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Abstract

In the rapidly advancing field of multi-agent systems, ensuring robustness in unfa-
miliar and adversarial settings is crucial, particularly for those systems deployed in
real-world scenarios. Notwithstanding their outstanding performance in familiar
environments, these systems often falter in new situations due to overfitting during
the training phase. This is especially pronounced in settings where both cooperative
and competitive behaviours are present, encapsulating a dual nature of overfitting
and generalisation challenges. To address this issue, we present Multi-Agent Diag-
nostics for Robustness via Illuminated Diversity (MADRID), a novel approach
for systematically generating diverse adversarial scenarios that expose strategic
vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from
open-ended learning, MADRID navigates the vast space of adversarial settings,
employing a target policy’s regret to gauge the vulnerabilities of these settings. We
evaluate the effectiveness of MADRID on the 11 vs 11 version of Google Research
Football, one of the most complex environments for multi-agent reinforcement
learning. Specifically, we employ MADRID for generating a diverse array of
adversarial settings for TiZero, the state-of-the-art approach which "masters" the
game through 45 days of training on a large-scale distributed infrastructure. Using
MADRID, we expose key shortcomings in TiZero’s tactical decision-making,
underlining the crucial importance of rigorous evaluation in multi-agent systems.2

1 Introduction

In recent times, multi-agent systems, particularly those designed to interact with humans, have
emerged as a primary model for AI deployment in real-world scenarios [31, 1, 2, 45]. Although
there have been significant successes in simulated environments, as evidenced by deep reinforcement
learning (RL) in complex multi-agent games [41, 38, 47, 4, 52], the transfer from simulation to
reality (sim2real) continues to pose challenges [19, 54]. Specifically, while these models demonstrate
proficiency in known environments, they become highly susceptible to faulty behaviors in unfamiliar
settings and adversarial situations [36]. Given their critical roles in human-centric applications,
understanding and mitigating these susceptibilities becomes paramount for fostering more effective,
reliable, and transparent deployment of multi-agent AI systems in the future.

The Achilles’ heel of these multi-agent systems, contributing to their lack of robustness, is often
their overfitting to the specific settings encountered during training [24]. This overfitting becomes
notably evident in two-team zero-sum settings where both cooperative and competitive dynamics
intertwine. A primary manifestation of the overfitting between cooperative agents, especially when
all agents in the group share the same set of network parameters (i.e., parameter sharing [14]), is in
the agents becoming too accustomed to their training environments, leading to a detailed coordination
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Figure 1: Overview of MADRID. Operating on a discretised grid with an added dimension for
reference policies, MADRID archives environment variations (or levels) characterized by representa-
tive features, e.g., (x, y) coordinates of the ball position in football. During each iteration, MADRID
mutates a selected level, computes regret using its associated reference policy, and reincorporates
levels with higher regret into the archive, effectively generating diverse collection adversarial levels.

tailored to these specific conditions. As a consequence, when introduced to unfamiliar settings, their
performance tends to falter. Concurrently, there is also an overfitting to specific opponent teams
they have trained against. Instead of developing a flexible strategy that can withstand a variety
of opponents, their strategies might be overly optimised to counteract the strategies of familiar
adversaries. These dual forms of overfitting—both to the environment and to opponents—render such
settings as perfect platforms to probe for vulnerabilities [46]. Furthermore, it is crucial to pinpoint a
diverse set of adversarial scenarios for a holistic diagnostic of robustness, shedding light on possible
shortcomings from various perspectives.

Given these challenges, we introduce Multi-Agent Diagnostics for Robustness via Illuminated
Diversity (MADRID), a novel method for systematically generating a diverse collection of adversarial
settings where pre-trained multi-agent policies make strategic mistakes. To this end, MADRID
employs approaches from quality-diversity [25, 8], a family of evolutionary algorithm that aim to
generate a large collection of high-performing solutions each with their own unique characteristics.

MADRID incorporates MAP-Elites [30], a simple and effective QD approach, to systematically
explore the vast space of adversarial settings. By discretising the search space, MADRID iteratively
performs selection, mutation, and evaluations steps, endlessly refining and expanding the repertoire
of high-performing adversarial scenarios within its archive (see Figure 1). A crucial feature of
MADRID is its employment of the target policy’s regret— the gap in performance between the
optimal and target policy—to quantify the quality of adversarial settings. It has been previously
shown that regret is an effective metric for identifying situations where RL agents underperform in
both single-agent [11, 22, 33, 29] and multi-agent [36] domains. MADRID estimates a lower-bound
on the true regret by utilising a collection of reference policies [47, 17], which are not necessarily
required to be high-performing. MADRID identifies situations where these reference policies surpass
the target one, thereby providing a clear illustration of superior performance in given situations.

To evaluate MADRID, we concentrate specifically on one of the most challenging multi-agent
domains, namely the fully decentralised 11 vs 11 variation of Google Research Football [GRF, 23].
This simulated environment is based on the popular real-world sport of football (a.k.a. soccer) and
requires two teams of agents to combine short-term control techniques with coordinated, long-term
global strategies. GRF represents a unique combination of characteristics not present in other RL
environments [27], namely multi-agent cooperation (within each team), competition (between the
two teams), sparse rewards, large action and observation spaces, and stochastic dynamics. While
many of the individual challenges in GRF, including multi-agent coordination [34, 53], long-term
planning [12] and non-transitivity [3, 9], have been studied extensively in isolation, learning highly-
competitive GRF policies has long remained outside the reach of RL methods. TiZero [27], a recent
multi-agent RL approach, learned to "master" the fully decentralised variation of GRF from scratch
for the first time, using a hand-crafted curriculum, reward shaping, and self-play. Experimentally,
TiZero has shown impressive results and outperformed previous methods by a large margin after an
expensive training lasting 45 days on a large-scale distributed training infrastructure.

We apply MADRID on GRF by targeting TiZero to diagnose a broad set of scenarios in which it
commits tactical mistakes. Our extensive evaluations reveal diverse settings where TiZero exhibits
a poor performance, where weaker policies can outperform it. Specifically, MADRID discovers
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instances where TiZero is ineffective at near the opponent’s goal, demonstrates a marked inability to
comprehend the offside rule effectively, and even encounters situations of scoring accidental own
goals. These findings highlight the latent vulnerabilities within even highly trained models and
demonstrate that there is much room for improving the their robustness. Our analysis showcases the
value of identifying such adversarial settings in offering new insights into the hidden weaknesses of
pretrained policies that may otherwise appear undefeatable.

2 Background

Underspecified Stochastic Games In this work, we consider Underspecified Stochastic Games
(USG), i.e., stochastic games [40] with underspecified parameters of the environment. An USG
game for N agent environment is defined by a set of states S, actions A1, ...,AN and a set of
observations O1, ...,ON for each of the agents. Each agent i select actions using a stochastic policy
πi : Oi ×Ai 7→ [0, 1]. Θ defines the free parameters of the environments which are incorporated
into the transition function T : S ×Θ×A1 × ...×AN 7→ S which produces the next state based on
the actions of all agents. Each agent i receives observations oi : S 7→ Oi correlated with the current
state and reward ri : S × Ai 7→ R as a function of the state and agent’s action. The goal of each
agent i is to maximise its own total expected return Ri =

∑T
t=0 γ

trti for the time horizon T , where γ
is a discount factor.

Each configuration of the free parameter θ ∈ Θ, which is often called a level [22, 33], defines a
specific instantiation of the environmentMθ. For example, this can correspond to different positions
of the walls in a maze, or locations of players and the ball in a football game. USG is a multi-agent
variation of Underspecified POMDPs [11] and fully observable variant of UPOSGs [36].

Quality-Diversity Quality-diversity (QD) is a family of methods that are used to find a diverse
collection of solutions that are performant and span a meaningful spectrum of solution characteris-
tics [25, 8]. The performance of solution x ∈ X is measure using the fitness : X 7→ R function. The
diversity of solutions is typically measured using the feature_descriptor : X 7→ B function that maps
a solution into the feature space B = RK that describes specific characteristics of the solution, such
as behavioral properties or visual appearance.

2.1 MAP-Elites

Algorithm 1: MAP-Elites [30]
Initialise: N -dimensional grids for solutions X

and performances P
Initialise: n cells of X with random solutions and
corresponding cells of P with their fitness

for i = {1, 2, . . . } do
Sample solution x from X
Get solution x′ from x via random mutation
p′ ← fitness(x′)
b′ ← feature_descriptor(x′)
if P(b′) = ∅ or P(b′) < p′ then
P(b′)← p′

X(b′)← b′

MAP-Elites is a simple and effective QD method
[30]. Here, the descriptor space B is discretised
and represented as an initially empty N < K
dimensional grid (archive). The algorithm starts
by generating an arbitrary collection of candi-
date solutions. In each iteration, a solution is ran-
domly selected among those in the grid. A new
solution is obtained by mutating the selected so-
lution, which is then evaluated and mapped to
a cell of the grid based on its feature descriptor.
The solution is then placed in the correspond-
ing cell of the grid if it has a higher fitness than
the current occupant, or if the cell if it is empty.
This cycle of selection, mutation, and evaluation
is repeated, progressively enhancing both the diversity (coverage) and the quality (fitness) of the
collection. The pseudo-code of MAP-Elites is presented in Algorithm 1.

3 MADRID

In this section, we describe Multi-Agent Diagnostics for Robustness via Illuminated Diversity
(MADRID), a novel method for automatically generating diverse adversarial settings for a target
pre-trained policy πT . These are settings that either deceive the policy, forcing it to produce incorrect
behaviour, or where the policy inherently performs poorly, deviating from the optimal behaviour. For
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USGs, these settings correspond to particular environment levels θ ∈ Θ that have been procedurally
generated.

For quantifying adversarial levels, we make use the target policy’s regret in level θ, i.e., the difference
in utility between the optimal policy π∗ and πT :

REGRETθ(π∗, πT ) = V θ(π∗, πT )− V θ(πT , πT ),

where Vθ(πA, πB) = E[
∑T

t=0 γ
trAt ] is the value of a policy πA against policy πB in θ.3

Regret is a suitable metric for evaluating adversarial examples in pre-trained models. It provides a
measure that directly quantifies the suboptimality of a model’s decisions. While a high regret value
serves as a glaring indicator of how far off a model’s behavior is from the optimal choice, a low
regret indicates the model’s decisions are closely aligned with the optimal choice. The importance of
regret becomes even more pronounced when considering the varied scenarios in which a model might
be deployed. Therefore, by investigating regret across diverse situations, we can not only pinpoint
specific vulnerabilities of a model but also ensure the robustness in previously unseen scenarios.

Since the optimal policy is usually unavailable, MADRID relies on utilising a collection of suboptimal
policies ΠR =

⋃M
i=1 πi for estimating the lower bound on true regret. Specifically, the goal is to

find adversarial levels that maximise the gap in utility acquired through a reference policy πi ∈ ΠR

and target policy πT . Utilising a collection of diverse reference policies can be advantageous in the
absence of a true optimal policy, since each of these reference policies may excel in a unique set of
levels [36].

Algorithm 2: MADRID
Input: Target policy πT

Input: A collection of reference policies ΠR

Input: level_descriptor : Θ 7→ RN function
# Initialise a discretised grid, with an added dimension for ΠR, to archive levels and regret scores.
Initialise: N + 1-dimensional grids for levels X and regret estimates P
Initialise: n cells of X with randomly generated levels and corresponding estimated regret in P
for i = {1, 2, . . . } do

# Sample a level θ and corresponding reference policy πR from X .
θ, πR ∼ X
# Perform level mutation.
θ′ ← θ +N (0, σ2)
# Estimate the regret of πT on θ′ using πR.
r̃′ ← V θ′

(πR, πT )− V θ′
(πT , πT )

b′ ← level_descriptor(θ′)
if P(b′, πR) = ∅ or P(b′, πR) < r̃′ then
P(b′, πR)← r̃′

X(b′, πR)← b′

MADRID casts the task of generating a diverse array of adversarial levels for each reference policy
as a QD search problem. Specifically, MADRID uses MAP-Elites to systematically generate levels
from Θ by discretising the feature space of levels into an N -dimensional grid, with an additional
dimension representing the corresponding reference policy from ΠT . Using a discretised grid of
MAP-Elites provides interpretability to the adversarial examples found in MADRID given that each
cell defines specific environment parameters, alongside a reference policy which outperforms the
target under these parameters.

MADRID starts by populating the grid with initial levels for each reference policy. During the
iterative process, levels are selected from the grid to undergo mutation, followed by regret estimation.
Each mutated level is then mapped to a specific cell in the grid based on its features and replaces the
existing occupant if the mutated level has higher regret or the corresponding cell is unoccupied. This
procedure ensures a thorough exploration and exploitation of the environment design space, allowing

3Note that here, for the simplicity of the notation, we assume a two-team zero sum setting. πT and πR

describe the policies for groups of agents, either through a centralised controller or decentralised policies that
employ parameter sharing. However, MADRID can be applied for more general multi-agent settings.
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Figure 2: Examples of randomly generated levels on Google
Research Football.

Figure 3: Dividing the
field in 160 grids using the
ball (x, y) coordinates.

MADRID to generate levels that are both diverse and high-regret. Figure 1 illustrates this process.
Algorithm 2 provides the pseudocode of the method.

4 Experimental Setting

Our experiments seek to (1) showcase the effectiveness of MADRID in generating diverse adversarial
settings for a target state-of-the-art pre-trained RL model, (2) analyse the adversarial settings generated
by MADRID to find key weaknesses of the target model, (3) validate the design choices of MADRID
by comparing it to two ablated baselines. To this end, we evaluate MADRID on Google Research
Football [GRF, 23]. Given its strong performance and usage in related works, Covariance Matrix
Adaptation MAP-Elites [CMA-ME, 16] serves as the base MAP-Elites method in our experiments.
We provide full environment descriptions in Appendix B and implementation details in Appendix C.

Baselines We compare MADRID against two baselines: The targeted baseline uses a MAP-Elites
archive but randomly samples levels from scratch, rather then evolving previously discovered high-
regret levels from the grid. Consequently, it does not leverage the stepping stones to the optimisation
problem [25]. The random baseline samples levels randomly from scratch without maintaining an
archive of high-regret levels.

4.1 Environment

We use MADRID to find adversarial scenarios for TiZero, the state-of-the-art model for GRF. TiZero
was trained via a complex regime on large-scale distributed infrastructure [27] over 45 days. In
particular, we aim to generate adversarial levels whereby the decentralised agents in TiZero make a
diverse array of strategic errors, as highlighted by better behaviours of the reference policy.

GRF is a complex open-source RL environment designed for training and evaluating agents to master
the intricate dynamics of football, one of the world’s most celebrated sports. It offers a physics-based
3D simulation that tasks the RL policy with controlling a team of players to penetrate the opponent’s
defense, while passing the ball among teammates, in order to score goals. GRF is a two-team zero-
sum environment that has long been considered one of the most complex multi-agent RL benchmarks
due to a unique combination of challenges [20, 50, 27], such as multi-agent cooperation, multi-agent
competition, sparse rewards, large action and observation spaces, and stochastic dynamics.4

In this work, we focus on the fully decentralised 11 vs 11 version of the environment where each
of the 10 RL agents on both side controls an individual player on the field.5 Following [27], each
agents receives as observation a 268-dimensional feature vector include own player information,
player IDs, as well as information about the ball, player of the own and opponents teams, as well as

4Highlighting the stochasticity of the GRF environment, a shot from the top of the box can lead to various
outcomes, underscoring that not every action results in a predictable outcome.

5The goalkeepers are controlled by the game AI.
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general match details. The action space of agents consists of 19 discrete actions, such as moving in 8
direction, sprinting, passing, shooting, etc.

To apply MADRID on GRF, we utilise procedurally generated levels each represented as a vector
consisting of (x, y) coordinates of 20 players 6 and the ball. The position of the ball on the field serves
as a convenient descriptor for levels in GRF because it accommodates diverse scenarios, ranging from
attacking to defending on both field halves. Therefore, we use the x and y coordinates of the ball
as the first two environment features in MADRID. This leads to a categorisation of levels into 160
uniformly spaced cells across the football field, as illustrated in Figure 3. Given that we are interested
in evaluating TiZero in specific adversarial levels, we restrict the episode length to 128 steps in our
experiments.

The third axis for the MAP-Elites archive indexes the reference policies ΠR. In our experiments, we
make use of 48 checkpoints of TiZero saved throughout its training [27], as well as three built-in bots
in GRF with varying difficulties (easy, medium, hard). For each reference policy, we initialise the
grid with randomly sampled levels that assign random locations to players and the ball. Figure 2
illustrates some of the randomly generated levels.

At each iteration of MADRID, we sample a level and reference policy pair (θ, πR). The level is
then mutated by adding Gaussian noise to the (x, y) positions of the players and the ball in the field.
The fitness of each solution is estimated by computing TiZero’s regret, which is the difference in
performance between the selected reference policy πR and TiZero’s policy πT . In both cases, we
estimate the regret against the TiZero policy on the level θ as:

R̃egret(θ, πT , πR) = V θ(πR, πT )− V θ(πT , πT ), (1)

which corresponds to the difference of cross-play and self-play values between the reference and
target policies. The performance on a given level θ between two policies πA and πB is the reward for
scoring a goal:

V θ(πA, πB) =


1 if πA scores
0 if no goal is scored
−1 if πB scores

(2)

Upon scoring a goal by either of the sides, the level terminates. Given the non-deterministic nature of
GRF, we account for variability by calculating the average regret across 4 repetitions of the same pair
of level θ and reference policy πR.

5 Results and Discussion

In our analysis of targeting TiZero on GRF, we closely examine the performance of MADRID
and baselines. Figure 4a displays the average estimated regret values for all 160 cells within the
MAP-Elites grid across the entire collection of reference policies. Here, MADRID outperforms both
baseline methods. The random baseline exhibits a negative value close to 0, as TiZero proves to be a
stronger policy than all the reference policies on entirely random game levels. On the other hand,
the targeted baseline performs well, closely resembling MADRID’s performance at the early stages
of iterations. However, as the iterations continue, it lags behind due to its failure to capitalise on
previously identified high-regret levels that serve as stepping stones for next iterations.

In Figure 4b, the variation in estimated final regret scores across the reference policies is illustrated.
Here, the regret increases as we move to higher-ranked agents. The heuristic bots display regret levels
that are on par with the intermediate checkpoints of TiZero.

As we approximate the regret using the difference between cross-play (XP) and self-play (SP) between
reference and TiZero policies (see Equations 1 and 2), a regret estimate of 1 for an adversarial level
θ can be achieved in two situations. First, the reference policy scores against TiZero in XP, while
TiZero cannot score in its SP. Second, TiZero concedes a goal in SP in θ. Intriguingly, our findings
reveal that for around 90% of the adversarial levels generated by MADRID, a nominally weaker
reference policy outperforms TiZero. This emphasises MADRID’s capability in exposing adversarial
levels where even state-of-the-art policies be prone to missteps.

6The goalkeepers position positions are always near their own goals.
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(a) Estimated regret at each itera-
tion.

(b) Final estimated regret of TiZero over reference policies using
MADRID.

(c) Scoring rate vs TiZero at each
iteration.

(d) Final estimated scoring rate vs TiZero over reference policies using
MADRID.

Figure 4: The estimated regret and goal score rate against TiZero in Google Research Football.
Illustrated throughout each iteration for 51 reference agents (a) and (c), as well as final values in (b)
and (d). Standard error over 3 random seeds is shown.

(a) 25 iterations. (b) 200 iterations. (c) 1000 iterations. (d) 5000 iterations.

Figure 5: The coverage and regret values of TiZero in the grid at various iterations of MADRID with
respect to TiZero-048 reference policy.

Figure 4c and Figure 4d illustrate the estimated rate of goals scored against TiZero by the reference
policies on adversarial levels produced by MADRID and baselines. We can see that in approximately
70% of the time across all reference policies, the reference policy scored a goal against TiZero in a
short period of time.7 It should be noted that within the remaining 30%, the majority of instances
resulted in no goals due to the nondeterministic dynamics of the environment.

Figure 22 in Appendix D highlights the difference in performance for selected reference policies.
Notably, the higher-rank checkpoints of TiZero, saved at the later stages of its training, can be used to
identify more severe vulnerabilities, as measured using the regret estimate.

Figure 5 shows the evolution of MADRID’s archive for a specific reference policy, illustrating its
search process over time. Initially, the grid is sparsely filled with low-regret levels. However, as

7The levels last only 128 steps, which is a short episode compared to the 3000 steps for the full game.
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(a) Initial player and ball positions in
the level. TiZero is about to pass the
ball to a teammate.

(b) The receiving player is clearly in
offside, thus a freekick is awarded to
the opponents team.

(c) Reference policy does not pass
to offside player and directly runs to-
wards the goal to score.

Figure 6: Adversarial example of offsides.

Figure 7: Adversarial example of an own goal. TiZero gets tricked and shoots in its own goal.

iterations progress, MADRID generates high-regret levels that progressively populate the entire grid.
This shows that MADRID can discover high-regret levels anywhere on the football field. On average,
we notice that higher-level scenarios tend to be located towards the positive x coordinates. These
correspond to situations where the ball is close to the opponent’s goal from the perspective reference
policy. While most regret scores tend to have uniform values around in similar positions on the field,
in Figure 5d the grid also includes an adversarial level with estimated regret of 1.75. This indicates
that MADRID found a level where the reference policy scores against TiZero in XP, while TiZero
concedes a goal in SP.

5.1 Qualitative Analysis

Next we conduct a qualitative analysis of the adversarial levels identified by MADRID on GRF
by visualising the highest ranking levels in the archive across all reference policies. We provide a
selection of these examples below, with a comprehensive list available in Appendix A. Full videos of
all identified vulnerabilities can be found at https://sites.google.com/view/madrid-marl.

Offsides Despite its strong performance under standard evaluations, TiZero frequently falls victim
to erroneously passing the ball to players unmistakably in offside positions, as shown in Figure 6 This
highlights TiZero’s lack of a deep understanding of the rules of the game. In contrast, the reference
policies abstain from passing the ball to offside players, resulting in successful scoring outcomes.8

Unforced Own Goals Perhaps the most glaring adversarial behaviour discovered are instances
where TiZero agents inexplicably shoot towards their own goal, resulting in unforced own goals (See
Figure 7). In contrast, when starting from identical in-game positions, the reference policies manage
to counterattack effectively, often resulting in successful scoring endeavors.

Slow running opponents The TiZero agents always choose to sprint throughout the episode.
However, this makes them weak on defense against opponents who move slower with the ball. Instead
of trying to tackle and take the ball, TiZero’s main defensive strategy is to try and block opponents.
Opponents can take advantage of this by using deceptive moves, especially when moving slowly,
making it hard for TiZero’s defenders to stop them. This is illustrated in Figure 8.

8A player is offside when it is in the opponents’ half and any part of their body is closer to the opponents’
goal line than both the ball and the second-last opponent. Usually one of the two opponents is the goalkeeper.
When this happens a free kick is awarded to the opponent’s team.

8
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Figure 8: Adversarial example of a slow running opponent. Three TiZero-controlled defenders are
not able to stop a simple slow running opponent, who walks past them and scores.

(a) Initial player and ball positions in
the level.

(b) TiZero shoots from a narrow an-
gle and is blocked by the goalkeeper

(c) Reference policy goes to shoot
from a better position and scores

Figure 9: Adversarial example of better shooting positioning.

Suboptimal Ball Positioning for Shooting When trying to score a goal, TiZero agents often choose
a suboptimal positioning, such as shooting from a narrow angle. In contrast, the reference policies
often make subtle adjustments to optimally position the ball before initiating a shot (e.g., move
towards the centre of the goals Figure 9).

Passing to Better Positioned Players A notable shortcoming in TiZero’s policy, when compared
to the built-in heuristic, is its reluctance to pass the ball to teammates who are in more favorable
positions and have a higher likelihood of scoring, as illustrated in Figure 10. In contrast, heuristic
bots—whether easy, medium, or hard—demonstrate a consistent pattern of passing to optimally
positioned players, enhancing their goal-scoring opportunities. This effective passing strategy seems
unfamiliar to TiZero, causing it difficulty in overcoming a successful defense.

6 Related Work

Quality Diversity

Quality Diversity (QD) is a category of open-ended learning methods aimed at discovering a col-
lection of solutions that are both highly diverse and performant[25, 8]. Two commonly used QD
algorithms are Novelty Search with Local Competition [NSLC, 25] and MAP-Elites [30, 7]. These
two approaches differ in the way they structure the archive; novelty search completely forgoes a grid
and opts instead for growing an unstructured archive that dynamically expands, while MAP-Elites

(a) Initial player and ball positions in
the level.

(b) TiZero (blue) runs towards the
goal and shoots, getting blocked by
the goalkeeper.

(c) Reference policy (blue) passes the
ball to a better positioned player who
scores.

Figure 10: Adversarial example of passing.
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adopts a static mapping approach. Although MADRID leverages MAP-Elites as its diversity mecha-
nism, it can be adapted to use NSLC. One of the most effective versions of MAP-Elites is CMA-ME
[16]. CMA-ME combines MAP-Elites with the evolutionary optimization algorithm Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [18], improving the selection of the fittest solutions
which will be perturbed to generate new elites. Mix-ME [21] extends MAP-Elites to multi-agent
domains, but is limited to fully cooperative settings.

Multi-Agent RL

Recent advancements in the field of cooperative multi-agent RL [15, 34, 10, 28] have shown remark-
able success in tackling complex challenges in video games, such as StarCraft II [37, 13]. Google
Research Football [GRF, 23] stands as one of the most complex multi-agent RL benchmarks, as
a two-team zero-sum game with sparse reward and requiring significant amount of coordination
between co-players. Most of the prior work on addresses the toy settings of the GRF only involved a
few agents (e.g., 3 vs 1 scenario). Multi-Agent PPO [MAPPO, 53] uses PPO [39] with a centralised
critic to play on toy settings. CDS [26] analyses the importance of diversity between policies in GRF.
Multi-Agent Transformer [MAT, 50] models GRF as a sequence problem using the self-attention
mechanism. TiKick [20] attempts to solve the full 11 vs 11 game using demonstrations from single-
agent trajectories. SPC [48] uses an adaptive curriculum on handcrafted environments for overcoming
the sparse reward issue in GRF. TiZero is the first method that claims to have mastered the full 11 vs
11 game of GRF from scratch [27] following 45 days of training with large amount of computational
resources. To achieve this, TiZero uses a hand-crafted curricula over environment variations, self-play,
augmented observation space, reward shaping, and action masking.

Adversarial Attacks on Multi-Agent Policies

Deep neural networks, such as image classifiers, are known to be sensitive to adversarial attacks
[42, 5, 35]. Such susceptibility has also been demonstrated in multi-agent RL. [49] attacks the
leading Go-playing AI, KataGo [51], by training adversarial policies and achieving >97% win rate
against it. Such adversarial agents are not expert Go-playing bots at all and are easily defeated by
amateur human players, instead they simply trick KataGo into making serious blunders. Similarly,
[43] introduce ISMCTS-BR, a search-based deep RL algorithm that learns a best response to a given
agent. Both of these solutions find exploitability using RL and expensive Monte-Carlo tree search [6],
whereas MADRID is a fast, gradient-free, training-free method that finds adversarial settings using
QD. Furthermore, unlike the previous methods, MADRID is not restricted to any concrete agent
architecture and is more general in nature. MAESTRO [36] crafts adversarial curricula for training
robust agents in 2-player settings by jointly sampling environment/co-player pairs, emphasizing the
interplay between agents and environments.

7 Conclusion and Future Work

This paper introduced Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID),
a novel approach aimed at systematically uncovering situations where pre-trained multi-agent RL
agents display strategic errors in complex environments. MADRID leverages quality-diversity
mechanisms and employs the concept of regret to identify and quantify a multitude of scenarios
where agents enact suboptimal strategies, with a particular focus on the advanced TiZero agent
within the Google Research Football environment. Our investigations using MADRID revealed
several previously unnoticed vulnerabilities in TiZero’s strategic decision-making, such as ineffective
finishing and misunderstandings of the offside rule, highlighting the hidden strategic inefficiencies
and latent vulnerabilities in even the most advanced RL agents.

Looking forward, we are excited to apply MADRID to a wider range of multi-agent domains and
integrate it with more sophisticated evolutionary and learning-based approaches to further expand its
capability in identifying strategic inefficiencies. Exploring interactions between varying adversarial
scenarios and different RL models can provide deeper insights into the inherent strategic complexities
and adaptive learning processes in multi-agent environments, thereby contributing to the evolution
of more robust and sophisticated solutions in the field of RL. Furthermore, future research with
MADRID can focus on optimising mitigation strategies to both identify and rectify strategic errors,
advancing the development of more robust multi-agent systems.
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(a) Initial player and ball positions in
the level. TiZero is about to pass the
ball to a teammate.

(b) The receiving player is clearly in
offside, thus a freekick is awarded to
the opponents team.

(c) Reference policy does not pass
to offside player and directly runs to-
wards the goal to score.

Figure 11: Adversarial example of offsides.

Figure 12: Adversarial example of an own goal. TiZero gets tricked and shoots in its own goal.

A Adversarial Examples for Google Research Football

Below are 11 adversarial examples in TiZero we identifying using MADRID.

Offsides Despite its strong performance under standard evaluations, TiZero frequently falls victim
to erroneously passing the ball to players unmistakably in offside positions, as shown in Figure 11
This observations highlights TiZero’s lack of a deep understanding of the rules of the game. In
contrast, the reference policies abstain from passing the ball to offside players, resulting in successful
scoring outcomes.9

Unforced Own Goals Perhaps the most glaring adversarial behaviour discovered are instances
where TiZero agents inexplicably shoot towards their own goal, resulting in unforced own goals (See
Figure 12). In contrast, when starting from identical in-game positions, the reference policies manage
to counterattack effectively, often resulting in successful scoring endeavors.

Slow running opponents The TiZero agents always choose to sprint throughout the episode.
However, this makes them weak on defense against opponents who move slower with the ball. Instead
of trying to tackle and take the ball, TiZero’s main defensive strategy is to try and block opponents.
Opponents can take advantage of this by using deceptive moves, especially when moving slowly,
making it hard for TiZero’s defenders to stop them. This is illustrated in Figure 13.

9A player is offside when it is in the opponents’ half and any part of their body is closer to the opponents’
goal line than both the ball and the second-last opponent. Usually one of the two opponents is the goalkeeper.
When this happens a free kick is awarded to the opponent’s team.

Figure 13: Adversarial example of a slow running opponent. Three TiZero-controlled defenders are
not able to stop a simple slow running opponent, who walks past them and scores.
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(a) Initial player and ball positions in
the level.

(b) TiZero shoots from a narrow an-
gle is blocked by the goalkeeper

(c) Reference policy goes to shoot
from a better position and scores

Figure 14: Adversarial example of better shooting positioning.

(a) Initial player and ball positions in
the level.

(b) TiZero (blue) runs towards the
goal and shoots, getting blocked by
the goalkeeper.

(c) Reference policy (blue) passes the
ball to a better positioned player who
scores.

Figure 15: Adversarial example of passing.

Suboptimal Ball Positioning for Shooting When trying to score a goal, TiZero agents often choose
a suboptimal positioning, such as shooting from a narrow angle. In contrast, the reference policies
often make subtle adjustments to optimally position the ball before initiating a shot (e.g., move
towards the centre of the goals Figure 14).

Passing to Better Positioned Players A notable shortcoming in TiZero’s policy, when compared
to the built-in heuristic, is its reluctance to pass the ball to teammates who are in more favorable
positions and have a higher likelihood of scoring, as illustrated in Figure 15. In contrast, heuristic
bots—whether easy, medium, or hard—demonstrate a consistent pattern of passing to optimally
positioned players, enhancing their goal-scoring opportunities. This effective passing strategy seems
unfamiliar to TiZero, causing it difficulty in overcoming a successful defense.

Shooting while Running Capitalizing on another game mechanics, the reference policies exhibit
stronger behaviours by halting their sprinting behaviour leading up to a shot, resulting in a notably
higher success rate in goal realisation. TiZero’s agents, in contrast, consistently maintain a sprinting
stance, thereby frequently missing straightforward scoring opportunities in front of the opposing
goalkeepers (Figure 16).

(a) Initial player and ball positions in
the level.

(b) TiZero shoots while sprinting and
the ball gets blocked by the goal-
keeper.

(c) Reference policy doesn’t run and
is able to score.

Figure 16: Adversarial example of shooting while running.
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(a) Initial player and ball positions in
the level.

(b) TiZero aimlessly runs up and
down from the same position in an
endless loop.

(c) The reference policy attacks the
opponent goal, often resulting in goal
scoring endeavours.

Figure 17: Adversarial example of confused behaviour.

(a) Initial player and ball positions in
the level.

(b) TiZero’s defender runs along a
suboptimal trajectory, giving space
for the opponent to shoot and score.

(c) Reference policy instead runs to-
wards the attacker to block the at-
tempt.

Figure 18: Adversarial example of better defensive behaviour.

Confused Agent Behavior Another intriguing adversarial instance finds TiZero’s ball-possessing
player aimlessly sprinting back and forth in random areas of the field, thereby exhibiting a completely
unproductive pattern of movement (Figure 17).

Improved Defensive Positioning TiZero shows several vulnerabilities in its defensive strategies,
failing to close down on the opponent attacking trajectory and allowing them to score. In comparison,
Figure 18 shows the reference policies closing down on the opponent striker and seizing the ball
before they have the chance to shoot.

Erroneous Team Movement Several adversarial examples show the entirety of TiZero’s team
running in the wrong direction to defend their goal, while the ball is positioned favourably towards the
opponents goal, leaving a solitary attacking player without support, who gets deceived and performs
poorly. The reference policy instead doesn’t get tricked and often manages to score despite the
disarray (Figure 19).

Hesitation Before Shooting The most common adversarial scenario encountered by the heuristic
bots is situations in which TiZero hesitates before taking a shot, allowing the goalkeeper or defending

(a) Initial player and ball positions in
the level.

(b) TiZero’s team runs backwards,
leaving a solitary attacker confused
and unable to score.

(c) Reference policy instead doesn’t
get tricked, the attacker moves in a
better position to score.

Figure 19: Adversarial example of erroneous team movement.
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(a) Initial player and ball positions in
the level. (b) TiZero (in blue) hesitates before

shooting, giving enough time for the
goalkeeper to seize the ball

(c) Reference policy instead shoots
without hesitation and scores.

Figure 20: Adversarial example of hesitation before shooting.

(a) Initial player and ball positions in
the level.

(b) TiZero’s attacker does not realise
it can get to the ball before the goal-
keeper, and runs backwards.

(c) Reference policy instead runs to-
wards the ball, reaching it before the
goal keeper does and scoring.

Figure 21: Adversarial example of missing a goal scoring opportunity.

players to seize the ball. In contrast, the inbuilt bot promptly recognizes the opportunity and shoots
without hesitation, resulting in successful scoring (Figure 20).

Missing a Goal Scoring Opportunity TiZero often fails to acknowledge easy goal scoring oppor-
tunity, where it could get to the ball and score, but instead decides not to pursue it. Figure 21 shows
how the reference policy capitalises on this kind of opportunity and scores.

B Environment Details

In our experiments with Google Research Football [23], we adopt a procedural generation method for
level creation. For each player, as well as the ball, we randomly sample the (x, y) coordinates: the
x-coordinate is sampled from the range [−0.9, 0.9] and the y-coordinate from the range [−0.4, 0.4].
The settings employed during the generation are as follows:

• deterministic: set to False, implying that levels can have non-deterministic components.

• offsides: set to True, enforcing the offsides rule during gameplay.

• end_episode_on_score: set to True, which means the episode will terminate once a goal
is scored.

• end_episode_on_out_of_play: set to False, indicating the episode will not end on ball
out-of-play events.

• end_episode_on_possession_change: set to False, indicating the episode will not end
when the ball changes possession from one team to another.

For the easy bot, the difficulty is set at 0.05. For the medium bot, it is set to 0.5, and for the hard
bot, the difficulty is at 0.95. These values serve as the defaults in GRF, ensuring consistency across
different game scenarios

We use the enhanced observation space as described in TiZero [27], consisting of 268-dimensional
vector including information.
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Table 1: Hyperparameters used for finding adversarial examples in Google Research Football.

Parameter
Number of steps 5000
Game duration 128
Number of CMA-ME emitters 4
Number of repeats per level 4
Emitter gaussian noise σ 0.1
Ranker improvement
QD score offset -2

C Implementation Details

Hyperparameters of MADRID are provided in Table 1. We use the CMA-ME as implemented in
pyribs [44]. For the TiZero and reference agents, we use the exact agent architecture as in the original
paper [27] using TiZero’s official open-source release [32]. Parameter sharing is applied to all agents
in the team.

The policy network is made up of six different multi-layer perceptrons (MLPs), each having two
fully-connected layers, including one specifically for the ’player ID’, to encode every part of the
observation individually. The MLP layers have a hidden size of 64. The hidden features extracted
are brought together and then handled by an LSTM layer to give the agent memory, with the hidden
size for this layer being 256. Every hidden layer is equipped with layer normalization and ReLU
non-linearities. The orthogonal matrix is used for initializing parameters, and the learning process
is optimized with the Adam optimizer. Similar to the original implementation, illegal actions are
masked out by making their selection probability zero. The action output layer utilizes a softmax
layer and is formed with a 19-dimension vector.

Experiments are conducted on an in-house cluster. Every task, denoted by a seed, uses one Tesla
V100 GPU and 10 CPUs. For each of the 51 reference policies (48 TiZero checkpoints and 3 built-in
bots), we use 3 random seeds, for each of the baselines. Runs last approximately 8.5 days for 5000
iterations of MADRID.

D Additional results

Figure 22 highlights the difference in performance for selected reference policies. Notably, the
higher-rank checkpoints of TiZero, saved at the later stages of its training, can be used to identify
more severe vulnerabilities, as measured using the regret estimate.

Figure 22: MADRID’s estimated regret over different reference policies after each iteration GRF
(mean and standard error over 3 seeds).
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