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Abstract001

Prompt injection attacks pose significant risks002
to the safe deployment of large language mod-003
els (LLMs), yet detecting adversarial prompts004
typically requires costly human annotations.005
This work explores uncertainty-based active006
learning as a strategy to reduce annotation ef-007
fort in prompt injection classification. Using008
sentence embeddings and a lightweight XG-009
Boost classifier, we simulate a human-in-the-010
loop labeling process on a benchmark dataset.011
Our results demonstrate that entropy-based012
sampling consistently outperforms random se-013
lection, achieving higher accuracy and inter-014
annotator agreement with fewer labeled exam-015
ples. Our approach avoids dependence on large016
LLMs during annotation, mitigating risks as-017
sociated with prompt injection vulnerabilities.018
These findings suggest that uncertainty-driven019
active learning combined with classical classi-020
fiers provides an effective and practical solution021
for adversarial prompt detection under limited022
annotation budgets, with implications for safer023
and more scalable deployment.024

1 Introduction025

Large Language Models (LLMs) accept free-form026

natural language prompts, enabling a wide range of027

applications. However, this flexibility also creates028

challenges for responsible deployment. In partic-029

ular, users can craft prompts that elicit responses030

misaligned with platform policies, a tactic known031

as prompt injection or jailbreaking.032

To mitigate such behavior, LLM providers of-033

ten deploy prompt classifiers that flag inputs as034

benign or adversarial. Training these classifiers035

typically requires human-annotated data, making036

annotation a costly bottleneck. This raises an im-037

portant methodological question: how can we most038

effectively select which examples to label?039

Active Learning (AL) provides a framework for040

selecting informative examples to label, potentially041

improving classifier performance with fewer an- 042

notations. In this work, we simulate a human-in- 043

the-loop AL process using a fully labeled prompt 044

injection dataset: labels are revealed incrementally 045

based on either random or entropy-based acquisi- 046

tion strategies. We study whether active learning 047

can improve classifier performance when labels are 048

acquired incrementally under a limited annotation 049

budget. 050

We pose two research questions: 051

• RQ1: Can uncertainty-based sampling im- 052

prove the informativeness of data collected in 053

a simulated human-in-the-loop setting? 054

• RQ2: Does it lead to improved classifier per- 055

formance on held-out validation data? 056

We compare random sampling and entropy- 057

based acquisition using sentence embeddings and 058

an XGBoost classifier. Our results show that un- 059

certainty sampling yields stronger test set per- 060

formance, including gains in accuracy and inter- 061

annotator agreement (κ). Because active learn- 062

ing performance can vary across acquisition steps 063

and datasets, we assess statistical significance us- 064

ing bootstrap confidence intervals and a one-sided 065

Wilcoxon signed-rank test. 066

2 Related Work 067

Uncertainty sampling remains a foundational strat- 068

egy in active learning for NLP. Recent work has 069

explored augmenting uncertainty-based acquisition 070

with pseudo-labeling or self-training to improve 071

sample efficiency. For instance, Schröder and 072

Heyer (2024) show that integrating self-training 073

with uncertainty sampling can yield gains in low- 074

resource settings by leveraging model confidence 075

to supplement annotated data. Classical entropy- 076

based uncertainty also remains competitive when 077

revisited in the context of fine-tuning large trans- 078

former models (Schröder et al., 2022), reinforcing 079
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the robustness of this baseline. Hybrid approaches080

such as ALVIN (Korakakis et al., 2024) interpolate081

between uncertainty and diversity-based sampling082

to mitigate demographic shortcut learning. Active083

learning with complementary labels (ALCL) re-084

duces annotation costs by replacing full labels with085

class exclusions, combining uncertainty sampling086

with efficient supervision (Liu et al., 2023). Our087

work focuses on pure entropy-based uncertainty088

sampling without additional augmentation, employ-089

ing a lightweight classifier rather than a transformer090

model, and targeting a safety-critical classification091

setting.092

While transformers and large language mod-093

els dominate many NLP tasks, they face chal-094

lenges such as vulnerability to prompt injection095

attacks and restricted access in safety-critical ap-096

plications. Consequently, lightweight and inter-097

pretable models like XGBoost remain valuable al-098

ternatives. Gradient-boosted tree ensembles such099

as XGBoost are competitive for various classifi-100

cation problems, especially when combined with101

uncertainty- or entropy-based sampling strategies.102

Their efficiency and interpretability suit scenarios103

with limited computational resources or labeled104

data. Prior work has demonstrated the effectiveness105

of entropy-aware XGBoost classifiers in domains106

including emotion recognition (Wang et al., 2018),107

malware detection (Prattipati et al., 2024), fraud108

identification in imbalanced datasets (Onur Erboy109

and Can Karaca, 2024), and human-in-the-loop110

loan default prediction (Khan et al., 2025). Notably,111

XGBoost has even outperformed large language112

models like GPT-4 in specific text classification113

tasks (Bohacek and Bravansky, 2024). We deliber-114

ately avoid transformers or large language models115

here due to concerns about prompt injection vulner-116

abilities and access restrictions, making XGBoost117

a preferable choice for safety-critical, human-in-118

the-loop classification.119

Recent advances in active learning have ad-120

dressed robustness and adversarial challenges, par-121

ticularly in open-set settings where label spaces122

are partially unknown. For example, bidirectional123

uncertainty-based AL methods have been devel-124

oped to handle such scenarios (Zong et al., 2024).125

Hybrid human-machine labeling frameworks have126

also been proposed to enhance robustness in neural127

machine translation (Azeemi et al., 2025). These128

approaches align with broader concerns around ad-129

versarial vulnerability in NLP, which have been130

extensively surveyed in recent literature (Goyal131

et al., 2023). 132

Despite advances in active learning algorithms, 133

practical deployment faces persistent challenges 134

such as annotation bottlenecks, batch size opti- 135

mization, and label noise (Lowell et al., 2019). 136

Recent work has highlighted the importance of 137

annotator-centric approaches, especially for sub- 138

jective or nuanced NLP tasks, by tailoring sam- 139

pling strategies and interfaces to better accom- 140

modate human annotators (van der Meer et al., 141

2024). Efficiency improvements have been demon- 142

strated through techniques like adapters on frozen 143

transformer backbones, which reduce computa- 144

tional costs without sacrificing query quality (Gal- 145

imzianova and Sanochkin, 2024). Additionally, 146

studies specific to BERT confirm that uncertainty- 147

based active learning remains effective for trans- 148

former fine-tuning, with cold-start problems ad- 149

dressed via self-supervised pretraining methods 150

(Ein-Dor et al., 2020; Yuan et al., 2020). 151

Robust evaluation of active learning strate- 152

gies necessitates rigorous statistical testing. The 153

Wilcoxon signed-rank test is a widely adopted non- 154

parametric method for comparing paired model 155

performances, particularly when combined with 156

cross-validation-based ranking approaches to en- 157

sure reliable and interpretable results (Dror et al., 158

2018; Sziklai et al., 2022). 159

3 Data And Experimental Setup 160

We use the QualiFire Prompt Injection Benchmark 161

dataset (Qualifire, 2024), containing 5,000 labeled 162

prompts with a near-even split between benign and 163

injection examples. Its size, label quality, and 164

benchmark status make it well-suited for repro- 165

ducible supervised evaluation of classification mod- 166

els. 167

We reserve 20% of the data (1,000 prompts) as a 168

held-out validation set. The remaining 80% (4,000 169

prompts) serve as the training and acquisition pool 170

for active learning (AL). From this pool, an initial 171

labeled set of 400 prompts (10%) is randomly and 172

consistently selected to initialize both the AL and 173

baseline models. 174

Two models are trained in parallel: one using ac- 175

tive learning via uncertainty sampling (maximum 176

entropy), and the other using random sampling as 177

a baseline. At each of 1,600 acquisition steps, both 178

models independently select one new prompt to 179

label and retrain on all labeled data collected so 180

far (including the original 400). This setup simu- 181
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lates a human-in-the-loop annotation process with182

incremental model updates.183

At each acquisition step, evaluation is per-184

formed on the subset of the 4,000-prompt pool185

not yet labeled by that model. This reflects the186

model’s generalization to unseen examples during187

the active learning process and its decision-making188

prior to further annotation. While multiple met-189

rics—including Accuracy, F1, AUC, and Cohen’s190

κ—are computed, we focus on test-set Accuracy191

and Cohen’s κ to illustrate generalization trends:192

Accuracy reflects the model’s performance as an193

automated annotator, and κ measures agreement194

with human annotations.195

Final model performance is assessed on the held-196

out validation set after acquiring 2,000 total labeled197

prompts (400 initial + 1,600 acquired). This allows198

standardized comparison between the uncertainty-199

based and random sampling models, evaluating200

generalization beyond the acquisition pool.201

During active learning, we compute each202

model’s validation accuracy at every acquisition203

step. To determine whether observed performance204

differences are statistically meaningful, we apply205

two tests: bootstrap confidence intervals (95%,206

1,000 resamples) on paired validation accuracy dif-207

ferences, and a one-sided Wilcoxon signed-rank208

test across all 1,600 acquisition steps. These tests209

quantify whether performance gains from active210

learning are statistically reliable and generalize be-211

yond the acquisition pool.212

The classifier architecture is identical across213

conditions. Each prompt is embedded using the214

all-MiniLM-L6-v2 sentence transformer (Hug-215

ging Face Model Hub, 2023), yielding a single216

vector representation per prompt. These embed-217

dings are passed to an XGBoost classifier trained218

with binary logistic loss (log loss) and default hy-219

perparameters.220

4 Results221

Figures 1 and 2 show the progression of model per-222

formance on the unlabeled portion of the training223

and acquisition pool as more prompts are labeled224

and added to the training set. The baseline ran-225

dom sampling method (“Random” in the figures)226

achieves a peak F1 score of approximately 0.80,227

precision of 0.80, recall of 0.81, accuracy of 0.84,228

AUC of 0.93, and Cohen’s κ of 0.67 around the229

2,000 labeled samples mark.230

In contrast, the active learning model using un-231

certainty sampling with maximum entropy acqui- 232

sition (“Entropy” in the figures) demonstrates sub- 233

stantially improved performance, reaching a peak 234

F1 score of 0.95, precision of 0.95, recall of 0.94, 235

accuracy of 0.97, AUC of 0.98, and Cohen’s κ 236

of 0.91 at a similar labeling budget. This differ- 237

ence occurs despite both methods drawing from 238

the same pool of unlabeled data, differing only in 239

the selection strategy for labeling. 240

Figure 3 displays the accuracy comparison on the 241

held-out 20% validation set, which is entirely sep- 242

arate from the training and acquisition pool. This 243

figure highlights the improved generalization abil- 244

ity of the entropy-based active learning model com- 245

pared to random sampling as the number of labeled 246

samples increases. 247

Table 1 reports the mean change in validation 248

accuracy difference (∆Accuracy) between the two 249

methods at various labeling budgets, averaged over 250

samples within ±50 labeled prompts of the target 251

budget. The positive mean differences and nar- 252

row 95% bootstrap confidence intervals indicate 253

statistically meaningful improvements of the active 254

learning approach at higher labeling budgets. 255

Overall, these results indicate that entropy-based 256

uncertainty sampling can improve model perfor- 257

mance and generalization in the prompt injection 258

classification task, compared to random sampling, 259

with relatively modest annotation budgets. 260

Figure 1: Accuracy on the unlabeled portion of the
training and acquisition pool as additional prompts are
labeled.

5 Discussion 261

Regarding RQ1, our results indicate that 262

uncertainty-based active learning improves model 263

generalization compared to random sampling on 264

the QualiFire Prompt Injection Benchmark. The 265

entropy acquisition strategy effectively prioritizes 266
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Figure 2: Test set Cohen’s κ over number of labeled
samples, measured on the unlabeled portion of the train-
ing and acquisition pool.

Figure 3: Validation Set Accuracy Comparison Across
Number of Labeled Samples, measured on the held-out
20% validation set not used in active learning.

the most informative and uncertain prompts,267

enabling the model to learn more discriminative268

features with fewer labeled examples. This269

targeted selection leads to notably higher test-set270

accuracy, F1, AUC, and Cohen’s κ, confirming271

the efficiency and effectiveness of uncertainty272

sampling in this context.273

Our method leverages pre-trained sentence em-274

beddings with a lightweight XGBoost classifier275

rather than relying on large language models276

(LLMs). This approach may avoid certain risks277

such as accidental prompt injection or reliance on278

costly API access, which could be advantageous in279

security-sensitive scenarios.280

The test set performance reflects the model’s281

ability to generalize from incremental annotations282

gathered from a single annotator, simulating a283

human-in-the-loop scenario where data is labeled284

bit by bit after an initial random start. In contrast,285

the held-out validation set evaluates broader gen-286

eralization beyond this annotator-specific distribu-287

tion, highlighting how well the model transfers to288

Table 1: Change in accuracy (∆Accuracy) at different
labeling budgets. Results are averaged over samples
within ±50 of the target budget.

Budget Mean ∆Accuracy 95% CI Lower 95% CI Upper

600 -0.0056 -0.0077 -0.0035
800 0.0003 -0.0013 0.0021

1200 0.0116 0.0094 0.0136
1600 0.0165 0.0142 0.0188
1800 0.0207 0.0185 0.0228

truly unseen data. Regarding RQ2, the more mod- 289

est validation gains compared to the test pool sug- 290

gest that while active learning efficiently improves 291

performance within the acquisition environment, 292

challenges remain in ensuring robust generalization 293

to diverse, out-of-distribution examples. This may 294

be due to domain shift or dataset biases limiting 295

transferability beyond the original data distribution. 296

The observed improvements are statistically sig- 297

nificant, supported by bootstrap confidence inter- 298

vals and a one-sided Wilcoxon signed-rank test. 299

These results suggest uncertainty sampling can im- 300

prove performance in iterative annotation settings. 301

Overall, our study suggests that active learning 302

may improve prompt injection detection perfor- 303

mance with limited labeled data, without requiring 304

reliance on LLMs. These findings provide prelim- 305

inary guidance for annotation strategies in adver- 306

sarial NLP tasks and may contribute to developing 307

more robust NLP systems. 308

6 Limitations 309

This study has several limitations that should be 310

considered when interpreting the results. First, our 311

experiments rely on a single primary benchmark 312

dataset, the QualiFire Prompt Injection Benchmark. 313

While this dataset is well-curated and widely used, 314

its characteristics may not capture all the complex- 315

ities of real-world prompt injection scenarios. To 316

partially address this, we conducted supplemen- 317

tary experiments on a smaller, independent dataset 318

(deepset, 2023), where similar performance trends 319

were observed: entropy-based sampling consis- 320

tently outperformed random sampling, achieving 321

F1 scores of 0.94 and 0.78, respectively. However, 322

this dataset’s limited size and lack of cross-training 323

restrict the strength of conclusions drawn from it. 324

Second, our study fixes the model architecture 325

to an XGBoost classifier on top of sentence em- 326

beddings from the all-MiniLM-L6-v2 transformer. 327

While this choice balances performance and com- 328
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putational efficiency, it does not explore the im-329

pact of alternative models, including large language330

models or fine-tuned transformers, which may fur-331

ther improve results or behave differently under332

active learning.333

Third, our experimental setup assumes noise-334

free human annotations, not simulating errors or335

inconsistencies common in practical labeling work-336

flows. Real-world human annotators may intro-337

duce label noise or disagreement, potentially affect-338

ing the robustness and reliability of active learning339

strategies.340

Fourth, active learning acquisition was halted341

after labeling 50% of the training pool. While this342

cutoff aligns with resource constraints and sim-343

ulates limited annotation budgets, extending the344

acquisition beyond this point could reveal longer-345

term learning dynamics or diminishing returns.346

Finally, the dataset itself is roughly balanced be-347

tween benign and injection prompts, whereas real348

deployment environments are likely to exhibit sig-349

nificant class imbalance, with benign inputs being350

much more frequent. This imbalance could affect351

model calibration and active learning efficacy in352

practice.353

Together, these limitations highlight avenues for354

future work, including broader dataset evaluations,355

alternative model architectures, incorporation of356

human annotation noise, extended active learning357

regimes, and deployment-focused class imbalance358

considerations.359

7 Ethical Considerations360

This work uses prompt injection datasets designed361

to evaluate and improve model robustness against362

adversarial inputs. While such benchmarks are es-363

sential for advancing security, it is important to364

recognize potential biases in labeling and dataset365

construction that could influence model behavior366

and generalization. Additionally, the responsible367

use of adversarial datasets requires careful handling368

to avoid misuse or overfitting to specific attack pat-369

terns. We emphasize transparency and reproducibil-370

ity to foster trustworthy research and encourage on-371

going efforts to develop fair and robust AI systems.372
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