent space, as illustrated in Figure 1.
This structural 2D-3D contrastive learning approach offers several advantages over existing
methods:

• We effectively leverage features from pre-trained vision foundation models. In con-
trast, generative cross-modal methods (Zhang and Hou, 2023; Wang et al., 2023)
generate images from input point clouds using a custom 2D generator atop a 3D
backbone, as opposed to integrating a powerful vision model.

• In addition, our method is very lightweight while being highly effective, as it uses
no decoder and employs a frozen 2D backbone. Figure 2 shows the size of different
pre-training models in relation to linear accuracy on ModelNet40, showcasing the
efficiency of our approach.

• Unlike existing contrastive methods (Afham et al., 2022; Wu et al., 2023) which only
learn global shape correspondences, Pic@Point provides guidance on a structural level.
By exploiting local correspondences, it provides pose-aware, positional guidance while
benefiting from a larger number of contrastive samples.
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Figure 2: Size of Pre-training Model vs. Linear SVM Accuracy on ModelNet40.
Reported is the number of trainable parameters of self-supervised pre-training
models with DGCNN backbone.

2. Related Work

Point Cloud Analysis Early efforts to apply neural networks to points clouds involved
converting the input into structured forms such as voxel grids (Wu et al., 2015; Maturana
and Scherer, 2015) or multi-view images (Su et al., 2015). Sparse voxel-based methods
(Riegler et al., 2017; Choy et al., 2019) remain a prevalent approach for large-scale scene
analysis.

With the introduction of PointNet (Qi et al., 2017a), point-based methods began to ap-
ply neural architectures directly to raw point sets without any conversion or preprocessing
steps. A key concern is ensuring permutation invariance, often addressed by aggregating
information using symmetric functions. Deep set architectures can be divided into three cat-
egories: MLP-methods (Qi et al., 2017a,b; Wang et al., 2019; Ma et al., 2022), convolution-
based methods (Li et al., 2018; Thomas et al., 2019), and attention-based methods (Yu
et al., 2022; Pang et al., 2022; Zhang et al., 2022a).

Self-supervised Point Cloud Pre-training Pre-training is a widely used transfer learn-
ing approach in which a model is initially trained on a pretext task and subsequently fine-
tuned on a downstream task. Self-supervised pre-training does not use any labels during
the pre-training phase, which enables a wide scope of available pre-training data.

Pretext tasks are typically either generative or contrastive. A common generative ap-
proach is autoencoding, where the input is recovered under some form of corruption (Chen
et al., 2021) or masking (Wang et al., 2021). Transformer architectures (Devlin et al.,
2018; He et al., 2022) combine masked reconstruction with multi-head self-attention mech-
anisms. Point-BERT (Yu et al., 2022) and Point-MAE (Pang et al., 2022) adapt language
and vision Transformers to point clouds. Generative models typically reconstruct directly
in point cloud space, which is computationally expensive and hard to optimize (Wu et al.,
2021; Huang et al., 2023).
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Contrastive learning uses available pairs of similar and dissimilar data points to learn
an embedding space where the distance between data points reflects a measure of their
similarity. This is done by contrasting a sample with augmented versions (He et al., 2020;
Chen et al., 2020) or by capturing the relationship between local features and their global
context (Oord et al., 2018; Hjelm et al., 2018).

Contrastive methods benefit from diverse, informative data to mitigate overfitting issues
and counterbalance representation deficits. To this end, we propose a cross-modal method
leveraging image cues rich in structural and semantic context.

Cross-Modal 3D Representation Learning The potential of joint 2D-3D learning
has been recognized by previous works. One line of work adapts pre-trained vision and
language models for 3D point cloud analysis using strategies such as prompt tuning (Zhang
et al., 2022b; Wang et al., 2022), 2D-to-3D architectural modification (Xu et al., 2022; Qian
et al., 2022b) and knowledge distillation (Dong et al., 2022; Qi et al., 2023) techniques.
These methods cannot be directly applied to generic 3D backbones because they require
specialized architectures or adaptation processes, often having large memory requirements
and difficulties with 3D extensibility.

A different approach is to design cross-modal pretext tasks directly on 3D models,
allowing the use of generic 3D backbones for downstream tasks. PointVST (Zhang and
Hou, 2023) and TAP (Wang et al., 2023) employ a generative cross-modal approach that
generates images from point clouds at specified camera views, but they lack knowledge
integration from pre-trained vision models. CrossPoint (Afham et al., 2022) performs cross-
modal and inter-modal contrastive learning to align point clouds with 2D renderings and
with augmented versions. They leverage only global correspondences, resulting in a coarse
guiding signal. Conversely, point-pixel level correspondence methods such as Tran et al.
(2022) require costly upsampling layers and loss computation, while being unnecessarily
fine-grained for learning meaningful contextual relationships.

3. Proposed Method

We propose structural 2D-3D correspondence learning for self-supervised pre-training of
point cloud representations. The importance of incorporating structural knowledge has been
demonstrated in prior uni-modal research (Hjelm et al., 2018; Oord et al., 2018; Rao et al.,
2020). Our novel cross-modal approach enriches point cloud information with structured,
semantic image cues to provide a comprehensive guiding signal for 3D understanding.

3.1. Overview

Let D = {(Pi, Ii)}|D|
i=1 denote an unlabeled dataset of point clouds Pi ∈ RN×3, where N

is the number of points, and shape renderings Ii ∈ RH×W×3 of size H × W . Rendering
Ii is captured from a random camera view point with view matrix Mview ∈ R3×3 and
projection matrix Mproj ∈ R3×3. Figure 3 depicts the overall architecture of our proposed
Pic@Point model. It consists of the following modules: 1) a 3D Backbone extracts local
and global point cloud features, obtained as top-level positional features f3d and final shape
embeddings A(f3d), after a global pooling function A, 2) a frozen 2D Backbone returns
top-level local and global image features as extracted by a pre-trained vision model (e.g.,
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Figure 3: Overview of the proposed Pic@Point workflow. We extract top-level local
and aggregated global point cloud and image features using a generic 3D backbone
and a frozen 2D backbone. Subsequently, the features are processed through
global and local, pose-conditioned projection heads H.

ResNet, ViT), denoted as f2d and A(f2d), and 3) the Projection Heads H project the point
cloud and image features into a shared, representation-invariant latent space χ ⊆ Rd.

3.2. Projection into Shared Latent Space

To unify knowledge and produce rich, transferable representations, we project the modal
features into a shared latent space, where a contrastive loss is applied between projected
features within the mini-batch. The global projection heads H3d

glb,H2d
glb consist of simple

multi-layer perceptrons (MLPs) with two layers. The local projection heads H3d
lcl , H2d

lcl use
Conv1d and Conv2d layers with kernel size 1 and stride 1, respectively, to apply transfor-
mations in the channel dimension while preserving the spatial dimensions. All projected
features are L2-normalized.

Pose Encoding We facilitate spatially aware correspondence between local point cloud
and image features by integrating a pose encoding into the local point cloud projection
head H3d

lcl . This is necessary because while it is assumed that a complete shape can be
uniquely identified in a representation of any modality, this may not hold true for a local
shape region. For instance, symmetric features like the red circled plane wing tip depicted
in Figure 1 could potentially belong to any of the image snippets depicting a plane wing tip,
if no additional pose information is given. The pose encoding is calculated via a two-layer
MLP that transforms Mview into a 64-dimensional vector that is concatenated to the output
of the first convolutional layer in H3d

lcl .
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3.3. Cross-Modal Correspondence Task

Point-to-Pixel Mapping For the local cross-modal correspondence task, we begin by
establishing the ground truth mapping from points to image positions using projective
transformations with Mview,Mproj ∈ R4×4. Given a local point cloud embedding zl, let
(u, v) ∈ [0, 1]2 denote the image position projected from its center point. With top-level
downsampled image regions of size 7 × 7, such as produced by ResNet (He et al., 2016),
the indexed position (i, j) of the corresponding image region embedding qij is determined
as (i, j) = ⌊(u · 7, v · 7)⌋.

Subsequently, a contrastive learning objective can be applied to the cross-modal cor-
respondences. For each of the L local point cloud region embeddings {zl}l=1,...,L, we pull
close the corresponding image region embedding q+ of the same object, while pushing away

all other image region embeddings
{
qkij ̸= q+

}k=1,...,m

i,j=1,...,7
within the mini-batch of size m.

To achieve this, we apply the InfoNCE loss function (Oord et al., 2018) with temperature
hyper-parameter τ :

Llcl =
1

L

∑
l

Ll
lcl, with (1)

Ll
lcl = − log

exp(z⊤l q
+/τ)∑

i,j,k exp(z⊤l q
k
ij/τ)

. (2)

Similarly, for global point cloud embedding z, we pull close the global image em-
bedding q+ of the same object, while pushing away all other global image embeddings{
qk ̸= q+

}k=1,...,m
,

Lglb = − log
exp(z⊤q+/τ)∑
k exp(z⊤qk/τ)

. (3)

The overall loss function is given by L = Llcl + Lglb.

4. Experiments

In the following, we present our experimental setups and results of Pic@Point pre-training
using different point cloud backbones. We conduct experiments on four standard bench-
marks: ModelNet40 (Wu et al., 2015) and ScanObjectNN (Uy et al., 2019) for object clas-
sification, ShapeNetPart (Yi et al., 2016) for part segmentation, and S3DIS (Armeni et al.,
2016) for semantic scene segmentation.

4.1. Pre-Training Setup

Pre-training Dataset Following common practice, we pre-train on the ShapeNet (Chang
et al., 2015) dataset, which consists of more than 50 000 CAD models from 55 semantic cate-
gories. We obtain point clouds by randomly sampling 1024 points from each object. Further-
more, we obtain renderings of size 224×224 from 20 different view points placed in a regular
dodecahedron around the object, saving projection and camera matrices Mproj,Mview. We
randomly select a single rendering per object at each iteration and apply random rotation
as augmentation.
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Architectures We conduct experiments using two prominent point cloud backbones:
DGCNN (Wang et al., 2019) and PointNeXt (Qian et al., 2022a). DGCNN is a standard
architecture used for benchmarking many existing self-supervised methods. PointNeXt is a
more recent hierarchical model achieving state-of-the-art results across many 3D tasks. Be-
sides drawing comparison to related contrastive and generative cross-modal methods using
the same backbones, we also compare against recent transformer-style methods. For the
image backbone we use a light-weight ResNet-18 (He et al., 2016).

During the pre-training phase, the global and local point cloud features are extracted
directly from the 3D backbone. Subsequently, the features are projected to shared latent
space with dimension d = 512. After pre-training, the projection heads are dropped, and
the 3D backbone is used exclusively.

Implementation Details The experiments are implemented in PyTorch using the Open-
Points framework (Qian et al., 2022a). We utilize the Adam optimizer with CosineAnnealing
and a weight decay of 1e−6 for pre-training. For the point cloud branch we use an initial
learning rate of 1e−3, for the image branch we set a lower learning rate of 5e−5. We train
with a batch size of 32. For the downstream tasks, we follow the training and evaluation
settings of Qian et al. (2022a).

4.2. Downstream Tasks

In the following, we present experimental results on object classification, part segmentation
and scene segmentation.

Method ModelNet40 ScanObjectNN

FoldingNet (Yang et al., 2018) 88.4 -
VIP-GAN (Han et al., 2019) 90.2 -
Point-BERT (Yu et al., 2022) 87.4 -
Point-MAE (Pang et al., 2022) 91.0 77.7
Point-M2AE (Zhang et al., 2022a) 92.9 84.1

DGCNN+Jigsaw (Sauder and Sievers, 2019) 90.6 59.5
DGCNN+STRL (Huang et al., 2021) 90.9 77.9
DGCNN+OcCo (Wang et al., 2021) 90.7 78.3
DGCNN+CrossPoint (Afham et al., 2022) 91.2 81.7
DGCNN+PointVST (Zhang and Hou, 2023) 92.1 -

DGCNN+Pic@Point (ours) 92.5 85.7
DGCNN+Pic@Point (ours, w/ normals) 92.9 -

Table 1: Linear SVM Classification on ModelNet40 and ScanObjectNN
(OBJ BG). We compare against methods using a specialized point cloud ar-
chitecture (top), and methods using a DGCNN backbone (bottom). We report the
overall accuracy (%) with 1024 points.
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4.2.1. Object Classification

To evaluate the effectiveness of our proposed Pic@Point method for object classification, we
conduct experiments on the synthetic dataset ModelNet40 (Wu et al., 2015) and the real-
world scanned dataset ScanObjectNN (Uy et al., 2019). ModelNet40 consists of 12 331 3D
CAD models from 40 object categories. ScanObjectNN contains 15 categories of real-world
indoor scans with 2903 unique object instances. We evaluate on all three common variants
of the the ScanObjectNN dataset: OBJ BG contains complete object scans, OBJ ONLY
uses background cropping, and PB T50 RS contains perturbed versions of the scans. We
sample 1024 points on each object for both training and testing.

We use two transfer learning protocols to evaluate the effectiveness of our proposed
Pic@Point model: linear probing with an SVM and fine-tuning on the downstream dataset.

Linear SVM Results We test the representation capability of Pic@Point by fitting a
linear SVM on the features extracted from the pre-trained point cloud backbone. In Table 1
we report our linear classification results on ModelNet40 and ScanObjectNN (OBJ BG).
The upper part of the table shows existing self-supervised methods employing specialized
point cloud architectures, including transformer-style methods. These methods focus pri-
marily on point cloud encoding architectures rather than on the design of pretext tasks.
The lower part of the table shows architecture-agnostic pre-training methods, which are
compared using a DGCNN backbone.

Pic@Point significantly outperforms competing methods on a DGCNN backbone with
92.5% and 85.7% linear classification accuracy on ModelNet40 and ScanObjectNN (OBJ BG),
respectively. By incorporating normals as additional input, we further improve to 92.9%
accuracy on ModelNet40. We achieve margins of +0.4% and +4.0% over the second best
methods PointVST (Zhang and Hou, 2023) and CrossPoint (Afham et al., 2022), respec-
tively. This underscores the effectiveness of our proposed structural 2D-3D correspondence
learning over existing cross-modal approaches such as PointVST, a generative method, and
CrossPoint, a contrastive method that relies solely on global correspondences.

Notably, the improvements over existing methods are more pronounced on ScanOb-
jectNN than on ModelNet40. This may be attributed to Pic@Point’s enhanced gener-
alization ability through learning modality-invariant features, making it more robust on
real-world data with irregular sampling and noise. We outperform methods employing
larger transformer-style architectures on ScanObjectNN, achieving a margin of +1.6% over
the second best method Point-M2AE (Zhang et al., 2022a), which uses a large multi-scale
Transformer architecture.

Fine-tuning Results Next, we perform extensive fine-tuning experiments on all three
variants of the ScanObjectNN dataset, which has established itself as a favored classification
benchmark (Qian et al., 2022a; Ma et al., 2022). The results are shown in Table 2. The top
part of the table shows supervised 3D models trained from scratch. The middle part shows
2D-to-3D methods that use large-scale vision foundation models with specialized architec-
tures and 3D downstream adaptations such as visual prompt tuning or multi-stage knowl-
edge distillation. We note that our model does not directly compete with these methods
due to their use of specialized architectures with large memory requirements and 2D-to-3D
adaptations. Nevertheless, we include them to provide a comprehensive overview of related
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Method #Params (M) OBJ BG OBJ ONLY PB T50 RS

PointNet (Qi et al., 2017a) 3.5 73.3 79.2 68.2
DGCNN (Wang et al., 2019) 1.8 82.8 86.2 78.1
PointNeXt-S (Qian et al., 2022a) 1.4 - - 87.7
PointMLP (Ma et al., 2022) 12.6 - - 85.4

Pix4Point (Qian et al., 2022b) 22.1 - - 87.9
ACT (Dong et al., 2022) 22.1 93.3 91.9 88.2
P2P (Wang et al., 2022) 195.8 - - 89.3
I2P-MAE (Zhang et al., 2023) 12.9 94.2 91.6 90.1
ReCon (Qi et al., 2023) 43.6 95.2 93.6 90.6

[T]ransformer (Vaswani et al., 2017) 22.1 79.9 80.6 77.2
[T]+OcCo (Yu et al., 2022) 22.1 84.9 85.5 78.8
Point-BERT (Yu et al., 2022) 22.1 87.4 88.1 83.1
Point-MAE (Pang et al., 2022) 22.1 90.0 88.3 85.2
Point-M2AE (Zhang et al., 2022a) 15.3 91.2 88.8 86.4
[T]+PointVST (Zhang and Hou, 2023) 22.1 - - 86.6
[T]+TAP (Wang et al., 2023) 22.1 90.4 89.5 85.7
PointMLP+TAP (Wang et al., 2023) 12.6 - - 88.5

PointNeXt-S (reproduce) 1.4 91.2 89.9 87.2
+ Pic@Point 1.4 94.0 (+2.8) 92.6 (+2.7) 88.1 (+0.9)

Table 2: Real-world 3D Classification on ScanObjectNN Variants. We report the
number of inference model parameters (M) and the overall accuracy (%) with 1024
points.

research. The lower part of the table lists self-supervised methods employing state-of-the-art
3D point cloud models, many of which are based on Transformer architectures.

We perform experiments using the PointNeXt-S (Qian et al., 2022a) backbone. We
observe significant improvements compared to training from scratch: +2.8% on OBJ BG,
+2.7% on OBJ ONLY and +0.9% on PB T50 RS. Pic@Point surpasses all self-supervised
methods with transformer-style point cloud encoders on all three variants of ScanObjectNN,
while having a factor × 1

10 smaller model size. On PB T50 RS, Pic@Point is outper-
formed only by TAP (Wang et al., 2023) using a PointMLP backbone. On OBJ BG and
OBJ ONLY, Pic@Point outperforms all competing 3D methods.

Visualization In Figure 4 we show visualizations of local 2D-3D correspondences learned
during Pic@Point pre-training. For each object, the correspondences between the object’s
image patches and two exemplar points are depicted. Two key observations can be made:
Firstly, Pic@Point successfully learns to correlate structures of point cloud regions with
image patches depicting semantically similar features. Secondly, it accurately matches cor-
responding image features by incorporating pose information.

Ablation Studies Table 3 presents ablation studies on key components. First, we evalu-
ate the local and global correspondence losses Llcl and Lgbl, both of which have equal impact
on the results. Second, we confirm that the pose encoding aids in learning from local cor-
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Figure 4: Visualization of local 2D-3D Correspondences. The first column displays
point clouds with two example points highlighted. The second and third columns
display heatmaps of the feature distances between one of these points and the
image patches of the corresponding object in latent space.

Llcl Lglb Pose Cond. Normals OA (%)

✗ ✓ ✓ ✓ 92.3 (−0.2)
✓ ✗ ✓ ✓ 92.3 (−0.2)
✓ ✓ ✗ ✓ 91.8 (−0.7)
✓ ✓ ✓ ✓ 92.8 (+0.3)

✓ ✓ ✓ ✗ 92.5

Table 3: Ablation Studies. Contributions of local and global correspondence, the impact
of pose conditioning, and the use of point normals are evaluated via linear SVM
classification on ModelNet40 using a DGCNN backbone.

respondences. A drop of −0.7% accuracy is observed when pose information is omitted.
Lastly, while our standard Pic@Point model excludes normals to ensure fair comparison
with related methods, we show that incorporating normal information during pre-training
and downstream fine-tuning, when available, provides significant benefits.

4.2.2. Part Segmentation

ShapeNetPart (Yi et al., 2016) is a widely used dataset for object part segmentation. It
contains 16 881 pre-aligned CAD models from 16 object classes and has a total of 50 part
categories. We use the same pre-training setup as for classification, pre-training on 1024
randomly sampled points per object on the ShapeNet dataset. For downstream fine-tuning
on ShapeNetPart, we train and test on 2048 points. Table 4 reports the mean intersection
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Method ins. mIoU (%) cls. mIoU (%)

PointNet (Qi et al., 2017a) 83.7 80.4
DGCNN (Wang et al., 2019) 85.2 82.3
PointNeXt-S (Qian et al., 2022a) 86.7 84.4
PointMLP (Ma et al., 2022) 86.1 84.6

Transformer (Vaswani et al., 2017) 85.1 83.4
Point-BERT (Yu et al., 2022) 85.6 84.1
Point-MAE (Pang et al., 2022) 86.1 84.2

DGCNN+Jigsaw (Sauder and Sievers, 2019) 85.3 82.3
DGCNN+OcCo (Wang et al., 2021) 85.0 -
DGCNN+CrossPoint (Afham et al., 2022) 85.5 -
DGCNN+PointVST (Zhang and Hou, 2023) 87.4 -

DGCNN+Pic@Point (ours) 85.8 83.0

Table 4: Part Segmentation on ShapeNetPart. We report the mean IoU across all
instances (ins.) and across all classes (cls.) with 2048 points.

over union (mIoU) averaged over all instances (ins.) and averaged over all object classes
(cls.) with DGCNN backbone.

Overall, ShapeNetPart results are less distinguishable compared to other benchmarks.
Both Jigsaw (Sauder and Sievers, 2019) and OcCo (Wang et al., 2021) show no significant
improvement over training from scratch using DGCNN. Pic@Point demonstrates slightly
better performance than previous pre-training methods on a DGCNN backbone, except for
PointVST (Zhang and Hou, 2023), which reports an exceptional result of 87.4%. Compared
to CrossPoint (Afham et al., 2022), which uses global 2D correspondences, Pic@Point shows
an improvement of +0.3%.

4.2.3. Scene Segmentation

Semantic segmentation on large 3D scenes challenges the understanding of contextual re-
lationships and coherent semantic interpretation. S3DIS (Armeni et al., 2016) is a scene
segmentation benchmark consisting of 6 types of large scanned indoor areas with 13 seman-
tic categories. Following common practice, we test on the largest area, Area 5, and fine-tune
on the remaining areas. For training, the point clouds are downsampled with a voxel size
of 0.04m and sub-sampled to 24 000 points. Testing is conducted on the entire scene.

Pic@Point consistently improves performance over training from scratch, increasing
mIoU by +0.7% and mAcc by +0.6%. It outperforms leading transformer-style meth-
ods by a margin of +2.8% mIoU. The achieved scene segmentation results indicate that
Pic@Point is superior in performing dense prediction tasks through its integration of rich
semantic cues and structural, pose-aware guidance.
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Method mIoU (%) mAcc (%)

PointNet (Qi et al., 2017a) 41.1 49.0
DGCNN (Wang et al., 2019) 47.9 -
PointNeXt-S (Qian et al., 2022a) 63.4 -
PointNeXt-XL (Qian et al., 2022a) 70.5 -

Transformer (Vaswani et al., 2017) 60.0 68.6
Point-BERT (Yu et al., 2022) 60.8 69.9
Point-MAE (Pang et al., 2022) 60.8 69.9

PointNeXt-S (reproduce) 62.9 69.5
+ Pic@Point 63.6 (+0.7) 71.1 (+0.6)

Table 5: Scene-Level Semantic Segmentation on S3DIS Area 5. We report mean
IoU and mean accuracy.

5. Conclusions

This paper presents Pic@Point, a self-supervised pre-training method that leverages 2D-3D
correspondences at local and global scales. Our proposed method uses a simple contrastive
learning framework to integrate point cloud and image features across various abstrac-
tion levels, providing a guiding signal that is rich in semantic and structural knowledge.
Pic@Point pre-training significantly outperforms existing self-supervised pre-training meth-
ods, including those based on Transformer architectures, in various 3D understanding tasks.
Its lightweight, architecture-agnostic design offers distinct practical advantages and benefits
from future advancements in point cloud technologies.
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