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ABSTRACT

Detecting out-of-distribution (OOD) inputs is a central challenge for safely de-
ploying machine learning models in the real world. Previous methods commonly
rely on an OOD score derived from the overparameterized weight space, while
largely overlooking the role of sparsification. In this paper, we reveal important
insights that reliance on unimportant weights and units can directly attribute to the
brittleness of OOD detection. To mitigate the issue, we propose a sparsification-
based OOD detection framework termed DICE. Our key idea is to rank weights
based on a measure of contribution, and selectively use the most salient weights to
derive the output for OOD detection. We provide both empirical and theoretical
insights, characterizing and explaining the mechanism by which DICE improves
OOD detection. By pruning away noisy signals, DICE provably reduces the output
variance for OOD data, resulting in a sharper output distribution and stronger
separability from ID data. DICE establishes state-of-the-art performance, reducing
the FPR95 by up to 24.69% compared to the previous best method.

1 INTRODUCTION

Deep neural networks deployed in real-world systems often encounter out-of-distribution (OOD)
inputs—unknown samples that the network has not been exposed to during training, and therefore
should not be predicted by the model in testing. Being able to estimate and mitigate OOD uncertainty
is paramount for safety-critical applications such as medical diagnosis (Wang et al., 2017; Roy et al.,
2021) and autonomous driving (Filos et al., 2020). For example, an autonomous vehicle may fail
to recognize objects on the road that do not appear in its detection model’s training set, potentially
leading to a crash. This gives rise to the importance of OOD detection, which allows the learner to
express ignorance and take precautions in the presence of OOD data.

The main challenge in OOD detection stems from the fact that modern deep neural networks can
easily produce overconfident predictions on OOD inputs, making the separation between ID and
OOD data a non-trivial task. The vulnerability of machine learning to OOD data can be hard-wired
in high-capacity models used in practice. In particular, modern deep neural networks can overfit
observed patterns in the training data (Zhang et al., 2016), and worse, activate features on unfamiliar
inputs (Nguyen et al., 2015). To date, existing OOD detection methods commonly derive OOD
statistics using overparameterized weights, while largely overlooking the role of sparsification.

In this paper, we start by revealing key insights that reliance on unimportant units and weights can
directly attribute to the brittleness of OOD detection. Empirically on a network trained with CIFAR-
10, we show that an OOD image can activate a non-negligible fraction of units in the penultimate
layer (see Figure 1, right). Each point on the horizontal axis corresponds to a single unit. The y-axis
measures the unit contribution (i.e., weight× activation) to the class output, with the solid line
and the shaded area indicating the mean and variance, respectively. Noticeably, for OOD data (gray),
we observe a non-negligible fraction of “noisy” units that display high variances of contribution,
which is then aggregated to the model’s output through summation. As a result, such noisy signals can
undesirably manifest in model output—increasing the variance of output distribution and reducing
the separability from in-distribution (ID) data.

The above observation naturally inspires a simple and surprisingly effective method, Directed
Sparisification (DICE), for OOD detection. In particular, we show that utilizing a sparse subset
of weights with a significant contribution to the final logit output can better differentiate between
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Figure 1: Illustration of unit contribution (i.e., weight × activation) to the class output. For class c, the
output fc(x) is the summation of unit contribution from the penultimate feature layer of a neural network. Units
are sorted in the same order, based on the expectation of ID data’s contribution (averaged over many CIFAR-10
samples) on the x-axis. Shades indicate the variance for each unit. Left: For in-distribution data (CIFAR-10,
airplane), only a subset of units contributes to the model output. Right: In contrast, out-of-distribution (OOD)
data can trigger a non-negligible fraction of units with noisy signals, as indicated by the variances.

ID and OOD data. Conceptually, DICE leverages the observation that a model’s prediction for an
ID class depends on only a subset of important units (and corresponding weights), as evidenced in
Figure 1 (left). To exploit this, our key idea is to rank weights based on the measure of contribution,
and selectively use the most significant weights to derive the output for OOD detection. Importantly,
DICE can be conveniently used by post hoc weight masking on a pre-trained network and therefore
can preserve the ID classification accuracy.

We provide both empirical and theoretical insights characterizing and explaining the mechanism by
which DICE improves OOD detection. We perform extensive evaluations and establish state-of-the-
art performance on a suite of common OOD detection benchmarks, including CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), and a large-scale ImageNet dataset (Deng et al., 2009). DICE reduces
the FPR95 by up to 30.13% compared to the counterpart without sparsification. Moreover, we
perform ablation using various sparsification techniques and demonstrate the superiority of directed
sparsification for OOD detection.

Theoretically, by pruning away noisy signals from unimportant units and weights, DICE provably
reduces the output variance and results in a sharper output distribution (see Section 6). The sharper
distributions lead to a stronger separability between ID and OOD data and overall improved OOD
detection performance (c.f. Figure 3). Our key results and contributions are:

• We introduce DICE, a simple and effective approach for OOD detection utilizing post hoc
weight sparsification. We show DICE can generalize effectively to different network archi-
tectures, achieving improved OOD detection while preserving the classification accuracy.

• We extensively evaluate DICE on a suite of OOD detection tasks and establish a state-of-
the-art performance. Compared to the previous best baseline, DICE reduces the FPR95 by
24.69% on a challenging ImageNet evaluation task.

• We provide empirical ablation and theoretical analysis that improves understanding of a
sparsification-based method for OOD detection. Our analysis reveals an important variance
reduction effect, which explains the effectiveness of DICE. We hope our insights inspire
future research on utilizing weight sparsification for OOD detection.

2 PRELIMINARIES AND ANALYSIS

We start by recalling the general setting of the supervised learning problem. We denote byX = Rd the
input space and Y = {1, 2, ..., C} the output space. A learner is given access to a set of training data
D = {(xi, yi)}Ni=1 drawn from an unknown joint data distribution P defined on X ×Y . Furthermore,
let PX denote the marginal probability distribution on X .

Problem statement OOD detection is a binary classification problem to distinguish between in- vs.
out-of-distribution data. Given a classifier f learned on in-distribution PX , the goal is to design a
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scoring function,

g : x→ {in, out},

that classifies whether a sample x ∈ X is from PX or not.

Why noisy signals are harmful for OOD detection? A conceptual example We consider a toy
example in Figure 2, where the model’s output f is the summation of two input variables v1 and v2,
each representing a unit. For simplicity, we assume v1 and v2 are independent. For OOD samples,
we assume two inputs are Gaussian distributed noise signals, with v1 ∼ N (−1, 1) and v2 ∼ N (1, 1).
The output f = v1 + v2 has a variance of 2 despite a zero mean:

f ∼ N (0, 2). (1)

Importantly, the variance increases significantly with more units, which is σ2
1 + σ2

2 + ...+ σ2
m under

m independent variables. The larger variance can result in less separability from ID data’s output
distribution (see Figure 3), and therefore potentially hinders OOD detection performance.

+
ffgg gg

=

𝒩(−1,1) 𝒩(1,1) 𝒩(0,2)

Input from unit1 Input from unit2 Output for OOD

variance increaseszero mean

Figure 2: A toy example of summation of two independent Gaussian variables has increased variance.

3 METHOD

Our OOD uncertainty estimation framework with Directed Sparsification (DICE) is illustrated in
Figure 3. In what follows, we provide a method overview and then describe directed sparsification in
detail (Section 3.1). We propose a new OOD detection method with sparsification in Section 3.2.

Method overview As aforementioned, OOD detection performance can suffer from the noisy
signals from the high-dimensional inputs. To mitigate this issue, our key idea is to selectively use a
subset of important weights to derive the output for OOD detection. By utilizing sparsification, the
network prevents adding irrelevant variables to the output. We illustrate our idea in Figure 3. Without
DICE (left), the final output is a summation of weighted activations across all units, which can have a
high variance for OOD data (colored in gray). In contrast, with DICE (right), the variance of output
can be significantly reduced, which improves separability from ID data. We proceed with describing
the mechanism that achieves our novel idea.
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Figure 3: Illustration of out-of-distribution detection using Directed Sparsification (DICE). We consider a
pre-trained neural network, which encodes an input x to a feature vector h(x) ∈ Rm. Left: The logit output
fc(x) of class c is a linear combination of activation from all units in the preceding layer, weighted by wi. The
full connection results in a high variance for OOD data’s output, as depicted in the gray. Right: Our proposed
approach leverages a selective subset of weights, which effectively reduces the output variance for OOD data,
resulting in a sharper score distribution and stronger separability from ID data. The output distributions are
based on CIFAR-10 trained network, with ID class label “horse” and SVHN as OOD.
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3.1 DIRECTED SPARSIFICATION

We consider a deep feature extractor parameterized by θ, which encodes an input x ∈ Rd to a feature
space with dimension m. We denote by h(x) ∈ Rm the feature vector from the penultimate layer of
the network. A weight matrix W ∈ Rm×C connects the feature h(x) to the output f(x).

Contribution matrix We perform a directed sparsification based on a measure of contribution,
and preserve the most important weights in W. To measure the contribution, we define a contribution
matrix V ∈ Rm×C , where each column vc ∈ Rm is given by:

vc = Ex∼D[wc � h(x)], (2)

where � indicates the element-wise multiplication, and wc indicates weight vector for class c. Each
element in vc ∈ Rm intuitively measures the corresponding unit’s average contribution to class c,
estimated on in-distribution data D. A larger value indicates a higher contribution to the output fc(x)
of class c. The vector vc is derived for all classes c ∈ {1, 2, ..., C}, forming the contribution matrix
V. Each element vic ∈ V measures the average contribution (weight × activation) from a
unit i to the output class c ∈ {1, 2, ..., C}.
We can now select the top-k weights based on the k-largest elements in V. In particular, we define a
masking matrix M ∈ Rm×C , which returns a matrix by setting 1 for entries corresponding to the
k largest elements in V and setting other elements to zeros. The model output under contribution-
directed sparsification is given by

fDICE(x; θ) = (M�W)>h(x) + b, (3)

where b ∈ RC is the bias vector. The procedure described above essentially accounts for inputs from
the most relevant units in the penultimate layer. Importantly, the sparsification can be conveniently
imposed by post hoc weight masking on a pre-trained network, without changing any parameter-
izing of the neural network. Therefore one can improve OOD detection while preserving the ID
classification accuracy, as we show in Section 5.

Sparsity parameter p To align with the convention in literature, we use the sparsity parameter
p = 1 − k

m·C in the remainder paper. A higher p indicates a larger fraction of weights dropped.
When p = 0, the output becomes equivalent to the original output f(x; θ) using dense transformation,
where f(x; θ) = W>h(x) + b.

3.2 OOD DETECTION WITH DICE

Our method DICE in Section 3.1 can be flexibly leveraged by the downstream OOD scoring function:

gλ(x) =

{
in Sθ(x) ≥ λ
out Sθ(x) < λ

, (4)

where a thresholding mechanism is exercised to distinguish between ID and OOD during test time.
The threshold λ is typically chosen so that a high fraction of ID data (e.g., 95%) is correctly classified.
In particular, we derive an energy score using the logit output fDICE(x) from contribution-directed
sparsification. We use energy score since it is easy to compute, hyperparameter-free, directly compat-
ible with DICE (see remark below and Section 6), and achieves strong performance (see Section 4).
Note that DICE can also be compatible with the scoring function such as maximum softmax probabil-
ity (Hendrycks & Gimpel, 2017) (see Appendix F). Specifically, the energy function (Liu et al., 2020)
maps the logit outputs fDICE(x) to a scalar Eθ(x) ∈ R, which is relatively lower for ID data:

Sθ(x) = −Eθ(x) = log

C∑
c=1

exp(fDICE
c (x)). (5)

Note that we negate the sign of energy score to align with the convention that samples with higher
scores are classified as ID and vice versa.

Remark Energy score is directly compatible with DICE since logsumexp operation is a smooth
approximation of maximum logit, i.e., log

∑
c e
fc(x) ≈ maxc fc(x). Our theoretical analysis (Sec-

tion 6) shows that DICE reduces the variance of logit fc(x). This means that for detection scores such
as energy score, the gap between OOD and ID score will be enlarged after applying DICE, which
makes thresholding more capable of separating OOD and ID inputs and benefit OOD detection.
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Methods

OOD Datasets AverageiNaturalist SUN Places Textures
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

MSP 63.69 87.59 79.98 78.34 81.44 76.76 82.73 74.45 76.96 79.29
ODIN 62.69 89.36 71.67 83.92 76.27 80.67 81.31 76.30 72.99 82.56
Mahalanobis? 96.34 46.33 88.43 65.20 89.75 64.46 52.23 72.10 81.69 62.02
Energy 64.91 88.48 65.33 85.32 73.02 81.37 80.87 75.79 71.03 82.74
G-ODIN§ 66.36 84.68 65.93 84.70 65.39 85.40 64.68 80.50 65.59 83.82
DICE (ours) 33.78±0.97 93.70±0.67 35.03±1.34 93.61±0.85 50.59±1.86 89.35±0.78 44.19±1.56 88.21±0.73 40.90±1.43 91.22±0.76

Table 1: Main results. Comparison with competitive post hoc out-of-distribution detection methods. All
methods are based on a discriminative model trained on ImageNet, without using any auxiliary outlier data. ↑
indicates larger values are better and ↓ indicates smaller values are better. All values are percentages. Bold
numbers are superior results. § indicates model retraining using a different loss function is required. ? indicates a
separate binary classifier needs to be trained for OOD detection. We report standard deviations estimated across
5 independent runs.

4 EXPERIMENTS

In this section, we evaluate our method on a suite of OOD detection tasks. In Section 4.1, we
begin with a large-scale image classification network trained on ImageNet (Deng et al., 2009). We
continue with the CIFAR benchmarks (Krizhevsky et al., 2009) that are routinely used in literature
(Section 4.2).

4.1 EVALUATION ON LARGE-SCALE IMAGENET CLASSIFICATION NETWORKS

Dataset We first evaluate DICE on a large-scale ImageNet classification model. OOD detection for
ImageNet model is more challenging due to both a larger feature space (m = 2, 048) as well as a
larger label space (C = 1, 000). In particular, the large-scale evaluation can be more relevant to
real-world applications, where the deployed models often operate on images that have high resolution
and contain more class labels. Moreover, as the number of feature dimensions increases, noisy
signals may increase accordingly, which can corrupt the output more and make OOD detection
more challenging. We use four OOD test datasets (see Appendix I for details). Specifically, the
four test OOD datasets are from (subsets of) Places365 (Zhou et al., 2017), Textures (Cimpoi
et al., 2014), iNaturalist (Horn et al., 2018), and SUN (Xiao et al., 2010) with non-overlapping
categories w.r.t ImageNet. The evaluations span a diverse range of domains including fine-grained
images, scene images, and textural images.

Experimental details We use Google BiT-S models (Kolesnikov et al., 2020)1 for all methods
(including baselines). The models are trained on ImageNet-1k, using ResNet-v2 architecture (He
et al., 2016) with depth 101. At test time, all images are resized to 480 × 480. We use the
entire training dataset to estimate the contribution matrix and mask M. We use a validation set of
Gaussian noise images, which are generated by sampling from N (0, 1) for each pixel location.
The optimal p is selected from {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}, which is 0.9 for all datasets. We use
Gaussian noise for its simplicity, easy to generate and use, and the fact that it is a clear OOD w.r.t ID
data. We also show in Table 4 using Gaussian can already find the near-optimal one on all three ID
datasets considered. The hardware used for experiments is specified in Appendix D.

Comparison with OOD detection baselines In Table 1, we compare DICE with OOD detection
methods that are competitive in the literature, where DICE establishes the state-of-the-art performance.
For readers’ convenience, a brief introduction of baselines and hyperparameters is provided in
Appendix B. For a fair comparison, all methods use the model post hoc. We report performance for
each OOD test dataset, as well as the average of the four. DICE outperforms baselines, including
Maximum Softmax Probability (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), Mahalanobis
distance (Lee et al., 2018), Generalized ODIN (Hsu et al., 2020), and Energy score (Liu et al., 2020).
Noticeably, DICE reduces the FPR95 by 24.69% compared to the best baseline (Hsu et al., 2020).
Note that Generalized ODIN requires model retraining under the DeConf-C loss, and Mahalanobis
requires training a separate binary classifier. Moreover, Mahalanobis displays limiting performance
with FPR95 40.79% lower than DICE. This is likely due to the increased size of label space makes
the class-conditional Gaussian density estimation less viable. In contrast, DICE is easier to use in
practice, and can be implemented through simple post hoc weight masking.

1https://github.com/google-research/big_transfer.
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4.2 EVALUATION ON COMMON BENCHMARKS

Experimental details We use CIFAR-10 (Krizhevsky et al., 2009), and CIFAR-100 (Krizhevsky
et al., 2009) datasets as in-distribution data. We use the standard split with 50,000 training im-
ages and 10,000 test images. We evaluate the model on six common OOD benchmark datasets:
Textures (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), Places365 (Zhou et al., 2017),
LSUN-Crop (Yu et al., 2015), LSUN-Resize (Yu et al., 2015), and iSUN (Xu et al., 2015). We
use DenseNet-101 architecture (Huang et al., 2017) and train on in-distribution datasets. The feature
dimension of the penultimate layer is 342. For both CIFAR-10 and CIFAR-100, the model is trained
for 100 epochs with batch size 64, weight decay 0.0001 and momentum 0.9. The start learning rate is
0.1 and decays by a factor of 10 at epochs 50, 75, and 90.

DICE outperforms discriminative-based approaches We show the comparison in Table 2. Due to
the space limit, all the numbers reported are averaged over six OOD test datasets described above.
The full results for each evaluation dataset are provided in Appendix H. On CIFAR-100, we show
that using a sparse connection reduces the average FPR95 by 18.73% compared to the counterpart
without sparsification (Liu et al., 2020). In practice, DICE can be implemented through a simple post
hoc weight masking, and therefore can improve OOD detection while ensuring the ID classification
accuracy. We show that DICE is effective on a different architecture such as ResNet-101 (results in
Supplementary, Section C).

Method SVHN CIFAR-100 CelebA
Glow 0.64 0.65 0.54
IGEBM 0.43 0.54 0.69
JEM-softmax 0.89 0.87 0.79
JEM-likelihood 0.67 0.67 0.75
Input Complexity 0.95 0.74 0.86
DICE (ours) 0.95 0.89 0.87

Table 3: Comparison with generative-based models
for OOD detection. Models are trained on CIFAR-10.
Values are AUROC.

DICE outperforms generative methods In
Table 3, we also compare with generative-based
methods: Glow (Kingma & Dhariwal, 2018),
IGEBM (Du & Mordatch, 2019), JEM (Grath-
wohl et al., 2019), and input complexity (Serrà
et al., 2020). We follow the same evaluations as
in prior literature. Using CIFAR-10 as ID data,
DICE outperforms the best method (Serrà et al.,
2020) by 5.3% on average. It is also important to
note that generative models can be prohibitively
challenging to train and optimize on large-scale datasets (and therefore are primarily evaluated
on CIFAR-10 in literature). DICE does not suffer from this issue and performs competitively on
ImageNet, as we show in Section 4.1 above.

5 DISCUSSION AND ABLATIONS

Ablation on different pruning methods In this ablation, we explore and contrast OOD detection
performance under the most common post hoc sparsification methods, and show that our directed
sparsification is optimal among all. In particular, we consider a suite of both unit-based and weight-
based sparsification strategies that are popular in literature. We consider (1) unit dropout (Srivastava
et al., 2014) which randomly drops a fraction of units, (2) unit pruning (Li et al., 2017) which drops
units with the smallest L2 norm of the corresponding weight vectors, (3) weight dropout (Wan et al.,

Method Type Method
CIFAR-10 CIFAR-100 ImageNet

FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑

Non-Sparse

MSP 48.73 92.46 80.13 74.36 76.96 79.29
ODIN 24.57 93.71 58.14 84.49 72.99 82.56
Mahalanobis 31.42 89.15 50.14 85.03 81.69 62.06
Energy 26.55 94.57 68.45 81.19 71.03 82.74
Generalized ODIN 34.25 90.61 52.87 85.24 65.59 83.82

Sparse

Weight-Droput 62.12 85.12 77.48 71.59 70.99 79.27
Unit-Droput 86.63 66.40 85.56 61.06 91.66 53.96
Weight-Pruning 24.25 94.84 59.93 84.22 57.22 87.70
Unit-Pruning 26.55 94.57 68.48 81.19 79.96 76.07
DICE (ours) 20.83±1.58 95.24±0.24 49.72±1.69 87.23±0.73 40.90±1.43 91.22±0.76

Table 2: Ablation results. Comparison of different OOD detection baselines and sparsification method. All
sparsification methods are based on the same OOD scoring function (Liu et al., 2020), with sparsity parameter
p = 0.9. ↑ indicates larger values are better and ↓ indicates smaller values are better. All values are percentages
and are averaged over multiple OOD test datasets. Bold numbers are superior results. We report standard
deviations estimated across 5 independent runs.
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p = 0.8 
FPR95: 19.86%

p = 0 
FPR95: 29.25%

p = 0.9 
FPR95: 5.02%

CIFAR-10 vs SVHN

Figure 4: Output distribution for ID (blue) and OOD
(gray) under different sparsity parameters p. From left
to right, the variances of gray distributions decrease
as the sparsity increases, resulting in improved OOD
detection performance (measured by FPR95).

Sparsity FPR95↓ AUROC ↑ OOD STD↓
p = 0.99 72.79 75.19 0.1595
p = 0.9 50.60 86.89 0.1293
p = 0.7 52.74 85.80 0.1247
p = 0.5 52.87 85.72 0.1255
p = 0.3 52.73 85.68 0.1264
p = 0.1 54.02 85.67 0.1366

p = 0 (Liu et al., 2020) 68.45 81.19 0.1913

Table 4: Effect of varying sparsity parameter p during
inference time. Model is trained on CIFAR-100 using
DenseNet101 (Huang et al., 2017). A similar trend is
observed for other ID datasets as shown in Appendix A.

2013) which randomly drops weights in the fully connected layer, and (4) weight pruning (Han
et al., 2015) drops weights with the smallest entries under the L1 norm. For consistency, we use the
same OOD scoring function (e.g., energy) and the same sparsity parameter p = 0.9 for all methods.

Our ablation reveals several important insights shown in Table 2. First, in contrasting weight dropout
vs. DICE, a salient performance gap of 41.29% (FPR95) is observed on CIFAR-10 under the same
sparsity. This suggests the importance of dropping weights directedly rather than randomly. Second,
DICE outperforms a popular L1-norm-based pruning method (Han et al., 2015) by up to 10.21%
(FPR95) on CIFAR-100. While it prunes weights with low magnitude, negative weights with large
L1-norm can be kept. Unfortunately, the negative weights can undesirably corrupt the output with
noisy signals (as shown in Figure 1). The performance gain of DICE over (Han et al., 2015) attributes
to our contribution-directed sparsification, which is better suited for OOD detection. In Appendix G,
we show that further tuning p for these methods does not outperform ours.

Effect of sparsity parameter p We now characterize the effect of sparsity parameter p. In Table 4,
we summarize the OOD detection performance for DenseNet trained on CIFAR-100, where we vary
p = {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. Interestingly, we observe the performance improves as with mild
sparsity parameter p. This observation confirms that over-parameterization does compromise the
OOD detection ability, and DICE can effectively alleviate the problem. When p is too large (e.g.,
p = 0.99), the OOD performance starts to degrade. A similar trend holds on other ID datasets
including CIFAR-10 and ImageNet, with full details in Appendix A.

In-distribution classification accuracy DICE can improve OOD detection while maintaining com-
parable ID classification accuracy. For example, on CIFAR-10, the accuracy is 95.10% (original) vs.
95.12% (DICE, p = 0.9). Importantly, once the input image is marked as ID, one can always use the
original FC layer, which is guaranteed to give identical classification accuracy.

Method CIFAR-10↓ CIFAR-100 ↓ ImageNet ↓
Bottom-k 91.87 99.70 99.10

(Top+Bottom)-k 24.25 59.93 57.22
Random-k 62.12 77.48 70.77

Top-k (DICE) 21.76 50.60 42.17

Table 5: Ablation on different strategies of choosing a subset of
units. Values are FPR95 (averaged over multiple test datasets).

Ablation on unit selection We have
shown that choosing a subset of weight
parameters (with top-k unit contribution)
significantly improves the OOD detec-
tion performance. In this ablation, we
also analyze those "lower contribution
units" for OOD detection. Specifically,
we consider: (1) Bottom-k which only
includes k unit contribution with least
contribution values, (2) top+bottom-k which includes k unit contribution with largest and smallest
contribution values, (3) random-k which randomly includes k unit contribution and (4) top-k which is
equivalent to DICE method. In Table 5, we show that DICE outperforms all variants.

Effect of variance reduction for output distribution Figure 4 shows that DICE has an interesting
variance reduction effect on the output distribution for OOD data, and at the same time preserves
the information for the ID data (CIFAR-10, class “horse"). The output distribution without any
sparsity (p = 0) appears to have a larger variance, resulting in less separability from ID data (see left
of Figure 4). In contrast, sparsification with DICE results in a sharper distribution, which benefits
OOD detection. In Table 4, we also measure the standard deviation of energy score for OOD data
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(normalized by the mean of ID data’s OOD scores in each setting). By way of sparsification, DICE can
reduce the output variance. Next, we formally characterize this and provide a theoretical explanation.

6 WHY DOES DICE IMPROVE OOD DETECTION?
In this section, we formally explain the mechanism by which reliance on irrelevant units hurts OOD
detection and how DICE effectively mitigates the issue. Our analysis highlights that DICE reduces
the output variance for both ID and OOD data. Below we provide details.

Setup For a class c, we consider the unit contribution vector v, the element-wise multiplication
between the feature vector h(x) and corresponding weight vector w. We contrast the two outputs
with and without sparsity:

fc =

m∑
i=1

vi (w.o sparsity) (6)

fDICE
c =

∑
i∈top units

vi (w. sparsity), (7)

where fc is the output using the summation of all units’ contribution, and fDICE
c takes the input from

the top units (ranked based on the average contribution on ID data, see bottom of Figure 5).

i=t

i=1
i=m f fDICE

OOD

f fDICE

ID

Units 
(Units are sorted in the same order)

vi

Figure 5: Units in the penultimate layer are sorted based on the
average contribution to a CIFAR-10 class (“airplane”). OOD data
(SVHN) can trigger a non-negligible fraction of units with noisy
signals on the CIFAR-10 trained model. Units are sorted in the
same order, based on the ID contribution.

DICE reduces the output variance
We consider the unit contribution vec-
tor for OOD data v ∈ Rm, where
each element is a random variable vi
with mean E[vi] = µi and variance
Var[vi] = σ2

i .

For simplicity, we assume each com-
ponent is independent, but our the-
ory can be extended to correlated vari-
ables (see Remark 1). Importantly,
indices in v are sorted based on the
same order of unit contribution on ID
data. In particular, units on the left-
most side generally have negative con-
tributions ui < 0, whereas units on
the rightmost side have positive con-
tributions ui > 0. By using units on
the rightmost side, we now show the key result that DICE reduces the output variance.
Proposition 1. Let vi and vj be two independent random variables. Denote the summation r =
vi + vj , we have E[r] = E[vi] + E[vj ] and Var[r] = Var[vi] + Var[vj ].

Lemma 2. Assume there exists top m− t units yielding approximately identical mean E[fDICE
c ] ≈

E[fc]. Then the output variable fDICE
c under sparsification has reduced variance:

Var[fc]−Var[fDICE
c ] =

t∑
i=1

σ2
i

Proof. The proof directly follows Proposition 1.

Remark 1 (Extension to correlated variables) We can show in a more general case with correlated
variables, the variance reduction is:

Var[fc]−Var[fDICE
c ] =

t∑
i=1

σ2
i + 2

∑
1≤i<j≤m

Cov(vi, vj)− 2
∑

t<i<j≤m

Cov(vi, vj),

where Cov(·, ·) is the covariance. Our analysis shows that the covariance matrix primarily consists of
0, which indicates the independence of variables. Moreover, the summation of non-zero entries in the
full matrix (i.e., the second term) is greater than that of the submatrix with top units (i.e., the third
term), resulting in a larger variance reduction than in Lemma 2. See complete proof in Appendix E.

8
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Sparsity p = 0.9 p = 0.7 p = 0.5 p = 0.3 p = 0.1 p = 0

Ein[f
DICE
c ] - Eout[f

DICE
c ] 7.92 7.28 7.99 8.04 7.36 6.67

Table 6: Difference between the mean of ID’s output and OOD’s output. Here we use CIFAR-100 as ID data
and Ein[f

DICE
c ] - Eout[f

DICE
c ] is averaged over six common OOD benchmark datasets described in Section 4.

Remark 2 (Variance reduction on ID data) Note that we can also show the effect of variance
reduction for ID data in a similar way. Importantly, DICE effectively preserves the most important
information akin to the ID data, while reducing noisy signals that are harmful for OOD detection.

Remark 3 (Mean of output) We also show in Table 6 the effect of sparsity on the mean of output:
Ein[f

DICE
c ] and Eout[f

DICE
c ]. We show that DICE maintains similar (or even enlarges) differences

in terms of mean as sparsity p increases. Therefore, DICE overall benefits OOD detection due to
reduced output variances and increased differences of mean.

7 RELATED WORK

OOD detection for discriminative models The softmax confidence score has become a common
baseline for OOD detection (Hendrycks & Gimpel, 2017). Several works attempt to improve the OOD
uncertainty estimation using deep ensembles (Lakshminarayanan et al., 2017), ODIN score (Liang
et al., 2018), Mahalanobis distance-based confidence score (Lee et al., 2018), generalized ODIN
score (Hsu et al., 2020), and the energy score (Liu et al., 2020). However, previous methods primarily
derive OOD scores using overparameterzied weights. In contrast, our work is motivated by a novel
analysis of unit contribution, and shows that sparsification is a surprisingly effective approach for
OOD detection. A separate line of methods uses an auxiliary OOD dataset for model regularization
during training (Guenais et al., 2020; Hendrycks et al., 2019; Papadopoulos et al., 2020; Mohseni
et al., 2020). However, in many applications, it can be prohibitive to construct an auxiliary outlier
dataset. In contrast, our method does not assume the availability of any auxiliary data and can be
broadly used for any pre-trained model.

OOD detection with generative models Alternative approaches for detecting OOD inputs resort
to generative models that directly estimate in-distribution density (Dinh et al., 2016; Kingma &
Dhariwal, 2018; Tabak & Turner, 2013; Van den Oord et al., 2016). However, Nalisnick et al.
showed that deep generative models can assign a high likelihood to OOD data. Several methods
improve OOD detection using generative models, including likelihood ratios (Ren et al., 2019; Serrà
et al., 2020), likelihood regret (Xiao et al., 2020). However, generative models can be prohibitively
challenging to train and optimize (Hinz et al., 2019), and the performance can often lag behind the
discriminative counterpart (Kirichenko et al., 2020; Wang et al., 2020). In contrast, our method relies
on a discriminative classifier, which is much easier to optimize and achieves stronger performance.

Pruning and sparsification A great number of effort has been put towards improving post hoc
pruning and training time regularization for deep neural networks (Babaeizadeh et al., 2016; Gomez
et al., 2019; Han et al., 2016; 2015; LeCun et al., 1989; Li et al., 2017; Louizos et al., 2018). Our
work primarily considers post hoc sparsification strategy which operates conveniently on a pre-trained
network. The two most popular Bernoulli dropout techniques include unit dropout (Srivastava et al.,
2014) and weight dropout (Srivastava et al., 2014). Post hoc pruning strategies truncate weights with
low magnitude (Han et al., 2015), or drop units with low weight norms (Li et al., 2017). Orthogonal
to existing works, our goal is to improve the OOD detection performance rather than the classification
task. DICE first demonstrates that sparsification can be useful for OOD detection. An in-depth
discussion and comparison of these methods are presented in Section 5.

8 CONCLUSION

This paper provides a simple sparsification strategy termed DICE , which ranks weights based on
a contribution measure and then uses the most significant weights to derive the output for OOD
detection. We provide both empirical and theoretical insights characterizing and explaining the
mechanism by which DICE improves OOD detection. By exploiting the most important weights,
DICE provably reduces the output variance for OOD data, resulting in a sharper output distribution
and stronger separability from ID data. Extensive experiments show DICE can significantly improve
the performance of OOD detection for over-parameterized networks. We hope our research can raise
more attention to the importance of weight sparsification for OOD detection.
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ETHICS STATEMENT

This paper aims to improve the reliability and safety of modern neural networks. Our study can lead
to direct benefits and societal impacts when deploying machine learning models in the real world.
Our work does not involve any human subjects or violation of legal compliance. We do not anticipate
any potentially harmful consequences to our work. Through our study and releasing our code, we
hope to raise stronger research and societal awareness towards the problem of out-of-distribution
detection in real-world settings.

REPRODUCIBILITY STATEMENT

Authors of the paper recognizes the importance and value of reproducible research. We summarize
our efforts below to facilitate reproducible results:

1. Dataset. We use publicly available datasets, which are described in detail in Section 4.1 and
Section 4.2. The concept list of OOD test datasets is exhaustively specified in Appendix I.

2. Assumption and proof. The complete proof of our theoretical contribution is provided in
Appendix E, which supports our theoretical claims made in Section 6.

3. Baselines. The description and hyperparameters of baseline methods are specified in
Appendix B.

4. Model. Our main results on ImageNet are based on Google’s BiT pre-trained model,
which has been publicly released https://github.com/google-research/
big_transfer. Due to the post hoc nature of our method, this allows the research
community to reproduce our numbers provided with the same model and evaluation datasets.

5. Implementation. The simplicity of the DICE ease the reproducibility, as it only requires
a few lines of code modification in the PyTorch model specification. Specifically, one can
replace the weight matrix in the penultimate layer of deep networks using the following
code:

1 threshold = numpy.percentile(V, p)
2 M = V > threshold
3 W_new = W * M

6. Open Source. The codebase and the dataset will be released for reproducible research.
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A EFFECT OF SPARSITY PARAMETER p ON CIFAR-10 AND IMAGENET

We characterize the effect of sparsity parameter p on other ID datasets. In Table 7, we summarize
the OOD detection performance for DenseNet trained on CIFAR-10 and ImageNet, where we vary
p = {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. A similar trend is observed as discussed in the main paper.

Sparsity CIFAR-10 ImageNet
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

p = 0.99 57.57 84.29 59.64 83.57
p = 0.9 21.76 94.91 41.91 91.10
p = 0.7 21.76 94.91 41.88 91.21
p = 0.5 21.76 94.91 41.83 91.21
p = 0.3 21.75 94.91 41.20 91.22
p = 0.1 21.92 94.90 43.97 89.87

p = 0 (Liu et al., 2020) 26.55 94.57 71.03 82.74

Table 7: Effect of varying sparsity parameter p on CIFAR-10 and ImageNet. Results are averaged on the test
datasets described in Section 4.

B DETAILS OF BASELINES

For the reader’s convenience, we summarize in detail a few common techniques for defining OOD
scores that measure the degree of ID-ness on a given input. By convention, a higher (lower) score is
indicative of being in-distribution (out-of-distribution).

MSP (Hendrycks & Gimpel, 2017) propose to use the maximum softmax score as the OOD score.

ODIN (Liang et al., 2018) Liang et al. improved OOD detection with temperature scaling and
input perturbation. In all experiments, we set the temperature scaling parameter T = 1000. For
ImageNet, we found the input perturbation does not further improve the OOD detection performance
and hence we set ε = 0. Following the setting in Liang et al. (2018), we set ε to be 0.004 for
CIFAR-10 and CIFAR-100.

Mahalanobis (Lee et al., 2018) Lee et al. use multivariate Gaussian distributions to model class-
conditional distributions of softmax neural classifiers and use Mahalanobis distance-based scores
for OOD detection. We use 500 examples randomly selected from ID datasets and an auxiliary
tuning dataset to train the logistic regression model and tune the perturbation magnitude ε. The
tuning dataset consists of adversarial examples generated by FGSM (Goodfellow et al., 2014) with a
perturbation size of 0.05. The selected ε’s are 0.001, 0.0, and 0.0 for ImageNet-1k, CIFAR-10, and
CIFAR-100, respectively.

Generalized ODIN (Hsu et al., 2020) Hsu et al. propose a specialized network to learn temperature
scaling and a novel strategy to choose perturbation magnitude, in order to replace manually-set
hyperparameters. Our training configurations strictly follows the the original paper, where we train
the DeConf-C network for 200 epochs without applying the weight decay in the final layer of the
Deconf classifier (notated as hi(x) in Hsu et al. (2020)). The other settings such as learning rate,
momentum and training batch size are the same as ours. Note that G-ODIN has slight advantage
due to longer training time than ours (100 epochs). We choose the best perturbation magnitude ε
by maximizing the confidence scores on 1,000 examples randomly selected from ID datasets. The
selected ε value is 0.02 for all (ImageNet-1k, CIFAR-10, and CIFAR-100).

Energy (Liu et al., 2020) Liu et al. proposed using energy score for OOD detection. The energy
function maps the logit outputs to a scalar E(x; f) ∈ R, which is relatively lower for ID data. Note
that Liu et al. used the negative energy score for OOD detection, in order to align with the convention
that S(x) is higher (lower) for ID (OOD) data. Energy score does not require hyperparameter tuning.
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C PERFORMANCE ON DIFFERENT ARCHITECTURE

In the main paper, we have shown that DICE is competitive comparing to other discriminative-
based OOD detection methods on DenseNet. In this section, we show in Table 8 that DICE is
also competitive on other network architecture including ResNet-101 (He et al., 2016). For a fair
comparison, all the methods use pre-trained networks post hoc, without regularizing with additional
data. The model is trained on the in-distribution dataset CIFAR-100. All the numbers reported
are averaged over six OOD test datasets described in Section 4.2. Our proposed method DICE
outperforms baselines.

Method FPR95 AUROC In-dist acc.
↓ ↑ ↑

MSP (Hendrycks & Gimpel, 2017) 81.80 74.74 76.38
ODIN (Liang et al., 2018) 68.82 79.18 76.38
Mahalanobis (Lee et al., 2018) 88.37 67.77 76.38
Generalized-ODIN (Hsu et al., 2020) 76.28 75.24 77.63
Energy score (Liu et al., 2020) 72.38 79.34 76.38
DICE (ours) 64.55 80.55 76.38

Table 8: Main comparison results with ResNet-101. Comparison with competitive post hoc out-of-
distribution detection methods. All methods are based on a discriminative model trained on ID data only,
without using any auxiliary outlier data. ↑ indicates larger values are better and ↓ indicates smaller values are
better. All values are percentages and are averaged over six OOD test datasets.

D HARDWARE

We conduct all the experiments on NVIDIA GeForce RTX 2080Ti GPUs.

E VARIANCE REDUCTION WITH CORRELATED VARIABLES

Extension of Lemma 2. We can show variance reduction in a more general case with correlated
variables. The variance of output fc without sparsification is:

Var[fc] =

m∑
i=1

σ2
i + 2

∑
1≤i<j≤m

Cov(vi, vj),

where Cov(·, ·) is the covariance. The expression states that the variance is the sum of the diagonal
of covariance matrix plus two times the sum of its upper triangular elements.

Similarly, the variance of output with directed sparsification (by taking the top units) is:

Var[fDICE
c ] =

m∑
i=t+1

σ2
i + 2

∑
t<i<j≤m

Cov(vi, vj).

Therefore, the variance reduction is given by:

Var[fc]−Var[fDICE
c ] =

t∑
i=1

σ2
i + 2

∑
1≤i<j≤m

Cov(vi, vj)− 2
∑

t<i<j≤m

Cov(vi, vj),

We show in Fig. 6 that the covariance matrix of unit contribution v primarily consists of elements of
0, which indicates the independence of variables by large. The covariance matrix is estimated on the
CIFAR-10 model with DenseNet-101, which is consistent with our main results in Table 1.

Moreover, the summation of non-zero entries in the full matrix (i.e., the second term) is greater than
that of the submatrix with top units (i.e., the third term), resulting in a larger variance reduction than
in Lemma 2. In the case of OOD data (SVHN), we empirically measure the variance reduction, where∑t
i=1 σ

2
i + 2

∑
1≤i<j≤m Cov(vi, vj) equals to 6.8 and 2

∑
t<i<j≤m Cov(vi, vj) equals to 2.2.

Therefore, DICE leads to a significant variance reduction effect.
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Figure 6: Covariance matrix of unit contribution estimated on the OOD dataset SVHN. Model
is trained on ID dataset CIFAR-10. The unit indices are sorted from low to high, based on the
expectation value of ID’s unit contribution (airplane class, same as in Figure 1). The matrix primarily
consists of elements with 0 value.

F EFFECT OF DICE ON MSP

Our theory shows the variance reduction effect directly in the logit output space, which is more
compatible with the energy score. As a further investigation in Table 9, we find empirically that using
DICE for MSP can improve the performance for MSP though it does not yield better performance
than our existing results.

Method SVHN LSUN-c LSUN-r iSUN Texture places365 Average

MSP (Hendrycks & Gimpel, 2017) 48.25 33.80 42.37 41.42 63.99 62.57 48.73
DICE+MSP 45.94 24.36 35.68 34.60 62.06 59.40 43.67

Table 9: Effect of applying DICE with MSP on DenseNet101 pretrained on CIFAR-10. The number is reported
in FPR95.

G SPARSIFICATION METHODS WITH THE OPTIMAL SPASITY PARAMETER p

In Table 2, we have shown the comparison of all sparsification methods on the same sparsity parameter
p = 0.9. In Table 10, we perform comparison under the best sparsity p tuned for each method. Note
that DICE still outperforms other methods in all test datasets.

Methods CIFAR-10 CIFAR-100 Imagenet
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Weight-Droput (Wan et al., 2013) 30.98 93.63 69.00 80.12 70.49 80.34
Unit-Droput (Srivastava et al., 2014) 32.00 93.45 70.26 79.67 67.54 83.37
Weight-Pruning (Han et al., 2015) 24.25 94.84 59.93 84.22 50.31 87.70
Unit-Pruning (Li et al., 2017) 26.55 94.57 61.86 84.69 63.81 84.21
DICE (ours) 20.83±1.58 95.24±0.24 49.72±1.69 87.23±0.73 40.90±1.43 91.22±0.76

Table 10: Comparison of different post hoc sparsification method. All sparsification methods are based on
the same OOD scoring function (Liu et al., 2020), with optimal sparsity parameters tuned for each method
individually. ↑ indicates larger values are better and ↓ indicates smaller values are better. All values are
percentages and are averaged over multiple OOD test datasets.
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H DETAILED OOD DETECTION PERFORMANCE FOR CIFAR

We report the detailed performance for all six test OOD dataset for models trained on CIFAR10 and
CIFAR-100 respectively in Table 11 and Table 12.

I DETAILS ON OOD EVALUATION DATASETS

Following (Huang & Li, 2021), we use the following list of concepts used for OOD test data (Huang
& Li, 2021), including iNaturalist (Horn et al., 2018), SUN (Xiao et al., 2010), and Places365 (Zhou
et al., 2017). We use the entire dataset from Textures (Cimpoi et al., 2014).

iNaturalist Coprosma lucida, Cucurbita foetidissima, Mitella diphylla, Selaginella bigelovii, Toxi-
codendron vernix, Rumex obtusifolius, Ceratophyllum demersum, Streptopus amplexifolius, Portulaca
oleracea, Cynodon dactylon, Agave lechuguilla, Pennantia corymbosa, Sapindus saponaria, Prunus
serotina, Chondracanthus exasperatus, Sambucus racemosa, Polypodium vulgare, Rhus integrifolia,
Woodwardia areolata, Epifagus virginiana, Rubus idaeus, Croton setiger, Mammillaria dioica, Opun-
tia littoralis, Cercis canadensis, Psidium guajava, Asclepias exaltata, Linaria purpurea, Ferocactus
wislizeni, Briza minor, Arbutus menziesii, Corylus americana, Pleopeltis polypodioides, Myopo-
rum laetum, Persea americana, Avena fatua, Blechnum discolor, Physocarpus capitatus, Ungnadia
speciosa, Cercocarpus betuloides, Arisaema dracontium, Juniperus californica, Euphorbia prostrata,
Leptopteris hymenophylloides, Arum italicum, Raphanus sativus, Myrsine australis, Lupinus stiversii,
Pinus echinata, Geum macrophyllum, Ripogonum scandens, Echinocereus triglochidiatus, Cupressus
macrocarpa, Ulmus crassifolia, Phormium tenax, Aptenia cordifolia, Osmunda claytoniana, Datura
wrightii, Solanum rostratum, Viola adunca, Toxicodendron diversilobum, Viola sororia, Uropap-
pus lindleyi, Veronica chamaedrys, Adenocaulon bicolor, Clintonia uniflora, Cirsium scariosum,
Arum maculatum, Taraxacum officinale officinale, Orthilia secunda, Eryngium yuccifolium, Diodia
virginiana, Cuscuta gronovii, Sisyrinchium montanum, Lotus corniculatus, Lamium purpureum, Ra-
nunculus repens, Hirschfeldia incana, Phlox divaricata laphamii, Lilium martagon, Clarkia purpurea,
Hibiscus moscheutos, Polanisia dodecandra, Fallugia paradoxa, Oenothera rosea, Proboscidea
louisianica, Packera glabella, Impatiens parviflora, Glaucium flavum, Cirsium andersonii, Heliopsis
helianthoides, Hesperis matronalis, Callirhoe pedata, Crocosmia × crocosmiiflora, Calochortus
albus, Nuttallanthus canadensis, Argemone albiflora, Eriogonum fasciculatum, Pyrrhopappus pauci-
florus, Zantedeschia aethiopica, Melilotus officinalis, Peritoma arborea, Sisyrinchium bellum, Lobelia
siphilitica, Sorghastrum nutans, Typha domingensis, Rubus laciniatus, Dichelostemma congestum,
Chimaphila maculata, Echinocactus texensis

SUN badlands, bamboo forest, bayou, botanical garden, canal (natural), canal (urban), catacomb,
cavern (indoor), corn field, creek, crevasse, desert (sand), desert (vegetation), field (cultivated), field
(wild), fishpond, forest (broadleaf), forest (needleleaf), forest path, forest road, hayfield, ice floe,
ice shelf, iceberg, islet, marsh, ocean, orchard, pond, rainforest, rice paddy, river, rock arch, sky,
snowfield, swamp, tree farm, trench, vineyard, waterfall (block), waterfall (fan), waterfall (plunge),
wave, wheat field, herb garden, putting green, ski slope, topiary garden, vegetable garden, formal
garden

Places badlands, bamboo forest, canal (natural), canal (urban), cornfield, creek, crevasse, desert
(sand), desert (vegetation), desert road, field (cultivated), field (wild), field road, forest (broadleaf),
forest path, forest road, formal garden, glacier, grotto, hayfield, ice floe, ice shelf, iceberg, igloo,
islet, japanese garden, lagoon, lawn, marsh, ocean, orchard, pond, rainforest, rice paddy, river, rock
arch, ski slope, sky, snowfield, swamp, swimming hole, topiary garden, tree farm, trench, tundra,
underwater (ocean deep), vegetable garden, waterfall, wave, wheat field
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