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BLOCKDANCE: REUSE STRUCTURALLY SIMILAR
SPATIO-TEMPORAL FEATURES TO ACCELERATE DIFFU-
SION TRANSFORMERS
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(c) Open-Sora

(a) DiT-XL/2
Speed up 37.4%
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Figure 1: BlockDance accelerates DiT models DiT-XL/2, PixArt-α and Open-Sora by 37.4%, 25.4%
and 34.8% respectively, while maintaining fidelity and high consistency with the original image.

ABSTRACT

Diffusion models have demonstrated impressive generation capabilities, particularly
with recent advancements leveraging transformer architectures to improve both
visual and artistic quality. However, Diffusion Transformers (DiTs) continue to
encounter challenges related to low inference speed, primarily due to the iterative
denoising process. To address this issue, we propose BlockDance, a training-free
approach that explores feature similarities at adjacent time steps to accelerate
DiTs. Unlike previous feature-reuse methods that lack tailored reuse strategies for
features at different scales, BlockDance prioritizes the identification of the most
structurally similar features, referred to as Structurally Similar Spatio-Temporal
(STSS) features. These features are primarily located within the structure-focused
blocks of the transformer during the later stages of denoising. BlockDance caches
and reuses these highly similar features to mitigate redundant computation, thereby
accelerating DiTs while maximizing consistency with the generated results of the
original model. Furthermore, considering the diversity of generated content and
the varying distributions of redundant features, we introduce BlockDance-Ada, a
lightweight decision-making network tailored for instance-specific acceleration.
BlockDance-Ada dynamically allocates resources and provides superior content
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quality. Both BlockDance and BlockDance-Ada have demonstrated effectiveness
across diverse generation tasks and models, achieving an acceleration ranging from
25% to 50% while preserving generation quality.

1 INTRODUCTION

Diffusion models have been recognized as a pivotal advancement for both image and video generation
tasks due to their impressive capabilities. Recently, there has been a growing interest in shifting the
architecture of diffusion models from U-Net to transformers (OpenAI, 2024; Labs, 2024; Zhou et al.,
2024). This refined architecture empowers these models not just to generate visually convincing and
artistically compelling images and videos, but also to better adhere to scaling laws.

Despite the remarkable performance of these transformer-based diffusion models, their applicability
to real-time scenarios remains constrained by slow inference speed, primarily due to the iterative
nature of the denoising process. Existing acceleration approaches primarily focus on two paradigms:
I) reducing the number of sampling steps through novel scheduler designs (Song et al., 2021; Lu et al.,
2022) or step distillation (Ren et al., 2024; Lin et al., 2024); II) minimizing computational overhead
per step through the employment of model pruning (Fang et al., 2023; Kim et al., 2023), model
distillation (Gupta et al., 2024; Zhang et al., 2024a), or the mitigation of redundant calculations (Wim-
bauer et al., 2024; Ma et al., 2024b). This paper aims to accelerate DiTs by mitigating redundant
computation, as this paradigm can be plug-and-play into various models and tasks. Although feature
redundancy is widely recognized in visual tasks (He et al., 2022; Meng et al., 2022), and recent works
have identified its presence in the denoising process of diffusion models (Ma et al., 2024b; Li et al.,
2023), the issue of feature redundancy within DiT models—and the potential strategies to mitigate
these redundant computation—remains obscured from view.

(a) (b)

Figure 2: Feature similarity and redundancy in DiTs. (a) In the denoising process, the outputs
of DiT blocks exhibit high similarity in adjacent steps, particularly in the gray shadow-masked
region where the structure is stabilized. (b) This high similarity is mainly concentrated in the shallow
and middle blocks within the transformer, i.e. between 0 and 20 blocks, which focus on low-level
structures. Thus, redundant computation related to highly similar structural features in the denoising
process can be saved by reusing them to accelerate DiTs inference while maintaining quality.

To this end, we revisit the inter-feature distances between the blocks of DiTs at adjacent time steps in
Figure 2 (a) and propose BlockDance, a training-free acceleration approach by caching and reusing
highly similar features to reduce redundant computation. Previous feature reuse methods lack tailor-
made reuse strategies for features at different scales with varying levels of similarity. Consequently,
the reused set often includes low-similarity features, leading to structural distortions in the image and
misalignment with the prompt. In contrast, BlockDance enhances the reuse strategy and focuses on
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the most similar features, i.e. Structurally Similar Spatio-Temporal (STSS) features. To be specific,
during the denoising process, structural content is typically generated in the initial steps when noise
levels are high, whereas texture and detail content are frequently generated in subsequent steps
characterized by lower noise levels (Ho et al., 2020; Hertz et al., 2023). Thus, we hypothesize that
once the structure is stabilized, the structural features will undergo minimal changes. To validate
this hypothesis, we decouple the features of DiTs at different scales, as illustrated in Figure 2 (b).
The observation reveals that the shallow and middle blocks, which concentrate on coarse-grained
structural content, exhibit minimal variation across adjacent steps. In contrast, the deep blocks,
which prioritize fine-grained textures and complex patterns, demonstrate more noticeable variations.
Thus, we argue that allocating computational resources to regenerate these structural features yields
marginal benefits while incurring significant costs. To address this issue, we propose a strategy of
caching and reusing highly similar structural features subsequent to the stabilization of the structure
to accelerate DiTs while maximizing consistency with the generated results of the original model.

Considering the diverse nature of generated content and their varying distributions of redundant
features, we introduce BlockDance-Ada, a lightweight decision-making network tailored for Block-
Dance. In simpler content with a limited number of objects, we observe a higher presence of
redundant features. Therefore, frequent feature reuse in such scenarios is adequate to achieve
satisfactory results while offering increased acceleration benefits. Conversely, in the context of
intricate compositions characterized by numerous objects and complex interrelations, there are fewer
high-similarity features available for reuse. Learning this adaptive strategy is a non-trivial task, as
it involves non-differentiable decision-making processes. Thus, BlockDance-Ada is built upon a
reinforcement learning framework. BlockDance-Ada utilizes policy gradient methods to drive a
strategy for caching and reusing features based on the prompt and intermediate latent, maximizing
a carefully designed reward function that encourages minimizing computation while maintaining
quality. Accordingly, BlockDance-Ada is capable of adaptively allocating resources.

The main contributions of this paper are summarized in the following:

• We introduce BlockDance, a novel, training-free, and efficient algorithm for accelerating
Diffusion Transformers (DiTs). This algorithm caches and reuses Structurally Similar
Spatio-Temporal (STSS) features to minimize redundant computation during inference,
offering compatibility with various models through a plug-and-play approach.

• Regarding the varying complexity of generated content, we investigate the feasibility of
instance-specific BlockDance strategies, and propose BlockDance-Ada, a method that
adaptively saves computation through employing reinforcement learning techniques.

• BlockDance has been validated across diverse datasets, including ImageNet, COCO2017,
and MSR-VTT. It has been tested in tasks such as class-conditioned generation, text-to-
image, and text-to-video using models such as DiT-XL/2, Pixart-α, and Open-Sora. Our
experimental results reveal that our method can achieve a 25%-50% acceleration in inference
speed with training-free while maintaining comparable generated quality. Furthermore, the
proposed BlockDance-Ada generates higher-quality content at the same acceleration ratio.

2 RELATED WORK

Diffusion transformer. Diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021; Song & Er-
mon, 2020) have emerged as key players in the field of generation due to their impressive capabilities.
Previously, U-Net-based (Ronneberger et al., 2015) diffusion models have demonstrated remarkable
performance across various applications, including image generation (Rombach et al., 2022; Podell
et al., 2024) and video generation (Wu et al., 2023; Singer et al., 2023; Blattmann et al., 2023).
Recently, some research (Peebles & Xie, 2023; Chen et al., 2024a; Zheng, 2024; Ma et al., 2024a;
Li et al., 2024; Labs, 2024; Zhou et al., 2024) has transitioned to transformer-based (Vaswani et al.,
2017) architectures, i.e. Diffusion Transformers (DiTs). This framework excels in generating visually
convincing and artistically compelling content, better adheres to scaling laws, and shows promise in
efficiently integrating and generating multi-modality content. However, DiT models are still hindered
by the inherent iterative nature of the diffusion process, limiting their real-time applications.

Acceleration of diffusion models. Efforts have been made to accelerate the inference process of
diffusion models, which can be summarized into two paradigms: reducing the number of sampling
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steps and reducing the computation per step. The first paradigm often involves designing faster
samplers (Song et al., 2021; Lu et al., 2022; Zhao et al., 2023) or step distillation (Meng et al.,
2023; Luo et al., 2023; Sauer et al., 2023; Lin et al., 2024; Sauer et al., 2024; Ren et al., 2024).
The second paradigm focuses on model-level distillation (Gupta et al., 2024; Zhang et al., 2024a),
pruning (Kim et al., 2023; Fang et al., 2023), or reducing redundant computation (Ma et al., 2024b;
Bolya & Hoffman, 2023; Li et al., 2023; Wimbauer et al., 2024; So et al., 2024; Zhang et al., 2024b).
Several studies (Ma et al., 2024b; Li et al., 2023) have unearthed the existence of redundant features
in U-Net-based diffusion models, but their coarse-grained feature reuse strategies include those
low-similarity features, leading to structural distortions and text-image misalignment. In contrast, we
investigate the feature redundancy in DiTs and propose reusing structurally similar spatio-temporal
features to achieve acceleration while maintaining high consistency with the base model’s results.

Reinforcement learning in diffusion models. Efforts have been dedicated to fine-tuning diffusion
models using reinforcement learning (Sutton & Barto, 2018) to align their outputs with human
preferences or meticulously crafted reward functions. Typically, these models (Xu et al., 2023; Black
et al., 2023; Fan et al., 2023; Lee et al., 2023; Prabhudesai et al., 2023; Kirstain et al., 2023) aim to
improve the prompt alignment and visual aesthetics of the generated content. This paper explores
learning instance-specific acceleration strategies through reinforcement learning.

3 METHOD

3.1 PRELIMINARIES

Forward and reverse process in diffusion modes Diffusion models gradually add noise to the
data and then learn to reverse this process to generate the desired noise-free data from noise. In
this paper, we focus on the formulation introduced by (Rombach et al., 2022) that performs noise
addition and denoising in latent space. In the forward process, the posterior probability of the noisy
latent zt at time step t has a closed form:

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I), (1)

where ᾱt =
∏t

i=0 αi =
∏t

i=0(1− βi) and βi ∈ (0, 1) represents the noise variance schedule. The
inference process, i.e. the reverse process of generating data from noise, is a crucial part of the
diffusion model framework. Once the diffusion model ϵθ(zt, t) is trained, during the reverse process,
traditional sampler DDPM (Ho et al., 2020) denoise zT ∼ N (0, I) step by step for a total of T steps.
One can also use a faster sampler like DDIM (Song et al., 2021) to speed up the sampling process via
the following process:

zt−1 =
√
αt−1

(
zt −

√
1− αtϵθ(zt, t)√

αt

)
+

√
1− αt−1 − σ2

t · ϵθ(zt, t) + σtϵt. (2)

In the denoising process, the model primarily generates rough structures of the image in the early
stages and gradually refines it by adding textures and detailed information in later stages.

Features in the transformer. The number of denoising steps is related to the number of network
inferences in the DiT architecture, which typically features multiple blocks stacked together. Each
block sequentially computes its output based on the input from the previous block. The shallow
blocks, closer to the input, are inclined to capture the global structures and rough outlines of the data.
In contrast, the deep blocks, closer to the output, gradually refine specific details to achieve outputs
that are both realistic and visually appealing (Wu et al., 2021; Park & Kim, 2022; Raghu et al., 2021).

3.2 FEATURE SIMILARITY AND REDUNDANCY IN DITS

The inference speed of DiTs is constrained by its inherently iterative nature of inference, limiting its
practical applicability. This paper aims to reduce redundant computation to accelerate DiTs.

Upon revisiting the denoising process in various DiT models, including DiT-XL/2 (Peebles & Xie,
2023), PixArt-α (Chen et al., 2024a), and Open-Sora (Zheng, 2024), two key findings emerged: I)
There are significant feature similarities between consecutive steps, indicating redundant computation
in the denoising process, as illustrated in Figure 2 (a); II) This high similarity is primarily manifested
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in the shallow and middle blocks (between 0 and 20 blocks) of the transformer, while deeper blocks
(between 21 and 27 blocks) exhibit more variations, as depicted in Figure 2 (b). We attribute this
phenomenon to the fact that structural content is generally produced in the initial steps, while textures
and details are generated in the later steps.

To confirm this, we visualize the block features of PixArt-α using Principal Components Analy-
sis (PCA), as shown in Figure 3. At the initial stages of denoising, the network primarily focuses
on generating structural content, such as human poses and other basic forms. As the denoising
process progresses, the shallow and middle blocks of the network still concentrate on generating
low-frequency structural content, while the deeper blocks shift their focus towards generating more
complex high-frequency texture information, such as clouds and crowds within depth of field. Con-
sequently, after the structure is established, the feature maps highlighted by blue boxes in Figure 3
exhibit high consistency across adjacent steps. We define these computation as redundant computa-
tion, which relate to the low-level structures that the shallow and middle blocks of the transformer
focus on. Based on these observations, we argue that allocating substantial computational resources
to regenerate these similar features yields marginal benefits but leads to higher computational costs.
Thus, our goal is to design a strategy that leverages these highly similar features to reduce redundant
computation and accelerate the denoising process.

Shallow and Middle Blocks 

11

26

23

20

17

14

29

8

5

2

0 3 6 9 12 15 18 20 24 27

Deep Blocks 

La
te

r S
te

ps
Ea

rly
 S

te
ps

Figure 3: Visualization of PixArt-α blocks at
different timesteps. Feature maps with blue bor-
ders exhibit high similarity across adjacent steps.

<latexit sha1_base64="Bqc1RSfPvx/QLyv0kDwvwBZy2KQ="></latexit>zt+1 With 

Stable Structure
Diffusion 

Transformer

<latexit sha1_base64="McgP/esIDxBI78H0tquS60I0WrU=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkVwVRKR6rLoxmVF2wptLUk6bUPzYjIRaiiIW3/Arf6U+Af6F94ZU1CL6IQkZ86958zce+3Ic2NhGK85bW5+YXEpv1xYWV1b3yhubjXiMOEOqzuhF/Ir24qZ5wasLlzhsauIM8u3Pda0R6cy3rxhPHbD4FKMI9bxrUHg9l3HEkRdt31LDO1+ejvppmLSLZaMsqGWPgvMDJSQrVpYfEEbPYRwkMAHQwBB2IOFmJ4WTBiIiOsgJY4TclWcYYICaRPKYpRhETui74B2rYwNaC89Y6V26BSPXk5KHXukCSmPE5an6SqeKGfJ/uadKk95tzH97czLJ1ZgSOxfumnmf3WyFoE+jlUNLtUUKUZW52QuieqKvLn+pSpBDhFxEvcozgk7Sjnts640sapd9tZS8TeVKVm5d7LcBO/yljRg8+c4Z0HjoGxWypXzw1L1JBt1HjvYxT7N8whVnKGGOnlzPOIJz9qFNtbutPvPVC2XabbxbWkPH73HlZ0=</latexit>zt
<latexit sha1_base64="MRTu8UPUKwDosC96FYo1YWVik2s="></latexit>zt�1

<latexit sha1_base64="xsqrcz0REmq/Hf5HTuriAXX+Rio=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSIIQklEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+Oyura+sbm4Wt4vbO7t5+6eCwqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpgZ97vVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJoXFa9aqd5flms3eRwFOIYTOAMPrqAGd1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QOpVY1o</latexit>

i + 1
<latexit sha1_base64="/cnyKmxVdU7M8ID6ozQbNE+/OJU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq8H6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A0w+M+A==</latexit>

i

Diffusion 
Transformer

Saved Computation

Reuse

Reuse

Reuse StepCache Step 
<latexit sha1_base64="FGm81P0jlLFJpUAUUO8KvW7PoDI="></latexit>

t
<latexit sha1_base64="+J/JqTzVHzMS+a0gIG6m3k8X9Hs=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwY0lEqsuimy4r2gfUIsl0WkPTJEwmSimCP+BWP038A/0L74xTUIvohCRnzr3nzNx7/SQMUuk4rzlrbn5hcSm/XFhZXVvfKG5uNdM4E4w3WBzGou17KQ+DiDdkIEPeTgT3Rn7IW/7wTMVbt1ykQRxdynHCuyNvEAX9gHmSqAt54F4XS07Z0cueBa4BJZhVj4svuEIPMRgyjMARQRIO4SGlpwMXDhLiupgQJwgFOs5xjwJpM8rilOERO6TvgHYdw0a0V56pVjM6JaRXkNLGHmliyhOE1Wm2jmfaWbG/eU+0p7rbmP6+8RoRK3FD7F+6aeZ/daoWiT5OdA0B1ZRoRlXHjEumu6Jubn+pSpJDQpzCPYoLwkwrp322tSbVtaveejr+pjMVq/bM5GZ4V7ekAbs/xzkLmodlt1KunB+Vqqdm1HnsYBf7NM9jVFFDHQ3yHuART3i2alZkZdbdZ6qVM5ptfFvWwweRFI/2</latexit>

t � 1

Cache

<latexit sha1_base64="0l834IqmJT0y5cJL5TO0iY5m/MM="></latexit>

F i
t

… BlockBlockBlockBlock …

Shallower Blocks Deeper Blocks

… BlockBlockBlockBlock …

Shallower Blocks Deeper Blocks

<latexit sha1_base64="xsqrcz0REmq/Hf5HTuriAXX+Rio=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSIIQklEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+Oyura+sbm4Wt4vbO7t5+6eCwqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpgZ97vVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJoXFa9aqd5flms3eRwFOIYTOAMPrqAGd1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QOpVY1o</latexit>

i + 1
<latexit sha1_base64="/cnyKmxVdU7M8ID6ozQbNE+/OJU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq8H6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A0w+M+A==</latexit>

i

Figure 4: An overview of BlockDance. The
reuse step generates zt−1 based on reusing the
structural features from the cache step, thereby
saving the computation of the first i blocks to
accelerate the inference.

3.3 TRAINING-FREE ACCELERATION APPROACH

We introduce BlockDance, a straightforward yet effective method to accelerate DiTs by leveraging
feature similarities between steps in the denoising process. By strategically caching the highly similar
structural features and reusing them in subsequent steps, we reduce redundant computation.

Specifically, we design the denoising steps into two types: cache step and reuse step, as illustrated in
Figure 4. During consecutive time steps, a cache step first conducts a standard network forward based
on zt+1, outputs zt, and saves the features F i

t of the i-th block. For the following time step—the reuse
step—we do not perform full network forward computation; instead, we carry out partial inference.
More specifically, we reuse the cached features F i

t from the cache step as the input for the (i+ 1)-th
block in the reuse step. Therefore, the computation of the first i blocks in the reuse step can be saved
due to the sequential inference characteristic of the transformer blocks, and only the blocks deeper
than i require recalculation.

To this end, it is crucial to determine the optimal block index and the stage of the denoising process
where reuse should be concentrated. Based on the insights from Figure 2 and Figure 3, we set the
index as 20 and focus the reuse on the latter 60% of the denoising process, after the structure has
stabilized. These settings enable the decoupling of feature reuse and specifically reuse the structurally
similar spatio-temporal features. Thus, we set the first 40% of denoising steps as cache steps and
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evenly divide the remaining 60% of denoising steps into several groups, each comprising N steps.
The first step of each group is designated as a cache step, while the subsequent N − 1 steps are reuse
steps to accelerate inference. With the arrival of a new group, a new cache step updates the cached
features, which are then utilized for the reuse steps within that group. This process is repeated until
the denoising process concludes. A larger N represents a higher reuse frequency. We term this cache
and reuse strategy as BlockDance-N , which operates in a training-free paradigm and can effectively
accelerate multiple types of DiT models while maintaining the quality of the generated content.

3.4 INSTANCE-SPECIFIC ACCELERATION APPROACH

Figure 5: Cosine similarity of the generated images’ features during denoising. High similarity step
features, highlighted by the red box, decrease as structural complexity increases.

However, the generated content exhibits varying distributions of feature similarity, as shown in
Figure 5. We visualize the cosine similarity matrix of features from block index i ≤ 20 at each
denoising step compared to other steps. We find that the distribution of similar features is related to
the structural complexity of the generated content. In Figure 5, as structural complexity increases
from left to right, the number of similar features suitable for reuse decreases. To further enhance the
performance of the BlockDance strategy, we propose a lightweight framework, BlockDance-Ada,
designed to learn instance-specific cache and reuse strategies.

Frozen

Prompts
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Reuse Step

Cache Step

Figure 6: An overview of BlockDance-Ada. Given the intermediate latent and prompt embedding,
the reuse decision network learns the structural complexity of each sample and derives the corre-
sponding reuse policy. These policies determine whether each subsequent step in DiTs is a cache
step or a reuse step. The reward function balances the trade-off between image quality and speed.

BlockDance-Ada leverages reinforcement learning to handle non-differentiable binary decisions, i.e.
sequential gating, to dynamically determine whether each step in the denoising process is a cache step
or a reuse step. As illustrated in Figure 6, for a total of s denoising steps, given latent zT ∼ N (0, I)
and text embedding c = τ(p) of the prompt p, we initially perform ρ steps of normal computation,i.e.
cache steps to obtain intermediate latents zρ. The state space is defined as zρ and c, and the actions
within the decision model are defined to determine whether each step in the subsequent s− ρ steps
should be a cache or a reuse step. More formally, the decision network fd, parameterized by w,
learns the distribution of feature similarity, then maps it to vectors m ∈ R(s−ρ) :

m = sigmoid(fd(zρ, c;w)). (3)

Here, each entry in m is normalized to be in the range [0, 1], indicating the likelihood of performing a
cache step. We define a reuse policy πf (u | zρ, c) with an (s− ρ)-dimensional Bernoulli distribution:

πf (u|zρ, c) =
s−ρ∏
t=1

mut
t (1−mt)

1−ut , (4)

where u ∈ {0, 1}(s−ρ) are actions based on m, and ut = 1 indicates the t-th step is a cache step, and
zero entries in u are reuse steps. During training, u is produced by sampling from the corresponding
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policy, and a greedy approach is used at test time. With this approach, DiTs generate the latent z0
based on the reuse policy, following the decoder D decodes the latent into a pixel-level image x.

Based on this, we design a reward function to incentivize fd to maximize computational savings while
maintaining quality. The reward function consists of two main components: an image quality reward
and a computation reward, balancing generation quality and inference speed. For the image quality
reward Q(u), we use the quality reward model (Xu et al., 2023) fq to score the generated images
based on visual aesthetics and prompt adherence, i.e. Q(u) = fq(x). The computation reward C(u)
is defined as the normalized number of reuse steps, given by the formula:

C(u) = 1− (
∑s−ρ

t=1 ut)

(s− ρ)
. (5)

Finally, the overall reward function is formalized as R(u) = C(u) + λQ(u), where λ modulates the
importance of image quality. At this point, the decision network fd can be optimized to maximize the
expected reward: maxw L = Eu∼πfR(u). We use policy gradient methods (Sutton & Barto, 2018)
to learn the parameters w for fq and the expected gradient can be derived as:

∇wL = E
[
R(u)∇w log πf (u | zρ, c)

]
. (6)

We use samples in mini-batches to compute the expected gradient and approximate Eqn. 6 to:

∇wL ≈ 1

B

B∑
i=1

[
R (ui)∇w log πf

(
ui | zρi, ci

)]
, (7)

where B is the number of samples in the mini-batch. The gradient is then propagated back to train the
fd with Adam (Kingma & Ba, 2014) optimizer. Following this training process, the decision network
perceives instance-specific cache and reuse strategies, thereby achieving efficient dynamic inference.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

4.1.1 MODELS, DATASETS AND EVALUATION METRICS

To demonstrate the effectiveness of our approach across various generative tasks and types of DiTs,
we conduct evaluations on class-conditional image generation, text-to-image generation, and text-
to-video generation. For class-conditional image generation, we use DiT-XL/2 (Peebles & Xie,
2023) to generate 50 512 × 512 images per class on the ImageNet (Deng et al., 2009) dataset via
DDIM sampler (Song et al., 2021), with a guidance scale of 4.0. For text-to-image generation, we
used PixArt-α (Chen et al., 2024a) to generate 1024 × 1024 images on the 25K validation set of
COCO2017 (Lin et al., 2014) via DPMSolver sampler (Lu et al., 2022), with a guidance scale of 4.5.
For text-to-video generation, we used Open-Sora 1.0 (Zheng, 2024) to generate 16-frame videos at
512 × 512 resolution on the 2990 test set of MSR-VTT (Xu et al., 2016) via DDIM sampler, with a 7.0
guidance scale. We follow the previous works (Peebles & Xie, 2023; Chen et al., 2024a; Zheng, 2024)
to evaluate these tasks and additionally report IQS score (Xu et al., 2023) and Pickscore (Kirstain
et al., 2023) for text-to-image generation. We measure inference speed on the A100 GPU by the time
it takes the model to generate each image or video, i.e. latency.

4.1.2 IMPLEMENTATION DETAILS

For BlockDance, the cache and reuse steps in PixArt-α are primarily between 40% and 95% of
the denoising process, while in DiT-XL/2 and Open-Sora, they are mainly between 25% and 95%
of the denoising process. The sizes of the cached features for generating each content with these
three models are 18MB, 4.5MB, and 72MB, respectively. The default block index i is set to 20. For
BlockDance-Ada, we design the decision network as a lightweight architecture consisting of three
transformer blocks and a multi-layer perceptron. The parameters of the decision network amount to
0.08B. We set ρ to 40% of the total number of denoising steps. The parameter λ in the reward function
is set to 2. For PixArt-α, we train the step selection network on 10,000 SAM-LLaVA Captions from
its training dataset for 100 epochs with a batch size of 16. We use Adam with a learning rate of 10−5.
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Table 1: Text-to-image generation on PixArt-α.

COCO2017 Speed Image Quality

MACs (T) ↓ Latency (s) ↓ FID ↓ IS ↑ CLIP ↑ IR ↑ Pick ↑ SSIM ↑
PixArt-α, 30 steps 128.47 3.10 30.41 39.07 0.332 0.85 22.55 -

ToMe (25% ratio) 119.34 2.70 174.57 11.68 0.302 -0.47 22.19 0.18
DeepCache (N=2) 96.36 2.24 31.57 37.44 0.331 0.76 22.31 0.60
TGATE (m=15) 98.41 2.30 30.82 38.50 0.331 0.77 22.42 0.55
PixArt-LCM (8 steps) 17.13 0.83 31.67 37.83 0.328 0.58 22.25 0.41

BlockDance (N=2) 98.21 2.31 (↑ 25.4%) 30.69 38.73 0.332 0.82 22.46 0.89
BlockDance (N=3) 88.11 2.09 (↑ 32.6%) 31.34 37.74 0.331 0.77 22.34 0.83
BlockDance (N=4) 81.38 1.88 (↑ 39.4%) 33.28 36.48 0.330 0.72 22.21 0.79

4.2 MAIN RESULTS

4.2.1 EXPERIMENTS ON THE TRAINING-FREE PARADIGM BLOCKDANCE

Accelerate PixArt-α for text-to-image generation. The results on the 25k COCO2017 validation
set, as shown in Table 1, demonstrate the efficacy of BlockDance. We extend ToMe (Bolya &
Hoffman, 2023) and DeepCache (Ma et al., 2024b) to PixArt-α as baselines. For ToMe, we reduce
the computational cost by removing 25% of the tokens through the merge operation. For DeepCache,
we reuse features at intervals of 2 throughout the denoising process, specifically reusing the outputs
from the first 14 blocks out of the 28 blocks in PixArt-α. With N = 2, BlockDance accelerates
PixArt-α by 25.4% with no significant degradation in image quality, both in terms of visual aesthetics
and prompt following. Different speed-quality trade-offs can be modulated by N .

Compared to ToMe, BlockDance consistently outperforms ToMe by a clear margin regardless
of the reuse frequency N . This can be attributed to DiTs featuring a more attention-intensive
architecture than the U-Net-based one, thus the continuous use of token merging in DiTs exacerbates
quality degradation. Compared to DeepCache, BlockDance achieves better performance across all
image metrics at comparable speeds by focusing on high-similarity features. We specifically reduce
redundant structural computation in the later stages of denoising, avoiding dissimilar feature reuse and
minimizing image quality loss. However, DeepCache reuses features throughout the entire denoising
process and does not specifically aim at highly similar features for reuse. This leads to the inclusion
of dissimilar features in the reused set, resulting in structural distortions and a decline in prompt
alignment. Compared to TGATE (Zhang et al., 2024b), which accelerates by reducing the redundancy
in cross-attention calculations. Blockdance supports DiTs that do not incorporate cross-attention,
such as SD3 (Esser et al., 2024) and Flux (Labs, 2024). Besides, experimental results show that with
the same acceleration benefit, BlockDance outperforms TGATE across various metrics. Compared to
PixArt-LCM (Chen et al., 2024b) obtained through consistency distillation training, BlockDance,
although requiring more inference time, achieves higher generation quality across multiple metrics
without additional training. It is worth noting that BlockDance’s generated images exhibit higher
consistency with the base model, as evidenced by significantly better SSIM performance compared to
baselines, thanks to our targeted reuse strategy.

Table 2: Class-conditional generation on DiT-
XL/2 via 50 DDIM steps.

ImageNet Speed Image Quality

MACs (T) ↓ Latency (s) ↓ FID ↓ sFID ↓ IS ↑ SSIM ↑
DiT-XL/2 45.71 1.79 15.89 21.01 413.8 -

ToMe (25% ratio) 41.90 1.61 (↑ 10.1%) 27.24 53.46 176.01 0.44
DeepCache (N=2) 34.28 1.10 (↑ 38.5%) 16.11 28.18 392.29 0.90

BlockDance (N=2) 29.91 1.12 (↑ 37.4%) 15.70 22.86 402.01 0.98
BlockDance (N=3) 24.16 0.90 (↑ 49.7%) 15.96 24.43 390.83 0.95
BlockDance (N=4) 19.85 0.76 (↑ 57.5%) 16.01 25.28 383.61 0.93

Table 3: Text-to-video generation on Open-Sora.
All the methods here adopt 100 DDIM steps.

MSR-VTT Speed Video Quality

MACs (T) ↓ Latency (s) ↓ FVD ↓ KVD ↓ CLIP ↑ IS ↑
Open-Sora 2193.80 44.99 548.72 74.03 0.299 20.27

DeepCache (N=2) 1644.75 27.58 (↑ 38.7%) 942.06 108.4 0.298 18.20

BlockDance (N=2) 1418.28 29.32 (↑ 34.8%) 550.22 72.35 0.299 20.22
BlockDance (N=3) 1159.76 24.66 (↑ 45.2%) 580.35 73.70 0.297 19.92
BlockDance (N=4) 970.18 20.39 (↑ 54.7%) 674.26 86.82 0.291 18.81

Accelerate DiT/XL-2 for class-conditional generation. The results of the 50k ImageNet images
are shown in Table 2. We extend ToMe and DeepCache to DiT/XL-2 as the baselines. At N = 2,
BlockDance not only accelerates DiT/XL-2 by 37.4% while maintaining image quality but also
outperforms DeepCache while preserving higher consistency with the base model’s generated images.
By increasing, the acceleration ratio of BlockDance can reach up to 57.5%, and the image quality
consistently outperforms ToMe.
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Accelerate Open-Sora for text-to-video generation. BlockDance is also effective for accelerating
video generation tasks. The accelerated results on MSR-VTT are shown in Table 3. At N = 2,
BlockDance speeds up Open-Sora by 34.8% while maintaining video quality, both in terms of visual
quality and temporal consistency. Increasing N achieves various quality-speed trade-offs. In contrast,
DeepCache suffers from significant quality degradation, as evidenced by the deterioration in metrics
such as FVD. This is attributed to DeepCache reusing low-similarity features, such as structural
information at the early stages of denoising.

PixArt -
3.10s

<latexit sha1_base64="tE/700TPNhMyNsoxaYyiSV0uKa4="></latexit>↵

DeepCache
2.24s

BlockDance
2.31s

Three stuffed bears 
hugging and sitting on 
a blue pillow.

A man holding a tennis 
racket playing tennis.

The woman is taking a 
photo of the white goose 
next to the river.

A computer desk with 
several pieces of computer 
equipment.

Several children are riding 
on a toy train ride.

A large bear that is 
sitting on grass. 

TGATE
2.30s

ToMe -10%
2.81s

PixArt-LCM
0.83s

Some cars on the freeway 
are exiting onto Sunset 
Blvd.

Figure 7: Qualitative Results. Compared to previous methods, BlockDance achieves not only high
fidelity but also a high degree of consistency with the original images.

Qualitative results. We further qualitatively analyze our approach as shown in Figure 7. ToMe
merges adjacent similar tokens to save self-attention computation, but this method is not very friendly
for transformer-intensive architectures, resulting in low-quality images with “blocky artifacts”.
While DeepCache and TGATE achieve approximately 27% acceleration, they may cause significant
structural differences from the original images and present artifacts and semantic loss in some complex
cases. PixArt-LCM accelerates PixArt-α through additional consistency distillation training, yielding
significant acceleration but with noticeable declines in visual aesthetics and prompt following.
In contrast, BlockDance achieves a 25.4% acceleration without additional training costs, while
maintaining high consistency with the original model in terms of structure and detail.

4.2.2 EVALUATION ON BLOCKDANCE-ADA

Table 4: BlockDance-Ada achieves a better trade-off between quality and speed by dynamic inference.

COCO 2017 Latency (s) ↓ FID ↓ IS ↑ CLIP ↑ IR ↑ Pick ↑
PixArt-α, 30steps 3.10 30.41 39.07 0.332 0.85 22.55

ToMe (25% ratio) 2.70 174.57 11.68 0.302 -0.47 22.19
DeepCache (N=2) 2.24 31.57 37.44 0.331 0.76 22.31
TGATE (m=15) 2.30 30.82 38.50 0.331 0.77 22.42

BlockDance (N=2) 2.31 (↑ 25.4%) 30.69 38.73 0.332 0.82 22.46
BlockDance (N=3) 2.09 (↑ 32.6%) 31.34 37.74 0.331 0.77 22.34

BlockDance-Ada 2.15 (↑ 30.6%) 30.71 38.70 0.332 0.81 22.44

Dynamic Inference on PixArt-α. Table 4 provides a detailed breakdown of the performance of
BlockDance-Ada. By dynamically allocating computational resources for each sample based on
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instance-specific strategies, BlockDance-Ada effectively reduces redundant computation, achieving
acceleration close to that of BlockDance (N = 3) while delivering superior image quality. Compared
to BlockDance (N = 2), BlockDance-Ada offers greater acceleration benefits with similar quality.

4.3 DISCUSSION.

4.3.1 ABLATION STUDY.

Impact of reuse frequency. As shown in Figure 8, we illustrate how the generated images evolve as
N increases. With the reduction in generation time, the main subject of the image remains consistent,
but the fidelity of the details gradually decreases, aligning with the insights presented in Table 1.
Different values of N offer flexible choices for various speed-quality trade-offs.

N=2, 2.32s N=3, 2.08sOriginal, 3.09s N=4, 1.87s

The boy is looking back at a wave in the ocean. The large cat is resting comfortably behind the laptop screen. 

N=2, 2.31s N=3, 2.06sOriginal, 3.11s N=4, 1.86s

A plate with a burger on the table. 

N=2, 2.30s N=3, 2.04sOriginal, 3.11s N=4, 1.85s

Figure 8: Ablation study on the effect of reuse frequency on generated images.

Impact of applying BlockDance in different denoising stages. As shown in Figure 9, we investi-
gate the impact of applying BlockDance in different stages of the denoising process: the initial stage
(0%-40%) and the later stage (40%-95%). BlockDance primarily reuses structural features; therefore,
applying it at the initial stage that focuses on the structure may result in structural changes or artifacts
(highlighted by the red box in Figure 9 (a)), as the structure has not yet stabilized. Conversely, in the
later stage, where structural information has stabilized and the focus shifts towards texture details,
reusing structural features accelerates inference with minimal quality loss, as shown in Figure 9 (b).

(a) 0% - 40% (b) 40% - 95%Original (a) 0% - 40% (b) 40% - 95%Original (a) 0% - 40% (b) 40% - 95%Original

Man and boy holding a surfboard getting picture taken. Two guys playing baseball, with trees in the back. A cat sitting in front of a computer monitor.

Figure 9: Effect of using BlockDance at different denoising stages.

Impact of reusing blocks at different depths on generated images. We investigate the impact of
reusing only the shallow and middle blocks versus reusing deeper blocks as well in the transformer, as
shown in Figure 10. Due to the low similarity of features in the deeper blocks, reusing them results in
the loss of computation related to details, leading to degradation in texture details, as highlighted by
the red boxes in Figure 10 (b). Conversely, reusing the higher similarity shallow and middle blocks,
which focus on structural information, results in minimal quality degradation.

(a) Shallower layers (b) Deeper blocksOriginal

An astronaut riding a horse. A big burly bear is show with grass in the background. The man sat on the ground and meditated.

(a) Shallower layers (b) Deeper blocksOriginal (a) Shallower layers (b) Deeper blocksOriginal

Figure 10: Impact of reusing blocks at different depths on generated images.

5 CONCLUSION

In this paper, we introduce BlockDance, a novel training-free acceleration approach for DiTs that
leverages the redundancy across adjacent denoising steps. During the denoising process, by caching
and reusing structure-level features after the structure has stabilized, i.e., structurally similar spatio-
temporal features, BlockDance significantly accelerates DiTs with minimal quality loss and maintains
high consistency with the base model. Additionally, we propose BlockDance-Ada, a variant of
BlockDance that dynamically allocates computational resources based on instance-specific reuse
policies, further enhancing the efficiency of DiTs inference while maintaining superior image quality.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

Accelerate at any number of steps. The acceleration paradigm we proposed is complementary
to other acceleration techniques and can be used on top of them for further enhancement. Here,
we validate the performance of BlockDance across different sampling steps for each model. As
demonstrated in Tables 5, 6, and 7, BlockDance effectively accelerates the process across various
step counts while maintaining the quality of the generated content.

Table 5: Accelerate PixArt-α at any number of steps. All the methods adopt the DPM-Solver sampler.

COCO2017 PixArt-α BlockDance (N=2)

Latency ↓ FID ↓ Latency ↓ FID ↓
step=20 2.02 30.79 1.51 (↑ 24.8%) 30.87
step=30 3.10 30.41 2.31 (↑ 25.4%) 30.69
step=40 4.15 30.19 3.08 (↑ 25.8%) 30.35

Table 6: Accelerate DiT-XL/2 at any number of steps. All the methods here adopt the DDIM sampler.

ImageNet DIT-XL/2 BlockDance (N=2)

Latency ↓ FID ↓ Latency ↓ FID ↓
step=30 1.07 16.15 0.67 (↑ 37.3%) 16.06
step=40 1.43 16.04 0.90 (↑ 37.1%) 15.91
step=50 1.79 15.89 1.12 (↑ 37.4%) 15.70

Table 7: Accelerate Open-Sora at any number of steps. All the methods here adopt the DDIM sampler.

MSR-VTT Open-Sora BlockDance (N=2)

Latency ↓ FVD ↓ Latency ↓ FVD ↓
step=50 27.72 582.91 18.16 (↑ 34.5%) 585.21
step=75 36.53 561.72 23.78 (↑ 34.9%) 562.83
step=100 44.99 548.72 29.32 (↑ 34.7%) 550.22

Accelerate SD3 for text-to-image generation. To validate the effectiveness of our proposed
paradigm across different DiT architecture variants, we apply BlockDance to MMDiT-based DiT
models (Esser et al., 2024; Labs, 2024), such as Stable Diffusion 3 (Esser et al., 2024). The results
are conducted on the 25k COCO2017 validation set, as shown in Table 8. The experimental results
indicate that with N = 2, BlockDance accelerates SD3 by 25.3% while maintaining comparable
image quality, both in terms of visual aesthetics and prompt following. Different speed-quality
trade-offs can be modulated by N.

Quantitative results of the ablation on PixArt-α. The quantitative results of the ablation experi-
ments on the impact of applying BlockDance at different denoising stages are shown in Table 9. These
results are consistent with the conclusions drawn in Figure 9, indicating that reducing redundant
computation related to structural information after the structure has stabilized can accelerate inference
with minimal quality loss. The quantitative results of the ablation experiments on the impact of
reusing blocks at different depths on generated images are shown in Table 10. These results align
with the conclusions in Figure 10, showing that reusing only the structure-focused blocks, i.e. shallow
and middle blocks, leads to better image quality.
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Table 8: Text-to-image generation on SD3.

Model Latency (s) ↓ IR ↑ Pick ↑ IS ↑ CLIP ↑ FID ↓ SSIM ↑
SD3 4.35 1.01 22.49 41.52 0.334 26.95 -

BlockDance(N=2) 3.25 (↑25.3%) 1.00 22.45 40.89 0.334 27.52 0.96
BlockDance(N=3) 2.99 (↑31.3%) 0.99 22.42 40.52 0.334 27.74 0.95
BlockDance(N=4) 2.74 (↑37.0%) 0.98 22.34 39.53 0.334 28.42 0.92

Table 9: Ablation on denoising stage.

Model Latency (s) ↓ IR ↑ Pick ↑ IS ↑ SSIM ↑
PixArt-α 3.1 0.85 22.55 39.07 -

BlockDance, 0%∼40% 2.46 (↑ 20.6%) 0.76 22.31 37.69 0.79
BlockDance, 40%∼95% 2.31 (↑ 25.4%) 0.82 22.46 38.73 0.89

Table 10: Ablation on reusing at different blocks.

Model Latency (s) ↓ IR ↑ Pick ↑ IS ↑ SSIM ↑
PixArt-α 3.1 0.85 22.55 39.07 -

BlockDance, Deep 2.22 (↑ 28.4%) 0.79 22.39 38.24 0.85
BlockDance, Shallow 2.31 (↑ 25.4%) 0.82 22.46 38.73 0.89

More qualitative results. To comprehensively verify the method we proposed, we present addi-
tional qualitative results for each DiT model, as indicated in Figures 11, 12, and 13. Our method
maintains high-quality content with a high degree of consistency with the content generated by the
original models, while achieving significant acceleration.

Limitation. Although BlockDance accelerates various DiT models across various generative tasks
in a plug-and-play manner, its application is limited in scenarios with very few denoising steps (e.g.,
1 to 4 steps), due to the reduced similarity of features between adjacent steps. However, in scenarios
where most base models use a larger number of steps during inference, training a distilled version
with fewer steps for each base model incurs high training costs and time consumption, whereas our
method requires no additional training costs and operates in a plug-and-play manner.
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A bedroom with a 
bookshelf full of books.

A group of three stuffed 
animal teddy bears.

A girl with blue hair is 
taking a self portrait. 

A bowl of broccoli with 
sauce over it.

A girl is taking a picture 
of fishing.

A man is surfing in the 
crystal blue water

Elephants standing 
beside each other 
outside on a road. 

A dog standing on a bench 
with an orange tree in back.

Couple of empty 
chairs on the beach 
under an umbrella.

The person is sleeping 
on a park bench.

Kitchen with many old 
appliances and many 
pots and pans.

A vase with various 
flowers in it on a display 
case.

Christmas decorations 
surrounding a clock 
tower in a town square.

A person in the air with 
skiing equipment. 

a bird is outside of a 
window on a boat 

A airplane that is sitting 
on a runway.

A man holding an 
umbrella in a  hallway.

A little kid swinging a 
bat in a baseball game.

A picture of a factory 
making doughnuts full 
of joy. 

A picture of a little statue in 
some dirt.

A person on a 
motorcycle riding on a 
mountain.

Stuffed bear wearing 
glasses with electronic 
audio equipment.

A variety of cars on a 
street with buildings.

a man standing next to 
a horse in the woods

Figure 11: PixaArt-α: Samples with 30 DPM-Solver steps (upper row) and 30 DPM-Solver steps +
BlockDance with N = 2 (lower row). Our method speeds up 25.4% while maintaining the visual
aesthetics and prompt following. Here, prompts are selected from the COCO2017 validation set.
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Figure 12: DiT-XL/2 for ImageNet: Samples with 50 DDIM steps (upper row) and 50 DDIM steps +
BlockDance with N = 2 (lower row). Our method achieves a 37.4% acceleration while maintaining
image quality.
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a man dances in a room and flips through photos

a lady looks scared while talking to a man

a woman keeps the dish closed on flame to get it cooked

a man with a british accent commenting on a horse race

a cook prepares food items in a metal bowl

a boy is playing soccer

Figure 13: Open-Sora: Samples with 100 DDIM steps (upper row) and 100 DDIM steps + BlockDance
with N = 2 (lower row). Our method achieves a 34.8% acceleration while maintaining visual quality
and high motion consistency with the original video.
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