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Abstract

This paper introduces ClimateViz, the largest001
dataset to date for evaluating the fact-checking002
and reasoning capabilities of large language003
models (LLMs) in the climate science domain.004
ClimateViz comprises claims extracted by hu-005
mans from high-quality scientific graphics, and006
checked for acccuracy and domain relevance.007
To advance the SOTA in NLP for fact-checking,008
we develop a robust pipeline that systematically009
generates claims that are highly similar, but010
false. Additionally, we introduce ReasonClim,011
a complementary benchmark built using graph-012
based methods to evaluate spatial, temporal,013
and spatio-temporal reasoning tasks. To assess014
LLM’s performance on these tasks, we con-015
duct a comprehensive evaluation of the state-of-016
the-art models. Our findings demonstrate that017
LLMs struggle with detecting certain types of018
false claims, especially those generated through019
exaggeration. The results also highlight signifi-020
cant challenges in fact verification and reason-021
ing over climate data, particularly in temporal022
reasoning tasks. By providing a benchmark for023
evaluating LLMs on real-world climate data,024
ClimateViz and ReasonClim support the devel-025
opment of more reliable AI systems for climate026
science applications.027

1 Introduction028

Recent advances in large language models (LLMs)029

have demonstrated remarkable capabilities across a030

broad range of natural language processing (NLP)031

tasks (Gemini et al., 2024). Despite these successes,032

LLMs continue to struggle with fact verification033

and complex reasoning, in domains such as cli-034

mate science (Manivannan et al., 2024). Accurately035

assessing LLMs in this domain is critical, as cli-036

mate misinformation can significantly impact pub-037

lic perception and policy decisions (Diggelmann038

et al., 2021). However, current benchmarks re-039

main limited, focusing primarily on text-based fact-040

checking while overlooking multi-modal evidence,041

spatio-temporal reasoning, and structured knowl- 042

edge representations.

Dataset Category Size Text Multimodal Multi-step
Fact-Checking Evidence Reasoning

FEVER General 185k ✓ ✗ ✗

PlotQA General 28.9M ✗ ✓ ✗

ClimateFEVER Domain-Specific 1.5k ✓ ✗ ✗

GeoQA Domain-Specific 5k ✗ ✗ ✓

ChartQA General 23k ✗ ✓ ✗

Factify General 50k ✓ ✓ ✗

MMMU General 11.5k ✓ ✓ ✗

TRAM General 526k ✗ ✗ ✓

MMFakeBench General 11k ✓ ✓ ✗

CV+RC† Domain-Specific 20k ✓ ✓ ✓

Table 1: Comparison of existing fact-checking and rea-
soning datasets. † CV+RC refers to ClimateViz + Rea-
sonClim. Multi-step Reasoning includes both Spatio-
Temporal and Graph-Based Reasoning.

043
Climate science relies heavily on scientific 044

graphics—such as bar charts, line graphs, and 045

maps—to communicate trends, anomalies, and 046

forecasts (Xu et al., 2024). Yet, existing datasets 047

rarely evaluate LLMs’ ability to verify claims from 048

such graphics. Additionally, climate-related rea- 049

soning often involves spatial dependencies (e.g., 050

temperature variations across regions) and tempo- 051

ral trends (e.g., long-term CO2 emissions), which 052

current fact-checking datasets fail to systematically 053

capture (Cheng et al., 2024; Chu et al., 2024). Fur- 054

thermore, multi-step reasoning, which is essential 055

for rigorous inference in scientific domains, re- 056

mains largely unexplored in existing benchmarks. 057

To bridge these gaps, we introduce ClimateViz, 058

the first dataset designed to evaluate fact-checking 059

based on information in scientific publications in- 060

cluding the information in scientific graphics, as 061

shown in Table 1. ClimateViz also includes a 062

pipeline for generating realistic false claims, im- 063

proving robustness in evaluating LLMs’ misinfor- 064

mation detection capabilities. 065

Complementing ClimateViz, we also present 066

ReasonClim. ReasonClim contains a knowledge 067

representation graph that integrates facts from Cli- 068
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mateViz, plus a test suite of questions and answers069

that leverages this graph to evaluate spatial, tem-070

poral, and spatio-temporal reasoning. ReasonClim071

integrates spatial and temporal knowledge from072

climate indicators, allowing for a more comprehen-073

sive assessment of LLM’s ability to infer, predict,074

and verify claims grounded in climate data.075

In addition to dataset constrution, we conduct076

a comprehensive evaluation of 7 state-of-the-art077

LLMs to assess their ability to verify claims from078

ClimateViz and perform spatial and temporal rea-079

soning over ReasonClim. While some models ex-080

hibit strong fact-checking abilities, they struggle081

with specific reasoning tasks, particularly temporal082

reasoning and detecting exaggerated claims.083

By providing a new benchmark for evaluating084

LLMs on real-world climate data, ClimateViz and085

ReasonClim offer a testbed for developing agents086

capable of robust fact verification, domain-specific087

reasoning, and misinformation detection in climate088

science.089

2 Relation to Previous Work090

2.1 Fact-Checking and Misinformation in091

NLP092

The field of automated fact-checking has evolved093

significantly. Early benchmarks like LIAR (Wang,094

2017) and FEVER (Thorne et al., 2018) focus on095

text-based claim verification. While these founda-096

tional datasets have advanced the field, the reliance097

on textual data limited their applicability to multi-098

modal contexts. To address this, recent datasets099

such as MMFakeBench (Anonymous, 2025) and100

Factify (Suryavardan et al., 2023) integrate text and101

visual data, enabling multi-modal misinformation102

detection. Other domain-specific efforts, such as103

MM-COVID (Li et al., 2020) and Fauxtography104

(Zlatkova et al., 2019), highlight the growing im-105

portance of multi-modal fact-checking in medical106

and general domains.107

ClimateFEVER (Diggelmann et al., 2021) in-108

troduced the first climate-specific fact-checking109

dataset. Its claims are based on reputable sources110

such as Wikipedia. However, it is limited to textual111

information; and it does not address the challenges112

of processing claims from scientific graphics.113

ClimateViz builds on these advances by offering114

the largest gold standard dataset in the climate do-115

main to date. It contains over 15,000 true claims116

and related 5,000 false claims. The true claims117

are derived from highly validated sources. The118

false claims are constructed over the same vocab- 119

ulary and are guaranteed to be false. We built the 120

dataset to incorporate scientific graphics as a pri- 121

mary modality, bridging the gap between textual 122

and visual fact-checking. 123

2.2 Multi-Modal and Visual Information 124

Extraction 125

The integration of visual data in NLP tasks has 126

led to the development of datasets like ChartQA 127

(Masry et al., 2022) and PlotQA (Methani et al., 128

2020), which focus on extracting and reasoning 129

over data from charts and plots. While these re- 130

sources address general-purpose visual reasoning, 131

they do not account for domain-specific challenges, 132

such as those found in climate science. 133

ClimateViz builds upon these efforts by empha- 134

sizing climate-specific data representations, such 135

as temperature anomalies and carbon emissions 136

trends, and by incorporating human annotations to 137

ensure domain relevance. 138

2.3 Spatial and Temporal Reasoning in NLP 139

Spatial and temporal reasoning are crucial for ana- 140

lyzing real-world phenomena (Smith et al., 2023), 141

particularly in domains like climate science, where 142

relationships between time and space drive criti- 143

cal insights. In NLP, temporal reasoning tasks of- 144

ten focus on understanding chronological data and 145

extracting time-sensitive information (Qin et al., 146

2021), as exemplified by work such as TRAM 147

(Wang and Zhao, 2024), Similarly, spatial reason- 148

ing benchmarks like GeoQA (Chen et al., 2022) 149

assess models’ ability to comprehend geographic 150

relationships in textual data. 151

Because these benchmarks primarily operate 152

within text-based domains, they have limited ca- 153

pacity to evaluate reasoning over combined spatial 154

and temporal dimensions, particulary in domain- 155

specific contexts where such information is typi- 156

cally presented in graphics that complement the 157

text. For instance, while temporal reasoning in 158

TRAM explores event-based temporal relations, it 159

does not extend to analyzing trends or anomalies 160

over time and space in scientific data. 161

ReasonClim addresses these limitations by intro- 162

ducing spatio-temporal reasoning tasks specifically 163

tailored to climate science. Using a knowledge 164

graph constructed from climate-related claims, Rea- 165

sonClim generates structured reasoning tasks that 166

evaluate LLMs’ ability to navigate and analyze 167

relationships across spatial (e.g., geographic re- 168
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gions), temporal (e.g., specific years or seasons),169

and spatio-temporal dimensions (e.g., anomalies170

occurring in specific regions over time). By inte-171

grating information derived from graphics, Rea-172

sonClim enables nuanced assessment of LLMs in173

complex reasoning scenarios relevant to climate174

science.175

2.4 Benchmarks and Evaluation of LLMs in176

Climate Science177

The application of NLP to climate science is an178

emerging area of research (Leippold et al., 2024).179

Early efforts, such as ClimateFEVER (Diggelmann180

et al., 2021), introduced text-based fact-checking181

datasets tailored to the climate domain. Topic mod-182

eling for climate-related text corpora, as demon-183

strated in (Gokcimen and Das, 2024), and trend184

analysis using news dataset (Dorfleitner and Zhang,185

2024), showcased the potential of NLP for climate186

communication. However, these approaches re-187

main limited to textual analysis, excluding the crit-188

ical visual and spatio-temporal dimensions often189

found in the graphics that complement the text.190

Multi-modal approaches are promising but have191

yet to be fully realized in climate science. For192

example, benchmarks like MMMU (Yue et al.,193

2024) and MMBench (Liu et al., 2024) demon-194

strate multi-modal capabilities, but they lack the195

domain-specific focus needed to address complex196

relationships inherent in climate science.197

ClimateViz and ReasonClim aim to bridge these198

gaps by providing the first comprehensive bench-199

mark tailored to fact-checking and spatio-temporal200

reasoning in climate science. ClimateViz incor-201

porates scientific graphics as a primary modality,202

advancing the application of NLP in addressing203

critical challenges in climate science.204

3 Methodology205

3.1 Dataset Creation and Annotation206

We scraped the scientific graphics from 6 respected207

open-domain sources with metadata. 1 We used208

them to design a three-tasked project on Zooni-209

verse2, a well-established and influential citizen-210

science project, c.f (Fortson et al., 2011; Simpson211

et al., 2014). The first two tasks are to define titles212

1https://www.noaa.gov/, https://www.metoffice.
gov.uk/, https://www.copernicus.eu/, https:
//earthobservatory.nasa.gov/, https://www.climate.
gov/, https://www.climatewatchdata.org/

2https://www.zooniverse.org/

of the graphic and to choose the types of data repre- 213

sentation of the graphic. The third task is to summa- 214

rize true facts based on the graphic alone (and not 215

on the annotators’ background knowledge). The 216

annotators are prompted to objectively describe sig- 217

nificant elements observed in the graphic, such as 218

key data points, trends, comparisons, and any no- 219

table anomalies or patterns. The answers to the first 220

two tasks provide context for the third task, which 221

is the source of the text in the ClimateViz dataset. 222

Figure 1: Quality Control Process: before, during, and
after annotation

Our carefully designed quality-control process 223

involved three distinct phases: before annotation, 224

during annotation, and after annotation (see Figure 225

1 and Appendix A). Post-annotation, we scrutinized 226

the annotations for correctness and consistency. We 227

also went through each claim to make sure it con- 228

tained sufficiently precise context to sustain multi- 229

step reasoning. We ended up with 15,100 true 230

claims in ClimateViz. 231

3.2 False Statement Generation via 232

Augmentation Pipeline 233

To evaluate the capabilities of LLMs in discern- 234

ing factual information from misinformation, we 235

developed an augmentation pipeline to systemat- 236

ically generate false statements based on the true 237

climate-related claims as shown in Figure 2. The 238

generated false facts are designed to resemble real- 239

world misinformation scenarios that could lead to 240

misinterpretations. 241

Figure 2: False Statement Generation Pipeline

Once false facts were generated, we employed 242

DeBERTa-Large-MNLI to ensure that the false 243
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claims generated had a high likelihood of being244

semantically contradictory with original ones. We245

set a confidence threshold of 0.8 so that only clear246

contradictions were retained. Taking together the247

false claims and the 15,100 true claims, ClimateViz248

contains 20,119 claims in total (See Table 2).249

Statistic Value

True claims 15,100
False claims 5,109

False Claims by Method

Trend modification 328
Exaggeration 3,496
Metric swap 1,285

Total claims 20,119

Table 2: Statistics of true and false claims in ClimateViz,
including a breakdown of false claims generated by
different methods.

3.3 Graph-Based Reasoning Tasks and250

Groundtruth Generation251

ReasonClim is a complimentary dataset derived252

from ClimateViz using a graph-based approach253

to capture complex relationships inherent in cli-254

mate data, including spatial, temporal, and spatio-255

temporal interconnections. We employed GPT-4o256

(Islam and Moushi, 2024) to break complex claims257

into single claims, making sure that each single258

claim retains enough contextual information (see259

Figure 3).260

We constructed a directed knowledge graph261

G = (N,E), where N represents the set of nodes262

and E represents the set of edges. The graph en-263

codes relationships between climate-related enti-264

ties to facilitate spatio-temporal reasoning and fact-265

checking tasks.266

The nodes in N include: Region nodes267

nregion, ClimateIndicator nodes nclimate, Record268

nodes nrecord, and TimePeriod nodes ntime, each269

uniquely identified and characterized by properties270

such as values, units, or descriptions.271
The edges in E are:272

(nregion, nclimate, EXPERIENCED) (nclimate, nrecord, HAS_RECORD)

(nrecord, nregion, RECORDED_AT) (nrecord, ntime, OCCURRED_IN)
273

These define the relationships between nodes274

shown in Figure 3 . This graph structure enables275

complex reasoning and querying across climate276

data by traversing the relationships.277

We employed spaCy model to extract geographic278

locations from each fact and pattern matching to279

identify time periods (e.g., years, seasons, months), 280

climate indicators and records. Edges are created 281

based on relevant source and target. 282

This structured approach enabled us to create a 283

rich, interlinked graph where each climate-related 284

fact was represented in a way that is easy for graph 285

queries. In the graph we build, there are 12147 286

edges and 1508 nodes. 287

Reasoning questions were then generated 288

through graph traversal techniques that utilized 289

various types of nodes and edges, each represent- 290

ing a different aspect of climate data relationships. 291

Specifically, we aimed to generate three categories 292

of reasoning tasks: spatial, temporal, and spatio- 293

temporal, each task was paired with a ground truth 294

answer and a detailed explanation to ensure both 295

interpretability and reliability of the generated data. 296

Temporal reasoning tasks focused on understand- 297

ing changes across different years or seasons, while 298

spatial tasks were geographically oriented, and 299

spatio-temporal tasks involved multidimensional 300

reasoning that integrated both elements. Our goal 301

was to provide a challenging benchmark for evalu- 302

ating LLMs’ abilities to reason about climate data 303

beyond basic factual recall. 304

Temporal Questions: For each climate indicator 305

nclimate, we query edges: 306

Ehas_record = {(nclimate, nrecord,HAS_RECORD)}, 307

retrieve records nrecord, and query edges of type 308

OCCURRED_IN: 309

Eoccurred = {(nrecord, ntime,OCCURRED_IN)}. 310

We filter by time period ntime of type "Year" and 311

ensure the match in the record description. The 312

generated question is: 313

qtemporal : In which year did nclimate occur in nregion? 314

with ground truth gtemporal = year of occurrence. 315

Spatial Questions: For spatial questions, we fo- 316

cus on whether a climate anomaly occurred in a 317

region during a given time period. We query edges: 318

Eexperienced = {(nregion, nclimate,EXPERIENCED)}, 319

retrieve records and check edges of OC- 320

CURRED_IN: 321

Eoccurred = {(nrecord, nregion,RECORDED_AT)}. 322
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Figure 3: Graph Query for ReasonClim Generation

If the record contains region and time period323

matches, the generated question is:324

qspatial : Which climate anomaly was experienced by

nregion in ntime?
325

with ground truth gspatial = nclimate.326

Spatio-Temporal Questions: For each climate327

indicator nclimate and region nregion, we query328

edges:329

Eexperienced = {(nregion, nclimate,EXPERIENCED)},330

retrieve records nrecord, and check edges of OC-331

CURRED_IN:332

Eoccurred = {(nrecord, ntime,OCCURRED_IN)}.333

If the record contains anomaly values, there are334

two types of question being generated:335

qspatio_temporal : "What’s the nclimate in nregion in ntime

compared to the average?"

or "Did nregion experience

nclimate in ntime?”

336

Ground truth can either be a percentage value or337

"Yes"/"No" depending on the context.338

Ground Truth and Explanation Generation To339

enhance transparency, each reasoning task was340

paired with an explanation that described the graph341

traversal used to reach the answer. These expla-342

nations included references to the specific nodes343

and relationships in the knowledge graph. This ap-344

proach was designed to foster not only the accuracy345

of the answer, but also the interpretability, which346

is crucial to ensuring trust in AI-generated conclu-347

sions, especially in high-stakes domains such as348

climate science.349

In ReasonClim, we compiled 294 spatial ques-350

tions, 294 temporal questions, and 528 spatio-351

temporal questions with ground truth and expla-352

nations.353

4 Task Design and Baselines 354

To evaluate the performance of LLM in the climate 355

science domain, we designed tasks targeting fact- 356

checking and reasoning capabilities. 357

4.1 Fact-Checking Task 358

Fact-checking is essential in climate science due to 359

the prevalence of misinformation (Leippold et al., 360

2024), which can undermine public understanding 361

and policy development. This task evaluates the 362

models’ ability to classify climate-related claims as 363

true or false, a critical competency for verifying in- 364

sights from scientific graphics and textual data. We 365

sampled 1,000 claims from the ClimateViz, main- 366

taining a 7:3 proportion of true to false claims to 367

simulate real-world scenarios. Additionally, false 368

claims were randomly selected from each genera- 369

tion method to ensure balanced evaluation of model 370

sensitivity to different types of misinformation. 371

4.2 Reasoning Tasks 372

The reasoning tasks are designed to evaluate mod- 373

els’ capacity to perform spatial, temporal, and 374

spatio-temporal reasoning. These dimensions are 375

critical in climate science, where understanding re- 376

lationships across geographic regions, timeframes, 377

and combined spatio-temporal patterns is funda- 378

mental to interpreting trends and anomalies. By 379

addressing these reasoning tasks, we benchmark 380

models’ ability to not only extract information but 381

also analyze and synthesize it in a structured and 382

meaningful way. 383

4.3 Selection of Models 384

We evaluated 7 models: GPT-4o (Islam and 385

Moushi, 2024), DeepSeek-R1 (DeepSeek-AI et al., 386

2025), O1 (Zhong et al., 2024), GPT-4 (OpenAI 387

et al., 2024), GPT-3.5 (Ye et al., 2023), Phi-3 388

(Abdin et al., 2024), and Llama-3-8B (Grattafiori 389

et al., 2024) These models were selected based 390

on their state-of-the-art performance in language 391

understanding and reasoning. 392
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Our tasks are very challenging, but we note three393

ways that the models could succeed. Deepseek-R1,394

which is the only model evaluated that have the395

ability to search the web on-the-fly to answer ques-396

tions could access the exact high-profile sources397

that we took our graphics from, and process either398

the graphics themselves or the accompanying .csv399

files. The training sets for the others would have400

in principle had access to a substantial fraction of401

these on-line materials, and implicitly represented402

world knowledge that could be derived from them.403

Alternatively the correct answers to some of the404

questions could be derived as entailments from405

other sources.406

5 Experimental Setup407

5.1 Model Configuration408

The experiments are running on a NVIDIA A100409

Tensor Core GPU and approximately 24 GB of410

available RAM.411

5.2 Evaluation Metrics412

To comprehensively evaluate model performance,413

we employ the following metrics:414

5.2.1 Fact-Checking Metrics.415

Abstention Rate (%): The percentage of ques-416

tions where the model abstains from answering.417

Balanced Accuracy (%): Accounts for class im-418

balance by averaging recall across true and false419

claims:420

Balanced Accuracy =
Recalltrue + Recallfalse

2
421

Recall (%): Measures the proportion of correctly422

identified true claims.423

F1-Score (%): Balances precision and recall,424

providing a single measure of classification per-425

formance.426

5.2.2 Reasoning Task Metrics.427

Reasoning tasks are evaluated using the following428

metrics:429

Abstention Rate (%): The percentage of ques-430

tions where the model abstains from answering.431

Mean Evaluation (%): The average evaluation432

score for non-abstained questions, calculated using433

task-specific criteria:434

• For Spatial and Temporal Reasoning: 435

Weighted Partial Match is used: 436

Score =
|P ∩G|
|P ∪G|

437

• For Spatio-Temporal Reasoning: 438

– Numerical questions: Predictions within 439

10% of the ground truth are scored as 440

correct. 441

– Binary classification questions: Exact 442

matches are scored as correct. 443

Evaluation Standard Deviation (%): Captures 444

the variability in model performance across an- 445

swered questions. 446

Task-Specific Aggregation. For overall metrics 447

across reasoning tasks, weighted averages are com- 448

puted: 449

Overall Metric =

∑T
t=1Nt ·Mt∑T

t=1Nt

450

where Mt is the metric value for task t and Nt is 451

the number of questions in task t. 452

These metrics ensure a holistic evaluation, cap- 453

turing both accuracy and consistency across diverse 454

task types. 455

6 Results 456

6.1 Model Evaluation for Fact-checking Task 457

As shown in Table 3, GPT-4o has the highest bal- 458

anced accuracy in the fact-checking task but also 459

has a high abstention rate, which implies the model 460

may only provide answers when it is confident. 461

Llama-3 has the highest recall and a strong F1- 462

score, indicating it is particularly good at identify- 463

ing true positives while maintaining a good balance 464

between precision and recall. That implies, Llama- 465

3 is highly sensitive to identifying correct facts, 466

however, it might struggle with classifying nega- 467

tive instances. 468

6.2 Model Evaluation for Reasoning Tasks 469

To evaluate the performance of language models 470

across reasoning tasks, we calculate overall metrics 471

by aggregating results across spatial, temporal, and 472

spatio-temporal reasoning tasks (See Table 4). 473

Overall, temporal reasoning is the hardest task. 474

All models exhibited their lowest scores in the tem- 475

poral reasoning task. There is a trade-off between 476
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Metric o1 DeepSeek-R1 GPT-4o GPT-4 GPT-3.5 Phi-3 Llama-3
Abstention Rate(%) 0.9 1.60 9.3 1.4 0.00 7.2 0.00
Balanced Accuracy(%) 64.69 61.92 66.81 56.43 65.71 58.57 63.48
Recall(%) 43.52 39.39 48.89 16.28 73.43 35.67 84.29
F1-Score(%) 58.19 53.93 62.87 27.66 76.72 49.57 80.71

Table 3: Evaluation metrics for all models on the Fact-checking task.

Metric o1 DeepSeek-R1 GPT-4o GPT-4 GPT-3.5 Phi-3 Llama-3
Spatial Reasoning

Abstention Rate (%) 2.17 0.00 3.26 0.00 0.00 0.00 0.00
Mean Evaluation (%) 41.48 4.98 37.83 45.65 20.29 43.82 31.16
Evaluation Std Dev (%) 31.92 17.47 35.69 24.19 24.53 37.60 31.57

Temporal Reasoning
Abstention Rate (%) 14.29 14.29 0.00 7.14 0.00 0.00 0.00
Mean Evaluation (%) 0.56 8.68 2.42 3.89 5.72 2.93 11.92
Evaluation Std Dev (%) 1.92 6.26 3.41 5.58 5.29 3.54 10.44

Spatio-Temporal Reasoning
Abstention Rate (%) 20.08 0.00 4.92 5.49 0.00 4.92 0.00
Mean Evaluation (%) 29.15 31.25 37.85 24.85 37.12 14.34 30.11
Evaluation Std Dev (%) 45.50 46.4 48.55 43.26 48.36 35.09 45.92

Overall Metrics
Abstention Rate (%) 17.35 0.32 4.57 4.73 0.00 4.10 0.00
Mean Evaluation (%) 30.31 26.94 37.06 27.41 33.98 18.37 31.06
Evaluation Std Dev (%) 43.31 41.32 46.40 40.60 45.17 35.11 45.92

Table 4: Metrics of different models across spatial, temporal, and spatio-temporal reasoning tasks, along with overall
metrics.

accuracy and consistency. Models such as GPT-4o477

achieve high accuracy but exhibit higher variability478

(e.g., high standard deviation in spatio-temporal479

task), while models like Phi-3 demonstrate more480

consistent performance but lower overall accuracy.481

GPT-4o shows the best performance across all482

the reasoning tasks. While almost all models strug-483

gle with temporal reasoning tasks (See Figure 5),484

Llama-3 performs better on temporal reasoning,485

showing a noticeable drop in error rate compared486

to the other models. DeepSeek-R1 is has the most487

consistent performance across all tasks, but it has488

surprisingly low performance on spatial reasoning489

task, which means the model may lack access to490

granular historical climate data, especially in Euro-491

pean countries. Incorporate temporal embeddings492

and causal graphs to model time-dependent rela-493

tionships (e.g., lagged effects of emissions) may494

mitigate this problem.495

False positives are of particular interest because496

false but plausible claims are the stuff of disinfor-497

mation campaigns and conspiracy theories. So, we498

conduct further error analysis by calculating the499

error rates by false claim categories for the fact-500

checking task and by reasoning categories for the501

reasoning task. As shown in Figure 4, Llama3 and502

GPT-3.5 have particularly high errors rates for false503

claim. Overall, error rates for the exaggeration and504

metric-swap claims are higher than for the trend505

Figure 4: Error Rates for Fact-checking Task Across
Models

false claims. 506

All the models’ training data cutoff dates (ex- 507

cept for DeepSeek-R1, of which the training data 508

isn’t explicitly mentioned) are earlier than our 509

dataset’s August 2024 cutoff for scientific graphics. 510

Consequently, models must rely on extrapolation, 511

retrieval-augmented mechanisms, or inherent rea- 512

soning abilities to verify 2024 claims.So we also 513

tested the models’ fact-checking performance on 514

all claims of the year 2024. As shown in Figure 515

4, Phi-3’s exceptional performance may suggest 516

a training approach that enables robust extrapola- 517

tion from past data. Despite its older architecture, 518

GPT-3.5 has a significantly lower error rate than 519
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Figure 5: Error Rates by Reasoning Task Across Models

many more advanced models, suggesting a lower520

tendency to hallucinate or overgeneralize in areas521

where it lacks knowledge.522

6.3 Broader Implications523

Advancing NLP in High-Stakes Domains. Cli-524

mate science is a domain where the stakes of mis-525

information are particularly high. The datasets and526

benchmarks introduced in this work support the527

development of more accurate and robust LLMs528

capable of processing complex climate-related data.529

This advancement has the potential to support scien-530

tific decision-making, enhance public understand-531

ing, and combat climate misinformation effectively.532

Multi-Modal and Spatio-Temporal Reasoning.533

The rather low performance levels displayed in Ta-534

ble 4 indicates that LLMs are unable to extract535

information from scientific graphics that human536

readers readily extract. This highlights the impor-537

tance of moving beyond text-based benchmarks538

for scientific domains. This work points towards539

the need for multi-modal NLP systems capable of540

synthesizing insights across visual and textual data,541

a requirement for addressing challenges in other542

domains, such as healthcare, economics, and envi-543

ronmental policy.544

Enhancing Model Explainability. The detailed545

ground truth and explanations provided in Reason-546

Clim emphasize interpretability, fostering trust in547

AI systems deployed in high-stakes applications.548

6.4 Limitations549

The datasets are curated from specific gold stan-550

dard sources. Applying the approach to a broader551

or different domain would require a fresh curation552

effort. The variety of scientific graphics in Climat-553

eViz is limited, types of visual images, such as554

satellite imagery or video data, are not included, 555

presenting opportunities for future expansion. Plus, 556

the temporal reasoning tasks focus on explicit time 557

units (e.g., years, seasons) but do not account for 558

less explicit temporal references that might be com- 559

prehensible to humans but still present challenges 560

for LLMs. Additionally, we only evaluate LLMs 561

with text as input in this work and do not test Large 562

Multimodal Models (LMMs) that integrate both 563

text and images. To address these limitations, fu- 564

ture work could explore: Expanding the dataset to 565

include more diverse modalities, such as geospatial 566

and sensory data. Incorporating data that require 567

disambiguation of named entities or timepoints. 568

Using graphics as input to evaluate LMMs ability 569

for multimodal fact-checking. 570

7 Conclusion 571

In this work, we introduced ClimateViz, the largest 572

dataset to date for evaluating fact-checking capabil- 573

ities of large language models in climate science, 574

and ReasonClim, a complementary benchmark for 575

spatio-temporal reasoning tasks. Together, these 576

datasets address critical gaps in the NLP landscape 577

by integrating scientific graphics, human-labeled 578

claims, and graph-based reasoning tasks to support 579

robust evaluation across multi-modal and domain- 580

specific challenges. 581

Our findings demonstrate that current state-of- 582

the-art LLMs struggle with fact-checking and 583

spatio-temporal reasoning tasks in climate science, 584

highlighting the need for more targeted research 585

in these areas. Additionally, the emphasis on inter- 586

pretability through detailed ground truth and expla- 587

nations underscores the importance of explainable 588

AI. 589

We envision ClimateViz and ReasonClim as cat- 590

alysts for advancing research on multi-modal fact- 591

checking, domain-specific reasoning, and trustwor- 592

thy AI. Our work aims to bridge the gap between 593

AI capabilities and real-world needs, ultimately 594

contributing to informed decision-making and com- 595

bating misinformation in the fight against climate 596

change. 597
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A Annotation for ClimateViz752

A.1 Before Annotation: Preparation Phase753

Before starting the annotation process, we con-754

ducted extensive preparation to ensure that annota-755

tors had the necessary guidance, tools, and under-756

standing of the climate graphics. We began with757

an internal review involving climate science ex-758

perts and NLP practitioners. This was crucial to759

refine the scope of the tasks, establish clear goals,760

and identify potential challenges in the annotation761

of visual climate data. Then, a beta test was con- 762

ducted with a small group of experienced anno- 763

tators who provided early feedback on the clarity 764

and difficulty of the tasks. This helped identify 765

areas where instructions or task complexity needed 766

adjustment. Following the beta test, we gathered 767

feedback through detailed forms, allowing us to 768

iteratively improve the task definitions and anno- 769

tation interface. The finalized workflows and task 770

requirements were then implemented on the Zooni- 771

verse platform’s dedicated webpage, which served 772

as the main point of interaction for annotators. 773

A.2 During Annotation: Annotation Phase 774

The annotation phase was designed to facilitate a 775

smooth and productive experience for annotators, 776

equipping them with the resources necessary to 777

accurately interpret and label the graphics. The 778

tools used during this phase include: 779

Field Guide: A comprehensive field guide was 780

provided to the annotators, covering the different 781

types of data representations commonly found in 782

the graphics. This guide included: 783

Types of Visuals: Examples of bar charts, line 784

graphs, pie charts, scatter plots, geographic maps, 785

and box plots, helping annotators become familiar 786

with each format. 787

Key Definitions: Explanations of essential con- 788

cepts, such as "anomalies" or "trends," that might 789

be important when describing climate-related visu- 790

als. 791

Detailed Instructions: Each task was accompa- 792

nied by explicit, step-by-step instructions. This 793

was especially important for the third task, which 794

involved summarizing factual information from the 795

graphics. Annotators were instructed to focus on 796

objective descriptions, providing factual statements 797

regarding the graphic without interpretation or bias. 798

Tutorials: We created interactive tutorials that 799

walked annotators through example graphics and 800

tasks. These tutorials emphasized how to identify 801

and describe elements like key data points, trends, 802

or anomalies. 803

Talk Board: The Zooniverse platform also in- 804

cluded a dedicated "Talk Board," where annotators 805

could discuss uncertainties, ask questions, and re- 806

ceive support from both project moderators and 807

their peers. This collaborative environment was 808
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instrumental in resolving ambiguous cases and en-809

suring consistency across annotations.810

A.3 Post Annotation: Quality Assurance811

Phase812

Once the annotations were completed, an extensive813

quality assurance phase was implemented to verify814

the accuracy and reliability of the collected data.815

Automatic Cleaning: Initially, automated data816

cleaning scripts were run to detect potential issues817

such as outlier annotations, incomplete tasks, or818

incorrect data types. Also, we removed annotations819

less than 10 words for the "fact" task, with the820

assumption that they are not informative enough.821

Manual Review: Following the automated clean-822

ing, the data underwent a manual review by domain823

experts. During this review, we scrutinized the824

flagged annotations for correctness and consistency.825

We also went through each claim to make sure it826

contained the necessary context, which makes it a827

claim by itself. This dual-step process was critical828

in catching errors that may have been overlooked829

by automated methods and ensuring that the dataset830

retained a high level of reliability.831

B False Staement Generation832

B.1 False Fact Generation833

False facts are generated by manipulating true facts834

through various strategies. Three distinct methods835

are employed for this purpose:836

Trend Modification: This method involves alter-837

ing the directional trend of a fact, such as changing838

“increased” to “decreased” or “rising” to “falling.”839

Such modifications reverse the implied trends in840

the facts.841

Exaggeration: This method amplifies numerical842

values or descriptive terms to exaggerate the mag-843

nitude of the claim. Numerical values (e.g., temper-844

ature, precipitation) are adjusted using a random845

multiplier, while adjectives such as “moderate” or846

“slight” are replaced with more extreme alternatives847

(e.g., “severe” or “considerable”).848

Metric Swap: This approach involves replacing849

specific metrics or variables with similar but dis-850

tinct ones. For example, replacing "mean maxi-851

mum temperature" with "mean minimum tempera-852

ture" or swapping "sunshine duration" with "cloud853

cover."854

Here are some real examples in the dataset, see 855

Table 5. 856

Each true fact undergoes one of these transfor- 857

mations at random, generating a modified version 858

that is considered a potential false fact. 859

B.2 Contradiction Detection via NLI Model 860

Once the false facts are generated, we employed 861

the microsoft/deberta-large-mnli model for verify- 862

ing contradiction between generated and original 863

claims. The NLI model classifies the relationship 864

between two text statements as entailment, neutral, 865

or contradiction. The false facts are selected only 866

if they are classified as contradictions with a high 867

confidence score (greater than 0.8). 868

C Climate Knowledge Graph 869

The Climate Knowledge Graph (CKG) we built in 870

this paper is a directed graph G = (N,E), where 871

N represents the set of nodes and E represents 872

the set of edges. The graph encodes relationships 873

between climate-related entities (regions, climate 874

indicators, time periods, and numerical records) 875

to facilitate spatio-temporal reasoning and fact- 876

checking tasks. 877

C.1 Nodes 878

The nodes in the graph represent distinct entities in 879

the climate domain. Each node n ∈ N is catego- 880

rized by its type t. 881

• Region nodes nregion: Represent geographical 882

locations (e.g., "London," "Africa"). 883

• ClimateIndicator nodes nclimate: Represent 884

climate indicators (e.g., "Rainfall Anomaly," 885

"Temperature Anomaly"). 886

• Record nodes nrecord: Represent numerical 887

data associated with climate indicators (e.g., 888

"400 ppm" of CO2). 889

• TimePeriod nodes ntime: Represent temporal 890

entities such as years, months, or seasons (e.g., 891

"2020," "Winter"). 892

Each node n is uniquely identified by a node 893

ID and may contain properties such as numerical 894

values, units, or descriptions. 895

C.2 Edges 896

Edges represent the relationships between nodes. 897

Each edge e ∈ E connects two nodes and is char- 898

acterized by a relationship type r. 899
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Original Claim Method False Claim

The mean winter temperature in Wales
has shown an upward trend from 1890
to 2020.

Trend Modification The mean winter temperature in Wales
has shown a downward trend from 1890
to 2020.

The general trend line for sunshine du-
ration in Northern Ireland during spring
suggests a slight upward shift over time
since 1890.

Exaggeration The general trend line for sunshine du-
ration in Northern Ireland during spring
suggests a significant upward shift over
time since 1890.

Sunshine duration in August 2021 for
England was 115% compared to the
1961-1990 average.

Metric Swap Cloud cover in August 2021 for England
was 115% compared to the 1961-1990
average.

Table 5: Examples of False Claim Generation Methods

• EXPERIENCED edges: Represent the rela-900

tionship where a Region nregion experiences a901

ClimateIndicator nclimate.902

(nregion, nclimate,EXPERIENCED)903

• HAS_RECORD edges: Represent the rela-904

tionship where a ClimateIndicator nclimate is905

associated with a Record nrecord.906

(nclimate, nrecord,HAS_RECORD)907

• RECORDED_AT edges: Represent the rela-908

tionship where a Record nrecord is associated909

with a Region nregion, indicating the location910

of the measurement.911

(nrecord, nregion,RECORDED_AT)912

• OCCURRED_IN edges: Represent the rela-913

tionship where a Record nrecord is associated914

with a TimePeriod ntime, indicating when the915

measurement occurred.916

(nrecord, ntime,OCCURRED_IN)917

C.3 Graph Construction918

The Climate Knowledge Graph is built by iterating919

over a dataset of climate-related facts. For each920

fact:921

• Entities (regions, climate indicators, records,922

time periods) are extracted and represented as923

nodes.924

• Relationships between entities (e.g., a region925

experiencing a climate indicator, a record as-926

sociated with a climate indicator) are captured927

as edges.928

The graph structure allows for complex queries 929

and reasoning tasks, such as: 930

• Identifying the occurrence of specific climate 931

indicators in different regions over time. 932

• Verifying the consistency of climate facts by 933

examining the relationships between indica- 934

tors, records, regions, and time periods. 935

This knowledge graph provides a structured rep- 936

resentation of climate data, enabling automated 937

analysis and decision-making. 938

D Pipeline for Question Generation 939

Temporal Reasoning Temporal questions were 940

constructed to assess a model’s ability to reason 941

about climate-related phenomena across specific 942

time periods. This task type was generated by se- 943

lecting climate indicators, such as "Temperature 944

Anomaly" or "Rainfall Anomaly," and linking them 945

with relevant records indicating the extent or im- 946

pact of these anomalies. For example, from the 947

knowledge graph, edges of type HAS_RECORD 948

were followed to identify specific climate records, 949

and then edges of type OCCURRED_IN were used 950

to associate these records with their respective tem- 951

poral periods. The resulting question might be: "In 952

which year did the temperature anomaly occur in 953

Scotland?" The ground truth was directly extracted 954

from the time period node, and an accompanying 955

explanation was included to clarify the climate indi- 956

cator’s historical context and temporal occurrence. 957

Spatial Reasoning Spatial questions targeted the 958

ability of LLMs to understand geographic relation- 959

ships in climate data. These questions were gener- 960

ated by navigating from region nodes to associated 961

climate indicators through the EXPERIENCED 962
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edges. For each region, such as "Wales" or "Scot-963

land," we identified climate indicators it experi-964

enced and generated questions like, "Which climate965

anomaly was experienced by Wales in 2003?" The966

ground truth was derived from the linked climate967

indicator node, while the explanations contextu-968

alized the geographic specifics of the indicator’s969

manifestation, highlighting the regional variance in970

climate impacts.971

Spatio-Temporal Reasoning Spatio-temporal972

questions were the most complex, requiring models973

to reason about both spatial and temporal aspects si-974

multaneously. To generate these tasks, we traversed975

the knowledge graph to identify relationships be-976

tween regions, climate indicators, and time peri-977

ods. This involved edges of types such as EXPERI-978

ENCED (connecting regions to climate indicators)979

and OCCURRED_IN (linking climate records to980

temporal nodes). A typical question might be, "Did981

England experience a rainfall anomaly in Spring982

2019?" Ground truth for such questions was deter-983

mined by the presence of relevant edges linking the984

entities. The explanations provided detailed reason-985

ing about both the temporal context (e.g., Spring986

2019) and the specific regional climate anomaly,987

aiming to enhance the interpretability of the an-988

swer.989

E Experimental Setup990

We accessed OpenAI Models (GPT-3.5-turbo,991

GPT-4-turbo, GPT-4o, o1) with configura-992

tions: max_tokens: 100-300 (For o1 model,993

max_reasoning_tokens =10,000).994

We evaluate the following state-of-the-art LLMs:995

GPT-4o and GPT-4: These models represent996

the latest advancements in OpenAI’s GPT series,997

known for their exceptional reasoning capabilities998

and performance across NLP benchmarks.999

GPT-3.5: Included as a comparative baseline to1000

highlight advancements in reasoning and accuracy1001

from prior iterations.1002

Llama-3-8B: This model is noted for its strong1003

performance in fine-tuned, domain-specific tasks,1004

making it a relevant choice for evaluating climate1005

science data.1006

Phi-3: Selected for its lightweight architecture1007

and efficiency, allowing an exploration of trade-offs1008

between performance and resource utilization.1009

O1: As a representative of emerging lightweight 1010

models, O1 was included to assess performance 1011

scalability in resource-constrained environments. 1012

DeepSeek-R1 An emerging competitive reason- 1013

ing model. 1014

We also include a table of the training cutoff date 1015

of each model (See Table 6). 1016

The inclusion of these diverse baselines ensures 1017

a robust evaluation of how different architectures 1018

and training paradigms perform on the Climate- 1019

Viz and ReasonClim datasets. Additionally, their 1020

performance across spatial, temporal, and spatio- 1021

temporal reasoning tasks provides valuable insights 1022

into the challenges posed by each reasoning dimen- 1023

sion and helps identify avenues for model improve- 1024

ment. The experiments were conducted for both 1025

fact-checking and reasoning tasks, with all com- 1026

putations executed on an NVIDIA A100 Tensor 1027

Core GPU (40 GB memory) and approximately 24 1028

GB of available RAM. Below, we describe the data 1029

splits, hyperparameters, and evaluation processes 1030

for each task. 1031

E.1 Fact-Checking Task 1032

For the fact-checking task, we sampled 1,000 1033

claims from the ClimateViz dataset, maintaining 1034

a 7:3 ratio of true to false claims to simulate real- 1035

world scenarios. The dataset was fed to the model 1036

using structured prompts: 1037

Is the following statement true or false? Reply 1038

with 1 for true and 0 for false. Statement: <fact> 1039

Predicted labels were collected for each fact, 1040

and results were saved to a CSV file. To ensure 1041

robustness against API rate limits, a one-second 1042

delay was added between requests. Metrics such 1043

as abstention rate, balanced accuracy, recall, and 1044

F1-score were calculated to evaluate the model’s 1045

performance comprehensively. 1046

E.2 Reasoning Tasks 1047

Spatial Questions: Questions required identify- 1048

ing climate anomalies (e.g., "Sunshine Anomaly"). 1049

Prompts emphasized direct responses: 1050

Answer only with the climate anomalies expe- 1051

rienced, choosing only from "Sunshine Anomaly," 1052

"Rainfall Anomaly," or "Temperature Anomaly." 1053

Separate multiple anomalies using commas. Do 1054

not abstain from answering. Question: <spatial 1055

question> 1056

Temporal Questions: Questions focused on 1057

identifying specific years. Prompts ensured clarity 1058
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Model Training Cutoff Date Notes

o1 October 2023 RL-focused, no SFT phase
DeepSeek-R1 Not explicitly stated Base model (V3) trained in late 2024
GPT-4o May 2023 Trained from scratch
GPT-4 December 2023 Most recent OpenAI cutoff
GPT-3.5 September 2021 Discrepancies in model responses
Phi-3 October 2023 Microsoft’s lightweight model
Llama-3 March/December 2023 Varies by model size

Table 6: Training Cutoff Dates for Evaluated Models

and precision: Answer only with numbers represent-1059

ing years after 1990, like 1991, 2001, etc. Separate1060

multiple years using commas. Do not abstain from1061

answering. Question: <temporal question>1062

Spatio-Temporal Questions: Prompts varied1063

depending on the format of the question: Numeri-1064

cal questions (e.g., "What’s..."): Answer only with1065

a number followed by %, like "138%". No addi-1066

tional text. Do not abstain from answering. Ques-1067

tion: <spatio-temporal question>1068

Binary questions (e.g., "Did..."): Answer only1069

with "Yes" or "No". No additional text. Do not ab-1070

stain from answering. Question: <spatio-temporal1071

question>1072

E.3 Data Splits1073

Fact-Checking Task: The ClimateViz dataset1074

was used for zero-shot evaluation, with models as-1075

sessed on a curated set of 1,000 claims (7:3 ratio of1076

true to false claims). No training/testing split was1077

applied, as the task is designed purely for bench-1078

marking.1079

Reasoning Tasks: The ReasonClim dataset, cov-1080

ering spatial, temporal, and spatio-temporal rea-1081

soning, was also used exclusively for evaluation.1082

Since these tasks serve as benchmarks, no separate1083

training or fine-tuning was performed.1084

E.4 Evaluation Criteria1085

E.4.1 Metrics for fact-checking task1086

Abstention Rate: Proportion of claims where1087

the model abstained from providing an answer.1088

Balanced Accuracy: Average recall across true1089

and false claims to mitigate class imbalance.1090

Recall and F1-Score: To measure the precision1091

and robustness of predictions.1092

E.4.2 Metrics for reasoning tasks 1093

Coverage: Percentage of non-abstained re- 1094

sponses. 1095

Mean Evaluation: Average score for non- 1096

abstained questions, calculated using task-specific 1097

criteria (e.g., weighted partial matches for spatial 1098

and temporal reasoning). 1099

Evaluation Standard Deviation: To assess vari- 1100

ability in performance across tasks. 1101

E.5 Reproducibility 1102

The provided scripts are publicly available and sup- 1103

port replicating all fact-checking and reasoning ex- 1104

periments, ensuring that results are reproducible 1105

across different environments. 1106

F Metrics Calculation for Each Language 1107

Model in Fact-checking Task 1108

To evaluate the performance of the fact-checking 1109

model, we compute the following metrics: Ab- 1110

stention Rate, Balanced Accuracy, Recall, and 1111

F1-Score. These metrics provide a comprehensive 1112

understanding of the model’s confidence, accuracy, 1113

and ability to handle imbalanced datasets. The 1114

calculations are detailed below. 1115

F.1 Abstention Rate 1116

The Abstention Rate quantifies the proportion of 1117

samples for which the model abstains from making 1118

a prediction. A prediction is considered abstained 1119

if the predicted label is neither 0 (false) nor 1 (true). 1120

It is defined as: 1121

Abstention Rate =
Nabstain

Ntotal
× 100 (1) 1122

where Nabstain is the number of abstained samples, 1123

and Ntotal is the total number of samples. This 1124

metric is expressed as a percentage, with higher 1125

values indicating greater abstention. 1126
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F.2 Balanced Accuracy1127

The Balanced Accuracy accounts for class imbal-1128

ance by averaging the recall values for both true (1)1129

and false (0) claims:1130

Balanced Accuracy =
RecallTrue + RecallFalse

2
(2)1131

with:1132

RecallTrue =
TP

TP + FN
, RecallFalse =

TN
TN + FP

(3)1133

Balanced Accuracy ensures both classes are equally1134

considered, even when one class is underrepre-1135

sented. It is expressed as a percentage, with 100%1136

indicating perfect performance.1137

F.3 Recall1138

The Recall metric measures the model’s ability to1139

correctly identify true claims (1). It is defined as:1140

Recall =
TP

TP + FN
(4)1141

where TP and FN are the true positives and false1142

negatives, respectively. Recall is expressed as a per-1143

centage, with 100% indicating that all true claims1144

are correctly identified.1145

F.4 F1-Score1146

The F1-Score balances Precision and Recall, pro-1147

viding a single measure of the model’s classifica-1148

tion performance. It is calculated as:1149

F1-Score = 2 · Precision · Recall
Precision + Recall

(5)1150

where:1151

Precision =
TP

TP + FP
(6)1152

Here, FP refers to false positives. The F1-Score is1153

expressed as a percentage, with 100% indicating1154

perfect precision and recall.1155

F.5 Table1156

Here we list all the metrics for the models we eval-1157

uated.1158

G Metrics Calculation for Each1159

Language Model in Reasoning Tasks1160

To evaluate each language model’s performance1161

on reasoning tasks, we use the following metrics:1162

Abstention Rate, Coverage, Mean Evaluation,1163

and Evaluation Standard Deviation.1164

These metrics are detailed below.1165

Metric GPT-3.5 Value (%)
Abstention Rate 0.00
Balanced Accuracy 65.71
Recall 73.43
F1-Score 76.72

Table 7: Evaluation metrics for the GPT-3.5 model on
the fact-checking task.

Metric GPT-4 Value (%)
Abstention Rate 1.4
Balanced Accuracy 56.43
Recall 16.28
F1-Score 27.66

Table 8: Evaluation metrics for the GPT-4 model on the
fact-checking task.

G.1 Abstention Rate 1166

The Abstention Rate measures the proportion of 1167

questions where the model abstains from answer- 1168

ing. Let N represent the total number of questions, 1169

and Nabstain represent the number of abstained ques- 1170

tions. The Abstention Rate (Arate) is calculated as: 1171

Arate =
Nabstain

N
× 100 (7) 1172

This metric is expressed as a percentage. 1173

G.2 Coverage 1174

The Coverage metric is complementary to the Ab- 1175

stention Rate and represents the proportion of ques- 1176

tions where the model provides an answer. Let 1177

Nnon-abstain represent the number of non-abstained 1178

questions. Coverage (C) is calculated as: 1179

C =
Nnon-abstain

N
× 100 (8) 1180

Alternatively, it can be derived directly from the 1181

Abstention Rate: 1182

C = 100−Arate (9) 1183

G.3 Mean Evaluation 1184

The Mean Evaluation represents the average score 1185

of the model on all non-abstained questions. Let 1186

Ei represent the evaluation score for the i-th non- 1187

abstained question, and Nnon-abstain represent the 1188

number of non-abstained questions. The Mean 1189

Evaluation (µE) is calculated as: 1190

µE =
1

Nnon-abstain

Nnon-abstain∑
i=1

Ei (10) 1191

The evaluation score Ei depends on the specific 1192

reasoning task: 1193
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Metric GPT-4o Value (%)
Abstention Rate 9.3
Balanced Accuracy 66.81
Recall 48.89
F1-Score 62.87

Table 9: Evaluation metrics for the GPT-4o model on
the fact-checking task.

Metric o1 Value (%)
Abstention Rate 0.9
Balanced Accuracy 64.69
Recall 43.52
F1-Score 58.19

Table 10: Evaluation metrics for the o1 model on the
fact-checking task.

• Temporal and Spatial Reasoning: Ei corre-1194

sponds to the Weighted Partial Match score.1195

• Spatio-Temporal (Numerical Ques-1196

tions/What’s Questions): Ei is 1 if the1197

predicted value is within tolerance (±10% of1198

the ground truth), otherwise 0.1199

• Spatio-Temporal (Binary Classification1200

Questions/Did Questions): Ei is 1 for correct1201

binary answers (Yes/No), and 0 otherwise.1202

G.4 Evaluation Standard Deviation1203

The Evaluation Standard Deviation (σE) quanti-1204

fies the variability in the model’s performance on1205

non-abstained questions. It is defined as:1206

σE =

√√√√ 1

Nnon-abstain

Nnon-abstain∑
i=1

(Ei − µE)2 (11)1207

Here, Ei is the evaluation score for the i-th non-1208

abstained question, and µE is the Mean Evaluation1209

score.1210

G.5 Task-Specific Evaluation Scores1211

Temporal and Spatial Reasoning: Weighted Par-1212

tial Match. The Weighted Partial Match score is1213

calculated as:1214

Ei =
|P ∩G|
|P ∪G|

(12)1215

where P is the set of predicted values, and G is the1216

set of ground truth values.1217

Spatio-Temporal (Numerical Questions/What’s1218

Questions): Tolerance-Based Accuracy. A1219

Metric llama3 Value (%)
Abstention Rate 0.00
Balanced Accuracy 63.48
Recall 84.29
F1-Score 80.71

Table 11: Evaluation metrics for the llama3 model on
the fact-checking task.

Metric phi3 Value (%)
Abstention Rate 7.2
Balanced Accuracy 58.57
Recall 35.67
F1-Score 49.57

Table 12: Evaluation metrics for the phi3 model on the
fact-checking task.

Tolerance-Based Accuracy score is assigned as: 1220

Ei =

{
1, if G · (1− ϵ) ≤ P ≤ G · (1 + ϵ)

0, otherwise
(13) 1221

Here, G is the ground truth value, P is the predicted 1222

value, and ϵ = 0.1 (10% tolerance). 1223

Spatio-Temporal (Binary Classification Ques- 1224

tions/Did Questions): Direct Match Accuracy. 1225

A Direct Match Accuracy score is assigned as: 1226

Ei =

{
1, if P = G

0, otherwise
(14) 1227

G.6 Implementation Notes 1228

To compute the metrics, we first filter out abstained 1229

questions and operate only on non-abstained rows. 1230

The evaluation scores (Ei) are then used to calcu- 1231

late the Mean Evaluation and Standard Deviation. 1232

Abstention Rate and Coverage are computed across 1233

all questions. These metrics provide a compre- 1234

hensive assessment of model performance, captur- 1235

ing accuracy, abstention behavior, and variability 1236

across different reasoning tasks. 1237

G.7 Table 1238

Here we list all the metrics for the models we eval- 1239

uated. 1240

H Error Analysis 1241

H.1 Fact-checking Task 1242

The error rate for each generation method in the 1243

dataset is computed as the proportion of incorrect 1244

predictions made on false claims. The calculation 1245

process involves the following steps: 1246
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Reasoning Type Total Qns Aggregated Qns
Spatial Reasoning 294 92
Temporal Reasoning 294 14
Spatio-Temp. Reasoning 528 528

Table 13: Distribution of questions across reasoning
types, showing total and aggregated questions.

Metric Spatial Temporal Spatio-Temporal
Abstention Rate (%) 2.17 14.29 20.08
Coverage (%) 97.83 85.71 79.92
Mean Evaluation (%) 41.48 0.56 29.15
Evaluation Std Dev (%) 31.92 1.92 45.50

Table 14: Metrics for the o1 model across Spatial, Tem-
poral, and Spatio-Temporal reasoning types.

H.2 Filtering False Claims1247

The dataset is filtered to isolate entries with1248

ground_truth = 0, representing factually incor-1249

rect claims. Let D denote the dataset, and F the1250

subset of false claims:1251

F = {x ∈ D | ground_truth(x) = 0}.1252

This subset F is used for further error rate anal-1253

ysis.1254

H.3 Grouping by Generation Method1255

The filtered dataset F is grouped by the1256

generation_method attribute, which specifies the1257

model or algorithm responsible for generating the1258

predictions. Let G represent the set of unique gen-1259

eration methods, and for each g ∈ G, let Fg denote1260

the subset of F associated with generation method1261

g.1262

H.4 Error Rate Computation1263

For each generation method g, the error rate is the1264

mean proportion of incorrect predictions. The error1265

rate for g is computed as:1266

Error Rateg =
1

|Fg|
∑
x∈Fg

I
(
label(x) ̸= truth(x)

)
,

(15)1267

where |Fg| is the total number of predictions for1268

g, and I(·) is the indicator function (1 if true, 01269

otherwise).1270

The error rate as a percentage is:1271

Error Rate (%)g = Error Rateg × 100.1272

Metric Spatial Temporal Spatio-Temporal
Abstention Rate (%) 0.00 14.29 0.00
Coverage (%) 100.00 85.71 100.00
Mean Evaluation (%) 4.98 8.68 31.25
Evaluation Std Dev (%) 17.47 6.26 46.40

Table 15: Metrics for the DeepSeek-R1 model across
Spatial, Temporal, and Spatio-Temporal reasoning
types.

Metric Spatial Temporal Spatio-Temporal
Abstention Rate (%) 3.26 0.00 4.92
Coverage (%) 96.74 100.00 95.08
Mean Evaluation (%) 37.83 2.42 37.85
Evaluation Std Dev (%) 35.69 3.41 48.55

Table 16: Metrics for the GPT-4o model across Spatial,
Temporal, and Spatio-Temporal reasoning types.

Metric Spatial Temporal Spatio-Temporal
Abstention Rate (%) 0.00 7.14 5.49
Coverage (%) 100.00 92.86 94.51
Mean Evaluation (%) 45.65 3.89 24.85
Evaluation Std Dev (%) 24.19 5.58 43.26

Table 17: Metrics for the GPT-4 model across Spatial,
Temporal, and Spatio-Temporal reasoning types.

Metric Spatial Temporal Spatio-Temporal
Abstention Rate (%) 0.00 0.00 0.00
Coverage (%) 100.00 100.00 100.00
Mean Evaluation (%) 20.29 5.72 37.12
Evaluation Std Dev (%) 24.53 5.29 48.36

Table 18: Metrics for the GPT-3.5 model across Spatial,
Temporal, and Spatio-Temporal reasoning types.

Metric Spatial Temporal Spatio-Temporal
Abstention Rate (%) 0.00 0.00 4.92
Coverage (%) 100.00 100.00 95.08
Mean Evaluation (%) 43.82 2.93 14.34
Evaluation Std Dev (%) 37.60 3.54 35.09

Table 19: Metrics for the Phi-3 model across Spatial,
Temporal, and Spatio-Temporal reasoning types.

Metric Spatial Temporal Spatio-Temporal
Abstention Rate (%) 0.00 0.00 0.00
Coverage (%) 100.00 100.00 100.00
Mean Evaluation (%) 31.16 11.92 30.11
Evaluation Std Dev (%) 31.57 10.44 45.92

Table 20: Metrics for the Meta-Llama-3 model across
Spatial, Temporal, and Spatio-Temporal reasoning
types.
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