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Abstract

New LLM benchmarks are important to align
with the rapid development of Large Language
Models (LLMs). In this work, we present Chi-
nese SimpleQA, the first comprehensive Chi-
nese benchmark to evaluate the factuality abil-
ity of LLMs to answer short questions, and
Chinese SimpleQA mainly has five properties
(i.e., Chinese, Diverse, High-quality, Static,
Easy-to-evaluate). Specifically, first, we focus
on the Chinese language over 6 major topics
with 99 diverse subtopics. Second, we con-
duct a comprehensive quality control process
to achieve high-quality questions and answers,
where reference answers are static and cannot
be changed over time. Third, following Sim-
pleQA, questions and answers are very short,
and the grading process is easy-to-evaluate.
Based on Chinese SimpleQA, we perform a
comprehensive evaluation of the factuality abil-
ities of existing LLMs. Finally, we hope that
Chinese SimpleQA could guide developers to
better understand the factuality abilities of their
models and facilitate the growth of LLMs!.

1 Introduction

A significant challenge in Al development is to
ensure language models generate factually accu-
rate responses (Zhao et al., 2023; Liu et al., 2024;
Bu et al., 2021; Li et al., 2024; Bai et al., 2024).
Current frontier models sometimes produce false
outputs or answers that are not substantiated by
evidence. This is the problem known as “halluci-
nations”, which greatly hinders the extensive use
of general Al technologies, such as large language
models (LLMs). Besides, it is difficult to evaluate
the factuality abilities of the existing LLMs. For
example, LLMs usually generate lengthy responses
containing numerous factual claims. Recently,
to address the aforementioned evaluation prob-

'Codes and datasets are anonymously at https://
anonymous . 4open.science/r/ChineseSimpleQA-5B6F.

lem, OpenAl has released the SimpleQA bench-
mark (Wei et al., 2024) with 4,326 concise and
fact-seeking questions, which makes measuring
factuality simple and reliable.

However, the SimpleQA benchmark primarily
targets the English language, resulting in a lim-
ited understanding of LLMs’ capabilities in other
languages. Moreover, inspired by several recent
Chinese LLM benchmarks (e.g., C-Eval (Huang
et al., 2023), CMMLU (Li et al., 2023b)), to evalu-
ate the factuality abilities of LLMs in Chinese, we
present the Chinese SimpleQA benchmark, which
consists of 3000 high-quality questions spanning 6
major topics, ranging from humanities to science
and engineering, as shown in the left of Figure 1.
Specifically, the distinct main features of our pro-
posed Chinese SimpleQA dataset are as follows:

* Chinese: Our Chinese SimpleQA focuses on
the Chinese language, which provides a compre-
hensive evaluation of the factuality abilities of
existing LLMs in Chinese.

Diverse: Chinese SimpleQA covers 6 major top-
ics (i.e., “Chinese Culture”, “Humanities”, “En-
gineering, Technology, and Applied Sciences”,
“Life, Art, and Culture”, “Society”, and “Natu-
ral Science”), and these topic includes 99 fine-
grained subtopics in total, which demonstrates
the diversity of our Chinese SimpleQA.

High-quality: We conduct a comprehensive and
rigorous quality control process to ensure the
quality and accuracy of Chinese SimpleQA.

Static: Following SimpleQA, to preserve the
evergreen property of Chinese SimpleQA, all
reference answers would not change over time.

» Easy-to-evaluate: Following SimpleQA, as the
questions and answers are very short, the grading
procedure is fast to run via existing LLMs.
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Figure 1: Left: Overview of Chinese SimpleQA. “Chinese Cul.” and “ETAS” represent “Chinese Culture” and
“Engineering, Technology, and Applied Sciences”, respectively. Right: Dataset statistics of Chinese SimpleQA.

Moreover, we have performed a comprehensive
evaluation and analysis on Chinese SimpleQA, and
several insightful findings are as follows:

* Chinese SimpleQA is challenging. Only ol-
preview and Doubao-pro-32k achieve the pass-
ing score (63.8% and 61.9% on the correct met-
ric), and there is a long way to go for many
existing LLMs.

* Larger models lead to better results. Based
on the results of the Qwen2.5 series, InternLM
series, Yi-1.5 series, etc, we observe that better
performance is obtained when LLM is larger.

* Larger models are more calibrated. ol-
preview is more calibrated than ol-mini, and
GPT-40 is more calibrated than GPT-40-mini.

* RAG matters. Performance gaps between dif-
ferent LLMs decrease a lot when using RAG
(Retrieval-Augmented Generation). For GPT-40
and Qwen2.5-3B, the performance gap decreases
from 42.4% to 9.3% using RAG.

» Alignment tax exists. Existing alignment or
post-training strategies usually decrease the fac-
tuality of language models.

* Rankings of SimpleQA and Chinese Sim-
pleQA are different. The performance of sev-
eral LLMs focusing on Chinese (Doubao-pro-
32k, and GLM-4-Plus) is close to the high-
performance ol-preview. In particular, in the

“Chinese Culture” topic, these Chinese commu-
nity LLMs are significantly better than GPT or
ol series models.

2 Related Works

LLM Factuality. LLM factuality is the capabil-
ity of large language models to produce contents
that follow factual content, including common-
sense, world knowledge, and domain facts, and
the factual content can be substantiated by authori-
tative sources (e.g., Wikipedia, Textbooks). Recent
works have explored the potential of LLMs to serve
as factual knowledge bases (Yu et al., 2023; Pan
et al., 2023). Specifically, existing studies have pri-
marily focused on qualitative assessments of LLM
factuality (Lin et al., 2022a; Chern et al., 2023),
investigations into knowledge storage mechanisms
(Meng et al., 2022; Chen et al., 2023), and analyses
on knowledge-related issues (Gou et al., 2023).

Factuality Benchmarks. Many factuality bench-
marks (Hendrycks et al., 2021; Zhong et al., 2023;
Huang et al., 2023; Li et al., 2023b; Srivastava
et al., 2023; Yang et al., 2018) have been proposed.
For example, MMLU (Hendrycks et al., 2021) is
to measure the multitask accuracies on a diverse
set of 57 tasks. Truthful QA (Lin et al., 2022a) fo-
cuses on assessing the truthfulness of a language
model’s generated answers. Additionally, HaluE-
val (Li et al., 2023c) is to examine the tendency of
LLMs to produce hallucinations. Recently, Sim-
pleQA (Wei et al., 2024) has been proposed to mea-



sure the short-form factuality in LLMs. However,
SimpleQA only focuses on the English domain. In
contrast, our Chinese SimpleQA aims to compre-
hensively evaluate factuality in Chinese.

3 Chinese SimpleQA

3.1 Overview

The left of Figure 1 shows the category distribu-
tion of Chinese SimpleQA, which encompasses a
comprehensive set of 6 major topics with 99 dis-
tinct subtopics. The six main topics are: “Chinese
Culture”, “Humanities”, “Engineering, Technology
and Applied Sciences”, “Life, Art and Culture”,
“Society”, and “Natural Science”, and the 99 subcat-
egories are detailed in Appendix H. Moreover, we
specially set up the category of “Chinese Culture”
to evaluate the region-specific knowledge. The
right of Figure 1 provides detailed statistics for the
Chinese SimpleQA dataset. The dataset consists of
3,000 samples, and the distribution across the six
major categories is relatively balanced, facilitating
a comprehensive assessment of LLMs in diverse
domains. In addition, the average answer length is
approximately six tokens, ensuring efficient evalu-
ation and minimizing potential errors.

3.2 Dataset Construction

The data construction process consists of the fol-
lowing steps: (1) extracting and filtering relevant
knowledge content, (2) manually collecting high-
quality question-answer examples for each topic,
(3) generating question-answer pairs using prede-
fined criteria, and (4) verifying and revising them
if requirements are not met.

Specifically, we first collect a large volume of
knowledge-rich text from various fields, such as
Wikipedia® and Baidu Baike?. We then apply spe-
cific filtering rules and use a trained quality assess-
ment model to remove low-quality data, such as
texts with little information content or too specific.
Next, we manually create several high-quality ex-
amples for each category to provide a few-shot
learning foundation for the model’s question gener-
ation. These examples are designed to demonstrate
various ways of asking questions to ensure diver-
sity in the generated outputs. Finally, we prompt
the LLM to generate question-answer pairs using
these high-quality knowledge contents based on

Zhttps://www.wikipedia.org/
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predefined criteria. We have also established an au-
tomated multi-round feedback mechanism: when
the model generates a question-answer pair, it trig-
gers another model to evaluate whether the pair
meets the criteria. If it does not, the secondary
model provides suggestions for improvement, and
the main model regenerates the pair based on this
feedback.

Notably, the construction of question-answer
pairs is based on the following criteria:

Questions must be based on factual knowledge.
Questions should pertain to objective facts about
the world and must not be influenced by subjective
opinions. For example, questions that begin with
“What do you think about” or “How would you
evaluate” are inappropriate, as they invite personal
judgment rather than factual inquiry.

Answers must be unique and unambiguous.
Each question must have a single, definitive an-
swer, eliminating any possibility for multiple cor-
rect responses. Questions that have contentious or
ambiguous answers are not suitable. For instance,
the question “Who is the author of Dream of the
Red Chamber?” does not meet the requirements
because there are different opinions.

Answers must not change over time. Answers
should reflect timeless facts unaffected by the time
the question is posed. For example, “What is the
atomic number of carbon?”” and the answer “6" re-
mains unchanged. In contrast, questions regarding
current affairs, such as “Who is the current pres-
ident of a certain country?” are inappropriate, as
their answers are subject to change.

Questions must be challenging. Questions
should not be overly simple, and queries need to
assess the knowledge depth thoroughly.

Questions must be answerable as of 2023. Each
question must be answerable by December 31,
2023, ensuring fair evaluation for models trained
on data available post this date.

3.3 Quality Control

Automatic Verification. We also build an au-
tomated verification mechanism, including LLM-
based verification and RAG-based verification.
Specifically, we first use LLM to determine
whether the question meets the criteria and is rel-
evant to the current category. If it does not meet
the requirements or is irrelevant, the question and
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Benchmark Venue Data Size Language

Data Source

Categories Open-ended Reasoning Short-form Metric

TriviaQA (Joshi et al., 2017) ACL 650K English Human Collection - v v v Accuracy
NQ (Kwiatkowski et al., 2019) TACL 3,610 English Real World - v v v Accuracy
MMLU (Hendrycks et al., 2021) ICLR 15,908 English Exams 57 X v v Accuracy
Truthful QA (Lin et al., 2022b) ACL 817 English Human Writers 38 v X X ROUGE
C-Eval (Huang et al., 2023) NeurIPS 13,948 Chinese Exams 52 X v v Accuracy
CMMLU (Li et al., 2023a) ACL 11,528 Chinese Exams 67 X v v Accuracy
HaluEval (Li et al., 2023d) EMNLP 5000 English General X v X Accuracy
ChineseFactEval (Chern et al., 2023) Arxiv 125 Chinese Human Collection 7 v X X LLM-as-a-Judge
AGI-Eval (Zhong et al., 2024) NAACL 8062 Ch&En Exams 20 X v v Accuracy
SimpleQA (Wei et al., 2024) Arxiv 4,326 English Human Writers 10 v X v LLM-as-a-Judge
Chinese SimpleQA (Ours) 3,000 Chinese  Self-constructed & Human Writers 99 v X v LLM-as-a-Judge

Table 1: Comparisons between our Chinese SimpleQA and other benchmarks.
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Figure 2: An overview of the entire production process of Chinese SimpleQA.

answer pair will be deleted directly. Then, we use
the built RAG system to verify the answer. Here,
we build it based on the Llamalndex * framework
and use Google and Bing search results as data
sources. If there are contradictory answers in the
retrieval results, they will be deleted directly. For
more details, please refer to Appendix J.

Difficulty Filtering. In addition, we filter simple
questions to discover the knowledge boundaries of
LLMs and improve the difficulty of Chinese Sim-
pleQA. Specifically, if a question could be correctly
answered by all five powerful models, it is consid-
ered as a simple question and will be discarded.

Human Verification. Following the automated
data collection, human verification is employed to
further enhance the quality of the dataset. Specifi-
cally, each question is independently evaluated by
two human annotators. Initially, the annotators as-
sess whether the question adheres to the predefined
criteria outlined earlier. If either annotator deems
the question non-compliant, it is discarded. Subse-
quently, both annotators use search engines to re-
trieve relevant information and formulate answers.
At this stage, the annotators are required to use
content from authoritative sources (e.g., Wikipedia,

*https://github.com/run-1lama/1lama_index

SGPT-40 (OpenAl, 2023), Meta-Llama-3-70B-
Instruct (Dubey et al., 2024), Qwen2.5-72B-Instruct (Team,
2024d), DeepSeek-7B-chat (DeepSeek-Al, 2024a) and
Baichuan2-7B-chat (Baichuan, 2023).

Baidu Baike), and each must provide at least two
supporting URLs. In cases where the annotators’
answers are inconsistent, a third annotator reviews
the sample. The final annotation is determined
by the third annotator, who references the initial
two assessments. Finally, the human annotation
results are compared with responses generated by
the large language model (LLM), and only those
question-answer pairs that are fully consistent are
retained. This rigorous human verification process
ensures that the dataset is both accurate and meets
established standards.

Desensitization. After completing the above ver-
ification, we also use our safety risk model to filter
to ensure that the final questions and answers do
not contain any security risks.

Preventing Data Contamination. We need to
mention that our Chinese SimpleQA evaluates the
factuality knowledge abilities, where the knowl-
edge is saved in the training corpus from the web-
site (e.g., Wikipedia). Thus, we rigorously check
generated questions against our question database
for highly similar or identical ones. When such
similarities are detected, we rewrite the questions
to ensure uniqueness, which prevents direct memo-
rization and ensures that the evaluation reflects the
model’s ability to recall knowledge.

Analysis of the Retention Rate. In the collec-
tion process, many low-quality question-answer
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pairs are discarded. Specifically, 10,000 pairs are
initially generated. After LLM-based verification
and RAG-based verification, roughly 2,840 pairs
are removed. After that, another 3,690 samples
are removed after difficulty evaluation through test-
ing with different models, which means that only
about 35% of the original generated data remains.
Finally, after a thorough and rigorous manual re-
view, only about 3,000 samples are kept, which is
approximately 30% of the original dataset.

3.4 Comparison to other benchmarks

In Table 1, we compare Chinese SimpleQA with
several mainstream benchmarks, and our dataset
is the first Chinese evaluation set to adopt a gen-
erative approach to evaluate the factuality abilities
comprehensively. It is worth noting that the C-Eval
and CMMLU mainly adopt multiple-choice evalu-
ation methods that may introduce option bias and
reduce the difficulty of questions, making it easier
for models to guess the correct answer rather than
truly understand the question (We do a detailed
experimental analysis in Appendix C). In contrast,
the generative evaluation method used in Chinese
SimpleQA is closer to real-world scenarios. In ad-
dition, compared with other similar datasets, our
benchmark has the advantages of high evaluation
efficiency and more comprehensive coverage.

4 [Experiments

4.1 Setup

We use the same prompt format in all experiments.
The temperature and sampling parameters are the
official configuration or default parameters of each
LLM. The judge model we use is GPT-40. We
also evaluate using their smaller models as judge
models, all of which achieved a high degree of
consistency(see Appendix B for more details). For
more details on the experimental implementation,
please refer to Appendix G.

4.2 Baseline Models

We evaluate a total of 41 models, comprising
17 closed-source models and 24 open-source
models.  The closed-source models include:
ol-preview 6 Doubao—pro—32k7, GLM-4-Plus®,

®https://openai.com/index/
introducing-openai-ol-preview/

7https://www.volcengine.com/product/doubao

8https://bigmodel.cn/dev/api/nor‘mal—model/
glm-4

GPT-40’, Qwen-Max (Team, 2024c), Gemini-1.5-
pro (Team, 2024a), DeepSeek-V2.5 (DeepSeek-
Al, 2024b), Claude-3.5-Sonnet '°, Yi-Large'!,
moonshot-v1-8k'2, GPT-4-turbo (OpenAl, 2023),
GPT-4 (OpenAl, 2023), Baichuan3-turbo!3, ol-
mini', Doubao-lite-4k'3, GPT-40-mini'®, GPT-
3.5 (Brown et al, 2020). The open-source
models include: Qwen2.5 series (Team, 2024d),
InternLM2.5 series (Team, 2024b), Yi-1.5 se-
ries (Al et al., 2024), LLaMA3 (Al@Meta, 2024)
series, DeepSeek Series (DeepSeek-Al, 2024a),
Baichuan?2 series (Baichuan, 2023), Mistral se-
ries (Jiang et al., 2023), ChatGLM3 and GLM-
4 (GLM et al., 2024; Du et al., 2022).

4.3 Evaluation Metrics

Following SimpleQA, we also adopt the follow-
ing five evaluation metrics. (1). Correct (CO):
The predicted answer fully includes the reference
answer without introducing any contradictory el-
ements. (2) Not attempted (NA): The reference
answer is not fully given in the predicted answer,
and there are no contradictory elements with the ref-
erence answer. (3) Incorrect (IN): The predicted
answer contradicts the reference answer, even if
the contradiction is solved. (4). Correct given
attempted (CGA): The metric is the proportion
of accurately answered questions among those at-
tempted questions. (5). F-score: The metric rep-
resents the harmonic mean between correct and
correct given attempted.

4.4 Main Results

In Table 2, we provide the results of different LLMs
on Chinese SimpleQA. Specifically, we provide the
overall results on 5 evaluation metrics. Addition-
ally, we report the F-score for 6 topics to analyze
fine-grained factuality abilities. We have the fol-
lowing insightful observations:

* ol-preview achieves the best performance on
Chinese SimpleQA, and results of several re-
cent closed-source LLMs focusing on Chinese

9https://openai.com/index/hello—gpt—4o/
1Ohttps://www.an’chropic.com/news/
claude-3-5-sonnet
11https://platform.lingyiwanwu.com/
12https://platform.moonshot.cn/
13https://platform.baichuan—ai.com/
“https://openai.com/o1/
Bhttps://www.volcengine.com/product/doubao
16https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/
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Overall results on 5 metrics \

F-score on 6 topics

Models

| CO NA IN CGA F-score| CC HU ETAS LAC SO NS
Closed-Source Large Language Models
ol-preview 63.8 122 240 727 679 |457 698 724 650 735 723
Doubao-pro-32k 619 103 278 69.1 653 | 61.8 693 69.0 56.1 642 704
GLM-4-Plus 587 74 339 634 609 |565 641 649 507 666 62.8
GPT-40 593 14 393 60.1 597 394 640 651 533 68.6 620
Qwen-Max 541 113 346 61.0 574 | 478 599 635 499 612 593
Gemini-1.5-pro 544 80 37.6 59.1 56.7 | 414 591 60.8 522 563 643
DeepSeek-V2.5 541 59 400 575 557 |504 576 588 50.1 594 569
Claude-3.5-Sonnet 462 274 264 63.6 535 | 287 613 604 422 598 577
Yi-Large 473 164 363 56.6 51.5 | 41.1 565 551 417 57.6 538
moonshot-v1-8k 4877 54 459 515 50.1 | 49.8 541 568 414 53.0 46.6
GPT-4-turbo 456 142 402 53.1 49.1 242 552 589 439 525 508
GPT-4 454 84 462 49.6 474 | 252 540 528 418 528 50.6
Baichuan3-turbo 452 9.0 458 496 473 | 323 525 540 354 546 509
ol-mini 39.5 206 399 497 44.1 213 492 559 338 488 4638
Doubao-lite-4k 36.7 312 321 533 434 | 402 448 51.0 31.1 414 504
GPT-40 mini 376 09 615 379 37.8 19.0 424 464 310 422 398
GPT-3.5 297 29 674 306 30.1 133 358 352 256 327 317
Open-Source Large Language Models

QwQ-32B-Preview 39.8 11.7 485 451 423 1359 460 447 273 435 417
Qwen2.5-72B 484 7.1 445 521 502 | 363 561 579 371 533 564
Qwen2.5-32B 388 11.1 50.1 43.6 41.1 337 458 487 273 447 449
Qwen2.5-14B 354 9.6 550 392 372 | 302 418 46.1 241 388 41.0
Qwen2.5-7B 266 99 635 295 279 |20.1 327 338 180 28.6 320
Qwen2.5-3B 162 12.8 71.0 18.6 17.3 134 179 26.1 93 15.6 208
Qwen2.5-1.5B 1.1 146 743 13.1 12.0 11.0 113 187 6.7 122 129
GLM4-9B 259 125 61.6 29.6 276 |288 321 320 176 289 278
ChatGLM3-6B 11.2 13.6 752 129 120 | 12.1 138 124 88 134 1138
InternLM2.5-20B 315 77 608 34.1 328 | 320 371 377 212 357 343
InternLM2.5-7B 247 75 678 267 257 | 255 294 310 164 269 258
InternLM2.5-1.8B 53 311 636 7.6 6.2 6.1 87 72 33 45 74
Yi-1.5-34B 309 58 633 328 31.8 | 282 369 368 244 328 314
Yi-1.5-9B 182 29 1789 187 18.4 172 202 243 102 20.1 198
Yi-1.5-6B 159 28 813 163 16.1 142 179 213 103 168 165
LLaMA3.1-70B 383 94 523 423 402 | 229 472 493 345 49.6 404
LLaMA3.1-8B 169 88 743 18.6 17.7 85 207 234 9.7 205 20.7
DeepSeek-67B 435 148 417 511 470 |343 545 503 423 49.0 462
DeepSeek-V2-Lite-Chat 337 12.8 535 38.6 36.0 | 353 385 417 322 375 312
DeepSeek-7B 232 132 63.6 267 248 | 245 272 289 206 27.0 215
Baichuan2-13B 19.1 249 560 254 21.8 | 240 258 233 168 23.0 187
Baichuan2-7B 125 21.8 657 16.0 14.0 146 16.1 154 11.1 138 133
Mixtral-8x22B-Instruct-v0.1 | 27.3 22 705 279 27.6 106 323 36.0 210 341 269
Mixtral-8x7B-Instruct-v0.1 | 204 7.2 724 220 21.2 52 265 290 13.0 250 233
Mistral-7B-Instruct-v0.2 150 88 762 164 15.6 45 182 222 95 214 157

Table 2: Results of different models on Chinese SimpleQA. For metrics, CO, NA, IN, and CGA denote “Correct”,
“Not attempted”, “Incorrect”, and “Correct given attempted”, respectively. For subtopics, CC, HU, ETAS, LAC,
SO and NS represent “Chinese Culture”, “Humanities”, “Engineering, Technology, and Applied Sciences”, “Life,

Art, and Culture”, “Society”, and “Natural Science”, respectively.

(Doubao-pro-32k and GLM-4-Plus) are very

close to ol-preview.

e It is obvious that the “mini” series models (o1-
mini, GPT-40-mini) achieve lower results than
the corresponding larger models (ol-preview,
GPT-40), which also indicates these “mini” se-

factuality knowledge.

ries models do not pay attention to memorize

* A Larger LLM leads to better performance,
where we can draw this conclusion based on
many model series (e.g., GPT, Qwen2.5, In-
ternLM2.5, Yi-1.5). The scatter plot in Fig-
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Figure 3: Results (CO and CGA metrics) of different models for six topics.
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Figure 4: Relationship between model scale (in billion
parameters) and F-score on Chinese SimpleQA.

ure 4 shows a clearer positive correlation be-
tween model scale and performance.

e Small LLMs usually lead to higher scores on
“not attempted (NA)”. The NA scores for ol-
mini, InternLM?2.5-1.8B are 20.5 and 31.2, re-
spectively, which are larger than the scores of
corresponding larger LLMs a lot (ol-preview
with 12.2, InternLM2.5-20B with 7.7).

There is a significant performance difference
among different subtopics for different LLMs.
Notably, the Chinese community LLMs (e.g.,
Doubao-pro-32k, GLM-4-Plus, Qwen-Max) are
significantly better than GPT or ol models in
the Chinese Culture (CC) subtopic. In contrast,
ol has significant advantages in science-related
subtopics (e.g., ETAS and NS).

In addition, we also provide the detailed results
(CO and CGA metrics) on 6 topics in Figure 3.

4.5 Further Analysis

Analysis of Calibration. For the calibration of dif-
ferent LLMs, following SimpleQA, we instruct the
model to provide a corresponding confidence level

—e— gpt-40-0806 Perfect Calibration

gpt-do-mini-0718

ol-preview-0912 —e— qwen2.5-72b-instruct  —— qwen2.5-7bdnstruct -~
01-mini-0912 qwen2.5-32b-instruct qwen2.5-3b-instruct
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Figure 5: Left: Calibration of LLMs based on their
stated confidence. Right: Improvement in accuracy
with increased test-time compute using Best-of-N.

(from O to 100) when answering questions to mea-
sure the model’s confidence in its answers (See the
prompt in Appendix K). We know that a perfectly
calibrated model’s confidence (%) should match its
answers’ actual accuracy. The left plot in Figure 5
illustrates the alignment performance, which indi-
cates that GPT-4o0 aligns better than GPT-40-mini
and ol-preview aligns better than ol-mini. For the
Qwen2.5 series, the alignment order is Qwen?2.5-
72B > Qwen2.5-32B > Qwen2.5-7B > Qwen2.5-
3B, which suggests that larger model sizes result
in better calibration. Furthermore, for all evalu-
ated models, their confidence in the range of confi-
dence > 50 falls below the line of perfect alignment,
which means that they all overestimate the accuracy
of their responses and overconfidence exists.

Analysis of Test-Time Compute. We also eval-
uate the relationship between increased test-time
compute and response accuracy for different LLMs.
Specifically, we randomly sample 50 samples from
Chinese SimpleQA, and for each sample, the model
is asked to independently answer 100 times. Then,
we obtain the model’s response accuracy using the
Best-of-N method as the inference counts increase.
The results are shown in the right plot of Figure 5.
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Figure 7: The effect of alignment in post-training.

We observe that as the times of inferences increase,
the response accuracy of all models improves and
eventually reaches a ceiling. This is reasonable for
Chinese SimpleQA to probe the boundaries of a
model’s knowledge.

Analysis on the effect of RAG. We explore the ef-
fect of the Retrieval-Augmented Generation (RAG)
in enhancing the factual accuracy of LLMs on Chi-
nese SimpleQA. Specifically, we reproduce a RAG
system based on Llamalndex (Liu, 2022), incorpo-
rating Google search APIs. In Figure 6, all models
show a substantial improvement in accuracy with
RAG. For example, the performance of Qwen2.5-
3B improved more than threefold. Notably, nearly
all models with RAG outperform native GPT-40.
Meanwhile, RAG also leads to a marked reduc-
tion in performance disparities among models. For
example, the F-score difference between Qwen2.5-
3B with RAG and Qwen2.5-72B with RAG is only
6.9%. This suggests that RAG reduces the perfor-
mance gaps greatly, enabling even smaller ones to
achieve high performance when augmented with
RAG. Overall, this suggests that RAG serves as an
effective shortcut for enhancing the factuality.
Analysis on the alignment tax. Recently, prior
studies (OpenAl, 2023; Song et al., 2023) have
found that the alignment can lead to a decrease
in the abilities of language models as known as
the “alignment tax”. To illustrate the effect of
alignment on factuality, we conduct a comparative
performance analysis between pre-trained models
and aligned models that are trained with Super-
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Figure 8: The rankings of different LLMs.

vised Fine-Tuning (SFT) or Reinforcement Learn-
ing from Human Feedback (RLHF). As illustrated
in Figure 7, different models exhibit varying trends
after post-training, but most models have a signifi-
cant decline. Among these, the Baichuan?2 series
models show the most significant decreases, with
Baichuan2-7B and Baichuan2-13B experiencing
F-score reductions of 47% and 28%, respectively.
This reflects that the alignment training of most cur-
rent LLMs still has obvious drawbacks of knowl-
edge hallucinations, which further reflects the ne-
cessity of our Chinese SimpleQA dataset.
Comparison between Chinese SimpleQA and
SimpleQA. We also compare the ranking differ-
ences of various models on the SimpleQA and
the Chinese SimpleQA. In Figure 8, there are no-
table discrepancies in model performance across
these two benchmarks. For instance, Doubao-pro-
32k ranks significantly higher on the Chinese Sim-
pleQA, moving from 12th to 2nd place (+10). Con-
versely, GPT-4 shows a decline in performance on
the Chinese SimpleQA, dropping from 3rd to 9th
place (-6). These differences emphasize the impor-
tance of evaluating models on datasets in various
languages and the need for research into optimizing
model performance across different linguistic envi-
ronments. In addition, most Chinese community-
developed models (e.g., Qwen-Max, GLM-4-Plus,
Yi-Large, Doubao-pro-32k) perform better on the
Chinese SimpleQA than on the SimpleQA, show-
ing their advantages on Chinese.

5 Conclusion

In this paper, we propose the first Chinese short-
form factuality benchmark (i.e., Chinese Sim-
pleQA), which mainly has five important features
(i.e., Chinese, diverse, high-quality, static, and easy-
to-evaluate). Besides, we comprehensively evalu-
ate the performance of existing 40+ LL.Ms on factu-
ality and provide detailed analysis to demonstrate
the advantages of our Chinese SimpleQA.



6 Limitations

While Chinese SimpleQA provides valuable in-
sights, it has some limitations. Its coverage of six
main topics and 99 subtopics may not fully capture
the diversity of all domains, particularly niche or
emerging areas. As a static benchmark, it cannot
reflect real-time advancements or evolving factual
information. Additionally, its focus on short-form
questions and reliance on simple evaluation met-
rics might overlook complex reasoning tasks or
nuanced factuality. Addressing these limitations
will be our focus in future work.
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Model Performance Across Different CoT Strategies
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Figure 9: Model Performance Across Different CoT Figure 10: Robustness of Judge Models.

Strategies.
model Single-Choice Accuracy (%) Shuffled-Options Accuracy (%) Open-Ended QA Accuracy (%) Accuracy Drop (%)
Qwen-Max 84.89 83.99 66.77 21.35
Yi-Large 71.60 68.88 56.80 20.68
Baichuan3-turbo 74.62 73.23 59.82 19.84
GPT-40 mini 60.12 60.42 42.30 29.65
GPT-3.5 48.20 46.83 30.21 37.32
Qwen2.5-14B 73.41 75.53 63.14 13.99
Qwen2.5-7B 75.23 75.83 54.38 27.71
Baichuan2-13B-Chat 48.64 47.73 25.08 48.45
ChatGLM3-6B 47.73 45.32 19.34 59.49

Table 3: Evaluation results of various models using three methods: original multiple-choice questions, shuffled-
options multiple-choice questions, and open-ended QA. The table illustrates accuracy differences across evaluation
formats and highlights the impact of option bias and the challenges posed by open-ended QA.

A Analysis on the effect of Chain-of-Thought

To evaluate the impact of Chain-of-Thought (CoT) prompting strategies on model factuality, we im-
plemented and compared two approaches: “Recall and Answer” and “Step by Step”. As illustrated in
Figure 9, the performance differences induced by these strategies are not substantial across models
of varying scales. Notably, larger models, such as Qwen2.5-72B-Instruct and Qwen-Max, display a
marginal improvement with CoT strategies, but the gains remain relatively modest compared to baseline
performances. These findings align with conclusions drawn in similar studies, such as those in C-EVAL
and CMMLU, where CoT prompting did not universally enhance accuracy, and in some cases, resulted in
performance degradation. This suggests that the effectiveness of CoT strategies in improving factuality
may be limited for tasks that do not require intensive reasoning.

B Robustness of Judge Models

The figure 10 shows the evaluation results of six models selected from different performance levels of
the current ranking. We use various evaluation models to evaluate these models. The evaluation models
include Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct, Qwen2.5-72B-Instruct, and
GPT-40 used in the previous experiment. It can be seen that although the scores of different evaluation
models are different, the relative scores and rankings of each model have not changed. This consistency
demonstrates the robustness of our evaluation set and evaluation method, and means that using smaller-
scale evaluation models (such as Qwen2.5-3B-Instruct or Qwen2.5-7B-Instruct) can also have a high
consistency rate, and can be evaluated efficiently even with limited resources.

C Biases in Choice Evaluation

The experimental results presented in Table 3 demonstrate the impact of option bias in multiple-choice
evaluations and highlight the importance of open-ended question-answering (QA) evaluations. To conduct
the experiment, we used GPT-4 to transform the CEval dataset into a question-answering format, applying
the Chinese SimpleQA pipeline to filter the data. This process resulted in a curated set of 300 high-quality
QA items for experimentation.
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Figure 12: Detailed results on some selected subtopics.

Each model was evaluated using three methods: (1) the original multiple-choice question format, (2) the
multiple-choice format with shuffled options, and (3) the open-ended QA format. Results show that most
models exhibit a significant reduction in accuracy when evaluated with the open-ended QA format (note:
the questions remained consistent across formats). For instance, the Qwen-Max model’s accuracy dropped
by 21%, while GPT-3.5’s accuracy decreased by 30%. These findings suggest that the multiple-choice
format simplifies the evaluation process, potentially underestimating the difficulty of the task. Additionally,
some models exhibited changes in accuracy after the options were shuffled, indicating the presence of
option bias. These observations raise concerns that the multiple-choice evaluation method may fail to
fully capture the factual correctness of the models or adequately address hallucination tendencies. In
contrast, the generation-based evaluation aligns more closely with realistic task scenarios. This format
requires models to generate free-form answers, eliminating the possibility of "guessing" from predefined
options and providing a clearer assessment of the model’s reasoning and comprehension abilities.

We hope that Chinese SimpleQA can provide the research community with a more accurate perspective
to advance model development, rather than just following the trend of multiple-choice based evaluation.

D Analysis Across Answer Types

In Figure 11, we show the accuracy of each
model on different answer types. It can be ob-
served that the accuracy of responses to questions
involving dates and numerical information is sig-
nificantly lower compared to other answer types
such as organizations, places, and persons. This
suggests that the models are more prone to gener- °
ating hallucinations when processing numerical

data, highlighting a persistent challenge in ad-  Figure 11: Model Performance on Different Answer
dressing arithmetic reasoning and date-related ~ Types.

tasks within these systems.

E Analysis on the results of subtopics

As mentioned in Section 3.2, the benchmark covers a total of 99 subtopics, which can comprehensively
detect the knowledge level of the model in various domains. Figure 12 illustrates the performance
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comparison between the ol model and seven notable Chinese community models within several common
domains. Firstly, from an overall perspective, the ol-preview model exhibits the most comprehensive
performance across these domains, with the Doubao model following closely. In contrast, the Moonshot
model demonstrates the weakest overall performance. Secondly, when examining specific domains, a
significant disparity emerges between the Chinese community models and the ol model in areas such as
Computer Science and Medicine. However, this gap is minimal in domains like Education and Economics.
Notably, in Education, some Chinese community models outperform the ol-preview, highlighting their
potential for achieving success in specific vertical domains. Lastly, when examining specific models,
the Moonshot model is notably weaker in Mathematics, Law, and Entertainment, while the Baichuan
model also underperforms in Entertainment. The Yi-Large model excels in Education, and the o1 model
maintains the strongest performance across other domains. Evaluating the performance of the models
across diverse domains within the benchmark dataset enables users to identify the most suitable model for
their specific needs.

F Chinese SimpleQA Examples

We present several examples of our dataset in Figure 13.

G Evaluation Details

For evaluating the chat models, we use the official chat template. For the pre-trained models, we employ
the few-shot learning approach, where a small set of high-quality question-answer examples is provided
to guide the model in understanding the task and generating accurate, concise responses.

For evaluating models with RAG, the model is given relevant reference materials related to the user’s
question. The system prompt instructs the model to prioritize information from the retrieved information,
or, if no relevant information is found, to rely on its own knowledge to generate the answer. The prompt is
illustrated in Figure 14.

H Distribution of Subtopics

Figure 15 shows the distribution of the 99 categories in the SimpleQA dataset, including the count and
the average question token length.

Figure 16 illustrates the difficulty distribution for questions across 99 distinct categories, measured by
the number of incorrect responses from models. Firstly, many categories exhibit narrow and symmetrical
violin shapes, indicating a relatively uniform distribution of question difficulty. This suggests that within
these categories, questions are consistently challenging, providing a balanced assessment environment for
model evaluation. Such consistency is crucial for ensuring fairness in comparisons across different models,
as it minimizes biases introduced by disproportionately easy or overly difficult questions. Secondly, the
overall layout shows the diversity of the dataset, while most categories maintain a reasonable difficulty
distribution. This balance enables the identification of strengths and weaknesses in model performance
without being affected by extreme outliers or irregular distributions.

I Models Performance Across Difference Topics
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1 | (Traditional - - — — "
Chinese Medicine) Wh}'ch Chinese m.edl.cme scientist c.reateq the Héng .
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. Xibe ethnic group
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Figure 13: Some examples of Chinese SimpleQA.
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Figure 14: The prompt of RAG.
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primary_category secondary_category count question avg. token primary_category secondary_category count question avg. token
Traditional Chinese Medicine (*'[5%) 33 321 Industry (7l 35 282
Chinese Folklore (4 FLA4) 30 36.2 Tradition (44%) 26 32.6
Chinese History (1 [EJJj5) 48 30.9 Country ([H%) 35 25.8
Chinese Opera (1 [E %% i) 21 30.9 City (JkTi7) 36 26.4
Chinese Literature (' ) 51 29.0 Media (84) 24 24.0
Chinese Culture Chinese Martial Arts (sf1[# it A) 26 293 Safety (%4%) 20 323
Chinese Mythology (#'E #11%) 20 38.6 Religion (5%%%) 27 26.6
Chinese Music (#'[H# 5) 22 36.5 . Government (HUff) 32 312
Calligraphy ($53%) 23 31.0 Society Politics (B(if) 31 354
Buddhism (#0) 26 27.9 Education (¥ 7) 23 28.5
Taoism (H#0) 26 33.7 Culture (301k) 25 275
Demography (A [12) 21 325 Ethnic Groups (f%H) 29 29.3
Anthropology (A ) 20 339 Law (31} 28 31.6
Communication Studies (f432#) 21 283 Crime (JL5F) 19 375
Military Studies (F552¢) 37 36.6 Organization (4141) 37 272
History (J7 1) 50 37.1 Economy (Z:3) 26 27.3
Philosophy (¥72) 36 34.4 Agriculture (2%) 35 25.0
Library and Information Science ([ F¥iflFl23) 29 242 Animals (Z%7) 30 244
Psychology (:H2F) 17 32.0 Chemistry ({£.2%) 40 243
Political Science (E[{fi2#) 40 29.6 Medicine (PE2%) 30 329
Humanities Education (3 #2) 30 313 Geography (ML) 44 266
Literature (3C2) 40 32.1 Geology (HJii%) 40 25.5
Journalism (H7[iH=5) 31 25.6 Astronomy (K32) 44 226
Ethnology (F.%2) 27 303 Natural Science Cryptography (#1142) 33 25.9
Law (£2%) 39 324 Mathematics (5(2%) 32 29.1
Sociology (#1:£32%) 31 28.3 Botany (111#) 32 21.7
Management (5 #2%) 23 27.1 Meteorology (“T4:2#) 27 29.1
Economics (4:52) 35 30.4 Physics (P1F2%) 41 29.6
Atts (EA) 42 323 Biology (4:4) 36 283
Linguistics (i /5 2%) 40 25.6 Pharmacy (252¢) 32 247
Transportation (£ i) 22 28.1 Information Science (¥ ifF 34 28.7
Metallurgy (i44:2) 26 248 Animation (ZiH) 40 29.4
Chemical Engineering ({t2% T%) 20 314 Entertainment (15 5%) 41 30.1
Printing (E1Fil) 24 23.6 Tools (T.5) 2 28.5
Civil Engineering (+ A T#%) 30 28.2 Drama (X Jl) 21 28.5
Architecture (2 5{2%) 24 30.8 Handicrafts (- 1.20) 20 31.3
Mechanical Engineering (WU, T-#2) 27 284 Photography (15 20 34.0
Materials Science (K} Fl27) 26 26.4 Collectibles () 27 253
Engineering, Hydraulic Engineering (7K | T.#%) 21 30.8 Cultural Relics (3C4) 28 30.3
Z;‘:l‘ir;‘;“;‘ge’;c“e‘i Surveying (H1£225) 27 2.6 Tourism (Jii) 2 321
Environmental Science (FfFiF}2%) 24 324 Fashion (fIf2%%) 18 25.6
Bioengineering (44 Tf#) 21 40.8 Liféuﬁ:;:nd Gaming (ffiFxk) 45 30.2
Electrical Engineering (F1“{ T.%) 23 29.9 Comics (i i) 42 278
Mining (1) 25 26.0 Movies (H15% 45 31.5
Energy Science (RETHFIF) 31 28.9 Television (HL#1) 48 283
Aerospace (i i K) 29 259 Painting (428) 29 358
Computer Science (P15 HLE}2F) 48 244 Dance ($EH5) 20 29.8
Communication Technology (iff fi5 1 &) 33 25.8 Festivals (7 H) 18 30.2
Sculpture (%) 30 33.8
Music (¥ /) 45 327
Food and Drink () 20 24.5

Figure 15: Statistics of All Categories in the Dataset: Counts and Question Token Number Distribution.
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Figure 16: Distribution of question difficulty across 99 categories in the dataset. Each violin represents the spread of
difficulty within a category, measured by the number of models that failed to answer the question correctly. Narrow
and symmetrical violins indicate more uniform difficulty distributions, while wider violins or those with elongated
tails suggest greater variability in question difficulty.
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Figure 17: Bar charts showcasing the top 10 models ranked by F1 score across diverse topics.

Figure 17 shows the best performing models in each topic, which are sorted by F1 score. It can
be seen that the strongest models in different fields may not be the same. The results emphasize that

model performance varies with the field, which can help researchers gain a deeper understanding of the
applicability of each model to a specific field.

J Generation and validation of question-answer pairs

The generation and validation of question-answer pairs both use OpenAl’s gpt-40-0806. The specific
prompts are shown in Figures 18, 19, and 20.

K Analysis of Model Calibration

23
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N BRINFN AT RERH F LAY -
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Z/NURERIY), 1%/ MR EIVEE Y

5. tNRFBRIERNFEXNSL, EEHPIENFE RN FAES BF ERURS, X
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IRELER: ("question": "HE B —FIEFN RN T S EARG? ", "answer": "2001"}
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AT IEE !

Figure 18: The prompt for generating question-answer pairs.
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Figure 19: The prompt for validating criteria.
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Figure 20: The prompt for verifying factual accuracy based on RAG.
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T8 [R5 LR [A] 8
{question}
BET R BREROREER, FHOEII00M B ERIRIZERZRMEL (BF
) o B N AITSONAE A H E &
{
"answer": "{RAVEZR",
"confidence_score": /RHE(EE
}

Figure 21: The prompt for guiding the model to output confidence.
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