
Under review as a conference paper at ICLR 2024

GRAPH POSITIONAL AND STRUCTURAL ENCODER

Anonymous authors
Paper under double-blind review

ABSTRACT

Positional and structural encodings (PSE) enable better identifiability of nodes
within a graph, as in general graphs lack a canonical node ordering. This ren-
ders PSEs essential tools for empowering modern GNNs, and in particular graph
Transformers. However, designing PSEs that work optimally for a variety of graph
prediction tasks is a challenging and unsolved problem. Here, we present the
graph positional and structural encoder (GPSE), a first-ever attempt to train a graph
encoder that captures rich PSE representations for augmenting any GNN. GPSE
can effectively learn a common latent representation for multiple PSEs, and is
highly transferable. The encoder trained on a particular graph dataset can be used
effectively on datasets drawn from significantly different distributions and even
modalities. We show that across a wide range of benchmarks, GPSE-enhanced
models can significantly improve the performance in certain tasks, while perform-
ing on par with those that employ explicitly computed PSEs in other cases. Our
results pave the way for the development of large pre-trained models for extract-
ing graph positional and structural information and highlight their potential as a
viable alternative to explicitly computed PSEs as well as to existing self-supervised
pre-training approaches.

1 INTRODUCTION

Graph neural networks (GNN) are the dominant paradigm in graph representation learning (Hamil-
ton et al., 2017b; Bronstein et al., 2021), spanning diverse applications across many domains in
biomedicine (Yi et al., 2022), molecular chemistry (Xia et al., 2022), and more (Dwivedi et al.,
2022a; Hu et al., 2020a; 2021; Liu et al., 2022a). For most of its relatively short history, GNN
algorithms were developed within the message-passing neural network (MPNN) framework (Gilmer
et al., 2017), where vertices exchange internal states within their neighborhoods defined by the graph
structure, which are typically sparse. Despite being computationally efficient, the sparsity leveraged
by MPNN has raised many fundamental limits, such as the 1-WL bounded expressiveness (Xu et al.,
2019), under-reaching (Barceló et al., 2020), and over-squashing (Alon and Yahav, 2021; Topping
et al., 2022). More recently, leveraging the success of the Transformer model in natural language
processing (Vaswani et al., 2017), graph Transformer (GT) models were developed as a new paradigm
for GNN to address the above limitations (Dwivedi and Bresson, 2021). Attending to all pairs of
nodes in a graph circumvents the aforementioned sparsity-induced limitations of MPNN, but it also
discards all inductive biases relating to the graph structure (Battaglia et al., 2018), which MPNNs
leverage well. Thus, reintroducing such inductive bias via positional and structural encodings (PSE)
has been one of the most essential steps that led to the early success of GT (Rampášek et al., 2022;
Dwivedi and Bresson, 2021; Ying et al., 2021).

While many different types of PSEs have been hand-crafted and used by various GT models, a
consensus on the best PSE to use in a general context has yet to be reached. In fact, the optimal
choice of PSE often depends on the specific task at hand. For example, random walk encodings
are typically effective for small molecular tasks (Rampášek et al., 2022; Dwivedi et al., 2022b),
while graph Laplacian eigenvectors might be more suitable for tasks that involve long-range depen-
dencies (Dwivedi et al., 2022c;a). Therefore, developing a systematic approach to learn a unified
encoding that integrates various PSEs remains an open challenge.

Encoding information that is transferable between certain graph datasets and tasks is typically
achieved via self-supervised learning (SSL) methods. Pre-training GNNs via SSL has proven
effective in learning graph features in data-abundant settings, which can then be transferred to
downstream tasks (Hu et al., 2020b; Wang et al., 2022a; Xie et al., 2022). However, SSL on graphs

1

Under review as a conference paper at ICLR 2024

is plagued by a critical drawback: SSL that performs well on one downstream task may not help or
even lead to negative transfer on another, and the success of graph SSL methods typically hinges on
whether the data for the pre-training and downstream tasks are well-aligned (Sun et al., 2022; Hu
et al., 2020b; Wang et al., 2022a).

Contributions In this work, we approach the abovementioned problems by introducing the graph
positional and structural encoder (GPSE). We summarize our main contributions as follows.

1. We propose GPSE, the first attempt at training a graph encoder that extracts rich positional and
structural representations from graph structures, which can be applied to any MPNN or GT
model as a replacement for explicitly constructed PSEs.

2. We show the superior performance of GPSE over traditionally used PSEs across a variety of
benchmarks, even achieving SOTA performance on ZINC and Peptides-struct datasets.

3. Extensive experiments demonstrate that GPSE is highly transferable across graphs of different
sizes, connectivity patterns, and modalities.

1.1 RELATED WORK

Positional and structural encodings (PSE) Positional encoding was originally implemented as a
series of sinusoidal functions in the Transformer model to capture the ordinal position of words in a
sentence (Vaswani et al., 2017). However, capturing the position of nodes in a graph is harder, as in
general, such a canonical ordering does not exist in graphs. Many recent works on graph Transformers
(GT) use the graph Laplacian eigenvectors as the positional encodings (Rampášek et al., 2022; Kreuzer
et al., 2021), which are direct analogues to the sinusoids in Euclidean space (Spielman, 2012). Other
methods for encoding positional information include electrostatic potential encodings (Kreuzer et al.,
2021), shortest-path distances (Ying et al., 2021), tree-based encodings (Shiv and Quirk, 2019), etc.
Structural encodings, on the other hand, have been developed particularly on graph-structured data
to encode rich local and global connectivity patterns. The random walk encoding, for example, has
been proven to be powerful enough to distinguish r-regular graphs with high probabilities (Li et al.,
2020; Dwivedi et al., 2022b). It has also shown great performance when used with GT models,
particularly on small molecular graph benchmarks (Rampášek et al., 2022; Dwivedi and Bresson,
2021; Dwivedi et al., 2022b). Other notable structural encodings include the heat kernel (Kreuzer
et al., 2021; Mialon et al., 2021), subgraph counting (Bouritsas et al., 2022; Zhao et al., 2022), node
degree centralities (Ying et al., 2021), etc. The usage of PSEs has also demonstrated success in
MPNN, besides GT, as additional node features that are combined with the original graph features
(Dwivedi et al., 2022a; Lim et al., 2022; Dwivedi et al., 2022b; Wang et al., 2022b; Dwivedi et al.,
2022b). Despite this great amount of work in developing different PSEs and ways to extract invariants
from them further (Lim et al., 2022; Chen et al., 2022), it is still unclear how to systematically encode
information from multiple types of PSEs to effectively augment GNNs.

Self-supervised learning (SSL) The general goal of SSL is learning to extract useful graph repre-
sentations from large amounts of unlabeled, but typically featured, graphs (Xie et al., 2022; Liu et al.,
2022b). One popular approach to achieve this is contrastive learning, which aims to embed corrupted
or augmented views of the same graph into more similar representations than those from other
graphs. Most contrastive graph pre-training methods generally differ in (i) what type of graphs and
associated domain-specific information they use, such as 3D and geometric molecular structure (Stärk
et al., 2022; Li et al., 2022), (ii) how they generate contrastive views (Hu et al., 2020b; You et al.,
2020b), and (iii) what contrastive loss they use (Veličković et al., 2019; You et al., 2020b; Jiao et al.,
2020). Predictive learning, on the other hand, aims to recover graph properties that are (a) intrinsic,
such as the adjacency matrix (Kipf and Welling, 2016; Grover et al., 2019) , or (b) extrinsic, such
as molecular motif predictions (Rong et al., 2020a). However, the above-mentioned works have
limited transferability as they all rely on domain-specific graph features or self-supervision. A fully
generalizable and transferable SSL graph encoding method that can be trained on unfeatured and
unlabeled graph datasets is currently lacking.

2 METHODS

Our core idea is to train an MPNN as the graph encoder to extract rich positional and structural
representations of any query graph based solely on its graph structure (Figure 1A). To achieve this,

2

Under review as a conference paper at ICLR 2024

C. Augment any graph dataset with GPSE encodings and train any GNN predictor from scratch

MPNN

Global Attention

Graph Transformers
(e.g., GPS) or MPNNs

LapPEk

B. Self-supervised GPSE training to recover various PSEsA. Graph Positional & Structural Encoder

RWSEk

ElstaticPEk

Positional Encodings

Encodes positional information of
each node in the graph.
LapPE: Laplacian eigenvectors

ElstaticPE: Electrostatic potentials

Structural Encodings
Encodes structural information of
local contexts of each node, or the
global context of the graph.

RWSE: Random walk diagonals

HKdiagSE: Heat kernel diagonals
CycleSE: Cycle counting

BN & MLP

MLP heads

Loss

Loss

Loss

EigValSE: Laplacian eigenvalues

Linear

Message Passing

BN & Dropout

ReLU

N x

Dataset-specific
prediction tasks

Apply trained GPSE

…… …

…

ZINC
molhiv

MNIST
…

ZINC
molhiv

MNIST

…

ZINC
MolHIV

MNIST

BN

Addition

Learnable module

GPSE training loss

GPSE layer block

Random features

Batch normalization

GPSE encodings

Concatenation

Offline precompute

Node features

Edge features

Figure 1: Overview of Graph Positional and Structural Encoder (GPSE) training and application.

we design a collection of PSEs encompassing a broad range of encodings and use them as self-
supervision to train the encoder (Figure 1B). Once the encoder is trained on graphs from a particular
dataset, it can extract PSE representations for any downstream dataset as the encodings to augment
any downstream model (Figure 1C).

For downstream tasks, we primarily build on top of a powerful graph Transformer framework,
GPS (Rampášek et al., 2022), that leverages the advantages of both the inductive bias of the local
message passing (Battaglia et al., 2018) and the expressiveness of the global attention (Vaswani et al.,
2017). We also demonstrate GPSE’s usefulness for more general MPNN in our experiments.

2.1 SELF-SUPERVISION VIA POSITIONAL AND STRUCTURAL ENCODINGS (PSE)

We design a diverse collection of six PSEs for GPSE to learn against, including the Laplacian
eigenvectors (4) and eigenvalues (4), the electrostatic positional encodings (7), the random walk
structural encodings (20), the heat kernel structural encodings (20), and the cycle counting graph
encodings (7). In short, positional encodings informs the relative position of each node in the graph,
while structural encodings describe the local connectivity patterns around a node (Figure 1). See
Appendix A for their precise mathematical definitions.

2.2 GPSE ARCHITECTURE

Over-smoothing and over-squashing are two key challenges to overcome when learning with deep
MPNNs. Thus, our GPSE model also has to overcome these challenges to be able to learn good
joint representations for PSEs. In this section, we present different architectural choices and their
relationship with these two phenomena, as well as theoretical justifications behind our choices. Please
refer to Appendix C for technical definitions; we also discuss the relevance of over-smoothing and
over-squashing with GPSE in further detail in Appendix C.1.

Evidence suggests that over-smoothing and squashing in graph networks relate to the graph’s cur-
vature (Topping et al., 2022; Nguyen et al., 2022; Giraldo et al., 2022). There are many versions
of graph curvature (Forman, 2003; Ollivier, 2009; Sreejith et al., 2016; Topping et al., 2022) but
intuitively, they encode how a node’s neighborhood looks like a clique (positive curvature), a grid
(zero curvature), or a tree (negative curvature). A clique’s high connectivity leads to rapid smoothing,
while a tree’s exponentially increasing size of k-hop neighborhood causes over-squashing. These
phenomena are in competition, and negating both is impossible in an MPNN using graph rewiring
(architectures using modified adjacency for node aggregation). However, there seems to be a sweet

3

Under review as a conference paper at ICLR 2024

spot where both effects are not minimized but the sum of the two effects is minimized. This minimum
is sought in Giraldo et al. (2022) and Nguyen et al. (2022). Some of our following choices of
architecture are justified by this search of a sweet spot in the smoothing-squashing trade-off.

Deep GNN As several of the target PSEs, such as the Laplacian eigenvectors, require having a global
view of the query graph, it is crucial for the encoder to capture long-range dependencies accurately.
To accomplish this, we need to use an unconventionally deep MPNN with 20 layers. However, if
a graph network suffers from over smoothing, having this many layers will result in approximately
uniform node features (Oono and Suzuki, 2020; Li et al., 2019).

Residual connection A first attempt at reducing the smoothing is to exploit the proven ability of
residual connections in reducing over smoothing (Li et al., 2019).

Gating mechanism Using gating mechanism in the aggregation helps reduce the over smoothing
even further. Indeed, gating allows the network to reduce the weight of some edges and in the
limit effectively re-wire the graph by completely or partially ignoring some edges. Essentially, we
argue that it is possible for gating to act as a graph sparsification device, which decreases the graph
curvature and have been shown to alleviate over-smoothing (Giraldo et al., 2022; Rong et al., 2020b).

Virtual node In addition, we use virtual node (VN) (Gilmer et al., 2017) to enable global message
passing; as the virtual node has access to the states of all nodes, it allows for (a) better representation of
graph-level information and (b) faster propagation of information between nodes that are further apart,
and thus faster convergence of states. In technical terms, adding the virtual node drastically increases
the connectivity of the graph and in turn its curvature (Appendix C, prop. 1), and consequently
decreases the over squashing. Alternatively, one can see that the Cheeger constant (another measure
of bottleneckness (Topping et al., 2022)) of the graph increases after adding the virtual node.

Random node features One critical question is whether an MPNN is expressive enough to learn
all the target PSEs. In particular, some PSEs, such as the Laplacian eigenvalues, may require
distinguishability beyond 1-WL (Fürer, 2010). Despite the known 1-WL expressiveness limitation
of a standard MPNN when using constant node features (Xu et al., 2019), many recent works have
shown that random node features can help MPNNs surpass the 1-WL expressiveness(Sato et al., 2021;
Abboud et al., 2021; Kanatsoulis and Ribeiro, 2022). Thus, we base our encoder architecture on an
MPNN coupled with random input node features, as shown in Figure 1A.

We argue and later validate that together, the above architectural design choices lead to an effective
graph encoder that finds the balance between smoothing and squashing (§3.4), and even has an
elevated expressiveness due to the random features (§3.3). A detailed ablation study to highlight the
impoartance of our architectural choices is also available in Table F.1.

2.3 TRAINING GPSE

Given a query graph structure G = (V,E), we first generate a k-dimensional feature X ∼ N (0, I)
from a standard normal distribution for each node, which is then passed through a linear projection
layer to match the d-dimensional hidden dimension. Then, the projected features and the graph
structure are processed by N message-passing layers with residual connections (Li et al., 2019),
resulting in the final GPSE representations Figure 1. To train the encoder using the target PSEs, we
decode the GPSE using multiple independent MLP heads, one per PSE, and compute the loss based on
the sum of ℓ1 and cosine similarity losses. This learning approach falls into the category of predictive
learning. We note that contrastive approaches are infeasible for learning PSE representations as it is
undesirable to obtain a representation that is insensitive to structural perturbations.

Training dataset PCQM4Mv2 (Hu et al., 2021) is a typical choice of pre-training dataset for
molecular tasks. However, since GPSE only extracts features from graph structures (e.g., methane,
CH4, would be treated as the same graph as silane, SiH4), the amount of training samples reduces to
273,920 after extracting unique graphs. Instead, we train GPSE with MolPCBA (Hu et al., 2020a),
which contains 323,555 unique molecular graphs, with an average number of 25 nodes. We randomly
select 5% validation and 5% testing data fixed across runs, and use the remaining data for training.

3 EXPERIMENTS

4

Under review as a conference paper at ICLR 2024

Table 1: Held-out
PSE prediction perfor-
mance of GPSE on 5%
MolPCBA.

PSE R2 ↑
ElstaticPE 0.964
LapPE 0.973
RWSE 0.984
HKdiagSE 0.981
EigValSE 0.982
CycleSE 0.977

Overall 0.979

GPSE successfully predicts a wide range of target PSEs The self-
supervised goal of our GPSE is to learn graph representations from which it is
possible to recover predefined positional and structural encodings. For each
PSE type, we quantify the prediction performance in terms of the coefficient
of determination (R2) scores, as presented in Table 1. When trained on
a 5% (16,177) subset of MolPCBA molecular graphs, our GPSE achieves
0.9790 average test R2 score across the 6 PSEs. Further, we show that the
test performance improves asymptotically as the number of training samples
increases (§3.4), achieving 0.9979 test R2 when training on 90% (291,199)
of MolPCBA unique graphs. These results demonstrate the ability of the
GPSE to extract rich positional and structural information from a query graph,
as well as its ability to learn from an increasing amount of data.

3.1 ENHANCING PERFORMANCE ON MOLECULAR GRAPH DATASETS

In this series of experiments, we demonstrate that GPSE is a general aug-
mentation to a wide range of GNN models and is a viable alternative to existing SSL pre-training
approaches.

GPSE-augmented GPS is highly competitive on molecular graph benchmarks In this set of
experiments, we compare performance of the GPS model augmented with our GPSE encodings versus
the same model using (a) no PSE, (b) random features as PSE, and (c) LapPE and RWSE (two
PSEs from §2.1) on four common molecular property prediction benchmarks (Dwivedi et al., 2022a;
Hu et al., 2020a; 2021). For ZINC (Gómez-Bombarelli et al., 2018) and PCQM4Mv2 (Hu et al.,
2020a), we use their subset versions following Dwivedi et al. (2022a) and Rampášek et al. (2022),
respectively.

Table 2: Performance in four molecular property prediction tasks, averaged over 10 seeds.

ZINC (subset) PCQM4Mv2 (subset) MolHIV MolPCBA
MAE ↓ MAE ↓ AUROC ↑ AP ↑

GCN (Kipf and Welling, 2017) 0.3670 ± 0.0110 – 0.7599 ± 0.0119 0.2424 ± 0.0034
GIN (Xu et al., 2019) 0.5260 ± 0.0510 – 0.7707 ± 0.0149 0.2703 ± 0.0023
CIN (Bodnar et al., 2021) 0.0790 ± 0.0060 – 0.8094 ± 0.0057 –
CRaWI (Toenshoff et al., 2021) 0.0850 ± 0.0040 – – 0.2986 ± 0.0025

GPS+rand 0.8766 ± 0.0107 0.4768 ± 0.0171 0.6210 ± 0.0444 0.0753 ± 0.0045
GPS+none 0.1182 ± 0.0049 0.1329 ± 0.0030 0.7798 ± 0.0077 0.2869 ± 0.0012
GPS+LapPE 0.1078 ± 0.0084 0.1267 ± 0.0004 0.7736 ± 0.0097 0.2939 ± 0.0016
GPS+RWSE 0.0700 ± 0.0040 0.1230 ± 0.0008 0.7880 ± 0.0101 0.2907 ± 0.0028
GPS+AllPSE 0.0734 ± 0.0030 0.1254 ± 0.0011 0.7645 ± 0.0236 0.2826 ± 0.0001

GPS+GPSE 0.0648 ± 0.0030 0.1196 ± 0.0004 0.7815 ± 0.0133 0.2911 ± 0.0036

We first highlight that, with GPSE-augmented input features, GPS achieves a remarkable 0.0648 MAE
on ZINC (Table 2). Moreover, GPSE always improves the baseline by a margin similar to or higher
than standard PSEs. By improving on GPS+RWSE, GPS+GPSE also becomes the best model on
PCQM4Mv2 that (a) is not an ensemble method and (b) does not have access to 3D information.

GPSE as a universal PSE augmentation The utility of GPSE encodings is not specific to GPS. On
ZINC (12k subset), we show that augmenting different MPNN methods and the Transformer with
GPSE universally results in significant improvements: 56.24% reduction in test MAE on average
compared to baselines that do not make use of any PSE (Table 3). We perform the same set of
experiments on PCQM4Mv2 as well (Table F.2), and obtain similar improvements on explicitly
computed PSEs that validate the success of GPSE.

Feature augmentation using GPSE vs. SSL pre-training Our GPSE feature augmentation approach
is related to the SSL pre-training approaches (Hu et al., 2020b; You et al., 2020b; Xie et al., 2022;
Xu et al., 2021) in that both transfer knowledge from a large pre-training dataset to another for
downstream evaluation. Yet, at the same time, our approach is a notable departure from previous SSL
approaches in two distinct aspects:

1. The trained GPSE model is only used as a feature extractor that can be coupled with any type of
downstream prediction model, which will be trained from scratch.

5

Under review as a conference paper at ICLR 2024

Table 3: Four PSE augmentations combined with five different GNN models evaluated on ZINC (12k
subset) dataset. Performance is evaluated as MAE (↓) and averaged over 4 seeds.

GCN GatedGCN GIN GINE Transformer Avg. reduction

none 0.288 ± 0.004 0.236 ± 0.008 0.285 ± 0.004 0.118 ± 0.005 0.686 ± 0.017 –

rand 1.277 ± 0.340 1.228 ± 0.012 1.239 ± 0.011 0.877 ± 0.011 1.451 ± 0.002 N/A
LapPE 0.209 ± 0.008 0.194 ± 0.006 0.214 ± 0.004 0.108 ± 0.008 0.501 ± 0.145 21.12%
RWSE 0.181 ± 0.003 0.167 ± 0.002 0.175 ± 0.003 0.070 ± 0.004 0.219 ± 0.007 42.75%
AllPSE 0.150 ± 0.007 0.143 ± 0.007 0.153 ± 0.006 0.073 ± 0.003 0.190 ± 0.008 50.85%
GPSE 0.129 ± 0.003 0.113 ± 0.003 0.124 ± 0.002 0.065 ± 0.003 0.189 ± 0.016 56.24%

2. GPSE extracts representations solely from the graph structure and does not make use of the
domain-specific features such as atom and bond types (Hu et al., 2020b), allowing GPSE to be
utilized on general graph datasets.

To compare the performance of SSL pre-training and GPSE feature augmentation, we use the Molecu-
leNet (Wu et al., 2018; Hu et al., 2020b) datasets. For the downstream model, we use the identical
GINE architecture Hu et al. (2020b) from Sun et al. (2022). Finally, the extracted features from the
GPSE are concatenated with the initial atom embeddings and are then fed into the GINE model.

Table 4: Performance on MoleculeNet small datasets (scaffold test split), evaluated in AUROC (%) ↑.
Red indicates worse than baseline performance.

BBBP BACE Tox21 ToxCast SIDER ClinTox MUV HIV

No pre-training (baseline) (Hu et al., 2020b) 65.8 ± 4.5 70.1 ± 5.4 74.0 ± 0.8 63.4 ± 0.6 57.3 ± 1.6 58.0 ± 4.4 71.8 ± 2.5 75.3 ± 1.9

Self-supervised pre-trained (Hu et al., 2020b) 68.8 ± 0.8 79.9 ± 0.9 76.7 ± 0.4 64.2 ± 0.5 61.0 ± 0.7 71.8 ± 4.1 75.8 ± 1.7 77.3 ± 1.0
GraphCL pre-trained (You et al., 2020b) 69.7 ± 0.7 75.4 ± 1.4 73.9 ± 0.7 62.4 ± 0.6 60.5 ± 0.9 76.0 ± 2.7 69.8 ± 2.7 78.5 ± 1.2
InfoGraph pre-trained (Wang et al., 2022a) 66.3 ± 0.6 64.8 ± 0.8 68.1 ± 0.6 58.4 ± 0.6 57.1 ± 0.8 66.3 ± 0.6 44.3 ± 0.6 70.2 ± 0.6
JOAOv2 pre-trained (Wang et al., 2022a) 66.4 ± 0.9 67.4 ± 0.7 68.2 ± 0.8 57.0 ± 0.5 59.1 ± 0.7 64.5 ± 0.9 47.4 ± 0.8 68.4 ± 0.5
GraphMAE (Hou et al., 2022) 72.0 ± 0.6 83.1 ± 0.9 75.5 ± 0.6 64.1 ± 0.3 60.3 ± 1.1 82.3 ± 1.2 76.3 ± 2.4 77.2 ± 1.0
GraphLoG (Xu et al., 2021) 72.5 ± 0.8 83.5 ± 1.2 75.7 ± 0.5 63.5 ± 0.7 61.2 ± 1.1 76.7 ± 3.3 76.0 ± 1.1 77.8 ± 0.8

GraphLoG augmented 65.6 ± 1.0 82.5 ± 1.2 73.2 ± 0.5 63.6 ± 0.4 60.9 ± 0.7 - - -
LapPE augmented 67.1 ± 1.6 80.4 ± 1.5 76.6 ± 0.3 65.9 ± 0.7 59.3 ± 1.7 76.4 ± 2.3 75.6 ± 0.8 75.6 ± 1.1
RWSE augmented 67.0 ± 1.4 79.6 ± 2.8 76.3 ± 0.5 65.6 ± 0.3 58.5 ± 1.4 74.5 ± 4.4 75.0 + 1.0 78.1 ± 1.5
AllPSE augmented 67.6 ± 1.2 77.0 ± 4.4 75.9 ± 1.0 63.9 ± 0.3 63.0 ± 0.6 72.6 ± 4.3 67.9 ± 0.7 75.4 ± 1.5
GPSE augmented 66.2 ± 0.9 80.8 ± 3.1 77.4 ± 0.8 66.3 ± 0.8 61.1 ± 1.6 78.8 ± 3.8 76.6 ± 1.2 77.2 ± 1.5

We note that GPSE augmented GINE achieves the best performance on two out of the five datasets
against previously reported performances (Table 4). Moreover, GPSE augmentation improves perfor-
mance over the baseline across all five datasets, unlike some previously reported results that showed
negative transfer effects. Together, these results corroborate with the findings from (Sun et al., 2022)
that rich features can make up for the benefits of SSL pre-training. In our case, the GPSE encodings
act as the rich features that contain positional and structural information from the graphs.

We also highlight that Table 4 results are achieved in a setup where GPSE is at a comparative
disadvantage: As a general-purpose feature extractor trained on a separate dataset, GPSE cannot
leverage atom and bond features of the downstream graphs unlike the typical molecular graph SSL
methods. When GraphLoG is also utilized as a feature extractor for a fairer comparison, we see
that it is soundly beaten by GPSE and even suffers from negative transfer despite having access to
domain-specific features. This highlights the power of GPSE as a feature extractor. With this in mind,
GPSE can instead be combined with other SSL methods to enhance them in future work.

3.2 TRANSFERABILITY ACROSS DIVERSE GRAPH BENCHMARKING DATASETS

GPSE can be used on arbitrary types of graphs as it is trained using the graph structures alone, in
contrast with the SSL pre-trained methods. Here, we show that GPSE is transferable to general graph
datasets apart from molecular datasets, even under extreme out-of-distribution (OOD) cases.

Transferability to molecular graph sizes We use the two peptides datasets (Peptides-struct and
Peptides-func) from the long-range graph benchmarks (Dwivedi et al., 2022c) to test whether GPSE
can still work when the downstream (macro-)molecular graphs are significantly larger than those used
for training GPSE. Despite this difference in graph sizes, GPS+GPSE outperforms the original GPS

6

Under review as a conference paper at ICLR 2024

Table 5: OOD transferability to graph size and connectivity pattern. The GPSE pre-training dataset
MolPCBA contains graphs with 26 nodes and 0.093 connectivity on average.

Peptides-struct Peptides-func CIFAR10 MNIST
MAE ↓ AP ↑ ACC (%) ↑ ACC (%) ↑

Avg. # nodes 150.9 150.9 117.6 70.6
Avg. connectivity 0.022 0.022 0.069 0.117

GIN – – 55.26 ± 1.53 96.49 ± 0.25
GINE 0.3547 ± 0.0045 0.5498 ± 0.0079 – –
GatedGCN (Bresson and Laurent, 2017) 0.3420 ± 0.0013 0.5864 ± 0.0077 67.31 ± 0.31 97.34 ± 0.14
Graph MLP-Mixer (He et al., 2022) 0.2475 ± 0.0020 0.6920 ± 0.0054 72.46 ± 0.36 98.35 ± 0.10

GPS+(RWSE/LapPE) (Rampášek et al., 2022) 0.2500 ± 0.0005 0.6535 ± 0.0041 72.30 ± 0.36 98.05 ± 0.13
GPS+AllPSE 0.2509 ± 0.0028 0.6397 ± 0.0092 72.05 ± 00.35 98.08 ± 00.12
GPS+GPSE 0.2464 ± 0.0025 0.6688 ± 0.0151 72.31 ± 0.25 98.08 ± 0.13

that uses explicitly computed PSEs (Table 5). More strikingly, GPS+GPSE resulted in the new SOTA
performance for Peptides-struct, surpassing Graph MLP-Mixer (He et al., 2022). The improved
performance due to GPSE emphasizes its ability to better extract global information from query graphs
by providing a more informative initial encoding for the global attention mechanism in GPS.

Transferability to graph connectivity patterns We further test if GPSE generalizes to graph
connectivity patterns distinct from its training dataset. Particularly, we use the superpixel graph
benchmarking datasets CIFAR10 and MNIST from Dwivedi et al. (2022a), which are k-nearest
neighbor graphs with k=8, significantly differing from the molecular graph connectivity patterns.
Again, GPS+GPSE achieves comparable results against GPS using explicitly computed PSEs (Table 5).

Table 6: OOD transferability to OGB
node classification benchmarks.

arXiv Proteins
+GPSE? ACC (%) ↑ AUROC (%) ↑

GCN ✗ 71.74 ± 0.29 79.91 ± 0.24
✓ 71.67 ± 0.12 79.62 ± 0.12

SAGE ✗ 71.74 ± 0.29 80.35 ± 0.07
✓ 72.19 ± 0.32 80.14 ± 0.22

GAT(E)v2 ✗ 71.69 ± 0.21 83.47 ± 0.13
✓ 72.17 ± 0.42 83.51 ± 0.11

Best of above ✗ 71.74 ± 0.29 83.47 ± 0.13
✓ 72.19 ± 0.32 83.51 ± 0.11

Transferability to extreme OOD node-classification
benchmarks Taking the evaluation of GPSE one step
further, we test its ability to provide useful information to
transductive node classification tasks, where the graphs
contain hundreds of thousands of nodes, which are com-
pletely out of distribution from the GPSE training dataset.
We only use standard baseline methods as a proof of
concept, including GCN, GraphSAGE (Hamilton et al.,
2017a), and GATv2 (Veličković et al., 2018; Brody et al.,
2022). Remarkably, GPSE successfully improves the
baseline performance of SAGE and GATv2 on the arXiv
dataset, with no noticeable negative transfer (Table 6).

Meanwhile, the indifference in performance on the Proteins dataset is not unexpected, as the con-
nectivity structures of the protein interaction network do not contribute to the proteins’ functions
meaningfully. Instead, what matters are the identity of the proteins’ interacting partners, commonly
referred to as homophily in the graph representation learning community (Zhu et al., 2020) or more
generally known as the Guilt-by-Association principle in the network biology community (Cowen
et al., 2017). This result provides valuable insights into the usefulness of GPSE as an augmentation:
It is more beneficial when the underlying graph structure is informative for the downstream tasks.

3.3 EXPRESSIVENESS OF GPSE ENCODINGS

Given that GPSE can recover different PSEs so well (Table 2.1), it is natural to wonder whether
it can boost standard MPNN expressiveness. We first confirm that GPSE encodings surpass 1-WL
distinguishability by observing a clear visual separation of GPSE encodings on 1-WL indistinguishable
graph pairs (Figure E.1). More information regarding graph isomorphism, the WL test and their
connections to GNN expressivity is discussed in Appendix E.

To more rigorously and systematically study the expressivity of GPSE encodings, we perform two
synthetic benchmarks (Dwivedi et al., 2022a; Abboud et al., 2021) that require beyond 1-WL power
using a 1-WL expressivity bounded MPNN model GIN. Indeed, we find that GPSE provides extra
power to the base MPNN model to correctly distinguish graph isomorphism classes (Table 7). This
expressivity boosts by GPSE is remarkable, considering that (1) GPSE is pre-trained on MolPCBA,
whose graph structures are not designed to be 1-WL indistinguishable like these synthetic graphs,
and (2) naively adding random features to the input does not provide such noticeable improvement.

7

Under review as a conference paper at ICLR 2024

Table 7: Synthetic graph benchmarks with ten times
stratified five-fold CV evaluated in ACC (%) ↑.

CSL EXP

Train Test Train Test

GIN 10.0 ± 0.0 10.0 ± 0.0 49.8 ± 1.8 48.7 ± 2.2
GIN+rand 11.6 ± 3.7 12.7 ± 6.4 51.0 ± 2.0 51.3 ± 2.9
GIN+GPSE 98.2 ± 1.5 42.9 ± 7.9 84.6 ± 6.8 68.3 ± 7.5

GIN+LapPE 100.0 ± 0.0 92.5 ± 4.2 99.9 ± 0.2 99.5 ± 0.8
GIN+RWSE 100.0 ± 0.0 100.0 ± 0.0 99.7 ± 0.2 99.7 ± 0.6

We further point out that, in fact, augment-
ing the base GIN model using common PSEs
like LapPE and RWSE readily archives nearly
perfect graph isomorphism classification, cor-
roborating with previous theoretical results on
distance-encodings (Li et al., 2020) and spec-
tral invariants (Fürer, 2010). This finding par-
tially explains why GPSE provides additional
power and also why previous methods using
LapPE achieve perfect classification on these
tasks (He et al., 2022). Finally, we note the performance difference between LapPE/RWSE and GPSE
is not unexpected, as random input features only act as a patch to the MPNN expressivity limitation
rather than fully resolving it. Thus, developing powerful and scalable GPSE models that losslessly
capture the latent semantics of various PSEs is a valuable venue to explore in the future.

3.4 ABLATION STUDIES

5 10 15 20 25 30 35 40
Number of message passing layers

0.2

0.4

0.6

0.8

1.0

Ov
er

al
l t

es
t R

2
sc

or
es

GatedGCN
GIN
VN
no VN

Figure 2: Virtual node, convolution type,
and layers ablation using 5% MolPCBA
for training GPSE.

GPSE makes good use of the depth and the global
message passing from the VN Despite the commonly
known issue with MPNN oversmoothing as the number of
message passing layers increases, we observe that GPSE
does not oversmooth thanks to the gating mechanism and
the residual connections in GatedGCN (Bresson and Lau-
rent, 2017), contrasting with more typical MPNN layers
like GIN (Xu et al., 2019). Indeed, GPSE benefits from
both the global message passing by VN and the model
depth as shown in Figure 2, confirming our theoretical
justifications about the architectural choices in §2.2.

GPSE benefits from the wide variety of pre-training
target PSE in downstream tasks Since GPSE is trained
to capture latent semantics for recovering a wide range of
PSEs, it mitigates the reliance on manually selecting task-
specific PSEs, a major shortcoming of graph Transformers
such as GPS and Graphormer (Ying et al., 2021) which could be task specific. For instance, RWSE
typically performs well for molecular tasks, while LapPE could be more useful for long-range
dependency tasks (Rampášek et al., 2022; Dwivedi et al., 2022c). Here, we investigate whether a
particular type of PSE contributes more or less to GPSE by testing the downstream performance of
PCQM4Mv2 and MolHIV using different variants of GPSE that excludes one type of PSE during
training. We observe from Table F.4 that excluding any type of PSE generally reduces its performance
in the downstream tasks slightly, indicating the usefulness of different PSEs’ semantics to the
downstream tasks at various levels.

Asymptotic behavior with respect to the GPSE training sample sizes We perform a scaling law
experiment with respect to the training sample sizes, from 5% to 80% of the MolPCBA. As shown in
Figure F.1, the testing loss (Appendix B) reduces as the training sample increases. This asymptotic
behavior suggests that GPSE can further benefit from the increasing amount of training data.

The choice of GPSE pre-training dataset affects its downstream performance minimally We
reevaluate the performance of GPSE on PCQM4Mv2 and ZINC when trained on several other choices
of molecular graph datasets, including GEOM (Axelrod and Gomez-Bombarelli, 2022), ZINC
250k (Gómez-Bombarelli et al., 2018), PCQM4Mv2 (Hu et al., 2021), and ChEMBL (Gaulton et al.,
2012). On ZINC, GPSE performance is variable across different training datasets (Table F.5). Particu-
larly, training GPSE on ChEMBL and MolPCBA, two largest datasets here, results in much better
performances than using other, relatively smaller datasets. The superior downstream performance
achieved using larger pre-training datasets aligns well with our asymptotic results above, where a
larger amount of training samples results in a more accurate GPSE for capturing PSEs, hence leading
to better downstream performance. However, we did not observe the same performance difference
in the PCQM4Mv2 subset downstream task, indicating that the training size is not always the most
crucial factor for good performance, an observation similar to Sun et al. (2022).

8

Under review as a conference paper at ICLR 2024

Finally, we investigate whether finetuning the GPSE model specifically on the downstream dataset
could further improve its downstream performance (Table F.5). Similar to the above findings, we see
that further fine-tuning GPSE helps in a task-specific manner, generally providing slight improvements
to the ZINC task but less so to the PCQM4Mv2 task. Together, these results of GPSE being minimally
affected by different options of pre-training datasets and further fine-tuning to specific downstream
datasets reemphasize that GPSE learns general and transferable knowledge about various PSEs.

4 DISCUSSION

Why does GPSE improve over precomputed PSEs? Our results demonstrate that GPSE encodings
can improve upon augmenting GNNs with precomputed PSEs in downstream tasks. The fact that
we can recover the target PSEs in pretraining (Table 1) accounts for why we can match the original
PSEs. Why we improve upon them, meanwhile, can be attributed to our joint encoding: Learning to
encode a diverse collection of PSEs leads to a general embedding space that abstracts both local and
global perspectives of the query graph, which are more readily useable by the downstream model
compared to the unprocessed PSEs.

What advantages does GPSE bring over traditional SSL pre-training? In addition to being less
prone to negative transfer and having competitive performance (Table 4), GPSE provides a few more
advantages over traditional SSL pre-training methods: (1) GPSE uses randomly generated features
instead of dataset-specific graph features, thus can be applied to arbitrary graph datasets; (2) GPSE
is only used as a feature extractor and hence does not impose any constraint on the downstream
model. Despite these differences, we emphasize that GPSE can be complementary to traditional
SSL to further enhance the prediction performance, for example, by using GPSE encodings as input
features to the SSL pre-training.

Why is GPSE transferable to OOD data? The transferability of GPSE to OOD data is uncommon
in the graph SSL pre-training literature, particularly for applications with molecular graphs. We
hypothesize that GPSE’s transferability is a consequence of the choice of its predictive self-supervision
tasks, that contain a mixture of both local and global intrinsic graph information. This encourages
GPSE to capture global invariances using local information, hence allowing it to extract valuable
representations on graphs that are different in sizes and connectivity from the training graphs.

When does GPSE help, and when does it not? GPSE provides essential information to the model
when the downstream task requires positional or structural information of the graph or better node
identifiability in general, which is typically the case for molecular property predictions (Hu et al.,
2020b). Conversely, for downstream tasks that do not rely on such information, e.g. protein function
prediction using the protein interaction network (Table 6), the benefits from GPSE are not as apparent.

5 CONCLUSION

We have introduced the GPSE, a unifying graph positional and structural encoder for augmenting any
graph learning dataset while being applicable to all graph Transformers and message-passing GNN
models. GPSE extracts rich node encodings by learning to predict a diverse collection of predefined
PSEs in the initial self-supervised training phase on a set of unattributed graphs. We demonstrated a
superior performance of GPSE encodings over the explicitly constructed PSEs on a variety of graph
learning benchmarks. Furthermore, GPSE showed great transferability across diverse benchmarking
datasets and even achieved a new SOTA performance on the Peptides-struct long-range benchmark,
whose graph structures are significantly different from those in the MolPCBA dataset, that was used
to train the GPSE. Our study opens up exciting opportunities for learning a graph encoder as a unified
PSE to augment GNN models, and we hope our work will motivate future studies toward learning
even more powerful graph PSE encoders to advance graph analysis.

Limitations and future directions Despite the effectiveness of our GPSE model design choices, it is
currently prohibitively large to be trained on graph datasets with over one million graphs efficiently.
As GPSE asymptotically achieves perfect PSE recovery, it is a promising future direction to make
GPSE more efficient and thus allow it to be trained on billion scale molecular graph datasets (Patel
et al., 2020; Irwin et al., 2020).

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In International Joint Conference on
Artificial Intelligence, 2021.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021.

Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
for property prediction and molecular generation. Scientific Data, 9(1):185, 2022.

Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva.
The logical expressiveness of graph neural networks. In International Conference on Learning
Representations, 2020.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv:1806.01261, 2018.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and Lehman go cellular: CW networks. Advances in Neural
Information Processing Systems, 34:2625–2640, 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022.

Xavier Bresson and Thomas Laurent. Residual Gated Graph ConvNets. arXiv:1711.07553, 2017.

Xavier Bresson and Thomas Laurent. Residual Gated Graph ConvNets, April 2018.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are Graph Attention Networks? In
International Conference on Learning Representations, 2022.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pages 3469–3489.
PMLR, 2022.

Lenore Cowen, Trey Ideker, Benjamin J Raphael, and Roded Sharan. Network propagation: a
universal amplifier of genetic associations. Nature Reviews Genetics, 18(9):551–562, 2017.

Chris HQ Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst D Simon. A min-max cut
algorithm for graph partitioning and data clustering. In Proceedings 2001 IEEE international
conference on data mining, pages 107–114. IEEE, 2001.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 23
(43):1–48, 2022a.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022b.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022c.

10

Under review as a conference paper at ICLR 2024

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds, 2019.

Robin Forman. Bochner’s method for cell complexes and combinatorial ricci curvature. Discrete and
Computational Geometry, 29(3):323–374, 2003.

Martin Fürer. On the power of combinatorial and spectral invariants. Linear algebra and its
applications, 432(9):2373–2380, 2010.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2012.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pages
1263–1272, 2017.

Jhony H Giraldo, Fragkiskos D Malliaros, and Thierry Bouwmans. Understanding the relationship
between over-smoothing and over-squashing in graph neural networks. arXiv:2212.02374, 2022.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs.
In International conference on machine learning, pages 2434–2444. PMLR, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. In Bulletin of the IEEE Computer Society Technical Committee on Data Engineering.
arXiv:1709.05584, 2017b.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of ViT/MLP-Mixer to graphs. arXiv:2212.13350, 2022.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 594–604, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. 34th
Conference on Neural Information Processing Systems, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations, 2020b.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-LSC:
A large-scale challenge for machine learning on graphs. In 35th Conference on Neural Information
Processing Systems: Datasets and Benchmarks Track, 2021.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757–1768, 2012.

John J Irwin, Khanh G Tang, Jennifer Young, Chinzorig Dandarchuluun, Benjamin R Wong,
Munkhzul Khurelbaatar, Yurii S Moroz, John Mayfield, and Roger A Sayle. Zinc20—a free
ultralarge-scale chemical database for ligand discovery. Journal of chemical information and
modeling, 60(12):6065–6073, 2020.

11

Under review as a conference paper at ICLR 2024

Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, and Yangyong Zhu. Sub-graph
contrast for scalable self-supervised graph representation learning. In 2020 IEEE international
conference on data mining (ICDM), pages 222–231. IEEE, 2020.

Charilaos I Kanatsoulis and Alejandro Ribeiro. Graph neural networks are more powerful than we
think. arXiv preprint arXiv:2205.09801, 2022.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. In Bayesian Deep Learning
Workshop (NIPS 2016), 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs go as deep
as CNNs? In Proceedings of the IEEE/CVF international conference on computer vision, pages
9267–9276, 2019.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

Shuangli Li, Jingbo Zhou, Tong Xu, Dejing Dou, and Hui Xiong. GeomGCL: Geometric graph
contrastive learning for molecular property prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 4541–4549, 2022.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
Jegelka. Sign and basis invariant networks for spectral graph representation learning. arXiv
preprint arXiv:2202.13013, 2022.

Renming Liu, Semih Cantürk, Frederik Wenkel, Sarah McGuire, Xinyi Wang, Anna Little, Leslie
O’Bray, Michael Perlmutter, Bastian Rieck, Matthew Hirn, et al. Taxonomy of benchmarks in
graph representation learning. In Learning on Graphs Conference, pages 6–1. PMLR, 2022a.

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip. Graph self-
supervised learning: A survey. IEEE Transactions on Knowledge and Data Engineering, 35(6):
5879–5900, 2022b.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. GraphiT: Encoding graph
structure in transformers. CoRR, abs/2106.05667, 2021.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In International Conference on Machine Learning, pages 4663–4673.
PMLR, 2019.

Maho Nakata and Tomomi Shimazaki. Pubchemqc project: a large-scale first-principles electronic
structure database for data-driven chemistry. Journal of chemical information and modeling, 57(6):
1300–1308, 2017.

Khang Nguyen, Tan Nguyen, Nhat Ho, Khuong Nguyen, Hieu Nong, and Vinh Nguyen. Revisiting
over-smoothing and over-squashing using Ollivier-Ricci curvature. arXiv:2211.15779, 2022.

Yann Ollivier. Ricci curvature of Markov chains on metric spaces. Journal of Functional Analysis,
256(3):810–864, 2009. ISSN 0022-1236.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2020.

Hitesh Patel, Wolf-Dietrich Ihlenfeldt, Philip N Judson, Yurii S Moroz, Yuri Pevzner, Megan L Peach,
Victorien Delannée, Nadya I Tarasova, and Marc C Nicklaus. Savi, in silico generation of billions
of easily synthesizable compounds through expert-system type rules. Scientific data, 7(1):384,
2020.

12

Under review as a conference paper at ICLR 2024

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020a.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convo-
lutional networks on node classification. In International Conference on Learning Representations,
2020b.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM),
pages 333–341. SIAM, 2021.

Vighnesh Shiv and Chris Quirk. Novel positional encodings to enable tree-based transformers.
Advances in neural information processing systems, 32, 2019.

Sandeep Singh, Kumardeep Chaudhary, Sandeep Kumar Dhanda, Sherry Bhalla, Salman Sadullah
Usmani, Ankur Gautam, Abhishek Tuknait, Piyush Agrawal, Deepika Mathur, and Gajendra PS
Raghava. Satpdb: a database of structurally annotated therapeutic peptides. Nucleic acids research,
44(D1):D1119–D1126, 2016.

Daniel Spielman. Spectral graph theory, volume 18. CRC Press Boca Raton, Florida, 2012.

R.P. Sreejith, Karthikeyan Mohanraj, Jürgen Jost, Emil Saucan, and Areejit Samal. Forman curvature
for complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2016(6):063206,
2016.

Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan
Günnemann, and Pietro Liò. 3D Infomax improves GNNs for molecular property prediction. In
International Conference on Machine Learning, pages 20479–20502. PMLR, 2022.

Ruoxi Sun, Hanjun Dai, and Adams Wei Yu. Does GNN pretraining help molecular representation?
Advances in Neural Information Processing Systems, 35:12096–12109, 2022.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph learning with 1D convolutions
on random walks. arXiv:2102.08786, 2021.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
2018.

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep Graph Infomax. In International Conference on Learning Representations, 2019.

Hanchen Wang, Jean Kaddour, Shengchao Liu, Jian Tang, Matt Kusner, Joan Lasenby, and Qi Liu.
Evaluating self-supervised learning for molecular graph embeddings. arXiv:2206.08005, 2022a.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding for
more powerful graph neural networks. In International Conference on Learning Representations,
2022b.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. MoleculeNet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

13

Under review as a conference paper at ICLR 2024

Jun Xia, Yanqiao Zhu, Yuanqi Du, and Stan Z Li. Pre-training graph neural networks for molecular
representations: retrospect and prospect. In ICML 2022 2nd AI for Science Workshop, 2022.

Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised learning
of graph neural networks: A unified review. IEEE transactions on pattern analysis and machine
intelligence, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. Self-supervised graph-level
representation learning with local and global structure. In International Conference on Machine
Learning, pages 11548–11558. PMLR, 2021.

Hai-Cheng Yi, Zhu-Hong You, De-Shuang Huang, and Chee Keong Kwoh. Graph representation
learning in bioinformatics: trends, methods and applications. Briefings in Bioinformatics, 23(1):
bbab340, 2022.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems, 2021.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances in
Neural Information Processing Systems, 33:17009–17021, 2020a.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812–5823, 2020b.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN
with local structure awareness. In International Conference on Learning Representations, 2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in Neural
Information Processing Systems, 33:7793–7804, 2020.

14

Under review as a conference paper at ICLR 2024

A POSITIONAL AND STRUCTURAL ENCODING TASKS DETAIL

We consider a simple undirected and unweighted graph G = (V,E) as a tuple of the vertex set V
and the edge set E, with no node or edge features. We denote the number of nodes and the number of
edges as n = |V | and m = |E|, respectively. Then, the corresponding adjacency matrix representing
the graph G is a symmetric matrix M ∈ {0, 1}n×n, where Mij = 1 if (vi, vj) ∈ E and 0 otherwise.
The graph Laplacian L is defined as

L = D−M (A.1)

where D ∈ Nn×n is a diagonal matrix whose entries correspond to the degree of a vertex in the
graph, Dii = deg(vi) = |N (vi)| = |{u|(vi, u) ∈ E}|.
The graph Laplacian is a real symmetric matrix, thus having a full eigendecomposition as

L = UΛU⊤ (A.2)

where, Λii = λi and U[:,i] = ui are the ith eigenvalue and eigenvector (an eigenpair) of the graph
Laplacian. We follow the convention of indexing the eigenpair from the smallest to the largest
eigenvalue, i.e., 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. We further denote Û (and analogously the subdiagonal
matrix Λ̂) as the matrix of Laplacian eigenvectors corresponding to non-trivial eigenvalues.

Û = U[:,{i|λi ̸=0}] (A.3)

Finally, we denote the (ℓ2) normalization operation as normalize(x) := x
∥x∥2

Laplacian eigenvector positional encodings (LapPE) LapPE is defined as the absolute value of
the ℓ2 normalized eigenvectors associated with non-trivial eigenvalues. We use the first four LapPE
to train GPSE by default.

LapPEi = |normalize(Û[:,i])| (A.4)

The absolute value operation is needed to counter the sign ambiguity of the graph Laplacian eigen-
vectors, a known issue to many previous works that use the Laplacian eigenvectors to augment the
models Dwivedi et al. (2022a); Lim et al. (2022). However, common strategies to overcome the sign
ambiguity issue such as random sign flipping Dwivedi et al. (2022a) or constructing sign invariant
function Lim et al. (2022) do not resolve our issue here as we are trying to recover the PEs rather
than using them as features. Investigating the strategies for learning invariant representations for
eigenvectors could be an interesting venue for future studies.

We additionally use the eigenvalues as a graph-level regression task for training GPSE.

Electrostatic potential positional encodings (ElstaticPE) The pseudoinverse of the graph Lapla-
cian L† has a physical interpretation that closely relates to the electrostatic potential between two
nodes in the graph G when each node is treated as a charged particle Kreuzer et al. (2021) and can
be computed as

L† = UΛ†U⊤ = ÛΛ̂−1Û⊤ (A.5)

We further subtract each column of L† by its diagonal value to set zero ground state such that each
node’s potential on itself is 0.

Q = L† − diag(L†)1n (A.6)

The final ElstaticPE is a collection of aggregated values for each node, that summarizes the electro-
static interaction of a node with all other nodes :

15

Under review as a conference paper at ICLR 2024

1. Minimum potential from vi to vj : ElstaticPE1(i) = min(Q[:,i])

2. Average potential from vi to vj : ElstaticPE2(i) = mean(Q[:,i])

3. Standard deviation of potential from vi to vj : ElstaticPE3(i) = std(Q[:,i])

4. Minimum potential from vj to vi: ElstaticPE4(i) = min(Q[i,:])

5. Standard deviation of potential from vj to vi: ElstaticPE5(i) = std(Q[i,:])

6. Average interaction on direct neighbors: ElstaticPE6(i) = mean
(
(MQ)[:,i]

)
7. Average interaction from direct neighbors: ElstaticPE7(i) = mean

(
(MQ)[i,:]

)
Random walk structural encodings (RWSE) Define the random walk matrix as the row-
normalized adjacency matrix P := D−1M. Then Pi,j corresponds to the one-step transition
probability from vi to vj .

The kth RWSE Dwivedi et al. (2022b) is defined as the probability of returning back to the starting
state of a random walk after exactly k step of random walks:

RWSEk = diag(Pk) (A.7)

Heat kernel diagonal structural encodings (HKdiagSE)

HKdiagSEk =
∑

i:λi ̸=0

e−kλinormalize(U[:,i])
2 (A.8)

Cycle counting structural encodings (CycleSE) CycleSE encodes global structural information
of the graph by counting the number of k-cycles in the graph. For example, a 2-cycle corresponds to
an undirected edge, and a 3-cycle corresponds to a triangle.

CycleSEk = |{Cycles of length k}| (A.9)

CycleSE is used as a graph-level regression task for training GPSE.

Normalizing PSEs tasks Finally, we perform graph-wide normalization preprocessing step on
each node-level PSE task so that they have zero mean and unit standard deviation. This normalization
step ensures all PSE targets are on the same scale, making the training process more stable.

16

Under review as a conference paper at ICLR 2024

B IMPLEMENTATION DETAILS

B.1 GPSE COMPUTATION

The GPSE model is built using a GatedGCN backbone (Bresson and Laurent, 2018) with PSE-specific
MLP decoding heads. GPSE uses random noise drawn from a 20-dimensional standard Gaussian as
the input node features. The random features are then projected to the match the hidden dimension, d,
of the model, resulting in the hidden representations of the first layer:

h
(0)
i = ReLU

(
xiWinp

)
(B.1)

where h(0)
i ∈ R1×d indicates the hidden feature of node i in the first layer, Winp ∈ R20×d is the linear

projection layer, and xi ∼ N (0, I) ∈ R1×20 is the random noise. Next, the model enters L layers of
GatedGCN convolution layers, where each layer is define as:

h
(l+1)
i = ReLU

(
h
(l)
i W

(l)
1 +

∑
j∈N (i)

σ
(
h
(l)
i W

(l)
2 + h

(l)
j W

(l)
3

)
⊙
(
h
(l)
j W

(l)
4

))
(B.2)

where W (l)
1 ,W

(l)
2 ,W

(l)
3 ,W

(l)
4 ∈ Rd×d are learnable parameters for layer l, σ is the sigmoid function,

and ⊙ is the elementwise multiplication operator. Finally, the processed hidden feature h
(L)
i is

decoded via a two-layer MLP to predict the kth the node-level PSEs, such as LapPE and RWSE.

ŷi,k = ReLU
(
h
(L)
i Wk,1

)
Wk,2 (B.3)

where Wk,1 ∈ Rd×d and Wk,2 ∈ Rd×1 are learnable parameters for projecting the final hidden
representation to the PSE prediction. For graph-level PSEs, such as CycleSE, we use sum-pooling to
reduce the hidden representations to graph-level first, and similarly apply a two-layer MLP afterwards.
Once trained, we apply GPSE to extract h(L) for the graphs in the downstream dataset and use it
in-place of the traditional PSEs. We set L to 20, and d to 512 for our final GPSE architecture. We
also present an ablation study on various architectural choices to demonstrate the effectiveness of our
final model setting (Table F.1).

B.2 GPSE TRAINING LOSS FUNCTION

We use a combination of ℓ1 loss and cosine similarity loss for training GPSE using the PSE self-
supervision defined in Appendix A. More specifically, given M number of graphs, and K number of
target PSE tasks, we compute the loss as follows:

L =

K∑
k=1

M∑
i=1

[(|V (Gi)|∑
j=1

∣∣∣y(i)j,k − ŷ
(i)
j,k

∣∣∣)+

(
1−

|V (Gi)|∑
j=1

ỹ
(i)
j,k

˜̂y
(i)
j,k

)]
(B.4)

where y
(i)
j,k, ŷ(i)j,k are the true and predicted values of the jth node of ith graph for the kth PSE task. ỹ

and ˜̂y are the ℓ2 normalized version of y and ŷ, respectively. Note that in practice, we compute the
loss over mini-batches of graphs rather than over all of the training graphs.

B.3 COMPUTE ENVIRONMENT AND RESOURCES

Our codebase is based on GraphGPS Rampášek et al. (2022), which uses PyG and its GraphGym
module Fey and Lenssen (2019); You et al. (2020a). All experiments are run using Tesla V100 GPUs
(32GB), with varying numbers of CPUs from 4 to 8 and up to 48GB of memory (except for two
cases: (i) 80GB of memory is needed when performing downstream evaluation on MolPCBA, and
(ii) 128GB is needed when pre-training GPSE on the ChEMBL dataset).

We recorded the run time for both the GPSE pre-computation and the downstream evaluation training
loop using Python’s time.perf_counter() function and reported them in Table B.1, B.2, B.3. We
did not report the GPSE pre-computation time for other downstream benchmarks since they are all
within five minutes.

17

Under review as a conference paper at ICLR 2024

B.4 HYPERPARAMETERS

B.4.1 DOWNSTREAM TASKS

In most of the downstream task hyperparameter searches, we followed the best settings from previous
studies Rampášek et al. (2022), and primarily tuned the GPSE encoding parameters, including the
GPSE processing encoder type, the encoded dimensions, the input and output dropout rate of the
processing encoder, and the application of batch normalization to the input GPSE encodings. For
completeness, we list all hyperparameters for our main benchmarking studies in Table B.1, B.2.

Table B.1: GPS+GPSE hyperparameters for molecular property prediction benchmarks

Hyperparameter ZINC (subset) PCQM4Mv2 (subset) MolHIV MolPCBA

GPS Layers 10 5 10 5
Hidden dim 64 304 64 384
GPS-MPNN GINE GatedGCN GatedGCN GatedGCN
GPS-SelfAttn – Transformer Transformer Transformer
Heads 4 4 4 4
Dropout 0.00 0.00 0.05 0.20
Attention dropout 0.50 0.50 0.50 0.50
Graph pooling mean mean mean mean

PE dim 32 128 20 48
PE encoder 2-Layer MLP 2-Layer MLP Linear Linear
Input dropout 0.50 0.50 0.30 0.30
Output dropout 0.00 0.20 0.10 0.10
Batchnorm yes no yes yes

Batch size 32 256 32 512
Learning rate 0.001 0.0002 0.0001 0.0005
Epochs 2000 100 100 100
Warmup epochs 50 5 5 5
Weight decay 1.00e-5 1.00e-6 1.00e-5 1.00e-5

Parameters 292,513 6,297,345 573,025 9,765,264
PE precompute 2 min 1.5 hr 8 min 1.3 hr
Time (epoch/total) 10s/5.78h 102s/2.82h 121s/3.37h 185s/5.15h

MoleculeNet small benchmarks settings We used the default GINE architecture following previous
studies Hu et al. (2020b), which has five hidden layers and 300 hidden dimensions. For all five
benchmarks, we use the same GPSE processing encoder settings as shown in Table B.4a.

CSL & EXP synthetic graph benchmarks settings We follow He et al. (2022) and use GIN Xu
et al. (2019) as the underlying MPNN model, with five hidden layers and 128 dimensions. We use
the same GPSE processing encoder settings for both CSL and EXP as shown in Table B.4b.

18

Under review as a conference paper at ICLR 2024

Table B.2: GPS+GPSE hyperparameters for transferability benchmarks

Hyperparameter Peptides-struct Peptides-func CIFAR10 MNIST

GPS Layers 4 4 3 3
Hidden dim 96 96 52 52
GPS-MPNN GatedGCN GatedGCN GatedGCN GatedGCN
GPS-SelfAttn Transformer Transformer Transformer Transformer
Heads 4 4 4 4
Dropout 0.00 0.00 0.00 0.00
Attention dropout 0.50 0.50 0.50 0.50
Graph pooling mean mean mean mean

PE dim 8 24 8 8
PE encoder Linear 2-Layer MLP 2-Layer MLP Linear
Input dropout 0.10 0.10 0.30 0.50
Output dropout 0.05 0.00 0.00 0.00
Batchnorm yes yes no no

Batch size 128 128 16 16
Learning rate 0.0005 0.0003 0.001 0.001
Epochs 200 200 100 100
Warmup epochs 10 10 5 5
Weight decay 1.00e-4 0 1.00e-5 1.00e-4

Parameters 510,435 529,250 120,886 119,314
PE precompute 3 min 3 min 14 min 16 min
Time (epoch/total) 12s/0.65h 12s/0.67h 88s/2.44h 104s/2.90h

Table B.3: Downstream MPNN hyperparameters for node-level benchmarks.

Hyperparameter arXiv Proteins
MPNN SAGE GATEv2
MPNN Layers 3 3
Hidden dim 256 256
Dropout 0.50 0.00

PE dim 32 32
PE encoder 2-Layer MLP Linear
Input dropout 0.50 0.40
Output dropout 0.20 0.05
Batchnorm no no

Learning rate 0.01 0.01
Epochs 500 1000
Weight decay 0 0

Parameters 534,888 910,448
PE precompute 8 sec 3 min
Time (epoch/total) 0.25s/0.07h 35s/9.40h

19

Under review as a conference paper at ICLR 2024

Table B.4: GPSE processing encoder hyperparameters for MoleculeNet small benchmarks and
synthetic WL graph benchmarks

(a) MoleculeNet small benchmarks settings

Hyperparameter

PE dim 64
PE encoder Linear
Input dropout 0.30
Output dropout 0.10
Batchnorm yes

Learning rate 0.003
Epochs 100
Warmup epochs 5
Weight decay 0

(b) Synthetic WL graph benchmarks settings

Hyperparameter

PE dim 128
PE encoder Linear
Input dropout 0.00
Output dropout 0.00
Batchnorm yes

Learning rate 0.002
Epochs 200
Weight decay 0

20

Under review as a conference paper at ICLR 2024

C THEORY DETAILS

Message-passing GNNs have receptive fields that grow exponentially with the number of layers.
Given two nodes, the influence of one onto the other might become too weak over long graph
distances, hindering the learning task. This phenomenon has been referred to as over squashing Alon
and Yahav (2021). A similar problem also occurs as the number of layers increases, where the nodes’
hidden representations become increasingly similar as the number of layers increase: A phenomenon
commonly referred to as over-smoothing Li et al. (2019).

C.1 RELEVANCE TO GPSE

The over-smoothing and over-squashing problems are essential to overcome to effectively learn the
positional and structural encodings, especially for those that require global views of the graph. For
example, the Laplacian eigenvector corresponding to the first non-trivial eigenvalue, also known as
the Fiedler vector, corresponds to the solution of the graph min-max cut problem Ding et al. (2001).
Intuitively, this problem requires accessing the global view of the entire graph as it, colloquially, aims
to partition the entire graph into two parts with minimal connections.

A straightforward solution to incorporating more global information into the model is by stacking
more message-passing layers to increase the receptive field and thus effectively expose the model to
information beyond the local structure. However, simply stacking more message-passing layers easily
leads to the over-smoothing problem, where the messages of each node become increasingly uniform
as the number of layers increases. Our usage of the gating mechanism, along with residual connection,
effectively mitigates this issue while still exposing the model to more non-local information.

Meanwhile, the model may still have difficulty incorporating global information, even after fixing the
over-smoothing issue and stacking more layers due to over-squashing. Informally, over-squashing
can be understood as the difficulty in losslessly sending messages between two nodes across the
network. This difficulty is primarily because there are only a few possible routes between the two
nodes compared to all other available routes to each of the nodes. We mitigate this problem using
a virtual node that serves as the global information exchange hub to enable global information
exchange, bypassing the “few routes” limitation.

C.2 FORMAL ANALYSIS

Definition 1 (Over-squashing). The squashing of a GNN is measured by the influence of one node on
the features of another which we interpret as the partial derivative

∂h
(r+1)
i

∂xj

for h
(r)
i (x1, ..., xn) the r-th hidden feature at node i, and xj the input feature at node j. If this

quantity converges to 0 as r increases, then the network is said to suffer from over-squashing.

Another common problem with MPNNs is known as over-smoothing. It has often been observed that
MPNNs with many layers produce node features that are very close or even identical, which limits
expressivity and prevents learning. This stems from message-passing being equivalent to a local
smoothing operation; too many smoothing iterations result in all nodes converging to identical states.
Definition 2 (Over-smoothing). The smoothing of a network can be measured by the norm (for
example the ℓ1-norm) of the state difference between neighbors, i.e.∑

(i,j)∈E

|h(r)
i − h

(r)
j |

where the sum is taken over the edges of the graph. If this quantity converges to 0 as r increases, the
network is said to suffer from over-smoothing.

In the following section, we will refer to the relationships between over-squashing and over-smoothing
with graph curvature. There are many versions of graph curvature Forman (2003); Ollivier (2009);
Sreejith et al. (2016); Topping et al. (2022), all closely related. Here we will only consider the
balanced Forman curvature from Topping et al. (2022).

21

Under review as a conference paper at ICLR 2024

Definition 3 (Graph curvature). For any edge (i, j) in a simple, unweighted graph G, its contribution
to graph curvature is given by

Ric(i, j) =
2

di
+

2

dj
−2+|#∆(i, j)|

(
2

max{di, dj}
+

1

min{di, dj}

)
+

γmax

max{di, dj}

(
|#i

□|+ |#j
□|
)

where #i
□ is the number of 4-cycles containing the node i (diagonals not allowed), #i

∆ is the number
of 3-cycles containing i, di is the degree of i and γmax is the maximum over nodes k of the number of
4-cycles that pass through the nodes i, j and k.

It can then be shown that negative curvature causes over squashing Topping et al. (2022); Nguyen
et al. (2022) and positive curvature causes over smoothing Nguyen et al. (2022); Giraldo et al. (2022).

Next, we show that rewiring the graph by adding a virtual node increases the balanced Forman
curvature of the graph at most edges.

Proposition 1. The balanced Forman Curvature is increased for most edges when adding a virtual
node such that

Ric(i, j)− Ric+VN(i, j) ≤ 1

(di − δ)2 + di − δ
− 2δ

d2i + di
,

where di is the degree of the most connected node of the edge (i, j) and δ = di − dj .

Proof. #□ is invariant when adding virtual node because it automatically creates diagonals in the
new 4-cycles. Therefore, γmax is also invariant. As for di, dj and #∆, they are all increased by 1:

Ric(i, j)−Ric+(i, j) ≈ 2

(
1

di
+

1

dj
− 1

di + 1
− 1

dj + 1

)
+|#∆(i, j)|

(
2

max{di, dj}
+

1

min{di, dj}

)

−
(
|#∆(i, j)|+ 1)(

2

max{di, dj}+ 1
+

1

min{di, dj}+ 1

)
We can let di ≥ dj without loss of generality. The inequality is not influenced by the introduction of
a virtual node:

Ric(i, j)−Ric+(i, j) ≈ 2

(
1

d2i + di
+

1

d2j + dj

)
+|#∆(i, j)|

(
2

di
+

1

dj

)
−(|#∆(i, j)|+1)

(
2

di + 1
+

1

dj + 1

)

Ric(i, j)−Ric+(i, j) ≈ 2

(
1

d2i + di
+

1

d2j + dj

)
+|#∆(i, j)|

(
2

d2i + di
+

1

d2j + dj

)
−
(

2

di + 1
+

1

dj + 1

)
The number of triangles is upper bounded by the least connected node’s degree minus 1, |#∆| ≤
dj − 1. We then have:

Ric(i, j)− Ric+(i, j) ≤ 2

(
1

d2i + di
+

1

d2j + dj

)
+ (dj − 1)

(
2

d2i + di
+

1

d2j + dj

)
−
(

2

di + 1
+

1

dj + 1

)

= −2(di − 1)

d2i + di
− dj − 2

d2j + dj
+ (dj − 1)

(
2

d2i + di
+

1

d2j + dj

)

= −2(di − 1− dj + 1)

d2i + di
− dj − 2− dj + 1

d2j + dj

=
1

d2j + dj
− 2(di − dj)

d2i + di

Let’s call the difference between the two nodes’ degrees δ. We get:

Ric(i, j)− Ric+(i, j) ≤ 1

(di − δ)2 + di − δ
− 2δ

d2i + di

22

Under review as a conference paper at ICLR 2024

This upper bound gives us a good insight on the general behavior of the curvature when adding a
virtual node.

First case: The upper bound of the difference is negative for δ ̸= 0 and dj ̸= 1. This means that for
the most cases, the addition of the virtual node clearly increases the curvature.

Second case: The upper bound is positive for dj = 1 (ie. di − δ = 1). However, the isolated edges
are not responsible for bottleneckness. It is to be noted that such isolated edges never have negative
curvature, neither before nor after the addition of the virtual node. This is a direct consequence of the
curvature definition.

Third case: The upper bound is positive for δ = 0. This comes as a surprise and might need futur
work. It is to be noted that the upper bound tends toward 0 pretty quickly as (as 1

d2
i

), thus, by the
nature of the upper bound, the addition of the virtual node should still increase curvature for most of
the cases where δ = 0.

Note that we didn’t include the 4-cycle term, because this term is inversely proportional to the number
of triangles, and is therefore equal to 0 when the number of triangle is maximal. Otherwise, as the
number of triangle decreases, the upper bound on the 4-cycle term increases, in a slower fashion.
Thus, the upper bound still holds.

23

Under review as a conference paper at ICLR 2024

D DATASETS

Table D.1: Task information for datasets used in transferability experiments.

Dataset Num. Num. Num. Pred. Pred. Num. Metricgraphs nodes edges level task tasks

ZINC-subset 12,000 23.15 24.92 graph reg. 1 MAE
CIFAR10 60,000 117.63 469.10 graph class. (10-way) 1 ACC
MNIST 70,000 70.57 281.65 graph class. (10-way) 1 ACC
MolHIV 41,127 25.51 27.46 graph class. (binary) 1 AUROC
MolPCBA 437,929 25.97 28.11 graph class. (binary) 128 AP
MolBBBP 2,039 24.06 25.95 graph class. (binary) 1 AUROC
MolBACE 1,513 34.09 36.86 graph class. (binary) 1 AUROC
MolTox21 7,831 18.57 19.29 graph class. (binary) 21 AUROC
MolToxCast 8,576 18.78 19.26 graph class. (binary) 617 AUROC
MolSIDER 2,039 33.64 35.36 graph class. (binary) 27 AUROC
PCQM4Mv2-subset 446,405 14.15 14.58 graph reg. 1 MAE
Peptides-func 15,535 150.94 153.65 graph class. (binary) 10 AP
Peptides-struct 15,535 150.94 153.65 graph reg. 11 MAE
CSL 150 41.00 82.00 graph class. (10-way) 1 ACC
EXP 1,200 48.70 60.44 graph class. (binary) 1 ACC
arXiv 1 169K 40M node class. (40-way) 1 ACC
Proteins 1 133K 1.2M node class. (binary) 112 AUROC

Table D.2: Classical graph properties of graph-level datasets used in transferability experiments.

Num. Num.
Density Connectivity Diameter

Approx.
Centrality

Cluster. Num.
nodes edges max clique coeff. triangles

ZINC-subset 23.15 24.92 0.101 1.00 12.47 2.06 0.101 0.006 0.06
CIFAR10 117.63 469.10 0.068 3.56 9.14 5.65 0.068 0.454 502.66
MNIST 70.57 281.65 0.116 3.71 6.83 5.56 0.116 0.478 316.65
MolHIV 25.51 27.46 0.103 0.927 11.06 2.02 0.103 0.002 0.03
MolPCBA 25.97 28.11 0.093 0.998 13.56 2.02 0.093 0.002 0.02
MolBBBP 24.06 25.95 0.114 0.950 10.75 2.03 0.114 0.003 0.03
MolBACE 34.09 36.86 0.070 1.00 15.22 2.10 0.070 0.007 0.10
MolTox21 18.57 19.29 0.157 0.976 9.37 2.02 0.159 0.003 0.03
MolToxCast 18.78 19.26 0.154 0.803 7.57 2.02 0.154 0.003 0.03
MolSIDER 33.64 35.36 0.103 0.856 12.45 2.02 0.120 0.004 0.04
PCQM4Mv2-subset 14.15 14.58 0.163 1.00 7.95 2.06 0.163 0.010 0.07
Peptides-func 150.94 153.65 0.022 0.990 56.42 2.00 0.022 0.000 0.001
Peptides-struct 150.94 153.65 0.022 0.990 56.42 2.00 0.022 0.000 0.001
CSL 41.00 82.00 0.100 3.98 6.00 2.10 0.100 0.050 4.10
EXP 48.70 60.44 0.054 0.00 1.00 2.00 0.054 0.000 0.00

D.1 PRE-TRAINING DATASETS

MolPCBA Hu et al. (2020a) (MIT License) contains 400K small molecules derived from the
MoleculeNet benchmark Wu et al. (2018). There are 323,555 unique molecular graphs in this dataset.

ZINC Gómez-Bombarelli et al. (2018) (Apache 2.0 License) contains 250K drug-like commercially
available small molecules sampled from the full ZINC Irwin et al. (2012) database. There are
219,2384 unique molecular graphs in this dataset.

GEOM Axelrod and Gomez-Bombarelli (2022) (CC0 1.0 license) consists of 300K drug-like small
molecules. There are 169,925 unique molecular graphs in this dataset.

ChEMBL Gaulton et al. (2012)1 (CC BY-SA 3.0 License) consists of 1.4M drug-like bioactive small
molecules. There are 970,963 unique molecular graphs in this dataset.

PCQM4Mv2 Hu et al. (2021) (CC BY 4.0 License) contains 3.4M small molecules from the
PubChemQC Nakata and Shimazaki (2017) project. The ground-state electronic structures of these

1We used release 32 of ChEMBL: http://doi.org/10.6019/CHEMBL.database.32

24

Under review as a conference paper at ICLR 2024

molecules were calculated using Density Functional Theory. There are 273,920 unique molecular
graphs in this dataset.

D.1.1 EXTRACTING UNIQUE MOLECULAR GRAPH STRUCTURES

To extract unique molecular graphs, we use RDKit with the following steps:

1. For each molecule, convert all its heavy atoms to carbon and all its bonds to single-bond.
2. Convert the modified molecules into a list of SMILES strings.
3. Reduce the list to unique SMILES strings using the set() operation in Python.

D.2 DOWNSTREAM EVALUATION DATASETS

ZINC-subset Dwivedi et al. (2022a) is a 12K subset of the ZINC250K dataset Gómez-Bombarelli
et al. (2018). Each graph is a molecule whose nodes are atoms (28 possible types) and whose edges
are chemical bonds (3 possible types). The goal is to regress the constrained solubility Dwivedi et al.
(2022a) (logP) of the molecules. This dataset comes with a pre-defined split with 10K training, 1K
validation, and 1K testing samples.

MolHIV & MolPCBA Hu et al. (2020a) (MIT License) are molecular property prediction datasets
derived from the MoleculeNet benchmarks Wu et al. (2018). Each graph represents a molecule whose
nodes are atoms (9-dimensional features containing atom type, chirality, etc.) and whose edges are
chemical bonds. The goal for MolHIV is to predict molecules’ ability to inhibit HIV virus replication
as a binary classification task. On the other hand, MolPCBA consists of 128 binary classification tasks
that are derived from high-throughput bioassay measurements. Both datasets come with pre-defined
splits based on the scaffold splitting procedure Hu et al. (2020b).

PCQM4Mv2-subset Hu et al. (2021); Rampášek et al. (2022) (CC BY 4.0 License) is a subsampled
version of PCQM4Mv2 Hu et al. (2021) using random 10% for training, 33% for validation, and
the original validatation set for testing. The molecular graphs are processed the same way as for
MolHIV and MolPCBA, where each node is an atom, and each edge is a chemical bond. The task is
to regress the HOMO-LUMO energy gap (in electronvolt) given the molecular graph. We note that
the subsetted splits used in this work could be different from those used in Rampášek et al. (2022) as
the numpy random generator may not be persistent across numpy versions2. To enable reproducibility,
we also make our split indices available for future studies to benchmark against.

MoleculeNet small datasets Hu et al. (2020b) (MIT License) We follow Sun et al. (2022) and use
the selection of five small molecular property prediction datasets from the MoleculeNet benchmarks,
including BBBP, BACE, Tox21, ToxCast, and SIDER. Each graph is a molecule, and it is processed
the same way as for MolHIV and MolPCBA. All these datasets adopt the scaffold splitting strategy
that is similarly used on MolHIV and MolPCBA.

Peptides-func & Peptides-struct Dwivedi et al. (2022c) (CC BY-NC 4.0 License) both contain the
same 16K peptide graphs retrieved from SAT-Pdb Singh et al. (2016), whose nodes are residues. The
two datasets differ in the graph-level tasks associated with them. Peptides-func aims to predict the
functions of each peptide (10-way multilabel classification), while Peptides-struct aims to regress 11
structural properties of each peptide. Splitting is done via meta-class holdout based on the original
labels of the peptides.

CIFAR10 & MNIST Dwivedi et al. (2022a) (CC BY-SA 3.0 and MIT License) are derived from
the CIFAR10 and MNIST image classification benchmarks by converting the images into SLIC
superpixel graphs with 8 nearest neighbors for each node (superpixel). The 10-class classification
and the splitting follow the original benchmarks (MNIST 55K/5K/10K, CIFAR10 45K/5K/10K
train/validation/test splits).

CSL Dwivedi et al. (2022a) (MIT License) contains 150 graphs that are known as circular skip-link
graphs Murphy et al. (2019). The goal is to classify each graph into one of ten isomorphism classes.
The dataset is class-balanced, where each isomorphism class contains 15 graph instances. Splitting is
done by stratified five-fold cross-validation.

2https://stackoverflow.com/a/71790820/12519564

25

https://stackoverflow.com/a/71790820/12519564

Under review as a conference paper at ICLR 2024

EXP Abboud et al. (2021) (unknown License) contains 600 pairs of graphs (1,200 graphs in total)
that cannot be distinguished by 1&2-WL tests. The goal is to classify each graph into one of two
isomorphism classes. Splitting is done by stratified five-fold cross-validation.

arXiv (ODC-BY License) Hu et al. (2020a) is a directed citation graph whose nodes are arXiv papers
and whose edges are citations. Each node is featured by a 128-dimensional embedding obtained
by averaging over the word embeddings of the paper’s title and abstract. The goal is to classify the
papers (nodes) into one of 40 subject areas of arXiv CS papers. Papers published before 2017 are
used for training, while the remaining papers that are published before and after 2019 are used for
validation and testing.

Proteins (CC0 License) Hu et al. (2020a) is an undirected and weighted graph representing the
interactions (edges) between proteins (nodes) obtained from eight species. Each edge has eight
channels, corresponding to different types of protein interaction evidence. The task is to predict
proteins’ functions (112-way multilabel classification). The splitting is done by holding out proteins
that correspond to specific species.

26

Under review as a conference paper at ICLR 2024

E VISUALIZATION OF GPSE ENCODINGS ON 1-WL INDISTINGUISHABLE
GRAPH PAIRS

Definition 4 (Graph isomorphism). Two graphs G and H are isomorphic if there exists a bijection f
between their vertex sets

f : V (G) → V (H)

s.t. any two vertices u, v ∈ G are adjacent in G if and only if f(u), f(v) ∈ H are adjacent in H .

0.125 0.100 0.075 0.050 0.025 0.000 0.025 0.050
PCA 1

0.02

0.04

0.06

0.08

0.10

P
C

A
2

HEXAGON, random features
PENTAGON, random features

0.125 0.100 0.075 0.050 0.025 0.000 0.025 0.050
PCA 1

0.02

0.04

0.06

0.08

0.10

P
C

A
2

HEXAGON, 1s
PENTAGON, 1s

Figure E.1: Visualization of GPSE encodings on 1-WL indistinguishable graph pairs. Applying GPSE
with randomly initialized node features results in distinct encodings for HEXAGON (indigo) and
PENTAGON (orange) graphs (left). The same graphs cannot be distinguished by our encoder when
the node features are set to 1 for each node (right).

The 1-Weisfeiler-Leman (WL) test is an algorithm akin to message-passing that is commonly used
to detect non-isomorphic graphs. It can also be viewed as a measure of expressivity: A GNN that
can distinguish all pairs of non-isomorphic graphs that can also be distinguished by the 1-WL test is
called “1-WL expressive”.

In Section 3.3, we discussed that our GPSE is expressive enough to discern graphs that are 1-WL
indistinguishable, a well-known limitation of MPNNs Xu et al. (2019). However, Sato et al. (2021)
show that the 1-WL expressivity limitation exists only when each node employs identical features;
appending random features to the nodes is sufficient to achieve expressivity that goes beyond 1-WL.
GPSE leverages precisely this property by replacing the node features by vectors drawn from a
standard Normal distribution, such that no two graphs have identical node features.

27

Under review as a conference paper at ICLR 2024

Here, we demonstrate the importance of these random node features empirically. Consider the
following two graphs displayed in Fig. E.1: One resembles two hexagons sharing an edge (referred to
as HEXAGON), while the other resembles two pentagons connected by an edge (PENTAGON). These
are a well-known pair of non-isomorphic but 1-WL indistinguishable graphs. Non-isomorphism
implies that these graphs do not share the same connectivity (see Def. 4 for a formal definition). The
WL test also has its limitations: While two graphs that are deemed non-isomorphic are guaranteed to
be so, there are cases where it cannot detect non-isomorphism as in the HEXAGON-PENTAGON
case.

In our experiment, we create two sets of graphs, both consisting of 20 copies of HEXAGON and
PENTAGON graphs each. The two sets are identical except one has all node features set to 1,
while the other has features drawn from a random Normal assigned to each node, thus mirroring the
actual GPSE training pipeline. We then apply an already trained GPSE encoder (trained on ZINC)
to both sets and for each graph we generate aggregated (graph-level) encodings by averaging the
obtained 512-dimensional node encodings from GPSE. For visualization purposes, we then apply
dimensionality reduction to these graph-level encodings by first fitting a 2-dimensional PCA to GPSE
encodings generated on ZINC, and then applying it to the encodings from the synthetic data.

As shown in Fig. E.1, applying GPSE to graphs with randomly initialized node features results in
distinct encodings for HEXAGON (indigo) and PENTAGON (orange) graphs (Fig. E.1, left). The
same graphs cannot be distinguished by our encoder when the node features are 1 for each node
(Fig. E.1, right). The same result is observed when analysing the graph-level PCA embeddings, that
can clearly separate the two types of graphs when random node features are used by GPSE, but not
otherwise. This underlines the importance of randomized node features in GPSE.

28

Under review as a conference paper at ICLR 2024

F ADDITIONAL RESULTS

3.0 2.5 2.0 1.5 1.0 0.5
Log training ratio

4.25

4.00

3.75

3.50

3.25

3.00

2.75

Lo
g

te
st

 lo
ss

Figure F.1: Training size scaling law for GPSE on MolPCBA.

Table F.1: GPSE architecture ablation. Held-out positional and structural encodings prediction
performance when trained on 5% MolPCBA (R2 scores ↑). Ablated settings of the GPSE architecture
are listed and compared to the full GPSE settings. The performance of the full GPSE architecture is
shown in the bottom row.

Ablated setting GPSE default Overall ElstaticPE LapPE RWSE HKdiagSE EigValSE CycleSE

10 layers 20 layers 0.9585 0.9376 0.9302 0.9645 0.9622 0.9543 0.9701
128 dim 512 dim 0.9688 0.9484 0.9501 0.9729 0.9734 0.9706 0.9739

GCN GatedGCN 0.0409 0.0408 0.0325 0.0424 0.0396 0.0483 0.0410
GIN GatedGCN 0.6095 0.6953 0.4180 0.6237 0.6349 0.4002 0.6391
GATv2 GatedGCN 0.9580 0.9560 0.9476 0.9643 0.9530 0.9679 0.9561

No VN VN 0.9478 0.9340 0.9359 0.9552 0.9479 0.9314 0.9568
Shared MLP head Indep. MLP heads 0.9751 0.9619 0.9644 0.9802 0.9764 0.9714 0.9778

GPSE 0.9790 0.9638 0.9725 0.9837 0.9808 0.9818 0.9774

Table F.2: Four PSE augmentations combined with five different GNN models evaluated on the
PCQM4Mv2-subset dataset. Performance is evaluated as mean absolute error (MAE ↓) and averaged
over 4 seeds.

GCN GatedGCN GIN GINE Transformer Avg. reduction

none 0.1934 ± 0.0012 0.1845 ± 0.0031 0.1790 ± 0.0011 0.1364 ± 0.0011 0.4193 ± 0.0167 –

rand 0.7604 ± 0.0019 0.7515 ± 0.0027 0.7532 ± 0.0021 0.4269 ± 0.0068 0.9810 ± 0.0064 N/A
LapPE 0.1834 ± 0.0023 0.1757 ± 0.0010 0.1720 ± 0.0018 0.1338 ± 0.0006 0.2433 ± 0.0056 17.76%
RWSE 0.1877 ± 0.0025 0.1782 ± 0.0012 0.1695 ± 0.0007 0.1317 ± 0.0005 0.1930 ± 0.0016 26.60%
GPSE 0.1822 ± 0.0028 0.1715 ± 0.0011 0.1713 ± 0.0011 0.1294 ± 0.0006 0.1909 ± 0.0019 28.66%

29

Under review as a conference paper at ICLR 2024

Table F.3: GPSE pre-training ablations

(a) Virtual node, convolution type, and layers abla-
tion using 5% MolPCBA for training.

GPSE (GatedGCN) GPSE (GIN)

Layers VN no VN VN no VN

5 0.8387 0.6982 0.4879 0.1347
10 0.9585 0.8353 0.5156 0.2476
15 0.9716 0.9231 0.5887 0.2523
20 0.9778 0.9478 0.6095 0.2743
30 0.9806 0.9559 0.4149 0.3740
40 0.9782 0.9459 0.5420 0.3968

(b) Training size scaling law for GPSE on
MolPCBA.

Training size Overall test loss (MAE + cosine loss) ↓

5% 0.06939
10% 0.04414
20% 0.03579
40% 0.01945
80% 0.01219

Table F.4: GPSE training task ablation. The colors indicate whether a particular PSE task for training
GPSE improves or worsens the downstream performance.

PCQM4Mv2 (subset) ogbg-molhiv
Excluded task MAE ↓ AUROC ↑

– 0.1196 ± 0.0004 0.7815 ± 0.0133

LapPE & EigVals 0.1200 ± 0.0006 0.7849 ± 0.0067
ElstaticPE 0.1197 ± 0.0007 0.7681 ± 0.0146

RWSE 0.1205 ± 0.0006 0.7771 ± 0.0105
HKdiagSE 0.1202 ± 0.0004 0.7787 ± 0.0198
CycleSE 0.1199 ± 0.0011 0.7739 ± 0.0240

Table F.5: GPSE training dataset ablation. Performance measured in MAE ↓. Green indicates
fine-tuning GPSE on specific downstream dataset helps improve the performance. Bold indicates the
best performance achieved on a particular downstream task.

ZINC (subset) PCQM4Mv2 (subset)
Training dataset # unique graphs Avg. # nodes Not finetuned Finetuned Not finetuned Finetuned

GEOM 169,925 18 0.0707 ± 0.0086 0.0685 ± 0.0055 0.1196 ± 0.0005 0.1194 ± 0.0002
ZINC 219,384 23 0.0700 ± 0.0041 – 0.1202 ± 0.0005 0.1197 ± 0.0007

PCQM4Mv2 273,920 14 0.0721 ± 0.0042 0.0713 ± 0.0014 0.1192 ± 0.0005 –
ChEMBL 970,963 30 0.0667 ± 0.0079 0.0643 ± 0.0036 0.1195 ± 0.0003 0.1195 ± 0.0005

MolPCBA 323,555 25 0.0648 ± 0.0030 0.0668 ± 0.0076 0.1196 ± 0.0004 0.1195 ± 0.0007

30

Under review as a conference paper at ICLR 2024

Ta
bl

e
F.

6:
E

xt
en

de
d

re
su

lts
fo

r
Ta

bl
e

4:
Pe

rf
or

m
an

ce
on

M
ol

ec
ul

eN
et

sm
al

ld
at

as
et

s
(s

ca
ff

ol
d

te
st

sp
lit

),
ev

al
ua

te
d

in
A

U
R

O
C

(%
)↑

.R
ed

in
di

ca
te

s
w

or
se

th
an

ba
se

lin
e

pe
rf

or
m

an
ce

.

B
B

B
P

BA
C

E
To

x2
1

To
xC

as
t

SI
D

E
R

C
lin

To
x

M
U

V
H

IV

N
o

pr
e-

tr
ai

ni
ng

(b
as

el
in

e)
(H

u
et

al
.,

20
20

b)
65

.8
±

4.
5

70
.1

±
5.

4
74

.0
±

0.
8

63
.4

±
0.

6
57

.3
±

1.
6

58
.0

±
4.

4
71

.8
±

2.
5

75
.3

±
1.

9

SS
L

In
fo

M
ax

pr
e-

tr
ai

ne
d

(H
u

et
al

.,
20

20
b)

68
.8

±
0.

8
75

.9
±

1.
6

75
.3

±
0.

5
62

.7
±

0.
4

58
.4

±
0.

8
69

.9
±

0.
3

75
.3

±
2.

5
76

.0
±

0.
7

SS
L

E
dg

eP
re

d
pr

e-
tr

ai
ne

d
(H

u
et

al
.,

20
20

b)
67

.3
±

2.
4

79
.9

±
0.

9
76

.0
±

0.
6

64
.1

±
0.

6
60

.4
±

0.
7

64
.1

±
3.

7
74

.1
±

2.
1

76
.3

±
1.

0
SS

L
A

ttr
M

as
ki

ng
pr

e-
tr

ai
ne

d
(H

u
et

al
.,

20
20

b)
64

.3
±

2.
8

79
.3

±
1.

6
76

.7
±

0.
4

64
.2

±
0.

5
61

.0
±

0.
7

71
.8

±
4.

1
74

.7
±

1.
4

77
.2

±
1.

1
SS

L
C

on
te

xt
Pr

ed
pr

e-
tr

ai
ne

d
(H

u
et

al
.,

20
20

b)
68

.0
±

2.
0

79
.6

±
1.

2
75

.7
±

0.
7

63
.9

±
0.

6
60

.9
±

0.
6

65
.9

±
3.

8
75

.8
±

1.
7

77
.3

±
1.

0
G

ra
ph

C
L

pr
e-

tr
ai

ne
d

(Y
ou

et
al

.,
20

20
b)

69
.7

±
0.

7
75

.4
±

1.
4

73
.9

±
0.

7
62

.4
±

0.
6

60
.5

±
0.

9
76

.0
±

2.
7

69
.8

±
2.

7
78

.5
±

1.
2

In
fo

G
ra

ph
pr

e-
tr

ai
ne

d
(W

an
g

et
al

.,
20

22
a)

66
.3

±
0.

6
64

.8
±

0.
8

68
.1

±
0.

6
58

.4
±

0.
6

57
.1

±
0.

8
66

.3
±

0.
6

44
.3

±
0.

6
70

.2
±

0.
6

JO
A

O
v2

pr
e-

tr
ai

ne
d

(W
an

g
et

al
.,

20
22

a)
66

.4
±

0.
9

67
.4

±
0.

7
68

.2
±

0.
8

57
.0

±
0.

5
59

.1
±

0.
7

64
.5

±
0.

9
47

.4
±

0.
8

68
.4

±
0.

5
G

ra
ph

M
A

E
(H

ou
et

al
.,

20
22

)
72

.0
±

0.
6

83
.1

±
0.

9
75

.5
±

0.
6

64
.1

±
0.

3
60

.3
±

1.
1

82
.3

±
1.

2
76

.3
±

2.
4

77
.2

±
1.

0
G

ra
ph

L
oG

(X
u

et
al

.,
20

21
)

72
.5

±
0.

8
83

.5
±

1.
2

75
.7

±
0.

5
63

.5
±

0.
7

61
.2

±
1.

1
76

.7
±

3.
3

76
.0

±
1.

1
77

.8
±

0.
8

G
ra

ph
L

oG
(F

ea
tu

re
ex

tr
ac

to
r)

65
.6

±
1.

0
82

.5
±

1.
2

73
.2

±
0.

5
63

.6
±

0.
4

60
.9

±
0.

7
-

-
-

L
ap

PE
au

gm
en

te
d

67
.1

±
1.

6
80

.4
±

1.
5

76
.6

±
0.

3
65

.9
±

0.
7

59
.3

±
1.

7
76

.4
±

2.
3

75
.6

±
0.

8
75

.6
±

1.
1

R
W

SE
au

gm
en

te
d

67
.0

±
1.

4
79

.6
±

2.
8

76
.3

±
0.

5
65

.6
±

0.
3

58
.5

±
1.

4
74

.5
±

4.
4

75
.0

+
1.

0
78

.1
±

1.
5

A
llP

SE
au

gm
en

te
d

67
.6

±
1.

2
77

.0
±

4.
4

75
.9

±
1.

0
63

.9
±

0.
3

63
.0

±
0.

6
72

.6
±

4.
3

67
.9

±
0.

7
75

.4
±

1.
5

G
PS

E
au

gm
en

te
d

66
.2

±
0.

9
80

.8
±

3.
1

77
.4

±
0.

8
66

.3
±

0.
8

61
.1

±
1.

6
78

.8
±

3.
8

76
.6

±
1.

2
77

.2
±

1.
5

31

Under review as a conference paper at ICLR 2024

Table F.7: Extended results for Table 6: OOD trans-
ferability to OGB node classification benchmarks.

arXiv Proteins
+GPSE? ACC (%) ↑ AUROC (%) ↑

GCN ✗ 71.74 ± 0.29 79.91 ± 0.24
✓ 71.67 ± 0.12 79.62 ± 0.12

SAGE ✗ 71.74 ± 0.29 80.35 ± 0.07
✓ 72.19 ± 0.32 80.14 ± 0.22

GAT(E)v2 ✗ 71.69 ± 0.21 83.47 ± 0.13
✓ 72.17 ± 0.42 83.51 ± 0.11

Transformer ✗ 57.00 ± 0.79 73.93 ± 1.44
✓ 59.17 ± 0.21 74.67 ± 0.74

GPS ✗ 70.60 ± 0.28 69.55 ± 5.67
✓ 70.89 ± 0.36 72.05 ± 3.75

Best of above ✗ 71.74 ± 0.29 83.47 ± 0.13
✓ 72.19 ± 0.32 83.51 ± 0.11

32

Under review as a conference paper at ICLR 2024

G GPSE TRAINING AND INFERENCE TIMES

Table G.1: GPSE training times. Target PSE pre-computation included.

Training dataset Num. unique graphs Target PSE pre-comp time Time (epoch/total) Full training time

MolPCBA (default) 323,555 1.58h 596s / 19.88h 21.46h
PCQM4Mv2-full 273,920 0.87h 429s / 14.30h 15.17h
ZINC-full 219,384 0.89h 398s / 13.26h 14.15h
GEOM 169,925 0.78h 321s / 10.69h 11.47h
ChEMBL 970,963 5.97h 2509s / 83.65h 89.62h

Table G.2: GPSE inference times. LapPE and RWSE computation times are included for comparison.
Missing entries are due to experimental settings not included in the benchmarking experiments.
(*: Obtained from the GPS paper; **: Neighbor batched computation (batch size: 1024, neighbor
sizes: 30, 20, 10, 5, . . . , 5))

Dataset Num. graphs Time (GPSE) Time (LapPE) Time (RWSE)

ZINC-subset 12,000 6 sec 25 sec 11 sec
PCQM4Mv2-subset 446,405 3.57 min 3.88 min 7.32 min
PCQM4Mv2-full 3,746,620 31.15 min – 51 min *
MolHIV 41,127 23 sec 37 sec 58 sec *
MolPCBA 437,929 4.6 min 6.13 min 8.33 min *
Peptides 15,535 28 sec 73 sec * –
CIFAR10 60,000 2.15 min 2.55 min * –
MNIST 70,000 100 sec 96 sec * –
arXiv 1 4 sec – –
Proteins 1 6.68 min ** – –

33

Under review as a conference paper at ICLR 2024

H GPSE VS. CONVENTIONAL PSE SCALING EXPERIMENTS

Table H.1: Runtimes of each PSE computation with respect to percentage of dataset used.

PSE / % MolPCBA 0.1% 0.3% 0.5% 0.8% 1% 3% 5% 8% 10% 25%

GPSE 1s 1s 1s 2s 3s 9s 15s 24s 32s 1m 16s
AllPSE 12s 46s 41s 1m 2s 1m 15s 4m 15s 7m 13s 12m 3s 14m 22s 39m 52s
LapPE 1s 1s 3s 3s 5s 15s 24s 35s 55s 1m 53s
RWSE 1s 1s 3s 3s 4s 17s 25s 36s 44s 1m 41s
ElstaticPE 1s 1s 2s 2s 3s 10s 20s 33s 53s 2m 12s
HKdiagSE 1s 1s 2s 3s 4s 11s 22s 31s 48s 3m 14s
CycleGE 6s 17s 28s 44s 58s 2m 57s 4m 35s 7m 12s 9m 15s 27m 20s

(a) GPSE + individual PSEs +
combined PSEs (AllPSE)

(b) GPSE + individual PSEs only (c) Log-log plot of GPSE +
individual PSEs + combined
PSEs (AllPSE)

Figure H.1: Scaling of PSE computation time with respect to number of graphs as % of MolPCBA
dataset used. Visualization of Table H.1.

Table H.2: Runtimes of each PSE computation with respect to average graph sizes in dataset. CycleGE
is excluded both in itself and as part of AllPSE, as cycle counting on large, dense and regular Erdős-
Rényi graphs become computationally infeasible.

PSE / Graph size 100 300 500 1000

GPSE 1s 7s 27s 1m 29s
AllPSE (No CycleGE) 8s 44s 2m 15s 11m 20s
LapPE 2s 9s 250ms 34s 2m 35s
RWSE 2s 9s 760ms 31s 480ms 3m 27s
ElstaticPE 1s 500ms 10s 670ms 25s 30ms 2m 19s
HKdiagSE 2s 13s 44s 2m 44s

In these experiments, we measure and compare the computation time of GPSE with those of individual
PSEs used in the pre-training of the GPSE model, as well as their combination (AllPSE). We
conducted two sets of experiments. In the first, we used a dataset of similarly sized graphs in
MolPCBA, but ran PSE computation for an increasing percentage of the dataset (Figure H.1). In
the second, we generated multiple datasets of 1000 synthetic (Erdős-Rényi) graphs, scaling up the
number of nodes per graph (Figure H.2) in each.

In both sets of experiments, GPSE is considerably faster to compute than the individual PSEs, and
orders-of-magnitude faster than computing and combining all PSEs as AllPSE. Additionally, we
observed that GPSE scales better than individual and combined PSEs. The better scaling properties
of GPSE are particularly evident in scaling graph sizes (Figure H.2): As we scaled up the number
of nodes in a graph to 1000, the advantage of GPSE became more apparent. This is somewhat an
expected result: Regardless of graph size, inference of GPSE involves O(Lm) computations, where
L is the number of layers, and m is the number of edges; thus GPSE scales linearly on the number of
edges in a graph. On the other hand, LapPE, for example, is expected to have polynomial complexity,
as it involves eigendecomposing the graph Laplacian.

Another important point to highlight is that at inference time, the complexity of GPSE remains
unchanged regardless of how many types of PSEs were used to train the model. This leads to

34

Under review as a conference paper at ICLR 2024

(a) GPSE + individual PSEs + combined PSEs (AllPSE) (b) Log-log plot of GPSE + individual PSEs +
combined PSEs (AllPSE)

Figure H.2: Scaling experiments with respect to size of graphs, keeping the number of graphs in each
dataset constant. Visualization of Table H.2.

significant advantages over AllPSE, which relies on computing and concatenating all PSEs. The
scalability issues of AllPSE is additionally exacerbated when useful but highly expensive PSEs such
as CycleGE are used.

35

	Introduction
	Related work

	Methods
	Self-supervision via positional and structural encodings (PSE)
	GPSE architecture
	Training GPSE

	Experiments
	Enhancing performance on molecular graph datasets
	Transferability across diverse graph benchmarking datasets
	Expressiveness of GPSE encodings
	Ablation studies

	Discussion
	Conclusion
	Positional and structural encoding tasks detail
	Implementation details
	GPSE computation
	GPSE training loss function
	Compute environment and resources
	Hyperparameters
	Downstream tasks

	Theory details
	Relevance to GPSE
	Formal analysis

	Datasets
	Pre-training datasets
	Extracting unique molecular graph structures

	Downstream evaluation datasets

	Visualization of GPSE encodings on 1-WL indistinguishable graph pairs
	Additional results
	GPSE training and inference times
	GPSE vs. conventional PSE scaling experiments

