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Abstract

Finding correspondences between semantically similar
points across images and object instances is one of the ev-
erlasting challenges in computer vision. While large pre-
trained vision models have recently been demonstrated as
effective priors for semantic matching, they still suffer from
ambiguities for symmetric objects or repeated object parts.
We propose improving semantic correspondence estimation
through 3D-aware pseudo-labeling. Specifically, we train
an adapter to refine off-the-shelf features using pseudo-
labels obtained via 3D-aware chaining, filtering wrong la-
bels through relaxed cyclic consistency, and 3D spherical
prototype mapping constraints. While reducing the need
for dataset-specific annotations compared to prior work,
we establish a new state-of-the-art on SPair-71k, achiev-
ing an absolute gain of over 4% and of over 7% compared
to methods with similar supervision requirements. The gen-
erality of our proposed approach simplifies the extension of
training to other data sources, which we demonstrate in our
experiments.

1. Introduction

Finding correspondences between images remains a funda-
mental task in computer vision, having various applications
in tracking [8, 10, 20], mapping and localization [24, 37],
affordance understanding [25], pose estimation [58], analy-
sis of characteristic object parts [16, 50], image and video
generation or editing [12, 39, 53], 3D representation learn-
ing [31, 46, 56], or style transfer [23]. One remaining chal-
lenge in the correspondence estimation field is the task of
finding matches across different instances of similar ob-
jects, i.e., finding semantic correspondences. This is a
highly semantic task with a certain amount of ambiguity,
especially for man-made objects.

Recently, foundation model features have demonstrated
surprisingly high zero-shot performance for this task [49,
62, 63]. However, these features still have various weak-
nesses for finding correspondences, such as ambiguities for

Figure 1. Our method, DIY-SC, is able to find semantic corre-
spondences even for extreme appearance and shape changes. All
matches are computed from the keypoints in the top-left image.

similar object parts [35] or symmetric objects [63]. In
addition, supervised methods [63] indicate that there are
more effective strategies to combine foundational features
for solving semantic correspondence than simple concate-
nation [62] or weighted averaging [35]. Recent works
[33, 59, 63] train models in a supervised manner using man-
ual keypoint annotations and achieve strong performance
when evaluated on the same dataset. However, as the re-
quired manual annotations are scarce and difficult to obtain,
this strategy is not scalable to larger, more diverse datasets.
It thus remains an open challenge to determine the best way
to extract and enhance knowledge encoded in foundation
models for finding semantic correspondences without rely-
ing on labor-intensive keypoint supervision.

Recent works reduce the necessary level of supervision
for learning semantic correspondences by regularizing with
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3D information [35] or injecting information about label

definitions [9, 63]. However, they either require careful tun-

ing of weighting factors [35] or rely on access to dataset-

specific labeling conventions [63].

We address both limitations in our work by learning
features that significantly outperform the previous SOTA
without requiring manual keypoint label definitions: Our
work demonstrates that training with self-generated labels,
i.e., pseudo-labels, where label quality is improved through
weak 3D-aware supervision, is surprisingly effective for
improving the semantic correspondence performance, also
generalizing to heavy appearance changes (Fig. 1). To
achieve this, we train a lightweight adapter supervised by
the pseudo-labels, which effectively refines the foundation
model’s features, as shown in Fig. 2. Specifically, we pur-
sue a zero-shot approach [62] for generating pseudo-labels
for image pairs exhibiting moderate viewpoint variation, a
strategy that has been demonstrated to be effective in such
contexts but fails for larger viewpoint variations [63]. We
compose these labels over multiple image pairs to acquire
higher label quality for harder correspondence pairs, i.e.,
with larger viewpoint variance. We then employ a spheri-
cal prototype as a weak geometric prior [35] to reject wrong
matches, which addresses the inherent challenge of match-
ability and reduces feature ambiguity.

In contrast to previous weakly supervised methods [9,
63], our approach does not rely on dataset-specific key-
point definitions, reducing the barriers to applying it to other
datasets. To demonstrate this, we also train a model on the
recent ImageNet-3D dataset [34]. Pre-training on this larger
dataset notably also improves the performance on SPair-
71k [36], demonstrating the effectiveness of our more gen-
eralizable approach.

To summarize our contributions:

* We show that pseudo-labeling is effective for learning
better semantic correspondence features, and we demon-
strate that the quality of pseudo-labels can be improved
through 3D-aware chaining, relaxed cyclic-consistency
constraints, and the integration of a weak geometric prior.

* We show that our strategy is scalable to a larger dataset,
further improving the model’s performance.

* Finally, we set a new SOTA on SPair-71k with weak su-
pervision, outperforming the previous best model by 4.5
absolute points.

2. Related Work

Semantic correspondence. Semantic matching, i.e., find-
ing correspondences between different instances of the
same object class, is more challenging than geometric
matching due to potential variations in appearance and
shape. The scarcity and ambiguity of manually annotated
data pose an extra challenge to learning-based methods for
this task [51, 65].
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Figure 2. Self-training using pseudo-labels. Using foundational
features, we generate pseudo-labels, which are subsequently fil-
tered and used as supervision signals to train a light-weight adapter
that refines the features for semantic matching.

While early works relied on hand-crafted descriptors [30,
32], deep learning enabled learning better-suited feature ex-
tractors [22, 38, 44, 60] and direct semantic correspondence
detection networks [14, 23, 43]. Due to the limited ground
truth data, techniques emerged that rely on weak supervi-
sion [6, 26, 52, 64], leverage warp supervision and cycle
consistency losses [51, 52, 66], or rely on increasing label
supervision with pseudo-labels [18, 21, 28].

With the advent of so-called foundation models, the se-
mantic matching literature has come full circle: Recent
studies demonstrated that features obtained from such mod-
els can be utilized for detecting semantic correspondences
in a zero-shot manner [1, 2, 7, 15,49, 62]. More specifically,
DINO features [5, 40] have been shown to exhibit strong
coarse semantic awareness useful for handling larger, cross-
instance variations [2, 9, 48, 59, 62, 63], while features from
diffusion models [45, 47] can complement them, resulting
in better performance [9, 15, 29, 35, 49, 59, 62, 63].

While a simple nearest-neighbor search in feature space
proves to be a powerful zero-shot method for correspon-
dence estimation, prior work also uncovered systematic
problems of this approach, e.g., in the disambiguation of
symmetric object parts [29, 33, 35, 46, 55, 63]. Therefore,
several works have proposed appending adapter modules
that are fine-tuned using supervision with ground-truth cor-
respondences [59, 63]. While reducing the labeling require-
ments, methods that build a joint atlas for objects in multi-
ple images usually require larger quantities of input images
and perform test-time optimization [11, 39]. Zhang et al.
[63] use keypoint-specific information to disambiguate left-
right symmetries at test time. While their strategy is sim-
ple, not all symmetries can be solved by image transfor-
mations, e.g., flipping, and the required keypoint-specific
information is generally not available. Fundel et al. [9]



proposed fine-tuning distilled foundational features for geo-
metric matching using 3D ground truth data. This approach
is, however, inherently limited to the same object instance,
resulting in suboptimal results for cross-instance matching.
Mariotti et al. [35] proposed learning a map from features
to the surface of a sphere using 3D pose information as a
weak supervision signal. While this method successfully
resolves most symmetries for simple objects, such as cars,
a spherical prior does not accurately capture objects with
more complex topologies.

Our work also aims to improve the performance of se-
mantic matching by refining foundational features. In con-
trast to Zhang et al. [63], we do not require dataset-specific
keypoint definitions since our work only relies on weak su-
pervision that is available at scale. Similar to Mariotti et al.
[35], we leverage 3D information to reduce ambiguities.
However, our work does not suffer from performance drops
for objects with more complex topology and thus does not
require tuning of weighting factors

Pseudo-labeling. Lee et al. [27] proposed pseudo-
labeling, also referred to as self-training, as a technique for
semi-supervised training of neural networks, where a small
initial set of labels is propagated to a larger set of unlabeled
instances. Various methods have been developed based on
this concept, demonstrating the generality and scalability of
this approach [3-5, 13, 20, 57], sometimes in conjunction
with knowledge distillation from other pre-trained models.
Previous works have expanded manual keypoint annota-
tions and demonstrated improved semantic correspondence
performance [18, 21, 28]. In our work, we propose to ex-
tract pseudo-labels using off-the-shelf foundational features
(at training time), which we use to fine-tune a light-weight
adapter for the task of semantic correspondence estimation.

3. Method

Foundational features show strong semantic awareness for
zero-shot matching across instances. However, while the
high feature similarity of similar object parts is reasonable
from a semantic perspective, distinguishing them is crucial
for accurate semantic correspondences. The performance
gap between supervised and unsupervised semantic match-
ing methods [63] shows that a learned combination and re-
finement of features outperforms a simple concatenation or
averaging of multiple foundational features. As we aim to
supervise a refinement stage without relying on human an-
notations, we draw on the effectiveness of pseudo-labeling
for other tasks [4, 19, 20] and hypothesize its potential for
improving features for semantic correspondence.

In this section, we first formalize the semantic corre-
spondence task (Sec. 3.1). Then, we introduce our two-
stage method: First, pseudo-labels are generated via a zero-
shot matching strategy and subsequently filtered (Sec. 3.2).
These pseudo-labels are then used to supervise the training

of a light-weight adapter f,, (Sec. 3.3). Finally, we detail
how our method can be scaled to a larger dataset in Sec. 3.4.

3.1. Problem Definition

The problem of finding semantic correspondences is de-
fined as follows: Given a source image I°, a target image
I*, and a query point p{ € R? on the object in the source
image, the task is to find the target point p! € R? on the
target image that localizes the object part that semantically
corresponds to the queried object part. One strategy to solve
this task is to find the nearest neighbor in feature space via
the cosine similarity sim(-) of the feature maps F* and F":

pi = NN*7!(p}) = arg max sim (F*(p7), F*(4))- (D)
q; :

However, in contrast to zero-shot strategies that solely ap-
ply pre-trained feature extractors [62], we aim to improve
the features such that the refined features are better suited
for finding semantic correspondences. Since the features
JFPINO 140] and FSP [45] generalize well due to their large
training corpus, we learn a light-weight adapter 7 = f; (f )
on top of the concatenated features F= [J—' DINO  r SD], as
proposed by Zhang et al. [63].

3.2. Generation of High-Quality Pseudo-Labels

Given a pair of images (I%,I') with their feature maps
(F%,F%) and the instance masks (M?*, M?), the goal is
to find matches (pf,pt) that can be used as pseudo-labels
for supervising the training of the adapter f,(-). A naive
strategy would apply the nearest-neighbor (NN) computa-
tion (Eq. (1)) of all points on the mask:

pi = NN*7*(p}) )

with p§ € M?* and pi € M. However, due to view-
point variations, topological variations, or occlusions, not
all points on the mask M?* can be mapped to the target im-
age. This challenge is commonly referred to as the match-
ability or visibility problem [51]. We show that training an
adapter with these naively obtained pseudo-labels already
improves results (see 5). However, as self-training heavily
relies on the quality of the pseudo-labels, we aim to improve
their quality by rejecting wrong matches. Pseudo-labels
should be removed if no matching is possible (matchabil-
ity) or if points are matched wrongly because of erroneous
zero-shot correspondences, e.g., because of feature ambigu-
ity of object parts with a similar appearance.

Our work addresses the challenge of removing wrong la-
bels in the following ways: (1) We perform 3D-aware sam-
pling of image pairs along a chain (I*,I*) where image
pairs have similar viewpoints and more accurate pseudo-
labels are expected. (2) We enforce cyclic consistency for
the pseudo-labels along the chain to reduce the number of
spurious matches. (3) We reject wrong pseudo-labels by
integrating a canonicalized spherical 3D prior.
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Figure 3. Method overview. We use azimuth information to sample image pairs for which higher zero-shot performance can be expected
(1). We then chain the pairwise predictions to get correspondences for larger viewpoint changes, where we reject matches that do not fulfill
a relaxed cyclic consistency constraint (2). We further filter pseudo-labels by rejecting pairs that can not be mapped to a similar location
on a 3D spherical prototype (3). Finally, we use the resulting pseudo-labels to train an adapter f, in a supervised manner (4).

Av | [0°,45°) (0°,90°) (45°,135°) (90°,180°) (135°,225°)
PCK@0.1 | 759  68.1 572 54.0 52.6

Table 1. Zero-shot performance (SD+DINO) degrades for
larger viewpoint changes. The SPair-71k dataset has 8 azimuth
bins with an equidistant size of 45°. We compute the ratio of cor-
rectly corresponded keypoints (PCK@0.1 per-img) for increasing
viewpoint changes averaged over all categories.

(1) 3D-aware image pair sampling. The zero-shot ap-
proach, which utilizes features from Stable Diffusion [45]
and DINOv2 [40], performs well for objects that do not un-
dergo significant changes in their topology and appearance,
and are presented from a similar viewpoint. However, the
performance clearly degrades for larger viewpoint changes,
as studied by Zhang et al. [63]. We study the sensitivity of
the semantic correspondence performance for varying view-
point differences using the azimuth angle annotations of the
object-centric semantic correspondence dataset SPair-71k
[36] in Tab. 1. We find that the zero-shot performance de-
creases for larger viewpoint changes, i.e., if the viewpoint’s
azimuth angle ¢ varies by more than 45°.

This observation motivates the generation of pseudo-
labels for image pairs with a similar viewpoint. However,
more challenging image pairs where the viewpoint heavily
deviates are also required to learn a strong point matcher.

To account for this, we propose propagating matches
through a K-tuple (11, ..., Ix), where each pair (I, Ij+1)
represents an image pair of the same category with a small
but non-zero viewpoint variation (Fig. 3, (1)), such that
deire (O, Pr+1) < 90° with the spherical distance dgir(+),
which is equivalent to one azimuth bin in the SPair-71K

dataset. The matches KF = {(pF,pF™!) : pF € PF C

MPE phtL e phtl C AME+1Y are propagated via recur-
sive application of the NN operator for the subsequent pairs:

Pk+1 — NNk—)k-f—l(Pk) (3)
— NNk:—)k-Fl(NNk:—l—)k(pkfl)) — ...
P =M" 4)

Through this strategy, each considered image pair is ex-
pected to have a higher pseudo-label quality than the naive
strategy, where pseudo-labels are generated for tuples with
potentially very different poses (I, I,).

(2) Cyclic consistency of propagated pseudo-labels.
While the aforementioned strategy can improve the qual-
ity of matches, it does not necessarily prevent spurious
matches that can occur due to feature ambiguities, e.g., be-
cause of similar appearance. In order to reduce such spuri-
ous matches or matching of incompatible regions, we apply
a cyclic consistency constraint for the matched points, as
proposed by Aberman et al. [1]. A match (p{, pl) is cyclic
consistent if the following holds:

NN*7(p;) = p;

7

and NN'7%(p!) = pg, 5)

with the nearest neighbor operator NN in feature space, as
introduced in Eq. (1).

We observe that this cyclic consistency constraint rejects
many keypoint tuples (p{, pt), as the zero-shot matching ap-
proach has difficulties mapping back to the exact location
of p?. For this reason, we relax the cyclic consistency con-
straint, where we do not enforce exact consistency but allow



a small deviation from the source point:

Pﬁ = NNS_}t(pf)v p; = NNt_)S(pg)’ (6)
and (|57 — pilly < Tmax

with the rejection radius 7,4, see Fig. 3 (2). We iter-
atively apply this relaxed cyclic consistency constraint to
all matches KC¥, which filters out incompatible pairs and
keeps matches capturing concepts that could be propagated
through the set of K images We choose K = 4 in our ex-
periments since this considers the full range of viewpoint
variations of 180° = 4 - 45°, given that the azimuth annota-
tions for SPair-71k are only coarse bins of 45°.

(3) Rejection of wrong pseudo-labels with a canonical-
ized spherical 3D prior. Although our chaining strategy
removes spurious matches, wrong matches might still oc-
cur, in particular for cases of left-/right-ambiguity and re-
peated object parts, as, e.g., illustrated in Fig. 3, where sim-
ple nearest-neighbor search on foundational features fails.

Therefore, we aim to specifically remove such wrong
matches by leveraging a canonicalized object-centric spher-
ical 3D prior that captures objects in an aligned coordinate
system. Mariotti et al. [35] propose a spherical mapper that
maps DINOV?2 feature patches x?™O = FPINO(p,) to points
1; € 82 on a canonicalized sphere ¥; = f;(xP™N9) by us-
ing only coarse view point information and instance masks
during training. The key advantage of this strategy is that
it naturally assigns object parts to regions on a spherical
prototype across different instances and categories, which
allows rejecting wrong samples in case they are in different
areas of the sphere, e.g., when considering visually similar
wheels on the left or the right side of a car.

Mariotti et al. [35] demonstrate that this approach signif-
icantly improves the performance on SPair-71k when com-
bining their spherical features with the concatenated fea-
tures of SD and DINO via a weighted average. However,
as this approach modulates the original feature similarity,
the performance deteriorates for categories that are not well
represented by a sphere, e.g., non-rigid categories. In con-
trast, our approach uses the spherical mapper only for re-
moving potentially wrong pseudo-labels. That filter should
have a high true positive rate while still keeping a suffi-
ciently high true negative rate: Supervising with few cor-
rect matches is more desirable than supervising with many
matches that are partially systematically wrong, as we show
in our experiments. For this purpose, we compute the spher-
ical points P* and P! for all matches:

U= fo(FPRO(P%)) and W' = f(FPRO(PY). (7)
Then, we reject all matches (p3, p!) where

sim (5, 97) < O

with the threshold 8y, < 0.15 - 7 that is selected to allow
disambiguating left and right and potentially repeated ob-
ject parts, such as the wheels of a car. While this thresh-
olding may also remove correct matches for classes that are
not well-represented by a rigid object prototype, we observe
that the number of matches is still sufficiently large to serve
as a dense supervision signal. Most importantly, only re-
moving pseudo-labels does not modulate the original zero-
shot matches. This is in contrast to regularizing with spher-
ical mapper features, which deteriorates the localization ac-
curacy of the original foundational features [35].

3.3. Supervised Training with Pseudo-Labels

After having generated the pseudo-labels, we train the
adapter f,(-) using supervised training with the following
two losses: First, we train a CLIP [41]-inspired sparse con-
trastive loss as proposed by Luo et al. [33]:

Lsparse = CL(F*(P*), F1(P)). (®)

This loss maximizes feature similarity for corresponding
points while minimizing similarity to non-matching points.
Second, we also supervise with the dense loss

ﬁdense = Z

pt = WindowSoftArgmax(F* (p) T,

pt — (pl + ith
P — (0 +e), wi o)

with a window soft-argmax [23, 63] and Gaussian noise
samples e. The dense loss is particularly important for us
since it propagates the gradient also to areas in the fea-
ture map without labels, i.e., unmatched areas. This learned
combination and refinement of foundational features is a de-
cisive improvement over previously proposed simple con-
catenation [62, 63] or weighted averaging of feature simi-
larities of a weak geometric regularizer [35].

3.4. Scaling to a Larger Dataset

The comparatively small size of the SPair-71k dataset, with
only 18 categories and 1,800 images in total, motivates
scaling to a larger dataset with more diverse classes and a
greater number of images. The spherical mapper [35] is po-
tentially applicable to larger object-centric datasets with 3D
annotations, but the simple geometric prior limits the im-
provement when applied via weighted average, as proposed
by Mariotti et al. [35]. The geometric-aware flipping used
by the current SOTA methods [9, 63] is not applicable to
other datasets since it requires access to the keypoint label
definitions, only presented in correspondence datasets.

In contrast, our work relies solely on categories, masks,
and 3D object poses as a weak supervision signal, which
are available on a larger scale. Therefore, our method can
be scaled to larger datasets, leading to generalizable seman-
tic correspondence matching by training on objects that are
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ASIC [11] | 579 252 68.1 247 354 284 309 548 21.6 450 472 399 262 488 145 245 490 246 | 369
DINOv2 [40] | 727 62.0 852 41.3 404 523 515 71.1 362 67.1 646 676 61.0 682 30.7 620 543 242|556
DIFT [49] | 63.5 545 80.8 345 462 527 483 777 39.0 76.0 549 613 533 460 57.8 57.1 71.1 634 | 57.7
SD + DINOv2 [62] | 73.0 64.1 864 40.7 529 550 538 78.6 455 773 647 697 633 692 584 67.6 662 535|640
DistilIDIFT* (U.S.) [9] 746 604 88.7 425 535 550 546 808 427 786 720 714 622 70.7 53.1 686 652 616 | 65.1
SphMapT [35] | 753 63.8 87.7 482 509 749 71.1 817 473 81.6 669 73.1 654 61.8 555 702 750 585|678
TLR [63] | 78.0 664 90.2 445 60.1 666 608 827 532 823 695 751 66.1 71.7 589 716 838 555 | 69.6
DistillDIFT* (W.S.) [9] | 782 63.8 90.1 450 546 680 63.7 832 493 826 745 738 635 720 562 710 862 66.5 | 70.6
Ours 772 691 90.8 542 579 837 775 865 53.1 867 73.1 785 725 740 735 760 772 69.5 | 744
SphMap—S2 (IN3D) 743 609 828 494 504 762 733 717 479 73.0 534 689 694 509 348 544 625 57.1 | 619
Qurs (IN3D) 759 687 90.1 552 56.1 829 765 827 554 836 712 752 713 643 562 698 786 612 | 712
Ours (IN3D — SPair) 776 703 910 536 587 848 803 861 5S4l 81 740 792 720 754 719 764 714 719 | 751

Table 2. Per-category PCK@0.1 scores (per-keypoint) on SPair-71k. Best and second best are highlighted. When pre-training on
ImageNet3D [34], results are improved. TSphMap avg is slightly higher than in the original paper where they used macro averaging. We

trained using their code. *DistillDIFT was evaluated using their trained checkpoints. SphMap and DIY-SC require 3D pose annotations.

not present in the SPair-71k dataset. We demonstrate this
by training our whole pipeline on the recently proposed
ImageNet-3D [34] dataset, which has around 86k images.
We train the spherical mapper similarly to Mariotti et al.
[35], where we use masks acquired from SAM [42]. As
more accurate 3D pose labels are present in the ImageNet-
3D dataset, we do not supervise the viewpoint direction
only using the bin of the azimuth angle, as proposed by
Mariotti et al. [35] for the SPair-71k dataset. Instead, we
extend their formulation by computing the correlation coef-
ficient on the two-sphere S? with the pose annotation:

L2 =3 |lor e — p(fs(D) - u(fs@))]7,

LU

(10)

with ¢r € S? and ¢y € S? computed from the 3D pose an-
notations of the objects in the two images. This not only su-
pervises the azimuth viewpoint information (yaw) but also
the pitch of an object and, therefore, improves canonicaliza-
tion. We provide more details in the supplementary.

This strategy enables us to scale our proposed method to
more classes and images from a significantly larger dataset,
ultimately leading to improved generalization.

4. Experiments

Details on pseudo-label generation. Using our sampling
strategy, we generate 30k pseudo-labeled image pairs per
category from SPair-71k. We use a maximum of 50 ran-
domly sampled keypoints for supervised training for each
image pair. Following Zhang et al. [62], we resize the in-
put images to 9602 and 8402 to extract the SD and DINOv2
features, resulting in feature maps of resolution 60 x 60.
We choose the rejection radius 7y, for the relaxed bicyclic
consistency constraint such that a deviation of one feature
patch is allowed.

Details on adapter training. Similar to Zhang et al. [63],
we use four bottleneck layers with 5SM parameters for the
adapter. The model is trained using the AdamW optimizer

SPair-71k AP-10k (PCK@0.1)
Models 01 005 001 LS CS. CEFE
SD + DINOv2 [62] 599 447 79 629 593 483
DistilIDIFT* (U.S.) [9] 60.8 454 8.0 - - -
SphMap' [35] 644 482 84 654 63.1 510
TLR [63] 654 49.1 99 687 64.6 527
DistilIDIFT* (W.S.) [9] 653 49.8 8.9 = = =
Ours 71.6 538 101 70.6 69.1 57.8
Ours (DINOvV2) 70.6 51.1 9.0 712 69.8 583
TLR (sup) [63] 829 726 21.6 70.1 683 584

Table 3. Results for different PCK levels (per-image) on the
SPair-71k and the AP-10k dataset. Reproduced supervised re-
sults for the model [63] solely trained on SPair-71k. Results for
AP-10K are intra-species (I.S.), cross-species (C.S.), and cross-
family (C.F.), as introduced in [63]. t and * as in Tab. 2. DINOv2:
Only application and refinement of DINOv2 features.

with a weight decay rate 0.001, a learning rate of 5 - 1073,
and the one-cycle scheduler for 200k steps.

Datasets. Recent works [35, 49, 62, 63] find SPair-71k
[36] to be the most challenging and informative semantic
matching benchmark due to its larger size and more chal-
lenging matches, containing images from 18 different cat-
egories with 600 to 900 image pairs per category. We also
evaluate the methods on the recently proposed AP-10k [61]
semantic correspondence dataset [63] without training on it.

Metrics. We follow the standard settings [11, 17, 35, 36,
59, 63] and evaluate the semantic correspondence perfor-
mance via the Percentage of Correct Keypoints (PCK). It
is defined by computing the ratio of correctly predicted
matched keypoints that lie within a radius of R = o -
max(h,w) around the correct ground truth match, where
we report the bbox variant with i and w referring to the
height and width of the bounding box of the considered ob-
ject, respectively. Since various prior works report it dif-
ferently, we report both the PCK when averaged over key-
points (per kpt) and when averaged over images (per img).
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Figure 4. Qualitative results for challenging examples. We present four challenging examples of the SPair-71K test dataset where current
SOTA models mostly fail. Correct matches that lie within the PCKppox @0.1 radius of the ground-truth label are color-coded in green, while

incorrectly matched keypoints are depicted in red.

Prior work. We compare our method with recent zero-
shot and weakly-supervised strategies. DIFT [49],
DINOv2 [40], and SD + DINOv2 [62] extract features from
foundation models and perform nearest-neighbor matching
in feature space. DistilIDIFT (U.S.) [9] is further fine-tuned
for correspondence detection on 3D data. ASIC [11] uses
DINO features to establish coarse correspondences and re-
fines them at test-time. Spherical mapper (SphMap) [35]
uses class labels, object masks, and 3D pose information
as weak supervision signals during training, similar to us.
We note, however, that we do not use any of this informa-
tion at test time. Telling Left from Right (TLR) [63] and
DistilIDIFT (W.S.) [9] make use of the keypoint label def-
initions to flip images at test time. We compare to zero-
shot approaches and the spherical mapper [35] trained on
ImageNet-3D with our extended 2-sphere configuration.

4.1. Experimental Results

Quantitative results on SPair-71k. The category-
specific results in Tab. 2 show that our model achieves
strong gains across nearly all categories, setting a new
SOTA on SPair-71k and demonstrating the effectiveness of
our pseudo-labeling strategy. Improvements are especially
large for categories that are symmetric or contain repeated
object parts, e.g., +15.7% for bus or +14.0% for car.
While Mariotti et al. [35] already improved performance
for such cases, our approach outperforms theirs by ef-
fectively combining SD and DINOv2 features through
pseudo-label supervision. Unlike their method, we retain
original features and simply reject matches that strongly
deviate from a spherical prototype.

All in all, we clearly outperform all previous methods
on all PCK-levels (Tab. 2 and Tab. 3), including methods
that use the same weak supervision as we do [35] and meth-
ods that include dataset-specific information about the def-
inition of the keypoint labels [9, 63]. Surprisingly, train-
ing an adapter only on top of DINOvV2 features with the
same pseudo-labels results in competitive semantic corre-
spondence performance compared to the adapter on top

SPair-71k AP-10k (PCK@0.1)
Models 01 005 001 LS CS. CFE
Ours (SPair) 716 538 101 706 69.1 578
SphMap-S? (IN3D) 585 440 7.7 566 532 389
Ours (IN3D) 680 S51.1 98 678 658 533

Ours (IN3D — SPair) 722 546 106 711 694 58.1

Table 4. Effect of pre-training on ImageNet-3D (PCK per img).
SphMap-S? represents the weighted application of our 2-sphere-
based spherical mapper, evaluated following Mariotti et al. [35].

of SD+DINOV?2 features, even outperforming this strategy
for the animal AP-10K dataset. This demonstrates that
DINOV?2 features achieve competitive semantic correspon-
dence performance if refined effectively.

Evaluation on AP-10k. Additionally, we also evaluate on
the AP-10k dataset and report the results in Tab. 3. We
find that, despite not being trained on this dataset and only
having a few animal categories in the SPair-71k training
dataset, we outperform the current SOTA, the geometry-
aware approach by Zhang et al. [63], showcasing the gen-
eralization capabilities of our method. We additionally
compare to a fully-supervised model [63] trained on SPair-
71k. We observe a severe performance drop of this model
(—17.4% PCK@O.1 for I.S.) compared to fully-supervised
training on AP-10k [63, Tab.3]. On the other hand, our ap-
proach does not suffer such a performance drop and, thus,
achieves comparable results to a model trained with manual
annotations. We hypothesize that this is due to the denser
and more diverse pseudo-labels compared to the fixed set
of manually annotated keypoints that are being overfitted in
supervised training.

Scaling to a larger dataset. Our weakly-supervised train-
ing strategy allows scaling the training to larger object-
centric datasets that do not include keypoint annotations.
While pre-training improves the model performance on
SPair-71k and AP-10k (Tab. 3 and Tab. 4), we surprisingly
even outperform the previous SOTA on SPair-71k despite
not having trained on the SPair-71k dataset, showcasing
strong generalization capabilities. This is in contrast to the



naive weighted application of the ImageNet-3D spherical
mapper, where the results significantly deteriorate, poten-
tially explained by the fact that this model does not gener-
alize well to the unseen categories in SPair-71k. We also
study the impact of automatically acquired 3D pose labels
in the supplementary.

Qualitative results. We present qualitative results in
Fig. 4 comparing our model to current SOTA models on
four challenging examples of the SPair-71k test dataset.
While the spherical mapper effectively addresses cases of
symmetries and repeated object parts for rigid objects, it
comes with the inherent challenge of finding the correct
weighting factor for interpolating between foundational and
processed spherical feature similarities, where the optimal
weight depends on the considered category and sample. For
example, while the weighting is too low in (a), the weight-
ing is too large in (d) since the ill-defined background fea-
tures of SphMap result in a match with an object in the
background. Additionally, its effectiveness is limited to cat-
egories that are well represented by a spherical prototype,
e.g., a potential reason for the motorbike failure case in (c).
TLR and DistilIDIFT both suffer from the fact that sim-
ply flipping an object does not resolve all ambiguities, such
as for categories with repeated object parts (a,b), rotated
objects (b), or cases with left-/right ambiguities (d). Dis-
tillDIFT is less prone to incorrect matches caused by back-
ground clutter (c), whereas TLR and SphMap suffer from
the fact that they rely on the potentially noisy nearest neigh-
bor of SD and DINOV2 features. However, DistillDIFT still
fails to disambiguate the human and the horse in (d), and it
suffers from left-right ambiguity if the flipping is not effec-
tive (d). Furthermore, as visible in (b), DistillDIFT’s perfor-
mance deteriorates for pairs with heavy appearance change,
which may be attributed to the multi-view fine-tuning on 3D
instances, which does not generalize well to cross-instance
correspondences. In contrast, our method identifies high-
quality semantic correspondences for these challenging ex-
amples, as it successfully resolves feature ambiguities and
does not rely on the weighting of two similarity terms.

4.2. Ablations

We thoroughly ablate all components of our method and
present the main results in Tab. 5. First, supervision with
naively generated pseudo-labels already outperforms the
zero-shot approach. This is due to the fact that learning the
light-weight adapter naturally stabilizes feature maps for se-
mantic correspondence estimation by merging the comple-
mentary information captured by SD and DINOv? features.
Constraining pseudo-labels to the mask of an object further
enhances the performance. We also observe that the relaxed
cyclic consistency constraint outperforms both unfiltered
pseudo-labels and exact cyclic consistency filtering. The
performance further increases when employing our chain-

pseudo| cyc. cons. | relaxed c.c. | chaining| sph. rej.| PCK@0.1

65.0

\ 67.2

v 66.9
v o 68.4

v v 70.0

\ v 72.9

v v v 74.4

SNENENENENEN

Table 5. Ablations on SPair-71k. All introduced components
bring a significant improvement. The baseline is evaluated using
the SD+DINO zero-shot approach with window soft argmax.

ing strategy that improves the pseudo-label quality because
(1) NN matching is only performed for easier image pairs,
i.e., a similar object pose, and (2) the bicyclic consistency
constraint reduces spurious matches. Adding the sphere-
based rejection strategy substantially improves all model
instantiations by reducing wrong matches for objects with
symmetries and repeated object parts that make up a sig-
nificant ratio of the SPair-71k dataset. This rejection also
clearly enhances the naive pseudo-labeling strategy, com-
bining all modules to achieve the best performance.

Failure Cases. While our method outperforms previous
methods, it still fails for some challenging cases of SPair-
71K, such as images containing objects that are upside-
down. We show visual examples and discuss failure cases
of our method in the supplementary.

5. Conclusion

We presented DIY-SC, a method for finding semantic cor-
respondences with weak supervision. We demonstrated the
effectiveness of training with pseudo-labels for semantic
correspondence: By generating labels using a zero-shot ap-
proach with foundational features and carefully designing
methods for rejecting wrong matches, we provide a strong
supervision signal that can be used to train an adapter that
refines foundational features. Our experiments showed im-
provements of +4.5% and +6.8% over the previous SOTA
for PCK@0.1 on SPair-71k, measured per-keypoint and
per-image, respectively. Our ablation studies have shown
that the proposed chaining and filtering steps, as a means of
enhancing the quality of pseudo-labels, improve the corre-
sponding performance significantly.

Limitations and future work. Although our weak super-
vision strategy scales to larger datasets, reducing the super-
vision requirements is of importance to further scale the ap-
proach. See the supplementary for a preliminary feasibil-
ity analysis. Furthermore, while the match rejection with
the spherical mapper shows significant improvements, it is
less effective for objects that are not represented well by
a sphere, which motivates extending this strategy. We hope
that the proposed improved correspondence features can en-
hance tasks that rely on semantic features.



Acknowledgments

Adam Kortylewski acknowledges support via his Emmy
Noether Research Group funded by the German Research
Foundation (DFG) under Grant No. 468670075. Thomas
Wimmer is supported through the Max Planck ETH Center
for Learning Systems.

References

(1]

(2]

(3]

[4]

(3]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

(14]

Kfir Aberman, Jing Liao, Mingyi Shi, Dani Lischinski, Bao-
quan Chen, and Daniel Cohen-Or. Neural best-buddies:
Sparse cross-domain correspondence. 70G, 2018. 2, 4

Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel.
Deep ViT features as dense visual descriptors. ECCVW What
is Motion For?,2022. 2

YM Asano, C Rupprecht, and A Vedaldi. Self-labelling
via simultaneous clustering and representation learning. In
ICLR, 2020. 3

Souhaib Attaiki and Maks Ovsjanikov. NCP: Neural corre-
spondence prior for effective unsupervised shape matching.
In NeurIPS, 2022. 3

Mathilde Caron, Hugo Touvron, Ishan Misra, Herve Jegou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV,2021. 2,3

Yun-Chun Chen, Yen-Yu Lin, Ming-Hsuan Yang, and Jia-
Bin Huang. Show, match and segment: Joint weakly
supervised learning of semantic matching and object co-
segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021. 2

Xinle Cheng, Congyue Deng, Adam W Harley, Yixin Zhu,
and Leonidas Guibas. Zero-shot image feature consensus
with deep functional maps. In ECCV, 2024. 2

Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Re-
casens, Lucas Smaira, Yusuf Aytar, Joao Carreira, Andrew
Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking
any point in a video. In NeurIPS, 2022. 1

Frank Fundel, Johannes Schusterbauer, Vincent Tao Hu, and
Bjorn Ommer. Distillation of diffusion features for semantic
correspondence. In WACV, 2025. 2, 5,6, 7, 1

Shenyuan Gao, Chunluan Zhou, Chao Ma, Xinggang Wang,
and Junsong Yuan. Aiatrack: Attention in attention for trans-
former visual tracking. In ECCV, 2022. 1

Kamal Gupta, Varun Jampani, Carlos Esteves, Abhinav Shri-
vastava, Ameesh Makadia, Noah Snavely, and Abhishek Kar.
ASIC: Aligning sparse in-the-wild image collections. In
ICCV,2023. 2,6,7

Yoav HaCohen, Eli Shechtman, Dan B. Goldman, and Dani
Lischinski. Non-rigid dense correspondence with applica-
tions for image enhancement. In SIGGRAPH, 2011. 1

Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah
Snavely, and William T. Freeman. Unsupervised semantic
segmentation by distilling feature correspondences. In /CLR,
2022. 3

Kai Han, Rafael S. Rezende, Bumsub Ham, Kwan-Yee K.
Wong, Minsu Cho, Cordelia Schmid, and Jean Ponce. SC-
Net: Learning semantic correspondence. In ICCV, 2017. 2

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

Eric Hedlin, Gopal Sharma, Shweta Mahajan, Hossam Isack,
Abhishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi.
Unsupervised semantic correspondence using stable diffu-
sion. In NeurIPS, 2023. 2

Lin Huang, Tomas Hodan, Lingni Ma, Linguang Zhang,
Luan Tran, Christopher Twigg, Po-Chen Wu, Junsong Yuan,
Cem Keskin, and Robert Wang. Neural correspondence field
for object pose estimation. In ECCV, 2022. 1

Shuaiyi Huang, Luyu Yang, Bo He, Songyang Zhang, Xum-
ing He, and Abhinav Shrivastava. Learning semantic corre-
spondence with sparse annotations. In ECCV, 2022. 6
Yiwen Huang, Yixuan Sun, Chenghang Lai, Qing Xu, Xi-
aomei Wang, Xuli Shen, and Weifeng Ge. Weakly super-
vised learning of semantic correspondence through cascaded
online correspondence refinement. In /ICCV, 2023. 2, 3
Patrick Kage, Jay C Rothenberger, Pavlos Andreadis, and
Dimitrios I Diochnos. A review of pseudo-labeling for com-
puter vision. arXiv preprint arXiv:2408.07221,2024. 3
Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-

tracker3: Simpler and better point tracking by pseudo-
labelling real videos. arXiv preprint arXiv:2410.11831,
2024. 1,3

Jiwon Kim, Kwangrok Ryoo, Junyoung Seo, Gyuseong
Lee, Dachwan Kim, Hansang Cho, and Seungryong Kim.
Semi-supervised learning of semantic correspondence with
pseudo-labels. In CVPR, 2022. 2, 3

Seungryong Kim, Dongbo Min, Stephen Lin, and
Kwanghoon Sohn. DCTM: Discrete-continuous transforma-
tion matching for semantic flow. In ICCV, 2017. 2
Seungryong Kim, Dongbo Min, Somi Jeong, Sunok Kim,
Sangryul Jeon, and Kwanghoon Sohn. Semantic attribute
matching networks. In CVPR, 2019. 1,2, 5

Filippos Kokkinos and Iasonas Kokkinos. To the point:
Correspondence-driven monocular 3d category reconstruc-
tion. In NeurIPS, 2021. 1

Zihang Lai, Senthil Purushwalkam, and Abhinav Gupta. The
functional correspondence problem. In ICCV, 2021. 1

Shiyi Lan, Zhiding Yu, Christopher Choy, Subhashree Rad-
hakrishnan, Guilin Liu, Yuke Zhu, Larry S. Davis, and An-
ima Anandkumar. DiscoBox: Weakly supervised instance
segmentation and semantic correspondence from box super-
vision. In ICCV, 2021. 2

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.
In learning, 2013. 3

Xin Li, Deng-Ping Fan, Fan Yang, Ao Luo, Hong Cheng, and
Zicheng Liu. Probabilistic model distillation for semantic
correspondence. In CVPR, 2021. 2, 3

Xinghui Li, Jingyi Lu, Kai Han, and Victor Adrian
Prisacariu. Sd4match: Learning to prompt stable diffusion
model for semantic matching. In CVPR, 2024. 2

Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense
correspondence across scenes and its applications. PAMI,
2010. 2

Haolin Liu, Xiaohang Zhan, Zizheng Yan, Zhongjin Luo,
Yuxin Wen, and Xiaoguang Han. Stable-SCore: A stable



(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

registration-based framework for 3d shape correspondence.
arXiv preprint arXiv:2503.21766, 2025. 1

David G. Lowe. Distinctive image features from scale-
invariant keypoints. 1JCV, 2004. 2

Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander Holyn-
ski, and Trevor Darrell. Diffusion hyperfeatures: Search-
ing through time and space for semantic correspondence. In
NeurlPS, 2023. 1,2, 5

Wufei Ma, Guofeng Zhang, Qihao Liu, Guanning Zeng,
Adam Kortylewski, Yaoyao Liu, and Alan Yuille. Ima-
genet3d: Towards general-purpose object-level 3d under-
standing. In NeurIPS, 2024. 2, 6, 1

Octave Mariotti, Oisin Mac Aodha, and Hakan Bilen. Im-
proving semantic correspondence with viewpoint-guided
spherical maps. In CVPR, 2024. 1,2,3,5,6,7

Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho.
Spair-71k: A large-scale benchmark for semantic correspon-
dence. arXiv preprint arXiv:1908.10543, 2019. 2,4, 6

Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos. ORB-
SLAM: A versatile and accurate monocular SLAM system.
T-RO, 2015. 1

David Novotny, Diane Larlus, and Andrea Vedaldi. An-
chorNet: A weakly supervised network to learn geometry-

sensitive features for semantic matching. In CVPR, 2017.
2

Dolev Ofri-Amar, Michal Geyer, Yoni Kasten, and Tali
Dekel. Neural congealing: Aligning images to a joint se-
mantic atlas. In CVPR, 2023. 1, 2

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby,
et al. Dinov2: Learning robust visual features without su-
pervision. TMLR, 2023. 2, 3,4, 6,7

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 5

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman
Rédle, Chloe Rolland, Laura Gustafson, et al. Sam 2:
Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. 6

Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. Convo-
lutional neural network architecture for geometric matching.
In CVPR, 2017. 2

Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. End-to-
end weakly-supervised semantic alignment. In CVPR, 2018.
2

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 2, 3, 4
Leonhard Sommer, Olaf Diinkel, Christian Theobalt, and
Adam Kortylewski. Common3d: Self-supervised learning of
3d morphable models for common objects in neural feature
space. In CVPR, 2025. 1,2

10

[47]

(48]

[49]

(50]

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

Nick Stracke, Stefan Andreas Baumann, Kolja Bauer, Frank
Fundel, and Bjorn Ommer. CleanDIFT: Diffusion features
without noise. arXiv preprint arXiv:2412.03439, 2024. 2
Saksham Suri, Matthew Walmer, Kamal Gupta, and Abhinav
Shrivastava. Lift: A surprisingly simple lightweight feature
transform for dense vit descriptors. In ECCV, 2024. 2
Luming Tang, Menglin Jia, Qiangian Wang, Cheng Perng
Phoo, and Bharath Hariharan. Emergent correspondence
from image diffusion. In NeurIPS, 2023. 1,2, 6,7

Anh Thai, Weiyao Wang, Hao Tang, Stefan Stojanov,
James M Rehg, and Matt Feiszli. 3x 2: 3d object part seg-
mentation by 2d semantic correspondences. In ECCV, 2024.
1

Prune Truong, Martin Danelljan, Fisher Yu, and Luc
Van Gool. Warp consistency for unsupervised learning of
dense correspondences. In ICCV, 2021. 2, 3

Prune Truong, Martin Danelljan, Fisher Yu, and Luc
Van Gool. Probabilistic warp consistency for weakly-
supervised semantic correspondences. In CVPR, 2022. 2
Jiangshan Wang, Yue Ma, Jiayi Guo, Yicheng Xiao, Gao
Huang, and Xiu Li. Cove: Unleashing the diffusion feature
correspondence for consistent video editing. In NeurIPS,
2025. 1

Zehan Wang, Ziang Zhang, Tianyu Pang, Chao Du, Heng-
shuang Zhao, and Zhou Zhao. Orient anything: Learning
robust object orientation estimation from rendering 3d mod-
els. arXiv:2412.18605, 2024. 1

Thomas Wimmer, Peter Wonka, and Maks Ovsjanikov. Back
to 3d: Few-shot 3d keypoint detection with back-projected
2d features. In CVPR, 2024. 2

Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng
Wang, Bowen Zhang, Dong Chen, Xin Tong, and Jiaolong
Yang. Structured 3d latents for scalable and versatile 3d gen-
eration. arXiv preprint arXiv:2412.01506, 2024. 1

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V.
Le. Self-training with noisy student improves ImageNet clas-
sification. In CVPR, 2020. 3

Yan Xu, Kwan-Yee Lin, Guofeng Zhang, Xiaogang Wang,
and Hongsheng Li. RNNPose: Recurrent 6-DoF object pose
refinement with robust correspondence field estimation and
pose optimization. In CVPR, 2022. 1

Fei Xue, Sven Elflein, Laura Leal-Taixé, and Qunjie Zhou.
MATCHA: Towards matching anything. arXiv preprint
arXiv:2501.14945,2025. 1,2, 6

Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal
Fua. LIFT: Learned invariant feature transform. In ECCV,
2016. 2

Hang Yu, Yufei Xu, Jing Zhang, Wei Zhao, Ziyu Guan, and
Dacheng Tao. AP-10k: A benchmark for animal pose esti-
mation in the wild. In NeurIPS, 2021. 6

Junyi Zhang, Charles Herrmann, Junhwa Hur, Luisa Pola-
nia Cabrera, Varun Jampani, Deqing Sun, and Ming-Hsuan
Yang. A tale of two features: Stable diffusion complements
dino for zero-shot semantic correspondence. In NeurIPS,
2023.1,2,3,5,6,7

Junyi Zhang, Charles Herrmann, Junhwa Hur, Eric Chen,
Varun Jampani, Deqing Sun, and Ming-Hsuan Yang. Telling



[64]

[65]

[66]

left from right: Identifying geometry-aware semantic corre-
spondence. In CVPR, 2024. 1,2,3,4,5,6,7

Kaifeng Zhang, Yang Fu, Shubhankar Borse, Hong Cai,
Fatih Porikli, and Xiaolong Wang. Self-supervised geomet-
ric correspondence for category-level 6d object pose estima-
tion in the wild. In ICLR, 2023. 2

Kaiyan Zhang, Xinghui Li, Jingyi Lu, and Kai Han. Se-
mantic correspondence: Unified benchmarking and a strong
baseline. arXiv preprint arXiv:2505.18060, 2025. 2
Tinghui Zhou, Philipp Krahenbuhl, Mathieu Aubry, Qixing
Huang, and Alexei A. Efros. Learning dense correspondence
via 3d-guided cycle consistency. In CVPR, 2016. 2

11



Do It Yourself: Learning Semantic Correspondence from Pseudo-Labels

Supplementary Material

A. Details on ImageNet-3D Trained Model

In this subsection, we present more details about the model
that was trained on ImageNet-3D, including more details
about the improved spherical mapper.

Pose Conversion in ImageNet-3D. We reformulate the
loss objective for taking into account viewpoint information
as presented in Eq. (10). We acquire the needed labels in the
following way: Given the rotation matrix I presenting the
3D pose in the ImageNet-3D dataset [34], we compute the
corresponding coordinate on the 2-sphere ¢ = [0, ¢] € S2

as follows:
0

X
yl=R1|0],
z 1

0 = arccos(z), ¢ = atan2(y,x)

Experimental Details For training the spherical mapper,
we use the same hyperparameter as Mariotti et al. [35] and
we train for 200 epochs on the ImageNet-3D dataset. The
generation of the pseudo-labels and training of the adapter
follow the same hyperparameters as our presented model for
SPair-71k. We train on this larger dataset for 400k steps.

B. Discussion of Failure Cases

While we show significant improvements for most object
categories, our method does not improve results for all
classes compared to the SOTA. Our approach performs
worse when objects are vertically flipped, e.g., for the air-
plane category or bicycles, as presented in the challenging
example in Tab. 6a. In such cases, a limiting factor is that
the polar angle is not available for 3D-aware sampling and
training of the spherical mapper. Our method also fails for
heavy perspective changes Tab. 6b.

(b) Matching objects under heavy
scale changes is challenging.

(a) Our model can fail for objects
that are up-side down.

Table 6. Examples of failure cases.

C. Training with Less Supervision

To explore the scalability of our proposed strategy to larger
datasets without 3D pose annotations or masks, we study

how the performance deteriorates for SPair-71k when not
having access to the viewpoint annotation. For this, we
extract pose information using Orient-Anything [54] and
extract object masks using rembg for unsupervised fore-
ground extraction. Using SAM masks, which are of slightly
higher quality but not completely unsupervised (although
feasible through, e.g., using GroundingSAM), and the au-
tomatically extracted poses, the PCK@0.1 per-img of our
method drops to 69.6% compared to when using GT pose
annotations (71.6%). Using rembg masks, it drops further
to 68.0%, which is expected but still around 2.7p better than
the previous best weakly supervised method [9]. While [47]
uses dataset-specific information about the keypoint label
convention, our approach only requires class labels.We re-
port the results in Tab. 7.

3D pose label mask label PCK@0.1
Ground Truth SAM 71.6
Orient-Anything SAM 69.6
Orient-Anything rembg 68.0

Table 7. PCK@0.1 per-image on SPair-71k without ground-
truth viewpoint annotations.

D. Pre-Training with Pseudo-Labels

We explore whether pre-training with our pseudo-labels
also improves the supervised performance. For this pur-
pose, we fine-tune the adapter with ground truth labels of
the SPair-71k dataset, which improves the supervised per-
formance from 82.9% [63] to 83.5% (PCK@0.1 per-img).

E. Pseudo-Label Generation without SD

When training a refiner of DINOv2 features with pseudo-
labels that are acquired only from DINOV?2 features, i.e., not
from SD+DINOvV2 as in the main paper, the performance
drops to 67.17% (per-img) and to 70.29% (per-kpt), which
is still on par with recent SOTA models.


https://github.com/danielgatis/rembg

Channels PCK@0.1 PCK@0.05 PCK@0.01

128 74.08 56.28 11.26
384 74.39 56.87 11.53
768 74.43 56.76 11.22
1536 74.63 57.13 11.60

Table 8. PCK metrics for varying numbers of feature channels.

F. Ablation of Number of Feature Channels

Learning a refining module allows reducing the number of
channels of the features used for nearest neighbor computa-
tion. The performance does not heavily drop with a lower
number of channels (Tab. 8), which might be a valuable op-
tion for memory-constrained applications.

G. More Qualitative Results

We show detected correspondences for uncurated image
pairs from the SPair-71k test dataset for DistillDIFT, TLR,
SphMap, and our method in Fig. 5 and Fig. 6.



DistillDIFT TLR SphMap Ours

Figure 5. Uncurated image pairs of SPair-71K dataset of three SOTA models and ours.



DistillDIFT

Figure 6. Uncurated image pairs of SPair-71K dataset of three SOTA models and ours.
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