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Abstract

Prompt injection attacks pose significant risks
to the safe deployment of large language mod-
els (LLMs), yet detecting adversarial prompts
typically requires costly human annotations.
This work explores uncertainty-based active
learning as a strategy to reduce annotation ef-
fort in prompt injection classification. Using
sentence embeddings and a lightweight XG-
Boost classifier, we simulate a human-in-the-
loop labeling process on a benchmark dataset.
Our results demonstrate that entropy-based
sampling consistently outperforms random se-
lection, achieving higher accuracy and inter-
annotator agreement with fewer labeled exam-
ples. Our approach avoids dependence on large
LLMs during annotation, mitigating risks as-
sociated with prompt injection vulnerabilities.
These findings suggest that uncertainty-driven
active learning combined with classical classi-
fiers provides an effective and practical solution
for adversarial prompt detection under limited
annotation budgets, with implications for safer
and more scalable deployment.

1 Introduction

Large Language Models (LLMs) accept free-form
natural language prompts, enabling a wide range of
applications. However, this flexibility also creates
challenges for responsible deployment. In partic-
ular, users can craft prompts that elicit responses
misaligned with platform policies, a tactic known
as prompt injection or jailbreaking.

To mitigate such behavior, LLM providers of-
ten deploy prompt classifiers that flag inputs as
benign or adversarial. Training these classifiers
typically requires human-annotated data, making
annotation a costly bottleneck. This raises an im-
portant methodological question: how can we most
effectively select which examples to label?

Active Learning (AL) provides a framework for
selecting informative examples to label, potentially

improving classifier performance with fewer an-
notations. In this work, we simulate a human-in-
the-loop AL process using a fully labeled prompt
injection dataset: labels are revealed incrementally
based on either random or entropy-based acquisi-
tion strategies. We study whether active learning
can improve classifier performance when labels are
acquired incrementally under a limited annotation
budget.
We pose two research questions:

* RQ1: Can uncertainty-based sampling im-
prove the informativeness of data collected in
a simulated human-in-the-loop setting?

* RQ2: Does it lead to improved classifier per-
formance on held-out validation data?

We compare random sampling and entropy-
based acquisition using sentence embeddings and
an XGBoost classifier. Our results show that un-
certainty sampling yields stronger test set per-
formance, including gains in accuracy and inter-
annotator agreement (x). Because active learn-
ing performance can vary across acquisition steps
and datasets, we assess statistical significance us-
ing bootstrap confidence intervals and a one-sided
Wilcoxon signed-rank test.

2 Related Work

Uncertainty sampling remains a foundational strat-
egy in active learning for NLP. Recent work has
explored augmenting uncertainty-based acquisition
with pseudo-labeling or self-training to improve
sample efficiency. For instance, Schréder and
Heyer (2024) show that integrating self-training
with uncertainty sampling can yield gains in low-
resource settings by leveraging model confidence
to supplement annotated data. Classical entropy-
based uncertainty also remains competitive when
revisited in the context of fine-tuning large trans-
former models (Schroder et al., 2022), reinforcing



the robustness of this baseline. Hybrid approaches
such as ALVIN (Korakakis et al., 2024) interpolate
between uncertainty and diversity-based sampling
to mitigate demographic shortcut learning. Active
learning with complementary labels (ALCL) re-
duces annotation costs by replacing full labels with
class exclusions, combining uncertainty sampling
with efficient supervision (Liu et al., 2023). Our
work focuses on pure entropy-based uncertainty
sampling without additional augmentation, employ-
ing a lightweight classifier rather than a transformer
model, and targeting a safety-critical classification
setting.

While transformers and large language mod-
els dominate many NLP tasks, they face chal-
lenges such as vulnerability to prompt injection
attacks and restricted access in safety-critical ap-
plications. Consequently, lightweight and inter-
pretable models like XGBoost remain valuable al-
ternatives. Gradient-boosted tree ensembles such
as XGBoost are competitive for various classifi-
cation problems, especially when combined with
uncertainty- or entropy-based sampling strategies.
Their efficiency and interpretability suit scenarios
with limited computational resources or labeled
data. Prior work has demonstrated the effectiveness
of entropy-aware XGBoost classifiers in domains
including emotion recognition (Wang et al., 2018),
malware detection (Prattipati et al., 2024), fraud
identification in imbalanced datasets (Onur Erboy
and Can Karaca, 2024), and human-in-the-loop
loan default prediction (Khan et al., 2025). Notably,
XGBoost has even outperformed large language
models like GPT-4 in specific text classification
tasks (Bohacek and Bravansky, 2024). We deliber-
ately avoid transformers or large language models
here due to concerns about prompt injection vulner-
abilities and access restrictions, making XGBoost
a preferable choice for safety-critical, human-in-
the-loop classification.

Recent advances in active learning have ad-
dressed robustness and adversarial challenges, par-
ticularly in open-set settings where label spaces
are partially unknown. For example, bidirectional
uncertainty-based AL methods have been devel-
oped to handle such scenarios (Zong et al., 2024).
Hybrid human-machine labeling frameworks have
also been proposed to enhance robustness in neural
machine translation (Azeemi et al., 2025). These
approaches align with broader concerns around ad-
versarial vulnerability in NLP, which have been
extensively surveyed in recent literature (Goyal

et al., 2023).

Despite advances in active learning algorithms,
practical deployment faces persistent challenges
such as annotation bottlenecks, batch size opti-
mization, and label noise (Lowell et al., 2019).
Recent work has highlighted the importance of
annotator-centric approaches, especially for sub-
jective or nuanced NLP tasks, by tailoring sam-
pling strategies and interfaces to better accom-
modate human annotators (van der Meer et al.,
2024). Efficiency improvements have been demon-
strated through techniques like adapters on frozen
transformer backbones, which reduce computa-
tional costs without sacrificing query quality (Gal-
imzianova and Sanochkin, 2024). Additionally,
studies specific to BERT confirm that uncertainty-
based active learning remains effective for trans-
former fine-tuning, with cold-start problems ad-
dressed via self-supervised pretraining methods
(Ein-Dor et al., 2020; Yuan et al., 2020).

Robust evaluation of active learning strate-
gies necessitates rigorous statistical testing. The
Wilcoxon signed-rank test is a widely adopted non-
parametric method for comparing paired model
performances, particularly when combined with
cross-validation-based ranking approaches to en-
sure reliable and interpretable results (Dror et al.,
2018; Sziklai et al., 2022).

3 Data And Experimental Setup

We use the QualiFire Prompt Injection Benchmark
dataset (Qualifire, 2024), containing 5,000 labeled
prompts with a near-even split between benign and
injection examples. Its size, label quality, and
benchmark status make it well-suited for repro-
ducible supervised evaluation of classification mod-
els.

We reserve 20% of the data (1,000 prompts) as a
held-out validation set. The remaining 80% (4,000
prompts) serve as the training and acquisition pool
for active learning (AL). From this pool, an initial
labeled set of 400 prompts (10%) is randomly and
consistently selected to initialize both the AL and
baseline models.

Two models are trained in parallel: one using ac-
tive learning via uncertainty sampling (maximum
entropy), and the other using random sampling as
a baseline. At each of 1,600 acquisition steps, both
models independently select one new prompt to
label and retrain on all labeled data collected so
far (including the original 400). This setup simu-



lates a human-in-the-loop annotation process with
incremental model updates.

At each acquisition step, evaluation is per-
formed on the subset of the 4,000-prompt pool
not yet labeled by that model. This reflects the
model’s generalization to unseen examples during
the active learning process and its decision-making
prior to further annotation. While multiple met-
rics—including Accuracy, F1, AUC, and Cohen’s
k—are computed, we focus on test-set Accuracy
and Cohen’s « to illustrate generalization trends:
Accuracy reflects the model’s performance as an
automated annotator, and £ measures agreement
with human annotations.

Final model performance is assessed on the held-
out validation set after acquiring 2,000 total labeled
prompts (400 initial + 1,600 acquired). This allows
standardized comparison between the uncertainty-
based and random sampling models, evaluating
generalization beyond the acquisition pool.

During active learning, we compute each
model’s validation accuracy at every acquisition
step. To determine whether observed performance
differences are statistically meaningful, we apply
two tests: bootstrap confidence intervals (95%,
1,000 resamples) on paired validation accuracy dif-
ferences, and a one-sided Wilcoxon signed-rank
test across all 1,600 acquisition steps. These tests
quantify whether performance gains from active
learning are statistically reliable and generalize be-
yond the acquisition pool.

The classifier architecture is identical across
conditions. Each prompt is embedded using the
all-MinilM-L6-v2 sentence transformer (Hug-
ging Face Model Hub, 2023), yielding a single
vector representation per prompt. These embed-
dings are passed to an XGBoost classifier trained
with binary logistic loss (log loss) and default hy-
perparameters.

4 Results

Figures 1 and 2 show the progression of model per-
formance on the unlabeled portion of the training
and acquisition pool as more prompts are labeled
and added to the training set. The baseline ran-
dom sampling method (“Random” in the figures)
achieves a peak F1 score of approximately 0.80,
precision of 0.80, recall of 0.81, accuracy of 0.84,
AUC of 0.93, and Cohen’s « of 0.67 around the
2,000 labeled samples mark.

In contrast, the active learning model using un-

certainty sampling with maximum entropy acqui-
sition (“Entropy” in the figures) demonstrates sub-
stantially improved performance, reaching a peak
F1 score of 0.95, precision of 0.95, recall of 0.94,
accuracy of 0.97, AUC of 0.98, and Cohen’s k
of 0.91 at a similar labeling budget. This differ-
ence occurs despite both methods drawing from
the same pool of unlabeled data, differing only in
the selection strategy for labeling.

Figure 3 displays the accuracy comparison on the
held-out 20% validation set, which is entirely sep-
arate from the training and acquisition pool. This
figure highlights the improved generalization abil-
ity of the entropy-based active learning model com-
pared to random sampling as the number of labeled
samples increases.

Table 1 reports the mean change in validation
accuracy difference (AAccuracy) between the two
methods at various labeling budgets, averaged over
samples within +50 labeled prompts of the target
budget. The positive mean differences and nar-
row 95% bootstrap confidence intervals indicate
statistically meaningful improvements of the active
learning approach at higher labeling budgets.

Overall, these results indicate that entropy-based
uncertainty sampling can improve model perfor-
mance and generalization in the prompt injection
classification task, compared to random sampling,
with relatively modest annotation budgets.
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Figure 1: Accuracy on the unlabeled portion of the
training and acquisition pool as additional prompts are
labeled.

5 Discussion

Regarding RQI, our results indicate that
uncertainty-based active learning improves model
generalization compared to random sampling on
the QualiFire Prompt Injection Benchmark. The
entropy acquisition strategy effectively prioritizes
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Figure 2: Test set Cohen’s x over number of labeled
samples, measured on the unlabeled portion of the train-
ing and acquisition pool.
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Figure 3: Validation Set Accuracy Comparison Across
Number of Labeled Samples, measured on the held-out
20% validation set not used in active learning.

the most informative and uncertain prompts,
enabling the model to learn more discriminative
features with fewer labeled examples. This
targeted selection leads to notably higher test-set
accuracy, F1, AUC, and Cohen’s x, confirming
the efficiency and effectiveness of uncertainty
sampling in this context.

Our method leverages pre-trained sentence em-
beddings with a lightweight XGBoost classifier
rather than relying on large language models
(LLMs). This approach may avoid certain risks
such as accidental prompt injection or reliance on
costly API access, which could be advantageous in
security-sensitive scenarios.

The test set performance reflects the model’s
ability to generalize from incremental annotations
gathered from a single annotator, simulating a
human-in-the-loop scenario where data is labeled
bit by bit after an initial random start. In contrast,
the held-out validation set evaluates broader gen-
eralization beyond this annotator-specific distribu-
tion, highlighting how well the model transfers to

Table 1: Change in accuracy (AAccuracy) at different
labeling budgets. Results are averaged over samples
within £50 of the target budget.

Budget Mean AAccuracy 95% CI Lower 95% CI Upper
600 -0.0056 -0.0077 -0.0035
800 0.0003 -0.0013 0.0021

1200 0.0116 0.0094 0.0136
1600 0.0165 0.0142 0.0188
1800 0.0207 0.0185 0.0228

truly unseen data. Regarding RQ2, the more mod-
est validation gains compared to the test pool sug-
gest that while active learning efficiently improves
performance within the acquisition environment,
challenges remain in ensuring robust generalization
to diverse, out-of-distribution examples. This may
be due to domain shift or dataset biases limiting
transferability beyond the original data distribution.

The observed improvements are statistically sig-
nificant, supported by bootstrap confidence inter-
vals and a one-sided Wilcoxon signed-rank test.
These results suggest uncertainty sampling can im-
prove performance in iterative annotation settings.

Overall, our study suggests that active learning
may improve prompt injection detection perfor-
mance with limited labeled data, without requiring
reliance on LLMs. These findings provide prelim-
inary guidance for annotation strategies in adver-
sarial NLP tasks and may contribute to developing
more robust NLP systems.

6 Limitations

This study has several limitations that should be
considered when interpreting the results. First, our
experiments rely on a single primary benchmark
dataset, the QualiFire Prompt Injection Benchmark.
While this dataset is well-curated and widely used,
its characteristics may not capture all the complex-
ities of real-world prompt injection scenarios. To
partially address this, we conducted supplemen-
tary experiments on a smaller, independent dataset
(deepset, 2023), where similar performance trends
were observed: entropy-based sampling consis-
tently outperformed random sampling, achieving
F1 scores of 0.94 and 0.78, respectively. However,
this dataset’s limited size and lack of cross-training
restrict the strength of conclusions drawn from it.
Second, our study fixes the model architecture
to an XGBoost classifier on top of sentence em-
beddings from the al1-MinilLM-L6-v2 transformer.
While this choice balances performance and com-



putational efficiency, it does not explore the im-
pact of alternative models, including large language
models or fine-tuned transformers, which may fur-
ther improve results or behave differently under
active learning.

Third, our experimental setup assumes noise-
free human annotations, not simulating errors or
inconsistencies common in practical labeling work-
flows. Real-world human annotators may intro-
duce label noise or disagreement, potentially affect-
ing the robustness and reliability of active learning
strategies.

Fourth, active learning acquisition was halted
after labeling 50% of the training pool. While this
cutoff aligns with resource constraints and sim-
ulates limited annotation budgets, extending the
acquisition beyond this point could reveal longer-
term learning dynamics or diminishing returns.

Finally, the dataset itself is roughly balanced be-
tween benign and injection prompts, whereas real
deployment environments are likely to exhibit sig-
nificant class imbalance, with benign inputs being
much more frequent. This imbalance could affect
model calibration and active learning efficacy in
practice.

Together, these limitations highlight avenues for
future work, including broader dataset evaluations,
alternative model architectures, incorporation of
human annotation noise, extended active learning
regimes, and deployment-focused class imbalance
considerations.

7 Ethical Considerations

This work uses prompt injection datasets designed
to evaluate and improve model robustness against
adversarial inputs. While such benchmarks are es-
sential for advancing security, it is important to
recognize potential biases in labeling and dataset
construction that could influence model behavior
and generalization. Additionally, the responsible
use of adversarial datasets requires careful handling
to avoid misuse or overfitting to specific attack pat-
terns. We emphasize transparency and reproducibil-
ity to foster trustworthy research and encourage on-
going efforts to develop fair and robust Al systems.
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