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Abstract

This paper introduces ClimateViz, the largest
dataset to date for evaluating the fact-checking
and reasoning capabilities of large language
models (LLMs) in the climate science domain.
ClimateViz comprises claims extracted by hu-
mans from high-quality scientific graphics, and
checked for acccuracy and domain relevance.
To advance the SOTA in NLP for fact-checking,
we develop a robust pipeline that systematically
generates claims that are highly similar, but
false. Additionally, we introduce ReasonClim,
a complementary benchmark built using graph-
based methods to evaluate spatial, temporal,
and spatio-temporal reasoning tasks. To assess
LLM’s performance on these tasks, we con-
duct a comprehensive evaluation of the state-of-
the-art models. Our findings demonstrate that
LLMs struggle with detecting certain types of
false claims, especially those generated through
exaggeration. The results also highlight signifi-
cant challenges in fact verification and reason-
ing over climate data, particularly in temporal
reasoning tasks. By providing a benchmark for
evaluating LLMs on real-world climate data,
ClimateViz and ReasonClim support the devel-
opment of more reliable Al systems for climate
science applications.

1 Introduction

Recent advances in large language models (LLMs)
have demonstrated remarkable capabilities across a
broad range of natural language processing (NLP)
tasks (Gemini et al., 2024). Despite these successes,
LLMs continue to struggle with fact verification
and complex reasoning, in domains such as cli-
mate science (Manivannan et al., 2024). Accurately
assessing LL.Ms in this domain is critical, as cli-
mate misinformation can significantly impact pub-
lic perception and policy decisions (Diggelmann
et al., 2021). However, current benchmarks re-
main limited, focusing primarily on text-based fact-
checking while overlooking multi-modal evidence,

spatio-temporal reasoning, and structured knowl-
edge representations.

Dataset Category Size Text Multimodal Multi-step
Fact-Checking  Evidence  Reasoning
FEVER General 185k v X X
PlotQA General 28.9M X v X
ClimateFEVER  Domain-Specific 1.5k v X X
GeoQA Domain-Specific Sk X X v
ChartQA General 23k X v X
Factify General 50k v v X
MMMU General 11.5k v v X
TRAM General 526k X X v
MMFakeBench General 11k v v X
CV+RC* Domain-Specific 20k v v v

Table 1: Comparison of existing fact-checking and rea-
soning datasets. © CV+RC refers to ClimateViz + Rea-
sonClim. Multi-step Reasoning includes both Spatio-
Temporal and Graph-Based Reasoning.

Climate science relies heavily on scientific
graphics—such as bar charts, line graphs, and
maps—to communicate trends, anomalies, and
forecasts (Xu et al., 2024). Yet, existing datasets
rarely evaluate LLMs’ ability to verify claims from
such graphics. Additionally, climate-related rea-
soning often involves spatial dependencies (e.g.,
temperature variations across regions) and tempo-
ral trends (e.g., long-term COy emissions), which
current fact-checking datasets fail to systematically
capture (Cheng et al., 2024; Chu et al., 2024). Fur-
thermore, multi-step reasoning, which is essential
for rigorous inference in scientific domains, re-
mains largely unexplored in existing benchmarks.

To bridge these gaps, we introduce ClimateViz,
the first dataset designed to evaluate fact-checking
based on information in scientific publications in-
cluding the information in scientific graphics, as
shown in Table 1. ClimateViz also includes a
pipeline for generating realistic false claims, im-
proving robustness in evaluating LLMs’ misinfor-
mation detection capabilities.

Complementing ClimateViz, we also present
ReasonClim. ReasonClim contains a knowledge
representation graph that integrates facts from Cli-



mateViz, plus a test suite of questions and answers
that leverages this graph to evaluate spatial, tem-
poral, and spatio-temporal reasoning. ReasonClim
integrates spatial and temporal knowledge from
climate indicators, allowing for a more comprehen-
sive assessment of LLM’s ability to infer, predict,
and verify claims grounded in climate data.

In addition to dataset constrution, we conduct
a comprehensive evaluation of 7 state-of-the-art
LLM:s to assess their ability to verify claims from
ClimateViz and perform spatial and temporal rea-
soning over ReasonClim. While some models ex-
hibit strong fact-checking abilities, they struggle
with specific reasoning tasks, particularly temporal
reasoning and detecting exaggerated claims.

By providing a new benchmark for evaluating
LLMs on real-world climate data, ClimateViz and
ReasonClim offer a testbed for developing agents
capable of robust fact verification, domain-specific
reasoning, and misinformation detection in climate
science.

2 Relation to Previous Work

2.1 Fact-Checking and Misinformation in
NLP

The field of automated fact-checking has evolved
significantly. Early benchmarks like LIAR (Wang,
2017) and FEVER (Thorne et al., 2018) focus on
text-based claim verification. While these founda-
tional datasets have advanced the field, the reliance
on textual data limited their applicability to multi-
modal contexts. To address this, recent datasets
such as MMFakeBench (Anonymous, 2025) and
Factify (Suryavardan et al., 2023) integrate text and
visual data, enabling multi-modal misinformation
detection. Other domain-specific efforts, such as
MM-COVID (Li et al., 2020) and Fauxtography
(Zlatkova et al., 2019), highlight the growing im-
portance of multi-modal fact-checking in medical
and general domains.

ClimateFEVER (Diggelmann et al., 2021) in-
troduced the first climate-specific fact-checking
dataset. Its claims are based on reputable sources
such as Wikipedia. However, it is limited to textual
information; and it does not address the challenges
of processing claims from scientific graphics.

ClimateViz builds on these advances by offering
the largest gold standard dataset in the climate do-
main to date. It contains over 15,000 true claims
and related 5,000 false claims. The true claims
are derived from highly validated sources. The

false claims are constructed over the same vocab-
ulary and are guaranteed to be false. We built the
dataset to incorporate scientific graphics as a pri-
mary modality, bridging the gap between textual
and visual fact-checking.

2.2 Multi-Modal and Visual Information
Extraction

The integration of visual data in NLP tasks has
led to the development of datasets like ChartQA
(Masry et al., 2022) and PlotQA (Methani et al.,
2020), which focus on extracting and reasoning
over data from charts and plots. While these re-
sources address general-purpose visual reasoning,
they do not account for domain-specific challenges,
such as those found in climate science.

ClimateViz builds upon these efforts by empha-
sizing climate-specific data representations, such
as temperature anomalies and carbon emissions
trends, and by incorporating human annotations to
ensure domain relevance.

2.3 Spatial and Temporal Reasoning in NLP

Spatial and temporal reasoning are crucial for ana-
lyzing real-world phenomena (Smith et al., 2023),
particularly in domains like climate science, where
relationships between time and space drive criti-
cal insights. In NLP, temporal reasoning tasks of-
ten focus on understanding chronological data and
extracting time-sensitive information (Qin et al.,
2021), as exemplified by work such as TRAM
(Wang and Zhao, 2024), Similarly, spatial reason-
ing benchmarks like GeoQA (Chen et al., 2022)
assess models’ ability to comprehend geographic
relationships in textual data.

Because these benchmarks primarily operate
within text-based domains, they have limited ca-
pacity to evaluate reasoning over combined spatial
and temporal dimensions, particulary in domain-
specific contexts where such information is typi-
cally presented in graphics that complement the
text. For instance, while temporal reasoning in
TRAM explores event-based temporal relations, it
does not extend to analyzing trends or anomalies
over time and space in scientific data.

ReasonClim addresses these limitations by intro-
ducing spatio-temporal reasoning tasks specifically
tailored to climate science. Using a knowledge
graph constructed from climate-related claims, Rea-
sonClim generates structured reasoning tasks that
evaluate LLMs’ ability to navigate and analyze
relationships across spatial (e.g., geographic re-



gions), temporal (e.g., specific years or seasons),
and spatio-temporal dimensions (e.g., anomalies
occurring in specific regions over time). By inte-
grating information derived from graphics, Rea-
sonClim enables nuanced assessment of LLMs in
complex reasoning scenarios relevant to climate
science.

2.4 Benchmarks and Evaluation of LLMs in
Climate Science

The application of NLP to climate science is an
emerging area of research (Leippold et al., 2024).
Early efforts, such as ClimateFEVER (Diggelmann
et al., 2021), introduced text-based fact-checking
datasets tailored to the climate domain. Topic mod-
eling for climate-related text corpora, as demon-
strated in (Gokcimen and Das, 2024), and trend
analysis using news dataset (Dorfleitner and Zhang,
2024), showcased the potential of NLP for climate
communication. However, these approaches re-
main limited to textual analysis, excluding the crit-
ical visual and spatio-temporal dimensions often
found in the graphics that complement the text.
Multi-modal approaches are promising but have
yet to be fully realized in climate science. For
example, benchmarks like MMMU (Yue et al.,
2024) and MMBench (Liu et al., 2024) demon-
strate multi-modal capabilities, but they lack the
domain-specific focus needed to address complex
relationships inherent in climate science.

ClimateViz and ReasonClim aim to bridge these
gaps by providing the first comprehensive bench-
mark tailored to fact-checking and spatio-temporal
reasoning in climate science. ClimateViz incor-
porates scientific graphics as a primary modality,
advancing the application of NLP in addressing
critical challenges in climate science.

3 Methodology

3.1 Dataset Creation and Annotation

We scraped the scientific graphics from 6 respected
open-domain sources with metadata. ' We used
them to design a three-tasked project on Zooni-
verseZ, a well-established and influential citizen-
science project, c.f (Fortson et al., 2011; Simpson
et al., 2014). The first two tasks are to define titles

"https://www.noaa.gov/, https://www.metoffice.
gov.uk/, https://www.copernicus.eu/, https:
//earthobservatory.nasa.gov/, https://www.climate.
gov/, https://www.climatewatchdata.org/

2https://www.zooniverse.org/

of the graphic and to choose the types of data repre-
sentation of the graphic. The third task is to summa-
rize true facts based on the graphic alone (and not
on the annotators’ background knowledge). The
annotators are prompted to objectively describe sig-
nificant elements observed in the graphic, such as
key data points, trends, comparisons, and any no-
table anomalies or patterns. The answers to the first
two tasks provide context for the third task, which
is the source of the text in the ClimateViz dataset.
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Figure 1: Quality Control Process: before, during, and
after annotation

Our carefully designed quality-control process
involved three distinct phases: before annotation,
during annotation, and after annotation (see Figure
1 and Appendix A). Post-annotation, we scrutinized
the annotations for correctness and consistency. We
also went through each claim to make sure it con-
tained sufficiently precise context to sustain multi-
step reasoning. We ended up with 15,100 true
claims in ClimateViz.

3.2 False Statement Generation via
Augmentation Pipeline

To evaluate the capabilities of LLMs in discern-
ing factual information from misinformation, we
developed an augmentation pipeline to systemat-
ically generate false statements based on the true
climate-related claims as shown in Figure 2. The
generated false facts are designed to resemble real-
world misinformation scenarios that could lead to
misinterpretations.
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Figure 2: False Statement Generation Pipeline

Once false facts were generated, we employed
DeBERTa-Large-MNLI to ensure that the false
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claims generated had a high likelihood of being
semantically contradictory with original ones. We
set a confidence threshold of 0.8 so that only clear
contradictions were retained. Taking together the
false claims and the 15,100 true claims, ClimateViz
contains 20,119 claims in total (See Table 2).

Statistic Value
True claims 15,100
False claims 5,109
False Claims by Method
Trend modification 328
Exaggeration 3,496
Metric swap 1,285
Total claims 20,119

Table 2: Statistics of true and false claims in ClimateViz,
including a breakdown of false claims generated by
different methods.

3.3 Graph-Based Reasoning Tasks and
Groundtruth Generation

ReasonClim is a complimentary dataset derived
from ClimateViz using a graph-based approach
to capture complex relationships inherent in cli-
mate data, including spatial, temporal, and spatio-
temporal interconnections. We employed GPT-40
(Islam and Moushi, 2024) to break complex claims
into single claims, making sure that each single
claim retains enough contextual information (see
Figure 3).

We constructed a directed knowledge graph
G = (N, E), where N represents the set of nodes
and E represents the set of edges. The graph en-
codes relationships between climate-related enti-
ties to facilitate spatio-temporal reasoning and fact-
checking tasks.

The nodes in N include: Region nodes
Nregion, ClimateIndicator nodes 7jimae, Record
nodes 7ccord, and TimePeriod nodes 1, each
uniquely identified and characterized by properties

such as values, units, or descriptions.
The edges in F are:

("regiom Tclimate s EXPERIENCED)  (7climate > Mrecord » HAS_RECORD)
(Mrecord> Mregion s RECORDED_AT)  (7record s ™time; OCCURRED_IN)

These define the relationships between nodes
shown in Figure 3 . This graph structure enables
complex reasoning and querying across climate
data by traversing the relationships.

We employed spaCy model to extract geographic
locations from each fact and pattern matching to

identify time periods (e.g., years, seasons, months),
climate indicators and records. Edges are created
based on relevant source and target.

This structured approach enabled us to create a
rich, interlinked graph where each climate-related
fact was represented in a way that is easy for graph
queries. In the graph we build, there are 12147
edges and 1508 nodes.

Reasoning questions were then generated
through graph traversal techniques that utilized
various types of nodes and edges, each represent-
ing a different aspect of climate data relationships.
Specifically, we aimed to generate three categories
of reasoning tasks: spatial, temporal, and spatio-
temporal, each task was paired with a ground truth
answer and a detailed explanation to ensure both
interpretability and reliability of the generated data.
Temporal reasoning tasks focused on understand-
ing changes across different years or seasons, while
spatial tasks were geographically oriented, and
spatio-temporal tasks involved multidimensional
reasoning that integrated both elements. Our goal
was to provide a challenging benchmark for evalu-
ating LLMs’ abilities to reason about climate data
beyond basic factual recall.

Temporal Questions: For each climate indicator

Nclimate, WE query edges:
Ehas_record = {(nclimatea Trecord HAS_RECORD)L

retrieve records Nyecord, and query edges of type
OCCURRED_IN:

Eoccurred = {(nrecorm TNtime OCCURRED_IN)}'

We filter by time period nime of type "Year" and
ensure the match in the record description. The
generated question is:

Gtemporal : In which year did ncjimae OCCUr in nyegion?

with ground truth gemporal = year of occurrence.

Spatial Questions: For spatial questions, we fo-
cus on whether a climate anomaly occurred in a
region during a given time period. We query edges:

Eexperienced = {(nregiorh Nclimate EXPERIENCED)}7

retrieve records and of OC-

CURRED_IN:

check edges

Eoccurred - {(nrecord> Tregion RECORDED_AT)}



The sunshine duration anomaly in the UK in 2013 during
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January was 83% of the 1961-1990 average. The sunshine
duration anomaly in England in this year during March was
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Figure 3: Graph Query for ReasonClim Generation

If the record contains region and time period
matches, the generated question is:

(spatial : Which climate anomaly was experienced by
Tregion in Ngime?
with ground truth gspatiai = Nclimate-

Spatio-Temporal Questions: For each climate
indicator nclimae and region Ngegion, W€ query
edges:

Eexperienced = {(nregiom Tclimate s EXPERIENCED)},

retrieve records ngecord, and check edges of OC-
CURRED_IN:

Eoccurred = {(nrecord, Ntime, OCCURRED_IN) } .

If the record contains anomaly values, there are
two types of question being generated:

Gspatio_temporal * "What’s the nclimate in Tregion N Nime

compared to the average?"

or "Did nyegion €xperience

s b
Nelimate 10 Ntime

Ground truth can either be a percentage value or
"Yes"/"No" depending on the context.

Ground Truth and Explanation Generation To
enhance transparency, each reasoning task was
paired with an explanation that described the graph
traversal used to reach the answer. These expla-
nations included references to the specific nodes
and relationships in the knowledge graph. This ap-
proach was designed to foster not only the accuracy
of the answer, but also the interpretability, which
is crucial to ensuring trust in Al-generated conclu-
sions, especially in high-stakes domains such as
climate science.

In ReasonClim, we compiled 294 spatial ques-
tions, 294 temporal questions, and 528 spatio-
temporal questions with ground truth and expla-
nations.

4 Task Design and Baselines

To evaluate the performance of LLM in the climate
science domain, we designed tasks targeting fact-
checking and reasoning capabilities.

4.1 Fact-Checking Task

Fact-checking is essential in climate science due to
the prevalence of misinformation (Leippold et al.,
2024), which can undermine public understanding
and policy development. This task evaluates the
models’ ability to classify climate-related claims as
true or false, a critical competency for verifying in-
sights from scientific graphics and textual data. We
sampled 1,000 claims from the ClimateViz, main-
taining a 7:3 proportion of true to false claims to
simulate real-world scenarios. Additionally, false
claims were randomly selected from each genera-
tion method to ensure balanced evaluation of model
sensitivity to different types of misinformation.

4.2 Reasoning Tasks

The reasoning tasks are designed to evaluate mod-
els’ capacity to perform spatial, temporal, and
spatio-temporal reasoning. These dimensions are
critical in climate science, where understanding re-
lationships across geographic regions, timeframes,
and combined spatio-temporal patterns is funda-
mental to interpreting trends and anomalies. By
addressing these reasoning tasks, we benchmark
models’ ability to not only extract information but
also analyze and synthesize it in a structured and
meaningful way.

4.3 Selection of Models

We evaluated 7 models: GPT-40 (Islam and
Moushi, 2024), DeepSeek-R1 (DeepSeek-Al et al.,
2025), O1 (Zhong et al., 2024), GPT-4 (OpenAl
et al., 2024), GPT-3.5 (Ye et al., 2023), Phi-3
(Abdin et al., 2024), and Llama-3-8B (Grattafiori
et al., 2024) These models were selected based
on their state-of-the-art performance in language
understanding and reasoning.



Our tasks are very challenging, but we note three
ways that the models could succeed. Deepseek-R1,
which is the only model evaluated that have the
ability to search the web on-the-fly to answer ques-
tions could access the exact high-profile sources
that we took our graphics from, and process either
the graphics themselves or the accompanying .csv
files. The training sets for the others would have
in principle had access to a substantial fraction of
these on-line materials, and implicitly represented
world knowledge that could be derived from them.
Alternatively the correct answers to some of the
questions could be derived as entailments from
other sources.

5 Experimental Setup

5.1 Model Configuration

The experiments are running on a NVIDIA A100
Tensor Core GPU and approximately 24 GB of
available RAM.

5.2 Evaluation Metrics

To comprehensively evaluate model performance,
we employ the following metrics:

5.2.1 Fact-Checking Metrics.
Abstention Rate (%): The percentage of ques-

tions where the model abstains from answering.

Balanced Accuracy (%): Accounts for class im-
balance by averaging recall across true and false
claims:

Recalliye + Recallgyge
2

Balanced Accuracy =

Recall (%): Measures the proportion of correctly
identified true claims.

F1-Score (%): Balances precision and recall,
providing a single measure of classification per-
formance.

5.2.2 Reasoning Task Metrics.

Reasoning tasks are evaluated using the following
metrics:

Abstention Rate (%): The percentage of ques-
tions where the model abstains from answering.

Mean Evaluation (%): The average evaluation
score for non-abstained questions, calculated using
task-specific criteria:

* For Spatial and Temporal Reasoning:
Weighted Partial Match is used:

IPNG

S —
core ’PUG|

* For Spatio-Temporal Reasoning:

— Numerical questions: Predictions within
10% of the ground truth are scored as
correct.

— Binary classification questions: Exact
matches are scored as correct.

Evaluation Standard Deviation (%): Captures
the variability in model performance across an-
swered questions.

Task-Specific Aggregation. For overall metrics
across reasoning tasks, weighted averages are com-
puted:

Sy Ne - My

Overall Metric = R
Zt:l Ny

where M; is the metric value for task ¢ and V; is
the number of questions in task .

These metrics ensure a holistic evaluation, cap-
turing both accuracy and consistency across diverse
task types.

6 Results

6.1 Model Evaluation for Fact-checking Task

As shown in Table 3, GPT-40 has the highest bal-
anced accuracy in the fact-checking task but also
has a high abstention rate, which implies the model
may only provide answers when it is confident.

Llama-3 has the highest recall and a strong F1-
score, indicating it is particularly good at identify-
ing true positives while maintaining a good balance
between precision and recall. That implies, Llama-
3 is highly sensitive to identifying correct facts,
however, it might struggle with classifying nega-
tive instances.

6.2 Model Evaluation for Reasoning Tasks

To evaluate the performance of language models
across reasoning tasks, we calculate overall metrics
by aggregating results across spatial, temporal, and
spatio-temporal reasoning tasks (See Table 4).
Overall, temporal reasoning is the hardest task.
All models exhibited their lowest scores in the tem-
poral reasoning task. There is a trade-off between



Metric ol DeepSeek-R1 GPT-40 GPT-4 GPT-3.5 Phi-3 Llama-3
Abstention Rate(%) 0.9 1.60 9.3 1.4 0.00 7.2 0.00
Balanced Accuracy(%) 64.69 61.92 66.81 56.43 65.71 58.57 63.48
Recall(%) 43.52 39.39 48.89 16.28 73.43 35.67 84.29
F1-Score(%) 58.19 53.93 62.87 27.66 76.72 49.57 80.71
Table 3: Evaluation metrics for all models on the Fact-checking task.
Metric [ o1 [ DeepSeek-R1 | GPT-40 [ GPT4 [ GPT-35 [ Phi-3 Llama-3
Spatial Reasoning
Abstention Rate (%) 2.17 0.00 3.26 0.00 0.00 0.00 0.00
Mean Evaluation (%) 41.48 4.98 37.83 45.65 20.29 43.82 31.16
Evaluation Std Dev (%) | 31.92 17.47 35.69 24.19 24.53 37.60 31.57
Temporal Reasoning
Abstention Rate (%) 14.29 14.29 0.00 7.14 0.00 0.00 0.00
Mean Evaluation (%) 0.56 8.68 2.42 3.89 5.72 2.93 11.92
Evaluation Std Dev (%) | 1.92 6.26 341 5.58 5.29 3.54 10.44
Spatio-Temporal Reasoning
Abstention Rate (%) 20.08 0.00 4.92 5.49 0.00 4.92 0.00
Mean Evaluation (%) 29.15 31.25 37.85 24.85 37.12 14.34 30.11
Evaluation Std Dev (%) | 45.50 46.4 48.55 43.26 48.36 35.09 45.92
Overall Metrics
Abstention Rate (%) 17.35 0.32 4.57 4.73 0.00 4.10 0.00
Mean Evaluation (%) 30.31 26.94 37.06 27.41 33.98 18.37 31.06
Evaluation Std Dev (%) | 43.31 41.32 46.40 40.60 45.17 35.11 45.92

Table 4: Metrics of different models across spatial, temporal, and spatio-temporal reasoning tasks, along with overall

metrics.

accuracy and consistency. Models such as GPT-40
achieve high accuracy but exhibit higher variability
(e.g., high standard deviation in spatio-temporal
task), while models like Phi-3 demonstrate more
consistent performance but lower overall accuracy.

GPT-40 shows the best performance across all
the reasoning tasks. While almost all models strug-
gle with temporal reasoning tasks (See Figure 5),
Llama-3 performs better on temporal reasoning,
showing a noticeable drop in error rate compared
to the other models. DeepSeek-R1 is has the most
consistent performance across all tasks, but it has
surprisingly low performance on spatial reasoning
task, which means the model may lack access to
granular historical climate data, especially in Euro-
pean countries. Incorporate temporal embeddings
and causal graphs to model time-dependent rela-
tionships (e.g., lagged effects of emissions) may
mitigate this problem.

False positives are of particular interest because
false but plausible claims are the stuff of disinfor-
mation campaigns and conspiracy theories. So, we
conduct further error analysis by calculating the
error rates by false claim categories for the fact-
checking task and by reasoning categories for the
reasoning task. As shown in Figure 4, Llama3 and
GPT-3.5 have particularly high errors rates for false
claim. Overall, error rates for the exaggeration and
metric-swap claims are higher than for the trend
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Figure 4: Error Rates for Fact-checking Task Across
Models

false claims.

All the models’ training data cutoff dates (ex-
cept for DeepSeek-R1, of which the training data
isn’t explicitly mentioned) are earlier than our
dataset’s August 2024 cutoff for scientific graphics.
Consequently, models must rely on extrapolation,
retrieval-augmented mechanisms, or inherent rea-
soning abilities to verify 2024 claims.So we also
tested the models’ fact-checking performance on
all claims of the year 2024. As shown in Figure
4, Phi-3’s exceptional performance may suggest
a training approach that enables robust extrapola-
tion from past data. Despite its older architecture,
GPT-3.5 has a significantly lower error rate than
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Figure 5: Error Rates by Reasoning Task Across Models

many more advanced models, suggesting a lower
tendency to hallucinate or overgeneralize in areas
where it lacks knowledge.

6.3 Broader Implications

Advancing NLP in High-Stakes Domains. Cli-
mate science is a domain where the stakes of mis-
information are particularly high. The datasets and
benchmarks introduced in this work support the
development of more accurate and robust LLMs
capable of processing complex climate-related data.
This advancement has the potential to support scien-
tific decision-making, enhance public understand-
ing, and combat climate misinformation effectively.

Multi-Modal and Spatio-Temporal Reasoning.
The rather low performance levels displayed in Ta-
ble 4 indicates that LLMs are unable to extract
information from scientific graphics that human
readers readily extract. This highlights the impor-
tance of moving beyond text-based benchmarks
for scientific domains. This work points towards
the need for multi-modal NLP systems capable of
synthesizing insights across visual and textual data,
a requirement for addressing challenges in other
domains, such as healthcare, economics, and envi-
ronmental policy.

Enhancing Model Explainability. The detailed
ground truth and explanations provided in Reason-
Clim emphasize interpretability, fostering trust in
Al systems deployed in high-stakes applications.

6.4 Limitations

The datasets are curated from specific gold stan-
dard sources. Applying the approach to a broader
or different domain would require a fresh curation
effort. The variety of scientific graphics in Climat-
eViz is limited, types of visual images, such as

satellite imagery or video data, are not included,
presenting opportunities for future expansion. Plus,
the temporal reasoning tasks focus on explicit time
units (e.g., years, seasons) but do not account for
less explicit temporal references that might be com-
prehensible to humans but still present challenges
for LLMs. Additionally, we only evaluate LLMs
with text as input in this work and do not test Large
Multimodal Models (LMMs) that integrate both
text and images. To address these limitations, fu-
ture work could explore: Expanding the dataset to
include more diverse modalities, such as geospatial
and sensory data. Incorporating data that require
disambiguation of named entities or timepoints.
Using graphics as input to evaluate LMMs ability
for multimodal fact-checking.

7 Conclusion

In this work, we introduced ClimateViz, the largest
dataset to date for evaluating fact-checking capabil-
ities of large language models in climate science,
and ReasonClim, a complementary benchmark for
spatio-temporal reasoning tasks. Together, these
datasets address critical gaps in the NLP landscape
by integrating scientific graphics, human-labeled
claims, and graph-based reasoning tasks to support
robust evaluation across multi-modal and domain-
specific challenges.

Our findings demonstrate that current state-of-
the-art LLMs struggle with fact-checking and
spatio-temporal reasoning tasks in climate science,
highlighting the need for more targeted research
in these areas. Additionally, the emphasis on inter-
pretability through detailed ground truth and expla-
nations underscores the importance of explainable
Al

We envision ClimateViz and ReasonClim as cat-
alysts for advancing research on multi-modal fact-
checking, domain-specific reasoning, and trustwor-
thy AL Our work aims to bridge the gap between
Al capabilities and real-world needs, ultimately
contributing to informed decision-making and com-
bating misinformation in the fight against climate
change.
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A Annotation for ClimateViz

A.1 Before Annotation: Preparation Phase

Before starting the annotation process, we con-
ducted extensive preparation to ensure that annota-
tors had the necessary guidance, tools, and under-
standing of the climate graphics. We began with
an internal review involving climate science ex-
perts and NLP practitioners. This was crucial to
refine the scope of the tasks, establish clear goals,
and identify potential challenges in the annotation
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of visual climate data. Then, a beta test was con-
ducted with a small group of experienced anno-
tators who provided early feedback on the clarity
and difficulty of the tasks. This helped identify
areas where instructions or task complexity needed
adjustment. Following the beta test, we gathered
feedback through detailed forms, allowing us to
iteratively improve the task definitions and anno-
tation interface. The finalized workflows and task
requirements were then implemented on the Zooni-
verse platform’s dedicated webpage, which served
as the main point of interaction for annotators.

A.2 During Annotation: Annotation Phase

The annotation phase was designed to facilitate a
smooth and productive experience for annotators,
equipping them with the resources necessary to
accurately interpret and label the graphics. The
tools used during this phase include:

Field Guide: A comprehensive field guide was
provided to the annotators, covering the different
types of data representations commonly found in
the graphics. This guide included:

Types of Visuals: Examples of bar charts, line
graphs, pie charts, scatter plots, geographic maps,
and box plots, helping annotators become familiar
with each format.

Key Definitions: Explanations of essential con-
cepts, such as "anomalies" or "trends," that might
be important when describing climate-related visu-
als.

Detailed Instructions: Each task was accompa-
nied by explicit, step-by-step instructions. This
was especially important for the third task, which
involved summarizing factual information from the
graphics. Annotators were instructed to focus on
objective descriptions, providing factual statements
regarding the graphic without interpretation or bias.

Tutorials: We created interactive tutorials that
walked annotators through example graphics and
tasks. These tutorials emphasized how to identify
and describe elements like key data points, trends,
or anomalies.

Talk Board: The Zooniverse platform also in-
cluded a dedicated "Talk Board," where annotators
could discuss uncertainties, ask questions, and re-
ceive support from both project moderators and
their peers. This collaborative environment was
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instrumental in resolving ambiguous cases and en-
suring consistency across annotations.

A.3 Post Annotation: Quality Assurance
Phase

Once the annotations were completed, an extensive
quality assurance phase was implemented to verify
the accuracy and reliability of the collected data.

Automatic Cleaning: Initially, automated data
cleaning scripts were run to detect potential issues
such as outlier annotations, incomplete tasks, or
incorrect data types. Also, we removed annotations
less than 10 words for the "fact" task, with the
assumption that they are not informative enough.

Manual Review: Following the automated clean-
ing, the data underwent a manual review by domain
experts. During this review, we scrutinized the
flagged annotations for correctness and consistency.
We also went through each claim to make sure it
contained the necessary context, which makes it a
claim by itself. This dual-step process was critical
in catching errors that may have been overlooked
by automated methods and ensuring that the dataset
retained a high level of reliability.

B False Staement Generation

B.1 False Fact Generation

False facts are generated by manipulating true facts
through various strategies. Three distinct methods
are employed for this purpose:

Trend Modification: This method involves alter-
ing the directional trend of a fact, such as changing
“increased” to “decreased” or “rising” to “falling.”
Such modifications reverse the implied trends in
the facts.

Exaggeration: This method amplifies numerical
values or descriptive terms to exaggerate the mag-
nitude of the claim. Numerical values (e.g., temper-
ature, precipitation) are adjusted using a random
multiplier, while adjectives such as “moderate” or
“slight” are replaced with more extreme alternatives
(e.g., “severe” or “considerable”).

Metric Swap: This approach involves replacing
specific metrics or variables with similar but dis-
tinct ones. For example, replacing "mean maxi-
mum temperature” with "mean minimum tempera-
ture" or swapping "sunshine duration" with "cloud
cover."
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Here are some real examples in the dataset, see
Table 5.

Each true fact undergoes one of these transfor-
mations at random, generating a modified version
that is considered a potential false fact.

B.2 Contradiction Detection via NLI Model

Once the false facts are generated, we employed
the microsoft/deberta-large-mnli model for verify-
ing contradiction between generated and original
claims. The NLI model classifies the relationship
between two text statements as entailment, neutral,
or contradiction. The false facts are selected only
if they are classified as contradictions with a high
confidence score (greater than 0.8).

C Climate Knowledge Graph

The Climate Knowledge Graph (CKG) we built in
this paper is a directed graph G = (N, E), where
N represents the set of nodes and E represents
the set of edges. The graph encodes relationships
between climate-related entities (regions, climate
indicators, time periods, and numerical records)
to facilitate spatio-temporal reasoning and fact-
checking tasks.

C.1 Nodes

The nodes in the graph represent distinct entities in
the climate domain. Each node n € N is catego-
rized by its type .

* Region nodes 7ngion: Represent geographical
locations (e.g., "London," "Africa").

* ClimateIndicator nodes 1 jimaee: Represent
climate indicators (e.g., "Rainfall Anomaly,"
"Temperature Anomaly").

* Record nodes n.oq: Represent numerical
data associated with climate indicators (e.g.,
"400 ppm" of CO»).

* TimePeriod nodes ny.: Represent temporal
entities such as years, months, or seasons (e.g.,
"2020," "Winter").

Each node n is uniquely identified by a node
ID and may contain properties such as numerical
values, units, or descriptions.

C.2 Edges

Edges represent the relationships between nodes.
Each edge e € E connects two nodes and is char-
acterized by a relationship type r.



Original Claim Method False Claim

The mean winter temperature in Wales ~ Trend Modification The mean winter temperature in Wales
has shown an upward trend from 1890 has shown a downward trend from 1890
to 2020. to 2020.

The general trend line for sunshine du- Exaggeration The general trend line for sunshine du-

ration in Northern Ireland during spring
suggests a slight upward shift over time
since 1890.

Sunshine duration in August 2021 for
England was 115% compared to the
1961-1990 average.

Metric Swap

ration in Northern Ireland during spring
suggests a significant upward shift over
time since 1890.

Cloud cover in August 2021 for England
was 115% compared to the 1961-1990
average.

Table 5: Examples of False Claim Generation Methods

* EXPERIENCED edges: Represent the rela-
tionship where a Region 7 egion €Xperiences a
Climatelndicator nclimate -

(nregion , Nielimate; EXPERIEN CED)

HAS_RECORD edges: Represent the rela-
tionship where a ClimateIndicator n¢jimate 1S
associated with a Record necord-

(nclimatea Nrecord HAS_RECORD)

RECORDED_AT edges: Represent the rela-
tionship where a Record nyecorg is associated
with a Region 7egjon, indicating the location
of the measurement.

(Mrecord Mregion, RECORDED_AT)

OCCURRED_IN edges: Represent the rela-
tionship where a Record nyecorg 1S associated
with a TimePeriod njpe, indicating when the
measurement occurred.

(Nrecord, Nime; OCCURRED_IN)

C.3 Graph Construction

The Climate Knowledge Graph is built by iterating
over a dataset of climate-related facts. For each
fact:

* Entities (regions, climate indicators, records,
time periods) are extracted and represented as
nodes.

» Relationships between entities (e.g., a region
experiencing a climate indicator, a record as-
sociated with a climate indicator) are captured
as edges.
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The graph structure allows for complex queries
and reasoning tasks, such as:

* Identifying the occurrence of specific climate
indicators in different regions over time.

* Verifying the consistency of climate facts by
examining the relationships between indica-
tors, records, regions, and time periods.

This knowledge graph provides a structured rep-
resentation of climate data, enabling automated
analysis and decision-making.

D Pipeline for Question Generation

Temporal Reasoning Temporal questions were
constructed to assess a model’s ability to reason
about climate-related phenomena across specific
time periods. This task type was generated by se-
lecting climate indicators, such as "Temperature
Anomaly" or "Rainfall Anomaly," and linking them
with relevant records indicating the extent or im-
pact of these anomalies. For example, from the
knowledge graph, edges of type HAS_RECORD
were followed to identify specific climate records,
and then edges of type OCCURRED_IN were used
to associate these records with their respective tem-
poral periods. The resulting question might be: "In
which year did the temperature anomaly occur in
Scotland?" The ground truth was directly extracted
from the time period node, and an accompanying
explanation was included to clarify the climate indi-
cator’s historical context and temporal occurrence.

Spatial Reasoning Spatial questions targeted the
ability of LLMs to understand geographic relation-
ships in climate data. These questions were gener-
ated by navigating from region nodes to associated
climate indicators through the EXPERIENCED



edges. For each region, such as "Wales" or "Scot-
land," we identified climate indicators it experi-
enced and generated questions like, "Which climate
anomaly was experienced by Wales in 2003?" The
ground truth was derived from the linked climate
indicator node, while the explanations contextu-
alized the geographic specifics of the indicator’s
manifestation, highlighting the regional variance in
climate impacts.

Spatio-Temporal Reasoning Spatio-temporal
questions were the most complex, requiring models
to reason about both spatial and temporal aspects si-
multaneously. To generate these tasks, we traversed
the knowledge graph to identify relationships be-
tween regions, climate indicators, and time peri-
ods. This involved edges of types such as EXPERI-
ENCED (connecting regions to climate indicators)
and OCCURRED_IN (linking climate records to
temporal nodes). A typical question might be, "Did
England experience a rainfall anomaly in Spring
20197" Ground truth for such questions was deter-
mined by the presence of relevant edges linking the
entities. The explanations provided detailed reason-
ing about both the temporal context (e.g., Spring
2019) and the specific regional climate anomaly,
aiming to enhance the interpretability of the an-
Swer.

E Experimental Setup

We accessed OpenAl Models (GPT-3.5-turbo,
GPT-4-turbo, GPT-40, ol) with configura-
tions: max_tokens: 100-300 (For ol model,
max_reasoning_tokens =10,000).

We evaluate the following state-of-the-art LLMs:

GPT-40 and GPT-4: These models represent
the latest advancements in OpenAl’s GPT series,
known for their exceptional reasoning capabilities
and performance across NLP benchmarks.

GPT-3.5: Included as a comparative baseline to
highlight advancements in reasoning and accuracy
from prior iterations.

Llama-3-8B: This model is noted for its strong
performance in fine-tuned, domain-specific tasks,
making it a relevant choice for evaluating climate
science data.

Phi-3: Selected for its lightweight architecture
and efficiency, allowing an exploration of trade-offs
between performance and resource utilization.
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O1: As arepresentative of emerging lightweight
models, O1 was included to assess performance
scalability in resource-constrained environments.

DeepSeek-R1 An emerging competitive reason-
ing model.

We also include a table of the training cutoff date
of each model (See Table 6).

The inclusion of these diverse baselines ensures
a robust evaluation of how different architectures
and training paradigms perform on the Climate-
Viz and ReasonClim datasets. Additionally, their
performance across spatial, temporal, and spatio-
temporal reasoning tasks provides valuable insights
into the challenges posed by each reasoning dimen-
sion and helps identify avenues for model improve-
ment. The experiments were conducted for both
fact-checking and reasoning tasks, with all com-
putations executed on an NVIDIA A100 Tensor
Core GPU (40 GB memory) and approximately 24
GB of available RAM. Below, we describe the data
splits, hyperparameters, and evaluation processes
for each task.

E.1 Fact-Checking Task

For the fact-checking task, we sampled 1,000
claims from the ClimateViz dataset, maintaining
a 7:3 ratio of true to false claims to simulate real-
world scenarios. The dataset was fed to the model
using structured prompts:

Is the following statement true or false? Reply
with 1 for true and 0 for false. Statement: <fact>

Predicted labels were collected for each fact,
and results were saved to a CSV file. To ensure
robustness against API rate limits, a one-second
delay was added between requests. Metrics such
as abstention rate, balanced accuracy, recall, and
F1-score were calculated to evaluate the model’s
performance comprehensively.

E.2 Reasoning Tasks

Spatial Questions: Questions required identify-
ing climate anomalies (e.g., "Sunshine Anomaly").
Prompts emphasized direct responses:

Answer only with the climate anomalies expe-
rienced, choosing only from "Sunshine Anomaly,"
"Rainfall Anomaly,” or "Temperature Anomaly."”
Separate multiple anomalies using commas. Do
not abstain from answering. Question: <spatial
question>

Temporal Questions: Questions focused on
identifying specific years. Prompts ensured clarity



Model Training Cutoff Date  Notes

ol October 2023 RL-focused, no SFT phase
DeepSeek-R1  Not explicitly stated Base model (V3) trained in late 2024
GPT-40 May 2023 Trained from scratch

GPT-4 December 2023 Most recent OpenAl cutoff

GPT-3.5 September 2021 Discrepancies in model responses
Phi-3 October 2023 Microsoft’s lightweight model
Llama-3 March/December 2023  Varies by model size

Table 6: Training Cutoff Dates for Evaluated Models

and precision: Answer only with numbers represent-
ing years after 1990, like 1991, 2001, etc. Separate
multiple years using commas. Do not abstain from
answering. Question: <temporal question>

Spatio-Temporal Questions:
depending on the format of the question: Numeri-
cal questions (e.g., "What’s..."): Answer only with
a number followed by %, like "138%". No addi-
tional text. Do not abstain from answering. Ques-
tion: <spatio-temporal question>

Prompts varied

Binary questions (e.g., "Did..."): Answer only
with "Yes" or "No". No additional text. Do not ab-
stain from answering. Question: <spatio-temporal
question>

E.3 Data Splits

Fact-Checking Task: The ClimateViz dataset
was used for zero-shot evaluation, with models as-
sessed on a curated set of 1,000 claims (7:3 ratio of
true to false claims). No training/testing split was
applied, as the task is designed purely for bench-
marking.

Reasoning Tasks: The ReasonClim dataset, cov-
ering spatial, temporal, and spatio-temporal rea-
soning, was also used exclusively for evaluation.
Since these tasks serve as benchmarks, no separate
training or fine-tuning was performed.

E.4 Evaluation Criteria

E.4.1 Maetrics for fact-checking task
Abstention Rate: Proportion of claims where

the model abstained from providing an answer.

Balanced Accuracy: Average recall across true
and false claims to mitigate class imbalance.

Recall and F1-Score: To measure the precision
and robustness of predictions.
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E.4.2 Maetrics for reasoning tasks

Coverage:
sponses.

Percentage of non-abstained re-

Mean Evaluation: Average score for non-
abstained questions, calculated using task-specific
criteria (e.g., weighted partial matches for spatial
and temporal reasoning).

Evaluation Standard Deviation: To assess vari-

ability in performance across tasks.

E.5 Reproducibility

The provided scripts are publicly available and sup-
port replicating all fact-checking and reasoning ex-
periments, ensuring that results are reproducible
across different environments.

F Metrics Calculation for Each Language
Model in Fact-checking Task

To evaluate the performance of the fact-checking
model, we compute the following metrics: Ab-
stention Rate, Balanced Accuracy, Recall, and
F1-Score. These metrics provide a comprehensive
understanding of the model’s confidence, accuracy,
and ability to handle imbalanced datasets. The
calculations are detailed below.

F.1 Abstention Rate

The Abstention Rate quantifies the proportion of
samples for which the model abstains from making
a prediction. A prediction is considered abstained
if the predicted label is neither O (false) nor 1 (true).
It is defined as:

Abstention Rate = x 100

ey
total

where Nypstain 15 the number of abstained samples,

and Ny is the total number of samples. This

metric is expressed as a percentage, with higher

values indicating greater abstention.



F.2 Balanced Accuracy

The Balanced Accuracy accounts for class imbal-
ance by averaging the recall values for both true (1)
and false (0) claims:

Recall Recall
Balanced Accuracy = ecalltre + Recallpalse

2
(2)
with:
TP TN
ceCallTrye TP + FN’ eCallgylse TN +lz?1)))

Balanced Accuracy ensures both classes are equally
considered, even when one class is underrepre-
sented. It is expressed as a percentage, with 100%
indicating perfect performance.

F.3 Recall

The Recall metric measures the model’s ability to
correctly identify true claims (1). It is defined as:

TP
TP + FN

where TP and FN are the true positives and false
negatives, respectively. Recall is expressed as a per-
centage, with 100% indicating that all true claims
are correctly identified.

Recall = “4)

F.4 F1-Score

The F1-Score balances Precision and Recall, pro-
viding a single measure of the model’s classifica-
tion performance. It is calculated as:

Precision - Recall

F1-S =2. 5
core Precision + Recall )
where: TP
Precision = —— (6)
TP + FP

Here, FP refers to false positives. The F1-Score is
expressed as a percentage, with 100% indicating
perfect precision and recall.

F.5 Table

Here we list all the metrics for the models we eval-
uated.

G Metrics Calculation for Each
Language Model in Reasoning Tasks

To evaluate each language model’s performance
on reasoning tasks, we use the following metrics:
Abstention Rate, Coverage, Mean Evaluation,
and Evaluation Standard Deviation.

These metrics are detailed below.

15

Metric GPT-3.5 Value (%)
Abstention Rate 0.00
Balanced Accuracy 65.71
Recall 73.43
F1-Score 76.72

Table 7: Evaluation metrics for the GPT-3.5 model on
the fact-checking task.

Metric

Abstention Rate
Balanced Accuracy
Recall

F1-Score

GPT-4 Value (%)
1.4

56.43

16.28

27.66

Table 8: Evaluation metrics for the GPT-4 model on the
fact-checking task.

G.1 Abstention Rate

The Abstention Rate measures the proportion of
questions where the model abstains from answer-
ing. Let N represent the total number of questions,
and Npsain represent the number of abstained ques-
tions. The Abstention Rate (A, ) is calculated as:

Nabstain % 100

Arate = (7)

This metric is expressed as a percentage.

G.2 Coverage

The Coverage metric is complementary to the Ab-
stention Rate and represents the proportion of ques-
tions where the model provides an answer. Let
Nion-abstain represent the number of non-abstained
questions. Coverage (C') is calculated as:

N, non-abstain
C = ——"—"—""
N

Alternatively, it can be derived directly from the
Abstention Rate:

x 100 ®)

C =100 — Arate (9)

G.J3

The Mean Evaluation represents the average score
of the model on all non-abstained questions. Let
FE; represent the evaluation score for the ¢-th non-
abstained question, and Nyop-abstain T€present the
number of non-abstained questions. The Mean
Evaluation () is calculated as:

Mean Evaluation

Nnon-ahstain

1
E;

N, non-abstain

KE = (10)

=1

The evaluation score E; depends on the specific
reasoning task:



Metric GPT-40 Value (%)
Abstention Rate 9.3
Balanced Accuracy 66.81
Recall 48.89
F1-Score 62.87

Table 9: Evaluation metrics for the GPT-40 model on
the fact-checking task.

Metric ol Value (%)
Abstention Rate 0.9
Balanced Accuracy 64.69
Recall 43.52
F1-Score 58.19

Table 10: Evaluation metrics for the ol model on the
fact-checking task.

* Temporal and Spatial Reasoning: F; corre-
sponds to the Weighted Partial Match score.

e Spatio-Temporal  (Numerical Ques-
tions/What’s Questions): F; is 1 if the
predicted value is within tolerance (+10% of
the ground truth), otherwise 0.

* Spatio-Temporal (Binary Classification
Questions/Did Questions): F; is 1 for correct
binary answers (Yes/No), and 0 otherwise.

G.4 Evaluation Standard Deviation

The Evaluation Standard Deviation (o) quanti-
fies the variability in the model’s performance on
non-abstained questions. It is defined as:

1 Nnon»abstain

(Ei —pg)? (A1)

OF = 4| ———
N, non-abstain -

=1
Here, E; is the evaluation score for the ¢-th non-
abstained question, and u g is the Mean Evaluation
score.

G.5 Task-Specific Evaluation Scores

Temporal and Spatial Reasoning: Weighted Par-
tial Match. The Weighted Partial Match score is
calculated as:

_[PNG]

E; =
" |PUG

(12)
where P is the set of predicted values, and G is the
set of ground truth values.

Spatio-Temporal (Numerical Questions/What’s
Questions): Tolerance-Based Accuracy. A
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Metric llama3 Value (%)
Abstention Rate 0.00
Balanced Accuracy 63.48
Recall 84.29
F1-Score 80.71

Table 11: Evaluation metrics for the llama3 model on
the fact-checking task.

Metric phi3 Value (%)
Abstention Rate 7.2
Balanced Accuracy 58.57
Recall 35.67
F1-Score 49.57

Table 12: Evaluation metrics for the phi3 model on the
fact-checking task.

Tolerance-Based Accuracy score is assigned as:

E; = {1’
0,
(13)

Here, G is the ground truth value, P is the predicted
value, and € = 0.1 (10% tolerance).

ifG-(1—¢)<P<G-(1+¢)

otherwise

Spatio-Temporal (Binary Classification Ques-
tions/Did Questions): Direct Match Accuracy.
A Direct Match Accuracy score is assigned as:

L,
=1,

G.6 Implementation Notes

ifP=G

14
otherwise 14

To compute the metrics, we first filter out abstained
questions and operate only on non-abstained rows.
The evaluation scores (I;) are then used to calcu-
late the Mean Evaluation and Standard Deviation.
Abstention Rate and Coverage are computed across
all questions. These metrics provide a compre-
hensive assessment of model performance, captur-
ing accuracy, abstention behavior, and variability
across different reasoning tasks.

G.7 Table

Here we list all the metrics for the models we eval-
uated.

H Error Analysis
H.1 Fact-checking Task

The error rate for each generation method in the
dataset is computed as the proportion of incorrect
predictions made on false claims. The calculation
process involves the following steps:



Reasoning Type Total Qns | Aggregated Qns
Spatial Reasoning 294 92
Temporal Reasoning 294 14
Spatio-Temp. Reasoning 528 528

Table 13: Distribution of questions across reasoning
types, showing total and aggregated questions.

Metric Spatial | Temporal | Spatio-Temporal
Abstention Rate (%) 2.17 14.29 20.08
Coverage (%) 97.83 85.71 79.92
Mean Evaluation (%) 41.48 0.56 29.15
Evaluation Std Dev (%) 31.92 1.92 45.50

Table 14: Metrics for the ol model across Spatial, Tem-
poral, and Spatio-Temporal reasoning types.

H.2 Filtering False Claims

The dataset is filtered to isolate entries with
ground_truth = 0, representing factually incor-
rect claims. Let D denote the dataset, and F' the
subset of false claims:

F = {x € D | ground_truth(z) = 0}.

This subset F' is used for further error rate anal-
ysis.

H.3 Grouping by Generation Method

The filtered dataset F' is grouped by the
generation_method attribute, which specifies the
model or algorithm responsible for generating the
predictions. Let G represent the set of unique gen-
eration methods, and for each g € G, let Fy; denote
the subset of F' associated with generation method

g.
H.4 Error Rate Computation

For each generation method g, the error rate is the
mean proportion of incorrect predictions. The error
rate for g is computed as:

> I(label(x) # truth(a)),

z€Fy
(15)
where | Fy| is the total number of predictions for
g, and I(+) is the indicator function (1 if true, 0
otherwise).
The error rate as a percentage is:

1
Error Rate, = W
g

Error Rate (%), = Error Rateg x 100.
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Metric Spatial | Temporal | Spatio-Temporal
Abstention Rate (%) 0.00 14.29 0.00
Coverage (%) 100.00 85.71 100.00
Mean Evaluation (%) 4.98 8.68 31.25
Evaluation Std Dev (%) 17.47 6.26 46.40

Table 15: Metrics for the DeepSeek-R1 model across
Spatial, Temporal, and Spatio-Temporal reasoning

types.

Metric Spatial | Temporal | Spatio-Temporal
Abstention Rate (%) 3.26 0.00 4.92
Coverage (%) 96.74 100.00 95.08
Mean Evaluation (%) 37.83 242 37.85
Evaluation Std Dev (%) 35.69 341 48.55

Table 16: Metrics for the GPT-40 model across Spatial,
Temporal, and Spatio-Temporal reasoning types.

Metric Spatial Temporal Spatio-Temporal
Abstention Rate (%) 0.00 7.14 5.49
Coverage (%) 100.00 92.86 94.51
Mean Evaluation (%) 45.65 3.89 24.85
Evaluation Std Dev (%) 24.19 5.58 43.26

Table 17: Metrics for the GPT-4 model across Spatial,
Temporal, and Spatio-Temporal reasoning types.

Metric Spatial | Temporal | Spatio-Temporal
Abstention Rate (%) 0.00 0.00 0.00
Coverage (%) 100.00 100.00 100.00
Mean Evaluation (%) 20.29 5.72 37.12
Evaluation Std Dev (%) 24.53 5.29 48.36

Table 18: Metrics for the GPT-3.5 model across Spatial,
Temporal, and Spatio-Temporal reasoning types.

Metric Spatial Temporal Spatio-Temporal
Abstention Rate (%) 0.00 0.00 4.92
Coverage (%) 100.00 100.00 95.08
Mean Evaluation (%) 43.82 2.93 14.34
Evaluation Std Dev (%) 37.60 3.54 35.09

Table 19: Metrics for the Phi-3 model across Spatial,
Temporal, and Spatio-Temporal reasoning types.

Metric Spatial Temporal Spatio-Temporal
Abstention Rate (%) 0.00 0.00 0.00
Coverage (%) 100.00 100.00 100.00
Mean Evaluation (%) 31.16 11.92 30.11
Evaluation Std Dev (%) 31.57 10.44 45.92

Table 20: Metrics for the Meta-LLlama-3 model across
Spatial, Temporal, and Spatio-Temporal reasoning

types.
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