
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HÖLDER PRUNING: LOCALIZED PRUNING FOR BACK-
DOOR REMOVAL IN DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Neural Networks (DNNs) have become the cornerstone of modern machine
learning applications, achieving impressive results in domains ranging from com-
puter vision to autonomous systems. However, their dependence on extensive data
and computational resources exposes them to vulnerabilities such as backdoor
attacks, where poisoned samples can lead to erroneous model outputs. To counter
these threats, we introduce a defense strategy called Hölder Pruning to detect
and eliminate neurons affected by triggers embedded in poisoned samples. Our
method partitions the neural network into two stages: feature extraction and feature
processing, aiming to detect and remove backdoored neurons—the highly sensitive
neurons affected by the embedded triggers—while maintaining model performance
This improves model sensitivity to perturbations and enhances pruning precision
by exploiting the unique clustering properties of poisoned samples. We use the
Hölder constant to quantify sensitivity of neurons to input perturbations and prove
that using the Fast Gradient Sign Method (FGSM) can effectively identify highly
sensitive backdoored neurons. Our extensive experiments demonstrate efficacy of
Hölder Pruning across six clean feature extractors (SimCLR, Pretrained ResNet-18,
ViT, ALIGN, CLIP, and BLIP-2) and confirm robustness against nine backdoor
attacks (BadNets, LC, SIG, LF, WaNet, Input-Aware, SSBA, Trojan, BppAttack)
using three datasets (CIFAR-10, CIFAR-100, GTSRB). We compare Hölder Prun-
ing to eight SOTA backdoor defenses (FP, ANP, CLP, FMP, ABL, DBD, D-ST)
and show that Hölder Pruning outperforms all eight SOTA methods. Moreover,
Hölder Pruning achieves a runtime up to 1000x faster than SOTA defenses when
a clean feature extractor is available. Even when clean feature extractors are not
available, our method is up to 10x faster.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated outstanding performance across a range of appli-
cations, including computer vision (He et al., 2015), speech recognition (Gulati et al., 2020), and
recommendation systems (Wang et al., 2023). Specifically, their framework mainly consists of a
feature extractor (Convolutional neural networks (CNNs) (He et al., 2015), Transformers (Vaswani
et al., 2023)) and a classifier. DNN training requires extensive data and computational resources,
often involving third-party data or servers. This dependency raises significant security concerns,
especially when using large public datasets that may contain corrupted or poisoned data samples.
Such malicious data can lead the DNN to produce undesired outputs (Gu et al., 2019). Among various
data corruption methods, backdoor attacks pose a notable threat (Li et al., 2022). This attack involves
deliberate manipulation by either controlling the training process (Ilyas et al., 2018; Kurakin et al.,
2017; Li et al., 2021a; Liang et al., 2020), or corrupting a small number of data samples by inserting
a predefined perturbation called trigger (Gu et al., 2019). Consequently, the trained DNN model
behaves normally on clean (non-corrupted) data, but produces an (adversary-desired) output label for
poisoned (corrupted) samples. This manipulation can hinder the detection and mitigation of corrupted
data, making the development of effective defense mechanisms a priority in neural network research.

To address these challenges, several novel backdoor defense methods, including pruning, have been
proposed (Chen et al., 2022; Guo et al., 2022; Li et al., 2021b; Wu & Wang, 2021; Zheng et al., 2022).
Pruning methods (Wu & Wang, 2021; Zheng et al., 2022) attempt to prevent backdoor attacks by
eliminating neurons that process trigger features. Corrupted samples processed by poisoned neurons,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 1: t-SNE visualizations illustrating that a backdoored model with a pre-trained clean feature extractor
independently obtained from a third-party (e.g., HuggingFace (Jain, 2022)) performs well under Fine-Pruning
(Liu et al., 2018a) using CIFAR-10 dataset with the following cases: (a) backdoored model with poisoned
feature extractor and rest of model trained concurrently on data that includes poisoned samples; (b) result of
Fine-Pruning (Liu et al., 2018a) on model in (a); (c) backdoor model equipped with clean feature extractor; (d)
result of Fine-Pruning (Liu et al., 2018a) on model in (c).

even if containing features from different classes, tend to form distinct cluster(s) at outputs of the
penultimate layer in backdoored models (Chen et al., 2018; Hayase et al., 2021). Fine-Pruning (Liu
et al., 2018a)—a classical pruning defense without a clean feature extractor (see Fig. 1(b)) results in
blurred boundaries between different classes after pruning. In contrast, a pre-trained clean feature
extractor (Fig. 1(c)) maintains clear boundaries for each class and restores poisoned data to their
original clustering state under Fine-Pruning, as shown in Fig. 1(d), enhancing the robustness of
model output to perturbations. However, in the process of removing these poisoned neurons, pruning
methods can fail to precisely differentiate between poisoned and clean neurons due to the subtle
nature of trigger features and their overlap with clean features. This can lead to unintentional deletion
of clean neurons and a subsequent decline in model performance (Huang & Bu, 2024; Liu et al.,
2018a). To overcome this limitation, we investigate utilization of clean feature extractors to improve
pruning while preventing performance degradation.

Fig. 2 (a) shows a schematic consisting of a CNN feature extractor and a classifier, where the classifier
has benign (blue) and toxic (red) neurons. Fig. 2 (b) presents a pre-trained clean feature extractor
(e.g., independently obtained from a thirdparty such as HuggingFace (Jain, 2022)) and a classifier.
Unlike traditional CNNs, using a clean feature extractor forces backdoored neurons to be contained in
only layers of the classifier. In this setup, such confined poisoned neurons must adapt to fit backdoor
trigger features to achieve high attack success (Wang et al., 2020). This adaptation makes such
neurons overfitted to trigger features and highly sensitive to input perturbations (Jin et al., 2022).

features
Poisoned features

extractor
Poisoned

MLP

Ó

Dog

Trigger
Embedded

Image

Clean feature
extractor features

Ó

Dog
Trigger

Embedded
Image

Poisoned
MLP

(a)

(b)

Figure 2: Schematic showing (a)
CNN feature extractor and classi-
fier (MLP); (b) pretrained clean
feature extractor and classifier.

To quantify sensitivity of (poisoned) neurons, recent research (Zheng
et al., 2022) has proposed use of the Lipschitz constant. The Lips-
chitz constant measures neuron sensitivity across the whole training
space. While such an approach provides a ‘global’ measure of sen-
sitivity of output to an input (Lera & Sergeyev, 2010; Kalton, 2004),
it is not sufficiently sensitive to small changes in neurons within
localized regions. A measure that can effectively capture local neu-
ron sensitivity is required to improve identification and removal of
poisoned neurons. We propose the Hölder constant (Knill, 1994) as
a metric for this purpose; a large value of this constant indicates high
sensitivity to input perturbations. If each training sample, along with
its perturbation, represents a local region in Hölder space, then we
expect that poisoned neurons will have high Hölder constants in at
least one local region. Consequently, removing neurons with Hölder
constant higher than a threshold will make the model more insensitive to poisoned samples.

Based on this observation, we introduce a new defense strategy that we term Hölder Pruning. Hölder
pruning employs a clean feature extractor in a classifier to concentrate and enhance features of
poisoned neurons. Such a clean feature extractor can be pre-trained (He et al., 2015), transformer-
based (Vaswani et al., 2023), or obtained through self-supervised learning (Chen et al., 2020). Our
experiments demonstrate that using a clean feature extractor increases the sensitivity of poisoned
neurons, and the Hölder constant provides a quantifiable interpretation of sensitivity. In practice,
large organizations (Mengara et al., 2024) utilize proprietary feature extractors, which are presumed
to be clean. However, when adapting to varied business requirements, these companies might need to
fine-tune their models using additional data. In such scenarios, employing contaminated data risks

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

producing a compromised model. Hölder Pruning effectively integrates these feature extractors
without compromising model performance while also achieving robust defense against backdoor
attacks. When a clean feature extractor is unavailable, or when it is inevitable to rely on untrustworthy
training data to construct a secure model, we design the Hölder Iteration Defense. The Hölder
Iteration Defense first uses self-supervised learning to obtain a clean feature extractor and then uses
Hölder Pruning to reliably obtain clean samples. We show that an iterative application of these two
steps simultaneously achieves high classification accuracy, robust accuracy, and low attack success
rates.

Contributions: The main contributions of this paper are: (a) we discover that concentrating trigger
features on the classifier using a clean feature extractor can significantly enhance effectiveness of
pruning methods; (b) We introduce a novel pruning technique, Hölder Pruning, adaptable across
different types of feature extractors. This method leverages Hölder constants to measure neuron
sensitivity to perturbations. Furthermore, we formally prove the efficacy of applying the Fast Gradient
Sign Method (FGSM) at the neuron level for identifying the maximum sensitivity of each neuron
using the Hölder constant. (c) when a clean feature extractor is unavailable, we propose the Hölder
Iteration Defense (HID) and show that the HID can obtain a clean model from a poisoned dataset;
(d) we perform extensive experiments to show that Hölder Pruning seamlessly integrates with six
clean feature extractors; Hölder Pruning and the Hölder Iteration Defense are robust to nine backdoor
attacks while maintaining accuracy and efficiency, and outperforms eight SOTA backdoor defenses;
(e) we show that Hölder Pruning runs up to 1000x faster than SOTA defenses when using a clean
feature extractor, while Hölder Iteration Defense offers a speedup of up to 10x compared to similar
methods when a clean feature extractor is not available. To the best of our knowledge, our Hölder
Pruning strategy is the first known in-training defense against backdoor attacks.

2 PRELIMINARIES

This section introduces necessary preliminaries on DNNs and backdoor attacks, defines the Hölder
condition that informs our neuron pruning-based defense strategy, and presents performance metrics
used to evaluate our defense. Finally, we describe the threat and defense models considered.

2.1 DNNS AND BACKDOOR ATTACKS

In the context of supervised learning (Goodfellow et al., 2016), we examine a DNN represented
as fθ : X → Y , where X denotes the input space, Y is the set of class labels, and θ denotes the
model’s parameters. The training dataset is denoted D = {(xi, yi)}ni=1, where {xi}ni=1 ⊂ X and
yi ∈ Y . We consider backdoor attacks (Gu et al., 2019; Barni et al., 2019; Nguyen & Tran, 2021),
in which an adversary subtly modifies (poisons) a small subset of training dataset by inserting a
trigger ∆ into a subset of training inputs {xi}pi=1 ⊂ {xi}ni=1, where p ≪ n, and altering their
corresponding labels {yi}pi=1 to an adversary-desired target label y′. The poisoned dataset is denoted
Dpoison = {(e(xi,∆), y′)}pi=1, where e(xi,∆) is a trigger embedding function (e.g., pixel patch
placed at a fixed location on a subset of training images). The dataset used to train the DNN is
D′ = D ∪ Dpoison. A DNN trained with D′ (backdoored DNN) outputs y′ with high probability
whenever a poisoned input sample (e(x,∆)) is presented.

2.2 HÖLDER CONDITION

A real-valued function f , defined on a Euclidean space Rd, satisfies a Hölder Condition (Knill, 1994)
if for all x, x′ ∈ Rd, there exists a constant C ≥ 0 and 0 < α ≤ 1 such that |f(x) − f(x′)| ≤
C · ||x− x′||α. Here, C and α are termed the Hölder constant and the Hölder exponent, respectively.
When α = 1, f satisfies the Lipschitz condition, with C termed the Lipschitz constant (Knill,
1994). For fixed α, a high value of C indicates that the function f is highly sensitive to input
variations, suggesting greater changes in the function’s output in response to small changes in the
input. Conversely, a smaller C implies that f is less sensitive to input variations. We assess sensitivity
of a backdoored DNN to its training samples D′ in terms of C, and use this to inform design of a
neuron pruning technique on the backdoored DNN to mitigate effects of backdoor attacks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 DEFINITIONS OF THE PERFORMANCE METRICS

We present metrics to evaluate our defense against backdoor attacks below (Li et al., 2021c).

Clean Accuracy (ACC). Clean Accuracy measures the model’s performance on clean (non-poisoned)
samples, and defined as ACC = (# Correctly Classified Clean Samples) / (# of Clean Samples).

Attack Success Rate (ASR). ASR quantifies the effectiveness of an attack, and is defined as
ASR = (# of Poisoned Samples Misclassified to Target Class) / (# of Poisoned Samples).

Robust Accuracy (RA). RA measures the number of poisoned samples that are correctly classified
after the implementation of the defense mechanisms, and is defined as RA = (# of Poisoned Samples
Correctly Classified After the Defense) / (# of Poisoned Samples).

2.4 THREAT MODEL

Adversary Assumptions: The adversary is assumed to have the capability to inject poisoned
samples into a clean dataset. The adversary does not have direct access to or control over the model
architecture, training process, or ability to retrain the model. The attacker’s control is thus limited to
poisoning the dataset, as described in (Barni et al., 2019; Gu et al., 2019; Nguyen & Tran, 2021).

Adversary Goals and Actions: The adversary’s primary goal is to introduce a backdoor into a
model trained by a user by injecting poisoned data into either (i) the training process or (ii) the
fine-tuning process, while remaining undetected. In the first scenario, the adversary embeds triggers
in publicly available datasets, which developers or data owners may inadvertently download and use
for model training, unknowingly incorporating backdoors into their models. In the second scenario,
the adversary targets the fine-tuning phase, where downstream users rely on pretrained models from
large companies. While these pretrained models are assumed to be clean, the external or additional
data used for fine-tuning may be contaminated with backdoor triggers. In both cases, the adversary’s
influence is restricted to modifying the training data by injecting poisoned samples, without direct
access to the model architecture or control over the training process itself.

The adversary aims to ensure that: (i) models trained or fine-tuned with the poisoned dataset output
adversary-specified target classes when presented with inputs containing embedded triggers; and
(ii) the attack evades standard detection mechanisms by keeping the set of poisoned data small
and blending the backdoor triggers seamlessly with the original data. This ensures the model’s
performance on clean data remains intact, avoiding suspicion or detection.

Attack Performance Metrics: Clean accuracy (CA) and attack success rate (ASR) are used to
evaluate attack effectiveness. The adversary’s goal is to ensure high values of CA and ASR.

2.5 DEFENDER MODEL

Defender Assumptions: The defense is assumed to have access to the entire training dataset, but
cannot reliably distinguish between clean and poisoned samples without further analysis (Li et al.,
2021b; Zheng et al., 2022; Huang et al., 2022; Chen et al., 2022). In Sec. 3.1, we initially assume
that the defense has access to a discriminative feature extractor (e.g., transformers, outputs of final
pooling layer in CNNs) trained exclusively on clean data, which we term a clean feature extractor. In
Sec. 3.2, we relax this assumption. When clean feature extractors are unavailable, self-supervised
learning and iterative semi-supervised learning can be used to continually refine the feature space.

Defender Goals and Actions: The primary goal of the defense is to detect and neutralize effects of
poisoned samples during training, ensuring that the model does not learn correlations between the
trigger embedded by the adversary and the adversary-desired target class. In our defense pipeline,
each sample is initially passed through a ‘clean feature extractor’. The extracted features, along with
their corresponding labels, are then used to train an classifier. After training, the defense prunes
neurons in the hidden layers of classifier based on each neuron’s output sensitivity to input noise. This
pruning process helps identify and remove neurons that are activated by poisoned samples (poisoned
neurons), thereby enhancing the overall DNN’s resilience to backdoor attacks.

Defense Performance Metrics: We assess the pruned DNN using three metrics: clean accuracy
(CA), attack success rate (ASR), and robust accuracy (RA).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 PROPOSED METHOD

This section introduces our two defense methods based on the Hölder condition (Knill, 1994): (1): We
design Hölder Pruning, a pruning defense that uses a clean feature extractor to effectively eliminate
poisoned neurons without compromising model performance. (2): We develop a defense strategy
named Hölder Iteration Defense, which can obtain a clean feature extractor from a poisoned dataset.

Cat

features
Hidden layer after

pruning

MLP

Clean feature
extractor

Generate
perturbed
samples

features

!!"
!!#
!!$
!!%
!!&
!!'

"" = $. &'
"# = 0.01
"$ = $. *&
"% = $. +
"& = 0.02
"' = $. &

-

- -′

Hidden layer
of MLP

Hölder constant
Clean

samples
Poisoned
samples

Poisoned dataset

max
!

$"! % − $"!(%#)
% − %# $

Compute H/̈lder
Constant "(

for each Neuron 1

Malicious
Attacker

Pruning

.......

Trigger

Cat

Stage 1 Stage 2 Stage 3

Figure 3: Proposed Hölder Pruning (HP) defense pipeline against backdoor attacks. Stage 1: Employ a clean
feature extractor (e.g., self-supervised feature extractor, transformer, pre-trained CNN) to restrict the poisoned
neurons to the hidden layers of classifier (shown as a MLP in the figure). Stage 2: Perturb features to identify
poisoned neurons using their Hölder constants. Stage 3: Prune neurons with high Hölder constant values to
eliminate poisoned neurons. This results in classifying poisoned inputs to their true class with a high probability,
ensuring a low attack success rate and maintaining high classification accuracy on clean samples.

3.1 HÖLDER PRUNING

Our pruning strategy is based on the Hölder condition (Knill, 1994) and the availability of a clean
feature extractor. The whole process is shown in Fig. 3.

Clean Feature Extractor. Using a feature extractor that exclusively trained on clean images will
ensure the absence of poisoned neurons, meaning that trigger features corresponding to poisoned
samples will not be amplified. We term such feature extractor clean feature extractor. Examples
include self-supervised learning based feature extractors (Chen et al., 2020), vision and vision-
language transformers (Dosovitskiy et al., 2021; Jia et al., 2021; Li et al., 2023; Radford et al., 2021),
and outputs from the final pooling layer in pre-trained CNNs (He et al., 2016). Let z denote the
feature vector extracted by the clean feature extractor for an input sample x ∈ D′.

(a) (b)

Figure 4: This figure compares effects of perturb-
ing inputs on output label of a benign ((a)) and a
backdoored ((b)) model with a BadNets (Gu et al.,
2019) trigger. The backdoored model tends to clas-
sify samples to the target-class (Class 1) even for
small perturbations. In contrast, label predictions of
the benign model are erroneous only when perturba-
tions are higher, suggesting that backdoored models
are highly sensitive to specific perturbations of small
magnitude.

(a) (b)

Figure 5: This figure compares effect of the prun-
ing ratio on accuracy (ACC, Fig. (a)) and attack
success rate (ASR, Fig. (b)) for three widely used
pruning strategies- Lipschitz pruning (Zheng et al.,
2022), fine pruning (Liu et al., 2018a), and feature
map pruning (Huang & Bu, 2024)- and our Hölder
pruning method. Our Hölder pruning approach is
the only method that effectively maintains high clas-
sification accuracy while also yielding small ASR
values. Shaded regions indicate standard deviation.

Perturbation in Hidden Layer. In backdoor attacks, a small imperceptible trigger in an input
results in the DNN providing an (adversary-desired) output label (Li et al., 2021c). This suggests
that backdoored models are highly sensitive to specific types of small-magnitude perturbations

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(characterized by the trigger). Fig. 4 compares effects of perturbing inputs on output labels of a
benign (Fig. 4 (a)) and a backdoored (Fig. 4 (b)) model. We observe that the backdoored model tends
to classify both clean and poisoned samples to the target-class (Class 1) even for perturbations of small
magnitude; in contrast, the benign model makes incorrect predictions only for larger perturbations.
We leverage this observation and carry out perturbations to induce misrepresentation of samples in a
higher-dimensional space, specifically within the hidden layer of the classifier. This strategy helps
highlight poisoned neurons that play a significant role in identifying trigger features (additional details
in Appendix A.11). Our Fast Gradient Sign Method at Neuron level (FGSM-Neuron) Algorithm
(Algo. 1 in Appendix A.2) adapts the FGSM attack (Goodfellow et al., 2015) to target individual
neurons within the hidden layer. It aims to maximize discrepancy between outputs of a neuron for a
feature vector z and its perturbed variant z′. In Appendix A.2, we provide a formal proof establishing
a connection between our FGSM-Neuron algorithm and the Hölder constant value, which is defined
below for measuring neuron sensitivity.

Pruning Strategy based on Hölder Constant. Unlike the Lipschitz method (Zheng et al., 2022),
which measures maximum change of the entire training space, we use the Hölder constant to measure
differences in each local region. This is motivated by an observation that poisoned neurons may
exhibit varying sensitivities for different data points. We hypothesize that each training data point
and its perturbation forms a local region in Hölder space. Neurons affected by backdoor attacks are
likely to display higher Hölder constant values in at least one of these local regions. The relationship
between the Hölder constant and perturbation is shown in Fig. 6. Let fhi

denote the function mapping
the input feature vector to the ith hidden layer neuron. The Hölder constant for the ith neuron is

Ci = max
z̄

(
∥fhi(z̄)− fhi(z̄

′)∥
∥z̄ − z̄′∥α

)
,

where z̄ is the min-max scaled feature vector z and 0 < α ≤ 1. We use α = 0.5 in our experiments.

Our pruning strategy uses a threshold-based mechanism (we give details in Appendix A.8) to remove
neurons that have a high value of Ci. We present an algorithmic procedure in Algorithm 2 in Appendix
A.3. We also observe in Fig. 5 that our Hölder constant-based pruning strategy is highly effective in
maintaining high classification accuracy and achieving lower ASR values.

3.2 HÖLDER ITERATION DEFENSE

Current research is increasingly adopting self-supervised learning (SSL) methods, particularly

Figure 6: Hölder Constant value
vs. perturbations for BadNets and
InputAware attacks on CIFAR-10
and GTSRB datasets. Average
Hölder Constant value increases
with perturbation demonstrating
high correlation between Hölder
Constant and perturbations.

contrastive learning, to derive clean feature extractors from contam-
inated datasets (Chen et al., 2022; Gao et al., 2023; Huang et al.,
2022). In these paradigms, models learn by assessing similarities
between different projections of the same sample. By enhancing
correlations among similar samples and reducing it among dissimilar
ones, models can effectively acquire meaningful features (Jaiswal
et al., 2020). SSL enables a model to generate comparable feature
representations for perceptually similar inputs, thus averting ampli-
fication of triggers and minimizing poisoned neurons, qualifying
it as a clean feature extractor. However, absence of labels in SSL
may complicate the task of distinguishing between different output
labels effectively (shown in Fig. 7(a)). Importantly, our pruning
method can discern between poisoned and clean neurons, even with
non-discriminative features, as demonstrated in Fig. 8, resulting in a
low attack success rate after pruning. We define a sample x to be ro-
bustly clean if fθ(x) = fθp(x), where fθ(x) is the model’s predicted
label and fθp(x) is the output post-Hölder pruning. We compile all
robust clean samples into a dataset Dclean, and identify the remaining potential poison dataset as
Dpoison := D′\Dclean. The feature extractor is optimized by minimizing a semi-supervised loss
described below:

L = E(x,y)∼Dclean
[H(fθp(x), y)]︸ ︷︷ ︸

robust clean data

+λE(u)∼Dpoison
[∥fθp(u)− fθp(u

′))∥2]︸ ︷︷ ︸
potential poison data

,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 7: The t-SNE visualizations showcasing the
feature spaces of clean and poisoned samples de-
rived from a feature extractor trained on the CIFAR-
10 dataset. Fig. (a) represents the feature space be-
fore applying Hölder iteration defense (HID). while
Fig. (b) shows the feature space after applying HID.

(a) (b)

Figure 8: Performance of Hölder Pruning on feature
extractors from Fig. 7(a) and Fig. 7(b). The clear
separation shown in Fig. (a) results in only a few
poisoned samples being selected as robust clean data
for training the feature extractor in Fig. 7(a). Thus,
the initial ASR in Fig. (b) is lower.

where H(p, q) denotes the cross-entropy between distributions p and q, u′ represents the data aug-
mentation for unlabeled data u. By cyclically segregating clean from potentially poisoned data and
employing SSL, we enhance performance of the feature extractor (shown in Fig. 7(b)). We use this
observation to inform development of an iterative pruning method that we term Hölder Iteration
Defense (HID). HID involves multiple rounds of pruning and semi-supervised learning to establish a
clean feature extractor. An algorithmic procedure describing HID is presented in Appendix A.4.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate effectiveness of our approach. We
provide separate and detailed evaluations for Hölder Pruning and Hölder Iteration Defense.

Attacks settings. We conduct experiments involving nine SOTA backdoor attacks- BadNets (Gu et al.,
2019), Sinusoidal signal backdoor attack (SIG) (Barni et al., 2019), Label-Consistent attack (LC)
(Turner et al., 2019), Trojan (Liu et al., 2018b), Input-aware dynamic backdoor attack (Input-aware)
(Nguyen & Tran, 2020), Sample-specific backdoor attack (SSBA) (Li et al., 2021d), Warping-based
poisoned networks (WaNet) (Nguyen & Tran, 2021), Low frequency attack (LF) (Zeng et al., 2022),
and BppAttack (Wang et al., 2022). We examine these attacks implemented by BackdoorBench (Wu
et al., 2022) on CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009) and GTSRB (Houben et al.,
2013) datasets. PreAct-ResNet18 structure (He et al., 2016) is used to train a feature extractor from
scratch and select two layer-MLP with hidden layer size of 1024 for classification.

Defense settings. To evaluate our model, we divide our experiments into two parts. (a) We showcase
performance of our Hölder pruning method when leveraging existing clean feature extractors, such
as CLIP (Radford et al., 2021). Baseline defense methods for comparison are four SOTA pruning
methods- Fine-Pruning(FP) (Liu et al., 2018a), Adversarial Neuron Pruning(ANP) (Wu & Wang,
2021), CLP (Zheng et al., 2022), and Feature map pruning(FMP) (Huang & Bu, 2024). (b) We
demonstrate that Hölder Iteration Defense can learn from poisoned datasets without any additional
data. To this end, we select four defense methods that meet this criterion- Anti-Backdoor Learn-
ing(ABL) (Li et al., 2021b), Channel Lipschitzness-based Pruning(CLP) (Zheng et al., 2022), DBD
(Huang et al., 2022), and D-ST (Chen et al., 2022).

Metrics. We use the evaluation metrics ACC, ASR, and RA as described in Sec. 2.3.

4.1 DEFENSE PERFORMANCE AGAINST BACKDOOR ATTACKS

Hölder Pruning – Secure defense with clean feature extractor. We compare performance of
our Hölder Pruning with 4 other pruning methods using ACC, ASR, RA using the CIFAR-10 and
GTSRB datasets in Table 1. We note that these experiments do not require additional clean data. Our
experimental results illustrate robustness of Hölder Pruning compared to contemporary backdoor
attacks. Specifically, under 9 distinct backdoor attacks, our approach consistently achieves significant
reduction in ASR to below 3%, accompanied by only a marginal decrease in overall accuracy
(averaging ≈ 2%), while maintaining a high robust accuracy (RA) of 82.5%. While FP and CLP
mitigates several common attacks on MLPs, they face limitations when confronted with feature level

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

attacks. In these instances, malicious data can be embedded within clean features, which renders
FP and CLP ineffective. ANP and FMP primarily detect poisoned neurons by observing changes
in the output labels produced by the model. However, in MLPs, the presence of poisoned neuron is
more often reflected in numerical changes in activation function value rather than in output label flips.
Results on the CIFAR-100 dataset are presented in the Appendix A.6.
Table 1: Evaluation of Hölder Pruning (HP) against SOTA Pruning Methods: Classification accuracy (ACC)
for clean samples, attack success rate (ASR), and robust accuracy (RA) for Trojan samples for nine attacks–
BadNets (Gu et al., 2019),LC (Turner et al., 2019), SIG (Barni et al., 2019), LF (Zeng et al., 2022), WaNet
(Nguyen & Tran, 2021), Input-aware (Nguyen & Tran, 2020), SSBA (Li et al., 2021d), Trojan (Liu et al., 2018b),
BppAttack (Wang et al., 2022)– on five defenses– ABL (Li et al., 2021b), CLP (Zheng et al., 2022), DBD (Huang
et al., 2022), D-ST (Chen et al., 2022)– using transformer CLIP (Radford et al., 2021) as feature extractor with
5% poison rate (LC (Turner et al., 2019), SIG (Barni et al., 2019) used 0.5% on GTSRB). No additional clean
data in use. Our HP consistently outperforms the SOTA.

Methods→ Benign FP ANP CLP FMP HP(ours)

Attacks↓ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑
BadNets 94.5 82.9 - 91.9 3.4 89.4 55.4 99.7 10.2 85.0 6.5 84.4 64.5 86.6 16.6 93.7 0.0 93.3

LC 94.9 90.1 - 88.6 7.9 81.3 93.2 6.8 84.9 93.7 13.0 81.2 91.8 6.3 85.4 93.8 0.0 87.8
SIG 95.0 43.6 - 90.9 15.1 79.6 92.8 41.6 39.7 85.9 50.7 29.5 91.5 14.6 69.6 93.6 4.3 90.7
LF 94.3 87.5 - 93.8 12.5 77.8 83.8 89.4 3.4 91.5 14.3 80.1 73.7 84.8 0.1 94.3 2.5 91.1

WaNet 93.1 20.4 - 92.5 6.9 87.4 21.5 98.2 1.1 86.1 0.1 87.2 69.1 10.0 60.4 94.5 0.1 94.2
Input-aware 94.6 96.9 - 89.3 97.4 12.6 92.2 96.2 13.2 88.8 96.7 12.6 87.5 97.4 12.1 93.1 4.5 88.4

SSBA 94.5 91.7 - 88.9 4.9 83.7 75.9 99.5 10.3 93.2 28.2 69.9 84.9 94.3 13.5 93.8 1.1 90.3
Trojan 91.2 100.0 - 88.8 100.0 0.0 93.2 99.9 0.1 91.1 99.9 0.1 86.6 100.0 0.0 94.4 4.7 86.9

BppAttack 94.9 93.9 - 91.1 73.5 21.4 94.2 66.1 32.2 82.5 4.1 60.2 91.7 91.4 7.8 92.9 6.7 77.1

Averages 94.1 78.6 - 90.6 35.7 59.2 78.0 77.4 21.6 88.6 34.8 56.1 82.3 56.1 34.7 93.8↑ 2.6↓ 88.9↑
CIFAR-10

Methods→ Benign FP ANP CLP FMP HP(ours)

Attacks↓ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑
BadNets 87.2 90.1 - 79.6 27.7 57.8 31.1 49.5 3.2 83.9 41.0 49.3 84.1 85.2 12.8 85.4 3.2 80.6

LC 87.2 19.3 - 86.3 0.0 75.3 50.6 0.0 47.1 83.5 0.0 74.3 86.6 0.0 78.4 85.3 0.0 78.9
SIG 89.3 44.4 - 85.4 28.2 32.2 57.3 26.3 23.7 83.7 37.7 25.9 83.7 37.7 25.9 82.9 0.0 67.1
LF 88.5 95.0 - 81.3 51.6 38.4 60.0 27.2 42.5 83.3 47.7 44.3 84.2 97.5 2.0 84.7 2.0 79.8

WaNet 84.9 8.6 - 74.9 0.3 65.3 68.8 0.0 61.0 82.0 0.3 68.6 83.3 6.2 70.7 83.7 0.4 75.1
Input-aware 88.4 96.2 - 83.6 50.1 39.7 40.7 99.4 0.0 83.7 74.7 20.0 83.4 98.7 1.1 83.0 6.6 68.1

SSBA 88.3 97.0 - 85.2 27.3 54.5 69.5 20.3 50.7 84.3 65.7 28.7 84.1 99.0 0.0 82.8 2.9 75.1
Trojan 89.4 99.6 - 84.6 99.5 0.0 58.2 65.5 19.4 84.8 98.6 1.2 85.5 99.8 0.0 85.2 4.7 77.9

BppAttack 88.4 91.3 - 85.2 9.6 43.2 69.4 22.4 37.9 83.5 47.0 32.4 83.5 47.1 32.4 85.0 2.4 77.7

Averages 87.9 71.2 - 82.9 32.7 45.1 56.1 34.5 31.7 83.6 45.9 38.3 84.1 63.5 24.8 84.2↑ 2.4↓ 75.6↑
GTSRB

Hölder Iteration Defense –In the absence of a clean extractor. We compare performance of
our Hölder Iteration Defense with four SOTA models using ACC, ASR, and RA in Table 8. Our
experimental results demonstrate that our Hölder Iteration Defense consistently performs better than
SOTA methods against different types of backdoor attacks. We observed that ABL includes a step
like poison suppression, which performs well against clean label attacks (LC, SIG). However, the
first step— Backdoor Isolation— mainly defines suppression performance and limits overall model
performance, keeping ASR high and ACC low in most cases. Similar to our approach, CLP also
employs pruning, but it measures the Lipschitz constant of network parameters. In CLP, poisoned
neurons are dispersed throughout the network via forward propagation, and most neurons exhibit
both clean and toxic features. As a result, the Lipschitz constant is adequate to only detect and prune
a small number of poisoned neurons, which results in a higher ASR value. DBD and D-ST propose
mitigating backdoors through SSL, using self-supervised feature extraction to obtain clean feature
extractors. In classification tasks using such a feature extractor, poisoned data often exhibits higher
losses compared to clean data. However, such a loss-based design performs poorly against clean label
attacks and feature-level attacks. In comparison, our Hölder Iteration Defense significantly reduces
ASR and increases RA, regardless of the type of trigger.

4.2 ANALYSIS

Clean Feature Extractor Improves Pruning. We observe that models equipped with a clean feature
extractor exhibit faster and more significant reduction in attack success rate (ASR) while maintaining
high levels of accuracy (ACC) during pruning. Results of our experiments using the Fine-Pruning
method under BadNets (Gu et al., 2019) and BppAttack (Wang et al., 2022) are shown in Fig.9.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Evaluation of Hölder Iteration Defense (HID) against other SOTA End-to-End Backdoor Defenses:
Classification accuracy (ACC) for clean samples, attack success rate (ASR) and robust accuracy (RA) for
Trojan samples for nine different attacks–BadNets (Gu et al., 2019), LC (Turner et al., 2019), SIG (Barni et al.,
2019), LF (Zeng et al., 2022), WaNet (Nguyen & Tran, 2021), Input-aware (Nguyen & Tran, 2020), SSBA
(Li et al., 2021d), Trojan (Liu et al., 2018b), BppAttack (Wang et al., 2022)– on five defenses– ABL (Li et al.,
2021b), CLP (Zheng et al., 2022), DBD (Huang et al., 2022), D-ST (Chen et al., 2022)– with 5% poison rate (LC
(Turner et al., 2019), SIG (Barni et al., 2019) used 0.5% on GTSRB). Our HID consistently outperforms SOTA.

Methods→ Benign ABL CLP DBD D-ST HID(ours)

Attacks↓ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑
BadNets 91.9 98.7 - 83.2 2.1 89.5 90.3 38.2 59.3 87.6 2.1 87.0 88.9 3.9 88.1 90.9 1.5 90.6

LC 93.3 99.5 - 43.7 5.7 45.2 90.1 99.3 0.0 74.9 99.9 0.0 88.1 99.9 0.0 90.7 3.9 88.6
SIG 93.6 97.1 - 49.3 5.3 28.3 89.2 96.2 3.7 74.8 95.6 4.2 88.5 73.6 28.0 88.2 0.1 89.8
LF 93.3 98.0 - 61.5 85.7 10.4 90.8 96.5 3.1 83.4 98.6 29.6 87.6 83.3 34.9 88.6 3.7 88.1

WaNet 92.7 85.5 - 80.6 79.2 17.4 89.5 2.3 86.8 72.2 9.9 69.4 88.4 11.0 87.4 92.1 1.3 91.0
Input-aware 91.5 90.2 - 58.1 99.5 0.0 85.4 95.0 3.9 89.3 7.0 83.3 88.8 73.3 42.9 89.4 4.7 86.1

SSBA 93.2 94.9 - 80.5 5.6 79.7 90.5 44.9 49.6 72.1 99.5 0.4 88.6 84.7 12.8 89.5 4.4 82.4
Trojan 93.8 99.9 - 66.8 100.0 0.0 92.7 99.9 0.1 72.9 99.8 0.0 53.1 99.9 0.0 91.1 7.5 83.6

BppAttack 91.6 99.9 - 63.7 81.6 12.5 90.1 2.2 82.6 90.1 9.8 72.4 88.4 96.2 5.3 89.4 0.6 89.0

Averages 92.7 96.0 - 65.2 51.6 31.4 89.8 63.8 32.1 79.7 68.0 36.4 84.5 69.5 33.2 89.9↑ 3.0↓ 87.7↑
CIFAR-10

Methods→ Benign ABL CLP DBD D-ST HID(ours)

Attacks↓ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑
BadNets 97.3 57.9 - 96.0 0.0 96.6 97.5 86.4 13.4 83.4 0.0 83.8 87.7 30.4 64.7 98.8 0.0 98.8

LC 97.8 53.1 - 31.1 0.0 31.6 98.4 0.0 98.4 80.4 0.0 80.4 90.9 0.0 92.0 98.4 0.0 98.4
SIG 98.5 66.7 - 30.6 54.9 4.1 98.0 78.9 14.8 79.2 91.2 6.3 84.1 66.5 21.0 96.4 6.1 85.5
LF 98.4 98.6 - 19.3 10.4 5.4 97.2 99.2 0.0 84.1 4.0 80.2 84.7 91.5 7.4 96.2 3.2 90.0

WaNet 98.4 92.9 - 44.2 74.7 11.7 96.4 94.7 5.1 80.2 0.0 80.2 89.8 53.9 40.7 98.7 0.0 98.7
Input-aware 98.2 92.8 - 13.7 82.6 1.9 94.4 35.2 61.9 88.2 99.7 0.3 92.1 78.2 43.7 99.3 0.0 99.1

SSBA 98.1 99.3 - 13.3 69.8 2.7 97.8 97.3 2.6 81.7 99.9 0.0 88.1 97.8 1.8 95.4 5.7 92.4
Trojan 98.5 100.0 - 85.4 100.0 0.0 98.2 99.8 0.0 66.8 99.9 0.0 86.8 99.9 0.0 94.3 8.0 91.4

BppAttack 98.2 98.9 - 7.5 99.8 0.3 97.6 12.1 82.2 87.7 99.9 0.0 91.5 95.4 5.4 97.8 8.4 89.1

Averages 98.1 84.5 - 37.9 59.3 17.1 97.2 67.0 30.9 81.3 55.0 36.8 88.4 68.2 30.7 97.3↑ 3.4↓ 93.7↑
GTSRB

Figure 9: This figure illustrates that using a clean
feature extractor improves performance of pruning
techniques, indicated by lower ASR and high ACC.

Figure 10: Ablation: Importance of components of
our Hölder iteration defense- Clean feature extractor
(Part 1), Hölder Pruning (Part 2), Iteration (Part 3).

General Plug-in Method. We have selected multiple models, including SimCLR (Chen et al., 2020),
Pretrained ResNet-18 (He et al., 2016), ViT (Dosovitskiy et al., 2021), ALIGN (Jia et al., 2021),
CLIP (Radford et al., 2021), and BLIP-2 (Li et al., 2023) to validate generality of our methodology.
Our method seamlessly integrates with self-supervised learning, Transformer, and pretrained models.
This integration is facilitated by our pruning technique, which operates exclusively within classifier
without requiring alterations to feature extractors. Results are presented in Table 3.

Ablation Study. Fig. 10 presents results of an ablation study on our Hölder Iteration Defense. We
assess necessity of each component through the following experiments: Clean Feature Extractor (Part
1), Hölder Pruning (Part 2), and Iteration (Part 3). Our results indicate that (a) a clean feature extractor
significantly reduces ASR, (b) Hölder Pruning allows for later selection of clean data, which helps
maintain lower ASR during training, (c) iterative method enhances accuracy in subsequent stages.

Runtime Comparison. We measured runtime of defense methods on the CIFAR-10 and GTSRB
datasets using a PreAct-ResNet18 architecture on NVIDIA GeForce RTX 3090. Table 4 shows that
our HP and HID are significantly faster than three other methods, with run-time as low as 30 seconds.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Evaluation of Hölder Pruning (HP) with Different Clean Feature Extractors: Classification accuracy
(ACC) for clean samples, attack success rate (ASR) and robust accuracy (RA) for Trojan samples for eight
attacks–BadNets (Gu et al., 2019), LC (Turner et al., 2019), SIG (Barni et al., 2019), LF (Zeng et al., 2022),
WaNet (Nguyen & Tran, 2021), SSBA (Li et al., 2021d), Trojan (Liu et al., 2018b), BppAttack (Wang et al.,
2022)– on six feature extractors– SimCLR (Chen et al., 2020), Pretrained Resnet-18 (PreRes) (He et al., 2015),
Transformers: VIT (Dosovitskiy et al., 2021), ALIGN (Jia et al., 2021), CLIP (Radford et al., 2021), BLIP-2 (Li
et al., 2023)– for the CIFAR-10 with 5% poison rate. Our HP is effective for all clean feature extractors.

Methods→ SimCLR PreRes VIT ALIGN CLIP BLIP-2

Attacks↓ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑
BadNets 90.9 1.5 90.6 93.7 0.0 94.1 90.1 0.0 89.3 88.2 0.0 88.5 93.7 0.0 93.3 98.0 0.0 97.8

LC 90.7 3.9 88.6 93.9 1.2 91.8 95.8 1.5 93.9 90.1 2.4 86.3 93.8 0.0 87.8 97.5 0.0 98.0
SIG 85.2 0.1 89.8 93.8 2.3 81.7 95.7 7.2 84.2 89.9 2.4 74.2 93.6 4.3 90.7 96.9 1.4 90.0
LF 85.6 3.7 88.1 93.8 1.9 90.9 84.9 11.9 69.1 88.0 2.6 82.9 94.3 2.5 91.1 97.0 1.9 96.4

WaNet 92.1 1.3 91.0 91.4 3.2 90.8 90.2 1.0 90.9 88.1 0.0 87.5 94.5 0.1 94.2 94.4 0.0 93.6
SSBA 88.5 4.4 82.4 92.7 9.3 79.4 91.4 0.0 91.4 88.4 3.1 84.9 93.8 1.1 90.3 98.0 4.0 91.5
Trojan 91.1 7.5 83.6 87.5 10.9 84.1 94.9 7.0 83.6 83.8 4.1 78.9 94.4 4.7 86.9 98.1 14.9 83.1

BppAttack 89.1 3.0 87.7 92.8 5.2 86.7 94.5 5.8 84.8 89.0 5.3 74.9 92.9 6.7 77.1 97.6 3.6 92.6
Averages 93.9 2.3 89.0 92.5 4.2 87.5 92.2 4.3 85.9 88.2 2.4 82.3 93.9 2.4 88.9 97.2 3.2 92.9

Table 4: Runtime Comparison: Average runtimes of our HP and HID and three other methods- ABL (Li et al.,
2021b), DBD (Huang et al., 2022), and D-ST (Chen et al., 2022) on the CIFAR-10 and GTRSB datasets. HP is
up to 1000x faster; even when clean feature extractors are unavailable, HID is up to 10x faster.

Methods(Sec) ABL DBD D-ST HID(Ours) HP(Ours)

CIFAR-10 4680 43200 49600 5400 30
GTSRB 2280 37800 44900 3900 30

Defense Effectiveness Under Different Poisoning Rates. We conducted experiments with varying
poisoning rates (from 0.1% to 5%) to explore their impact on efficacy of our Hölder Iteration Defense.
Table 5 shows that the poisoning rate does not significantly affect the performance of our approach.
Table 5: Evaluation of Hölder Iteration Defense (HID) against Different Poison Rates: ACC, ASR, and RA for
Trojan samples for eight different attacks–BadNets (Gu et al., 2019), LC (Turner et al., 2019), SIG (Barni et al.,
2019), LF (Zeng et al., 2022), WaNet (Nguyen & Tran, 2021), SSBA (Li et al., 2021d), Trojan (Liu et al., 2018b),
BppAttack (Wang et al., 2022) on different poison rates. (LC, SIG on GTSRB should have poison rate lower
than 0.5% - indicated by ‘NA’ entries). Performance of our HID remains unaffected by changes in poison rate.

Dataset CIFAR-10 GTSRB

poison rate→ 0.1% 1% 5% 0.1% 1% 5%

Attacks↓ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑
BadNets 91.5 0.0 91.3 90.9 1.5 90.6 92.5 0.0 92.5 98.8 0.0 98.7 98.8 0.0 98.8 98.8 0.0 98.8

LC 92.5 0.0 92.5 92.4 4.5 87.3 90.7 3.9 88.6 98.4 0.0 98.4 NA NA NA NA NA NA
SIG 91.5 0.0 91.1 90.2 0.0 90.1 85.2 0.1 89.8 98.2 0.1 90.5 NA NA NA NA NA NA
LF 92.2 1.1 90.9 87.9 3.1 85.0 85.6 3.7 88.1 94.4 2.0 92.9 96.6 3.6 92.4 93.2 3.2 90.0

WaNet 92.5 0.0 92.3 91.9 1.0 90.1 92.1 1.3 91.0 98.5 0.0 98.5 98.5 0.0 98.5 98.7 0.0 98.7
SSBA 91.0 0.0 91.0 91.1 0.7 89.2 88.5 4.4 82.4 96.0 0.0 96.0 94.5 1.1 92.6 92.4 5.7 92.4
Trojan 91.8 0.6 92.1 88.3 2.4 87.4 91.1 7.5 83.6 92.1 1.4 90.9 94.2 7.8 84.1 91.3 8.0 91.4

BppAttack 92.5 1.0 89.1 90.7 1.5 88.9 88.4 0.6 89.0 93.9 4.5 88.9 96.0 2.5 91.2 97.8 8.4 89.1
Averages 91.8 0.3 91.3 90.4 1.8 88.6 88.8 2.7 87.9 96.3 1.0 94.4 96.4 1.8 92.9 95.4 3.1 93.4

5 CONCLUSION

We developed Hölder Pruning, a defense against backdoor attacks in DNNs. By leveraging clean
feature extractors and the Hölder constant, our method enhanced pruning accuracy and model
robustness. Extensive experiments across three datasets (CIFAR-10, CIFAR-100, GTSRB) and against
nine backdoor attacks (BadNets, LC, SIG, LF, WaNet, Input-Aware, SSBA, Trojan, BppAttack)
demonstrated superiority of Hölder Pruning over eight SOTA defenses (FP, ANP, CLP, FMP, ABL,
DBD, D-ST). When a clean feature extractor was unavailable, we introduced the Hölder Iteration
Defense, which used self-supervised and iterative semi-supervised learning to continually refine the
feature space. Hölder Pruning and Hölder Iteration Defense consistently yielded high classification
accuracy, high robust accuracy, and low attack success rates. Additionally, Hölder Pruning achieved
up to 1000x faster runtime compared to SOTA defenses. Even when clean feature extractors were not
available, our approach was up to 10x faster than comparable methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning models. In 30th
USENIX Security Symposium (USENIX Security 21), pp. 1505–1521. USENIX Association, August
2021. ISBN 978-1-939133-24-3. URL https://www.usenix.org/conference/usenixsecurity21/
presentation/bagdasaryan.

Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training set
corruption without label poisoning. In 2019 IEEE International Conference on Image Processing,
2019.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. arXiv preprint arXiv:1811.03728, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations, 2020.

Weixin Chen, Baoyuan Wu, and Haoqian Wang. Effective backdoor defense by exploiting sensitivity
of poisoned samples. In Advances in Neural Information Processing Systems, 2022.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning, 2017.

Rene Y Choi, Aaron S Coyner, Jayashree Kalpathy-Cramer, Michael F Chiang, and J Peter Campbell.
Introduction to machine learning, neural networks, and deep learning. Translational vision science
& technology, 9(2):14–14, 2020.

Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust
backdoor attacks. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 11966–11976, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021.

Kuofeng Gao, Yang Bai, Jindong Gu, Yong Yang, and Shu-Tao Xia. Backdoor defense via adaptively
splitting poisoned dataset, 2023.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples, 2015.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain, 2019.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer: Convolution-augmented
transformer for speech recognition, 2020.

Junfeng Guo, Ang Li, and Cong Liu. Aeva: Black-box backdoor detection using adversarial extreme
value analysis, 2022.

Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh. Spectre: Defending against
backdoor attacks using robust statistics. In International Conference on Machine Learning, pp.
4129–4139. PMLR, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks, 2016.

11

https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan
https://www.usenix.org/conference/usenixsecurity21/presentation/bagdasaryan

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detection of
traffic signs in real-world images: The German Traffic Sign Detection Benchmark. In International
Joint Conference on Neural Networks, number 1288, 2013.

Dong Huang and Qingwen Bu. Adversarial feature map pruning for backdoor. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=IOEEDkla96.

Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via decoupling
the training process. In International Conference on Learning Representations, 2022.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information, 2018.

Shashank Mohan Jain. Hugging face. In Introduction to transformers for NLP: With the hugging
face library and models to solve problems, pp. 51–67. Springer, 2022.

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. A survey on contrastive self-supervised learning. Technologies, 9(1):2, 2020.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision, 2021.

Kaidi Jin, Tianwei Zhang, Chao Shen, Yufei Chen, Ming Fan, Chenhao Lin, and Ting Liu. Can we
mitigate backdoor attack using adversarial detection methods? IEEE Transactions on Dependable
and Secure Computing, 2022.

N.J. Kalton. Spaces of lipschitz and hölder functions and their applications. Collectanea Mathematica,
55(2):171–217, 2004.

Oliver Knill. Probability and stochastic processes with applications. Havard Web-Based, 5, 1994.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.toronto.
edu/~kriz/learning-features-2009-TR.pdf.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution, 2022.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world,
2017.

Daniela Lera and Ya D. Sergeyev. Lipschitz and hölder global optimization using space-filling curves.
Applied Numerical Mathematics, 60(1-2):115–129, 2010.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models, 2023.

Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, Ruotian Ma, and Xipeng Qiu. Backdoor attacks
on pre-trained models by layerwise weight poisoning. arXiv preprint arXiv:2108.13888, 2021a.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
Training clean models on poisoned data. In NeurIPS, 2021b.

Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor attack in the physical
world, 2021c.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE Transac-
tions on Neural Networks and Learning Systems, 2022.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor attack
with sample-specific triggers. In IEEE International Conference on Computer Vision (ICCV),
2021d.

12

https://openreview.net/forum?id=IOEEDkla96
https://openreview.net/forum?id=IOEEDkla96
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Siyuan Liang, Xingxing Wei, Siyuan Yao, and Xiaochun Cao. Efficient adversarial attacks for visual
object tracking, 2020.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring
attacks on deep neural networks, 2018a.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-221, 2018. The
Internet Society, 2018b.

Orson Mengara, Anderson Avila, and Tiago H. Falk. Backdoor attacks to deep neural networks: A
survey of the literature, challenges, and future research directions. IEEE Access, 12:29004–29023,
2024. doi: 10.1109/ACCESS.2024.3355816.

Rui Min, Zeyu Qin, Li Shen, and Minhao Cheng. Towards stable backdoor purification through
feature shift tuning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack, 2020.

Tuan Anh Nguyen and Anh Tuan Tran. Wanet - imperceptible warping-based backdoor attack. In
International Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=eEn8KTtJOx.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

Hossein Souri, Liam Fowl, Rama Chellappa, Micah Goldblum, and Tom Goldstein. Sleeper agent:
Scalable hidden trigger backdoors for neural networks trained from scratch, 2022.

Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp: Invisible hyperlinks in physical pho-
tographs, 2020.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y.
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In
Proceedings of the IEEE Symposium on Security and Privacy (IEEE SP), San Francisco, CA, 2019.

Huandong Wang, Changzheng Gao, Yuchen Wu, Depeng Jin, Lina Yao, and Yong Li. Pategail: a
privacy-preserving mobility trajectory generator with imitation learning. In Proceedings of the
Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innova-
tive Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in
Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023. ISBN 978-1-57735-880-0.
doi: 10.1609/aaai.v37i12.26700. URL https://doi.org/10.1609/aaai.v37i12.26700.

Shuo Wang, Surya Nepal, Carsten Rudolph, Marthie Grobler, Shangyu Chen, and Tianle Chen. Back-
door attacks against transfer learning with pre-trained deep learning models. IEEE Transactions
on Services Computing, 15(3):1526–1539, 2020.

Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient trojan attacks against
deep neural networks via image quantization and contrastive adversarial learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15074–15084,
June 2022.

Shaokui Wei, Mingda Zhang, Hongyuan Zha, and Baoyuan Wu. Shared adversarial unlearning:
Backdoor mitigation by unlearning shared adversarial examples, 2023.

13

https://openreview.net/forum?id=eEn8KTtJOx
https://openreview.net/forum?id=eEn8KTtJOx
https://doi.org/10.1609/aaai.v37i12.26700

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao Shen.
Backdoorbench: A comprehensive benchmark of backdoor learning. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models. In
NeurIPS, 2021.

Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of
backdoors via implicit hypergradient. In International Conference on Learning Representations,
2021.

Yi Zeng, Won Park, Z. Morley Mao, and Ruoxi Jia. Rethinking the backdoor attacks’ triggers: A
frequency perspective, 2022.

Zaixi Zhang, Qi Liu, Zhicai Wang, Zepu Lu, and Qingyong Hu. Backdoor defense via deconfounded
representation learning, 2023.

Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang Jiang. Clean-
label backdoor attacks on video recognition models, 2020.

Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal based on channel
lipschitzness. arXiv preprint arXiv:2208.03111, 2022.

Mingli Zhu, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Enhancing fine-tuning based
backdoor defense with sharpness-aware minimization, 2023a.

Mingli Zhu, Shaokui Wei, Hongyuan Zha, and Baoyuan Wu. Neural polarizer: A lightweight and
effective backdoor defense via purifying poisoned features, 2023b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

This appendix provides the formal proof establishing the connection between FGSM-Neuron algo-
rithm and Hölder constant value for measuring neuron sensitivity. Additionally, we detail algorithmic
steps of the Hölder Pruning defense and Hölder Iteration Defense against backdoor attacks and
presents the results of our experiments on the CIFAR-100 dataset. We also provide a brief summary
of related work, and descriptions of the backdoor attacks and defense methodologies that we evaluate
our Hölder Pruning defense and Hölder Iteration Defense.

This Appendix is organized into the following sections:

A.1 Broader Impact

A.2 FGSM-Neuron Algorithm

A.3 Hölder Pruning Algorithm

A.4 Hölder Iteration Defense Algorithm

A.5 Related Work

A.6 Experimental results on CIFAR-100

A.7 Performance Under Different Perturbation Magnitudes

A.8 Hölder Constant Selection

A.9 Comparison with other Baselines

A.10 Additional ablation study for Hölder Pruning

A.11 Perturbation for Backdoored model

A.12 Dataset Information

A.13 Training Settings

A.14 Attack Settings

A.15 Defense Settings

A.1 BROADER IMPACT

Deep neural networks (DNNs) have demonstrated exceptional performance in numerous applications
such as computer vision, speech recognition, and recommendation systems. However, training deep
learning models typically requires large amounts of data and computational resources, often involving
third-party data or servers. This dependency raises significant security concerns, particularly when
using large public datasets that may contain malicious or poisoned data samples. Attackers can inject
poisoned data into normal samples, embedding backdoors in the model during training, thus posing a
substantial threat to the model’s deployment. To mitigate these risks, defenders must remove potential
backdoors from the model before actual deployment to ensure its security and reliability. In this work,
we propose a lightweight, plug-and-play defense strategy that can be applied in real-world scenarios
to reduce risk of model poisoning. We aim to draw the community’s attention to practical defense
strategies to enhance the security of machine learning models.

A.2 FGSM-NEURON ALGORITHM AND HÖLDER CONSTANT VALUE FOR MEASURING NEURON
SENSITIVITY

In this section, we first present the FGSM-Neuron algorithm, which generates perturbed input
feature vectors for each neuron in the hidden layer. The objective is to maximize the discrepancy
between the outputs of a neuron for an original feature vector and its perturbed variant. The FGSM-
Neuron algorithm adapts the FGSM attack (Goodfellow et al., 2015) to specifically target individual
neurons within the hidden layer. Subsequently, we formally establish the connection between the
FGSM-Neuron algorithm and the Hölder constant value, which is used to measure neuron sensitivity.

Next, we review the necessary notations to demonstrate the connection between the FGSM-Neuron
algorithm, as outlined in Algorithm 1, and the Hölder constant, which is used for measuring neuron
sensitivity.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 1 FGSM-Neuron

1: Input: fhi : i
th neuron in the hidden layer of classifier, z̄: min-max scaled feature vector z of

input sample x, ϵ: perturbation size.
2: Initialize: z̄′ = z̄ + random noise
3: Calculate the loss: loss = ∥fhi

(z̄)− fhi
(z̄′)∥2

4: Calculate the gradient: grad = ∂loss
∂z̄

5: Update: z̄′ = z̄ + ϵ · sign(grad)
6: Apply feature vector bounds: z̄′ = clamp(z̄′,min = 0,max = 1)
7: Output: z̄′

Let Z = [zj]
n
j=1 be the set of features extracted by the clean feature extractor for a given input set

[xj]
n
j=1, where xj ∈ D′ and D′ denotes the training dataset that includes both clean and poisoned

input samples. Let [z̄j]nj=1 denote the min-max scaled features of the feature set [zj]nj=1. Let [fhi]
l
i=1

denote the outputs of each neuron in the hidden layer of a classifier. For a Hölder exponent 0 < α ≤ 1,
we define the Hölder constant Ci for the ith neuron as:

Ci = max
z̄

(
∥fhi(z̄)− fhi(z̄

′)∥
∥z̄ − z̄′∥α

)
,

Recall that the Hölder constant Ci is used to measure the sensitivity of a neuron to perturbed inputs
and that high sensitivity indicates that the corresponding neuron is a poison neuron enabling backdoor
attacks (Fig. 4).

The following proposition establishes the connection between the FGSM-Neuron algorithm and
Hölder constant values:

Proposition 1. Assuming that the function fhi
(·), which models the input-output relation of the ith

hidden layer neuron, is continuously differentiable, the FGSM-Neuron algorithm, as presented in
Algorithm 1, identifies the perturbed sample z̄′ that maximizes the term ∥fhi

(z̄)−fhi
(z̄′)∥

∥z̄−z̄′∥α for a given
scaled feature z̄.

Proof. Recall from Line 5 of Algorithm 1,

z̄′ = z̄ + ϵ · sign
(
∂∥fhi(z̄)− fhi(z̄

′)∥
∂z̄

)
.

This yields:

∥z̄′ − z̄∥α = ∥ϵ · sign
(
∂∥fhi(z̄)− fhi(z̄

′)∥
∂z̄

)
∥α = ϵα.

Then we can write:
∥fhi

(z̄)− fhi
(z̄′)∥

∥z̄ − z̄′∥α
=
∥fhi

(z̄)− fhi
(z̄′)∥

ϵα
.

Finally, noting that Line 5 of Algorithm 1 updates in the ascent direction of ∥fhi
(z̄)−fhi

(z̄′)∥ using a
stochastic sign gradient approach proves that the perturbed sample z̄′ computed by the FGSM-Neuron
algorithm maximizes the term ∥fhi

(z̄)−fhi
(z̄′)∥

∥z̄−z̄′∥α .

Proposition 1 demonstrates that the FGSM-Neuron algorithm, finds the perturbed sample z̄′ that
maximizes the term ∥fhi

(z̄)−fhi
(z̄′)∥

∥z̄−z̄′∥α for a given min-max scaled feature sample z̄. The assumption
that the function fhi

(·), which models the input-output relation of the ith hidden layer neuron, is
continuously differentiable is a standard one for DNNs. This property has been demonstrated to hold
for most DNN architectures, including CNNs and MLPs, as discussed in (Goodfellow et al., 2015;
Choi et al., 2020). Identifying Ci values for each scaled feature sample z̄ and obtaining the maximum
Ci value among them provides a metric to measure the maximum sensitivity to any given feature of
an input in the training dataset, which can be used to identify the poisoned neurons.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 Hölder Pruning ALGORITHM

Algorithm 2 below presents the detailed algorithmic procedure of the Hölder pruning defense outlined
in Section 3. The algorithm processes the outputs of each neuron in the hidden layer of a multi-layer
perceptron (MLP), denoted by [fhi

]li=1, against the features Z = [zj]
n
j=1 extracted by a clean feature

extractor for corresponding inputs [xj]
n
j=1, the maximum perturbation size ϵ, the Hölder exponent

0 < α ≤ 1, and the number of neurons p < l that need to be pruned. In line 3, the features
Z = [zj]

n
j=1 are scaled using a min-max scaler to obtain the scaled feature set [z̄j]nj=1. Line 7 of the

algorithm computes the perturbed feature z̄′j corresponding to each scaled feature sample z̄j using
the FGSM-Neuron algorithm presented in Algorithm 1. Lines 8 and 9 compute the Hölder constant
for the ith hidden layer neuron fhi with respect to the scaled feature vector z̄j and accumulate each
Hölder constant value corresponding to z̄j , for j = 1, 2, . . . , n, into the set C̄. Line 11 finds the
maximum Hölder constant value observed for the ith neuron across the input scaled feature samples
[z̄j]

n
j=1 and appends it to the Hölder constant set C. Line 13 sorts the Hölder constant values in the

set C in descending order, and Line 14 outputs the indices of the first p < l neurons from the ordered
set C to be pruned.

Algorithm 2 Hölder Pruning

1: Input: [fhi
]li=1: l neurons in the hidden layer of MLP, Z = [zj]

n
j=1: n feature vectors of input

samples [xj]
n
j=1 extracted from the clean feature extractor, ϵ: maximum perturbation size, α:

Hölder exponent, p < l: number of neurons that need to be pruned.
2: Initialize Hölder constant set C := {∅};
3: Min-Max scaling of features [z̄j]nj=1 =

[zj−min(Z)
max(Z)−min(Z)

]n
j=1

, where min(Z) and max(Z) are
the minimum and maximum values of each feature dimension across all n feature vectors;

4: for i = 1, 2, . . . , l do
5: C̄ := {∅}
6: for j = 1, 2, . . . , n do
7: z̄′j = FGSM-Neuron(fhi , z̄j , ϵ)

8: Compute Hölder constant for ith hidden layer neuron fhi w.r.t to scaled feature vector z̄j :

9: C̄ ← C̄ ∪ |fhi
(z̄j)−fhi

(z̄′
j)|

∥z̄j−z̄′
j∥α

10: end for
11: C ← C ∪max(C̄)
12: end for
13: Sort the set C in descending order
14: Output: Indices of first p < l neurons from the set C

A.4 Hölder Iteration Defense ALGORITHM

In below we present the Hölder Iteration Defense (HID) algorithm. HID can obtain a clean end-to-end
DNN model in the absence of a clean feature extractor.

Self-supervised learning: The model undergoes contrastive learning using unlabeled training data,
where it extracts and ensures consistent features from two different perspectives of the same image.

NT-Xent Loss Given a mini-batch consisting of N unique samples, SimCLR applies two distinct
data augmentations to each sample, resulting in 2N augmented samples. The loss for a positive pair
of samples (i, j) can be defined as:

Li,j = − log
exp

(
(

zi·zj
||zi||·||zj ||)/τ

)
∑2N

k=1 I[k ̸=i] · exp
(
(

zi·zj
||zi||·||zj ||)/τ

) , (1)

where zi and zj are the representations of the augmented samples i and j respectively, τ is the
temperature parameter, (I[k ̸=i]) is an indicator function that is 1 if k ̸= i, and 0 otherwise. The
NT-Xent Loss is computed across all 2N positive pairs in this mini-batch.

Semi-supervised learning Loss:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) After SSL (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

(e) After SSL (f) Iteration 1 (g) Iteration 2 (h) Iteration 3

Figure 11: The t-SNE visualization of the feature space generated by the feature extractor trained during the
Hölder Iteration Defense is shown in Fig (a) to Fig (d). Hölder Pruning results (accuracy of clean and poisoned
samples) under those feature extractors are shown in Fig (e) to Fig (h). We observe that performance of the
feature extractor improves with each iteration; specifically, boundaries between classes become more distinct.

Let a sample x from training data D to be robustly clean if fθ(x) = fθp(x), where fθ(x) is the model’s
predicted label and fθp(x) is the output post-Hölder pruning. We compile all robust clean samples
into a dataset Dclean, and identify the remaining potential poison dataset as Dpoison := D′ \Dclean.
The feature extractor is optimized by minimizing a semi-supervised loss described as follows:

L = E(x,y)∼Dclean [H(fθp(x), y)]︸ ︷︷ ︸
robust clean data

+λE(u)∼Dpoison [∥fθp(u)− fθp(u
′))∥2]︸ ︷︷ ︸

potential poison data

,

where H(p, q) denotes the cross-entropy between distributions p and q, and u′ represents the data
augmentation for unlabeled data u.

Algorithm: We summarize the HID in Algorithm 3. We have also shown results for SSL and three
iterations on the CIFAR-10 dataset under a BadNets attack (Fig. 11).

Algorithm 3 Hölder Iteration Defense

1: Input: D the poisoned training set, essl number of training epochs for self-supervised learning,
emix number of training epochs for semi-self-supervised learning in each iteration, Gθ: randomly
initialized model, fθ: randomly initialized classifier, I: number of iteration.

2: Train Gθ by using NT-Xent Loss on training set D for essl epoch.
3: for i = 1, 2, . . . , I do
4: Obtained feature vectors Z = [zj]

n
j=1 by using Gθ.

5: Min-Max scaling of features [z̄j]nj=1 =
[zj−min(Z)
max(Z)−min(Z)

]n
j=1

, where min(Z) and max(Z) are
the minimum and maximum values of each feature dimension across all n feature vectors;

6: Random initialize classifier fθ
7: Train classifier fθ on [z̄j]

n
j=1

8: Get a clean classifier fθp by applying Hölder Pruning on classifier fθ
9: Obtain clean robust data set Dclean by x, where x ∈ D and fθ(x) = fθp(x)

10: Obtain potential poison data Dpoison is Dpoison := D′ \Dclean

11: Train Gθ by using Semi-supervised learning Loss mentioned at Appendix 5 by using Dclean

and Dpoison for emix epoches.
12: end for
13: Output: A high performance model Gθ

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.5 RELATED WORK

We present a summary of related work in this section. Many of the works listed below have been
described at appropriate sections in the main paper. Our objective in this section is to categorize
related work into (a) works introducing backdoor attacks and (b) those which focus on design of
defense strategies against backdoor attacks.

Backdoor attacks aim to mislead a DNN to exhibit abnormal behavior on samples with a trigger
while behaving normally on other samples Min et al. (2023). An adversary carrying out a backdoor
attack modifies a small fraction of training samples and assigns these samples to an (adversary-
desired) target label Bagdasaryan & Shmatikov (2021); Doan et al. (2021); Gu et al. (2019); Li et al.
(2021c); Souri et al. (2022). Backdoor attacks can be (i) patch-based Chen et al. (2017); Gu et al.
(2019); Turner et al. (2019), where the inserted trigger takes a form of a patch (e.g., white square in
BadNets Gu et al. (2019)), or (ii) non-patch-based, where the trigger exploits properties of the input
such as image-size Zhao et al. (2020) and uses techniques such as image warping Nguyen & Tran
(2021) or steganography Tancik et al. (2020) to imperceptibly deform the image.

Backdoor defense mechanisms can be categorized broadly into (i) In-training or (ii) Post-training
methods. In-training defenses assume that the defender has access to a subset of poisoned data for
model training, and subsequently leverage differences in observed behaviors (e.g., magnitudes of
loss functions) associated with poisoned and clean samples to mitigate effects of backdoor attacks
Gao et al. (2023); Li et al. (2021b); Zhang et al. (2023). Post-training defenses, on the other hand,
assume access only to a possibly backdoored DNN model, and generally requires access to additional
clean samples to mitigate a backdoor attack Zhu et al. (2023b). Examples of post-training defense
methods includes pruning Zhu et al. (2023a), fine-tuning Kumar et al. (2022), and toxin suppression
Zeng et al. (2021). We explore efficacy of our Hölder Pruning approach, which is applicable during
both the in-training and post-training phases. We compare our method with state-of-the-art defenses
in both in-training and post-processing stages to demonstrate its versatility and effectiveness.

A.6 EXPERIMENTAL RESULTS ON THE CIFAR-100 DATASET

In this section, we provide additional experimental results on CIFAR-100 dataset to explore the
potential influence of the dataset. Specifically, CIFAR-100 contains only 500 images per class with
a large number of categories, a common scenario in real-world classification tasks. To ensure that
the number of backdoor instances does not exceed the number of images per class, resulting in
unbalanced data, we set the poison rate to 1%.

It can be observed that due to the decrease in poison rate, all defense methods have shown improve-
ment. ABL exhibits a greater ability to isolate poisoned samples in their initial isolation step, leading
to a reduction of ASR to 0 across all five types of attacks. However, the nature of pruning in CLP,
determined by its pruning rate selection, allows the model to maintain a relatively high ASR. The
classification-based methods DBD and D-ST also show improvement based on loss, yet they still
struggle to address clean label attacks. In this setting, our defense method still performs the best,
achieving a 1.5% ASR on HP and remarkable 0% ASR on HID. Additionally, our ACC and RA
remain at high levels, with RA significantly surpassing other defense methods.

A.7 PERFORMANCE UNDER DIFFERENT PERTURBATION MAGNITUDES

We further investigated the effectiveness of Hölder Pruning under different ϵ values, as shown in
Figure 12. It can be observed that the effectiveness of Hölder Pruning remains consistently satisfactory
across various ϵ values. As the ϵ value increases, there is a slight decrease in accuracy, highlighting
the resilience of Hölder Pruning under different ϵ values. Within the epsilon perturbation range of
0.05 to 0.2, the ASR consistently remains at a low level, while the ACC stays at a high level. This
provides valuable guidance for selecting the appropriate perturbation size.

A.8 HÖLDER CONSTANT SELECTION

To determine the appropriate value of Hölder constants, we conducted extensive experiments, which
revealed that Hölder constants of neurons inside classifier typically exhibit a specific distribution.
In Fig. 13, most Hölder constants are close to 0, showing a very high peak, followed by a rapid

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) BadNets (Gu et al., 2019) (b) LF (Zeng et al., 2022)

(c) Input-aware (Nguyen & Tran, 2020) (d) BppAttack (Wang et al., 2022)

Figure 12: The performance of our proposed Hölder Pruning for different perturbation magnitudes in BadNets
(Gu et al., 2019), LF (Zeng et al., 2022), Input-aware (Nguyen & Tran, 2020) and BppAttack (Wang et al., 2022)
attacks on the CIFAR-10 dataset. We observe that the ACC and ASR values when using our Hölder Pruning
defense are not effected by perturbation magnitude.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Hölder Constant Density (b) Hölder Pruning result

(c) Hölder Constant Density (d) Hölder Pruning result

Figure 13: This figure presents the probability distribution functions (PDFs) of Hölder Constant values and
the performance of our Hölder Pruning in Hölder Iteration Defense against BadNets (Gu et al., 2019) (Fig. (a)
and Fig. (b)) and SSBA (Li et al., 2021d) (Fig. (c) and Fig. (d)) attacks on the CIFAR-10 dataset. The PDFs in
Fig. (a) and Fig. (c) illustrate that the majority of neurons in the hidden layer of the classifier exhibit low Hölder
Constant values, indicating minimal sensitivity to perturbations, indicative of clean neurons for BadNets and
SSBA attacks. Conversely, neurons with larger Hölder Constant values exhibit high sensitivity to perturbations,
indicative of backdoored neurons for both BadNets and SSBA attacks. The neurons with high Hölder constant
values are targeted for removal by the Hölder Pruning method proposed in this paper. Figures (b) and Fig. (d)
demonstrate that removing neurons with high Hölder Constant values results in a low Attack Success Rate (ASR)
while maintaining high Classification Accuracy (ACC).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: Evaluation of Hölder Pruning (HP) against other SOTA Pruning Methods: The classification accuracy
(ACC) for clean samples, attack success rate (ASR) and robust accuracy (RA) for Trojan samples for nine
different attacks–BadNets (Gu et al., 2019), LC (Turner et al., 2019), SIG (Barni et al., 2019), LF (Zeng et al.,
2022), WaNet (Nguyen & Tran, 2021), Input-aware(Nguyen & Tran, 2020), SSBA(Li et al., 2021d), Trojan (Liu
et al., 2018b), BppAttack (Wang et al., 2022) on five different defense methods using transformer CLIP (Radford
et al., 2021) as feature extractor with 1% poison rate (Note: LC (Turner et al., 2019), SIG (Barni et al., 2019)
used 0.5%). No additional clean data in use.

Methods→ Benign FP ANP CLP FMP HP(ours)

Attacks↓ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑
BadNets 79.1 46.2 - 52.0 20.9 40.7 37.1 60.6 13.2 77.1 13.2 68.4 72.1 34.5 48.5 74.1 1.7 72.8

LC 78.2 12.9 - 59.8 2.1 52.4 60.9 1.5 54.6 77.1 4.8 69.2 69.8 0.0 61.9 76.4 0.0 73.7
SIG 79.0 39.6 - 56.6 15.7 17.1 57.8 3.5 23.4 77.3 29.1 26.7 74.2 11.7 25.8 77.7 0.3 50.7
LF 78.5 89.1 - 47.1 40.4 31.9 16.2 98.8 1.1 77.1 1.2 71.9 72.4 15.7 59.5 75.2 0.0 71.8

WaNet 78.5 0.5 - 59.6 0.0 47.5 63.1 40.1 0.3 73.2 0.0 60.1 65.1 0.0 44.2 76.1 0.0 72.1
Input-aware 79.1 80.1 - 55.7 73.3 16.9 54.0 94.8 3.7 78.0 58.9 32.0 71.5 85.2 11.5 78.9 4.4 68.1

SSBA 79.0 68.4 - 52.5 12.2 34.6 58.0 2.9 40.6 77.7 51.6 36.6 72.3 83.3 12.5 78.9 0.0 66.9
Trojan 78.9 95.5 - 56.4 93.9 4.3 57.9 46.2 24.1 77.6 94.3 4.9 71.5 93.8 4.8 76.6 2.5 64.2

BppAttack 78.3 96.1 - 59.1 77.7 9.2 35.5 100.0 0.0 77.7 86.3 10.8 69.9 97.8 1.2 76.4 4.6 50.7

Averages 78.7 58.7 - 55.4 37.3 28.2 48.9 49.8 17.8 76.9 37.7 42.2 70.9 46.8 29.9 76.7 1.5 65.7
CIFAR-100

Table 7: Evaluation of Hölder Iteration Defense (HID) against other SOTA End-to-End Backdoor Defenses:
The classification accuracy (ACC) for clean samples, attack success rate (ASR) and robust accuracy (RA)
for Trojan samples for nine different attacks–BadNets (Gu et al., 2019), LC (Turner et al., 2019), SIG (Barni
et al., 2019), LF (Zeng et al., 2022), WaNet (Nguyen & Tran, 2021), Input-aware (Nguyen & Tran, 2020), SSBA
(Li et al., 2021d), Trojan (Liu et al., 2018b), BppAttack (Wang et al., 2022) on five different defense (AB L(Li
et al., 2021b), CLP (Zheng et al., 2022), DBD (Huang et al., 2022), D-ST (Chen et al., 2022)) method with 1%
poison rate (Note: LC (Turner et al., 2019), SIG (Barni et al., 2019) used 0.5%).

Methods→ Benign ABL CLP DBD D-ST HID(ours)

Attacks↓ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑
BadNets 65.3 99.1 - 61.3 0.0 62.0 54.4 36.4 39.4 62.0 0.0 62.3 53.9 0.0 53.1 63.1 0.0 62.6

LC 66.3 99.8 - 60.6 0.0 58.5 65.3 40.7 40.1 64.8 92.2 6.4 55.1 16.1 45.8 60.3 0.0 59.9
SIG 66.5 98.9 - 57.8 0.0 15.6 63.1 44.1 18.8 62.3 85.6 10.4 54.8 65.1 7.8 59.8 0.0 58.1
LF 66.1 99.2 - 55.8 18.3 41.1 65.1 44.6 38.7 58.1 1.3 54.5 52.3 2.7 49.7 63.3 0.0 61.5

WaNet 65.6 98.6 - 64.0 2.7 55.7 61.2 35.4 41.3 61.7 0.0 58.9 54.4 0.1 53.5 64.1 0.0 60.5
Input-aware 65.1 99.3 - 56.3 39.9 30.3 64.1 15.9 50.0 62.4 0.0 59.5 54.9 46.8 31.9 64.2 0.0 60.3

SSBA 66.1 99.9 - 59.7 0.0 53.8 49.1 95.3 3.4 63.1 0.0 48.0 52.7 68.9 23.1 63.2 0.0 63.0
Trojan 65.6 99.9 - 57.3 0.0 42.5 33.3 76.4 6.0 64.6 0.0 59.9 53.6 95.0 3.9 64.1 0.0 63.2

BppAttack 65.6 97.3 - 63.5 13.5 52.5 57.6 0.0 50.0 63.4 0.0 58.2 53.9 0.1 53.1 62.2 0.0 58.6

Averages 65.8 99.1 - 59.5 8.2 45.7 57.0 43.2 31.9 62.4 19.9 46.4 53.9 32.7 35.8 62.7 0.0 60.9
CIFAR-100

decline in frequency. Subsequently, there exists a range with relatively high frequency, after which
the frequency significantly decreases.

We carried out experiments which indicated that poisoned neurons are typically linked to larger
Hölder constants. Therefore, we opted to prune neurons with Hölder constants exceeding a certain
threshold value. This threshold is a tunable parameter, whose value is selected by analyzing the
density distribution of Hölder constants. We observe that within this high-frequency range, the Attack
Success Rate (ASR) significantly decreases, while the Accuracy (ACC) remains high. If the Hölder
constant exceeds this range, the ASR remains high; if it falls below this range, the model’s ACC
decreases.

This information is crucial for selecting the optimal values of Hölder constants to achieve the best
pruning results. Consequently, we propose setting the Hölder constant within this high-frequency
range to ensure high ACC and low ASR.

A.9 COMPARISON WITH OTHER BASELINES

We compared our defense method with four other model repair methods, namely Neural Cleanse (NC)
(Wang et al., 2019), Adversarial unlearning of backdoors via implicit hypergradient (i-BAU) (Zeng
et al., 2021), D-BR (Chen et al., 2022), and Shared Adversarial Unlearning: (SAU) (Wei et al., 2023).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Notably, these methods require the defender to possess an extra benign dataset. To ensure a fair
comparison, we provided these methods with an additional 5% of clean data. As shown in Tables 1-2,
as expected, NC, i-BAU, and SAU were able to maintain high accuracy due to the supplementary
information from the benign local dataset. However, these model repair methods share a common
issue: during the removal of malicious information, it is challenging to entirely separate clean from
poisoned features within the neurons, resulting in their recovery accuracy (RA) being significantly
lower than that of our method. In contrast, our method achieved the lowest attack success rate (ASR)
and the highest RA in nearly all cases, while its accuracy (ACC) was either the highest or the second
highest. These results further validate the effectiveness and advantages of our approach, which does
not require additional clean datasets and yet achieves comparable accuracy, the lowest ASR, and the
highest RA.

Table 8: Evaluation of Hölder Iteration Defense (HID) against other SOTA End-to-End Backdoor Defenses:
Classification accuracy (ACC) for clean samples, attack success rate (ASR) and robust accuracy (RA) for
Trojan samples for nine different attacks–BadNets (Gu et al., 2019), LC (Turner et al., 2019), SIG (Barni et al.,
2019), LF (Zeng et al., 2022), WaNet (Nguyen & Tran, 2021), Input-aware (Nguyen & Tran, 2020), SSBA (Li
et al., 2021d), Trojan (Liu et al., 2018b), BppAttack (Wang et al., 2022)– on five defenses– NC (Wang et al.,
2019), i-BAU (Zeng et al., 2021), D-BR (Chen et al., 2022), SAU (Wei et al., 2023)– with 5% poison rate (LC
(Turner et al., 2019), SIG (Barni et al., 2019) used 0.5% on GTSRB). Our HID consistently outperforms the
SOTA.

Methods→ Benign NC i-BAU D-BR SAU HID(ours)

Attacks↓ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑
BadNets 91.9 98.7 - 91.5 3.2 89.5 88.4 1.3 87.7 10.0 1.5 10.7 91.1 1.3 90.4 90.9 1.5 90.6

LC 93.3 99.5 - 92.2 93.4 6.6 88.8 6.6 84.2 11.1 0.0 12.8 91.0 7.9 81.2 90.7 3.9 88.6
SIG 93.6 97.1 - 93.4 96.4 3.5 88.5 0.8 48.3 10.5 0.0 11.3 91.5 0.0 50.3 88.2 0.1 89.8
LF 93.3 98.0 - 92.0 62.1 33.9 87.5 15.3 60.4 10.5 82.3 2.8 90.8 2.7 83.7 88.6 3.7 88.1

WaNet 92.7 85.5 - 91.0 95.1 4.7 89.7 16.1 70.7 66.0 74.4 13.7 91.1 4.5 85.1 92.1 1.3 91.0
Input-aware 91.5 90.2 - 92.8 67.8 31.1 88.2 3.4 79.1 81.2 81.3 16.9 91.8 0.9 85.2 89.4 4.7 86.1

SSBA 93.2 94.9 - 93.7 99.8 0.0 90.3 6.6 58.4 15.1 63.8 5.7 90.9 11.0 57.8 89.5 4.4 82.4
Trojan 93.8 99.9 - 93.3 0.0 80.4 89.0 4.9 68.6 11.7 0.0 13.0 91.3 0.9 85.7 91.1 7.5 83.6

BppAttack 91.6 99.9 - 92.9 3.1 85.5 91.1 9.3 55.5 81.9 93.0 6.1 91.6 2.3 85.5 89.4 0.6 89.0

Averages 92.7 96.0 - 92.5 57.8 37.2 89.0 7.1 68.1 33.1 44.0 10.3 91.2 3.6 78.3 89.9↑ 3.0↓ 87.7↑
CIFAR-10

Methods→ Benign NC i-BAU D-BR SAU HID(ours)

Attacks↓ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑ ACC↑ ASR↓ RA↑
BadNets 97.3 57.9 - 94.4 0.0 94.4 96.8 0.0 96.8 11.2 0.0 11.3 97.8 0.0 97.7 98.8 0.0 98.8

LC 97.8 53.1 - 98.3 0.0 98.2 96.3 0.0 96.5 10.6 0.0 10.8 96.9 0.0 97.0 98.4 0.0 98.4
SIG 98.5 66.7 - 98.3 74.4 19.5 96.7 8.6 34.3 19.5 0.0 5.8 97.8 0.8 27.9 96.4 6.1 85.5
LF 98.4 98.6 - 92.2 1.7 32.4 94.5 15.5 24.2 4.4 78.8 1.9 96.0 0.2 9.4 96.2 3.2 90.0

WaNet 98.4 92.9 - 96.4 0.0 95.7 98.1 0.0 97.5 73.0 81.2 14.5 97.5 0.9 96.7 98.7 0.0 98.7
Input-aware 98.2 92.8 - 92.6 92.3 7.4 97.0 0.4 95.4 5.3 32.0 5.3 98.7 0.0 93.9 99.3 0.0 99.1

SSBA 98.1 99.3 - 98.0 92.3 7.4 94.3 7.1 78.4 10.8 0.0 10.6 81.1 90.9 8.0 95.4 5.7 92.4
Trojan 98.5 100.0 - 93.3 0.0 80.4 95.6 0.1 78.8 21.8 0.0 14.9 85.7 0.0 12.2 94.3 8.0 91.4

BppAttack 98.2 98.9 - 96.5 0.5 82.2 97.5 1.9 90.1 41.8 77.2 7.8 98.0 0.0 97.7 97.8 8.4 89.1

Averages 98.1 84.5 - 95.5 29.0 57.5 96.3 3.7 76.8 22.0 29.9 9.2 94.3 10.3 60.1 97.3↑ 3.4↓ 93.7↑
GTSRB

A.10 ADDITIONAL ABLATION STUDY FOR HÖLDER PRUNING

Figure 14 presents the results of an ablation study on our Hölder Pruning defense method. We
evaluate the necessity of each component through the following experiments: Clean Feature Extractor
(Part 1) and comparing the use of the maximum Hölder value versus the average Hölder value across
all training data for measuring the sensitivity of neurons (Part 2). Our results indicate that (a) the
Clean Feature Extractor significantly reduces the Attack Success Rate (ASR). For the backdoored
model with a poisoned feature extractor, the model’s output under perturbation is quite interesting.
As shown in Figure 15, even when the target class is 1, the backdoored model tends to predict label 6,
which implies that the poisoned neurons are less sensitive to perturbation than the clean neurons. (b)
The average Hölder value is not an effective metric for identifying poisoned neurons. We consider that
this is due to the presence of latent poisoned neurons that are generally insensitive to perturbations
but activate under specific conditions. This characteristic aligns with the facts of backdoored data,
where only a small number of poison samples are dispersed throughout the entire training set.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) ACC (b) ASR

Figure 14: This figure shows higher ACC values and lower ASR values of our Hölder Pruning under different
conditions (blue color bars). Poisoned_Feature_Extractor means we use a poisoned feature extractor with Hölder
Pruning, Hölder Constant Mean indicates we use the mean Hölder Constants for each neurons to evaluate the
sensitivity. Clean_Feature_Extractor is the approach used in our Hölder Pruning.

(a) (b) (c)

Figure 15: This figure compares effects of perturbing inputs on output labels of backdoored models without a
clean feature extractor ((a)) and with a clean feature extractor ((b)). We observe that models without a clean
feature extractor are more likely to output label 6 in the presence of perturbations, whereas label 1 is the target
label. This indicates that in models without a clean feature extractor, clean neurons are more sensitive than toxic
neurons. Fig. (c) compares probabilities of predicting the target class between (a) and (b). Models with a clean
feature extractor significantly increase sensitivity to perturbations, demonstrating that compressing toxins into
the classifier layer enhances the features of toxic neurons.

A.11 PERTURBATION FOR BACKDOORED MODEL

For a backdoored model without a clean feature extractor, Fig. 15 show that they are less sensitive
to perturbations compared to models with a clean feature extractor. Additionally, we observe that
backdoored models without a clean feature extractor tend to output label 6 under perturbation,
whereas the target label is 1. This indicates that the toxic neurons in such models are less sensitive
to perturbations than the clean neurons, making it more challenging to identify the toxic neurons.
In contrast, models with a clean feature extractor exhibit significantly enhanced sensitivity of toxic
neurons to perturbations, greatly surpassing that of models without a clean feature extractor.

A.12 DATASET INFORMATION

We conduct experiments on three benchmark datasets, CIFAR-10, CIFAR-100, and GTSRB. CIFAR-
10 contains 60,000 images divided into 10 classes, with 6,000 images per class. CIFAR-100 contains
60,000 images divided into 100 classes, with 600 images per class. GTSRB contains 51,839 images
divided into 43 classes, with varying numbers of images per class.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.13 TRAINING SETTINGS

The machine used for these experiments was an NVIDIA GeForce RTX 3090. We conducted
experiments using PreActResNet18 as the base model.

• For the proposed Hölder Pruning method, we trained the classifier for 100 epochs using
the training matrix extracted by the clean feature extractor. The hidden layer size of the
classifier was set to 1024. We used Cross Entropy Loss and the Adam optimizer, with a
learning rate of 0.001.

• For the proposed Hölder Iteration Defense, we trained the feature extractor using NT-Xent
Loss for 100 epochs. Inside the self-supervised learning, we used the SGD optimizer
to optimize the feature extractor, with a learning rate of 0.4, a weight decay of 0.0001,
and momentum set to 0.9. We set the number of iterations to 4 for the semi-supervised
learning, and the optimizer is setting as Adam with learning rate of 0.002. During each
iteration, we trained the classifier for 60 epochs using the training matrix extracted by the
generated feature extractor. The training epochs for semi-supervised learning were set to
20. The Hölder Pruning settings are the same as above. Since the performance of the
feature extractor will also affect the results of Hölder Pruning, the performance of the feature
extractor improves with each iteration. We suggest iteratively minimizing the pruning size;
specifically, set the pruning size to 512 initially, and decrease it by 128 during each iteration.

A.14 ATTACK SETTINGS

In this part, we provide additional implementation details on nine SOTA backdoor attacks.

Table 9: Criteria of nine attacks–BadNets (Gu et al., 2019), LC (Turner et al., 2019), SIG (Barni et al., 2019),
LF (Zeng et al., 2022), WaNet (Nguyen & Tran, 2021), SSBA (Li et al., 2021d), Trojan (Liu et al., 2018b),
BppAttack (Wang et al., 2022)

Criterion→ Size Visibility Variability Label-consistency Coverage
Attack ↓ Patch Blend Visible Invisible Agnostic Specific Dirty Clean Local Global
BadNets ✓ ✓ ✓ ✓ ✓

LC ✓ ✓ ✓ ✓ ✓
SIG ✓ ✓ ✓ ✓ ✓
LF ✓ ✓ ✓ ✓ ✓

WaNet ✓ ✓ ✓ ✓ ✓
Input-aware ✓ ✓ ✓ ✓ ✓

SSBA ✓ ✓ ✓ ✓ ✓
Trojan ✓ ✓ ✓ ✓ ✓

BppAttack ✓ ✓ ✓ ✓ ✓

• BadNets (Gu et al., 2019): The trigger is a 3 × 3 white square at the bottom right corner of
images as shown in Figure. We attach the trigger to a portion of training samples from other
classes and change the label to the target label. We achieve the attack success rate (ASR) of
98.7% and the natural accuracy on clean data (ACC) of 91.9% on CIFAR-10.

• LC (Turner et al., 2019): The trigger is a 3 × 3 checkerboard at the four corners of images
as shown in Figure. To make the backdoored model rely more on the trigger pattern rather
than the salient features from the source class, we apply adversarial perturbations to render
these poisoned samples harder to classify. We use Projected Gradient Descent (PGD) to
generate adversarial perturbations with a maximum perturbation size (ϵ) of 16, each pixel of
the image can be altered by up to 16 units in any direction. We achieve an ASR of 99.5%
and ACC of 93.3% on CIFAR-10.

• SIG (Barni et al., 2019): Sig attack injects a sinusoidal signal as the trigger over the images.
The trigger is embedded to a portion of training samples from other classes and the label is
changed to the target label. We achieve an ASR of 97.1% and ACC of 93.6% on CIFAR-10.

• LF (Zeng et al., 2022): Low Frequency Attack manipulates the frequency components of
an image by applying a low-pass filter, which reduces high-frequency information while
preserving the low-frequency content, thereby embedding a backdoor trigger. The low-pass

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) Clean (b) BadNets (c) LC (d) SIG (e) LF

(f) WaNet (g) Input-aware (h) SSBA (i) Trojan (j) BppAttack

(k) Clean (l) BadNets (m) LC (n) SIG (o) LF

(p) WaNet (q) Input-aware (r) SSBA (s) Trojan (t) BppAttack

Figure 16: Examples of poisoned CIFAR-10 images including Beign, BadNets (Gu et al., 2019),LC (Turner
et al., 2019), SIG (Barni et al., 2019), LF (Zeng et al., 2022), WaNet (Nguyen & Tran, 2021), Input-aware
(Nguyen & Tran, 2020), SSBA (Li et al., 2021d), Trojan (Liu et al., 2018b), BppAttack (Wang et al., 2022)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

filter reduces details and noise in the image, preserving the primary visual and semantic
information. We achieve the attack success rate (ASR) of 98.0% and the natural accuracy
on clean data(ACC) of 93.3% on CIFAR-10.

• WaNet (Nguyen & Tran, 2021): We first define a specific warping pattern that creates
visually subtle distortions. The parameters include the perturbation strength (s = 0.5), the
noise grid size (k = 4), and the grid rescale factor (grid_rescale = 1), which are used to
control the spatial transformation perturbations added to the input images. Then we warp a
portion of images from the training set according to the defined warping pattern. We achieve
an ASR of 85.5% and ACC of 92.7% on CIFAR-10.

• Input-aware (Nguyen & Tran, 2020): InputAware attack involves analyzing the input data
to identify the most suitable locations and forms for trigger embedding, and then generating
a trigger that blends seamlessly with the input to ensure it manipulates the model effectively
while being invisible to the human eye. The generator is optimized through adversarial
training with 500 epoches. We achieve an ASR of 90.2% and ACC of 91.5% on CIFAR-10.

• SSBA (Li et al., 2021d): The SSBA attack utilizes an encoder-decoder network to embed
attacker-specified strings into normal training images. This method is grounded in principles
of image steganography, where the network learns how to covertly insert information into
images without being detected visually. Through this method, each training image is
individually modified to contain a unique trigger that only the model can recognize. We
achieve an ASR of 93.2% and ACC of 94.9% on CIFAR-10.

• Trojan (Liu et al., 2018b): The TrojanNN attack involves selecting influential neurons.
We identify the two most influential neurons in the model’s linear layer by analyzing the
magnitude of the weights. A trigger is then generated using an encoder-decoder structure,
and this trigger is adjusted until the activation values of the two neurons reach 100 or until
1000 epochs are completed. We achieve an ASR of 93.8% and ACC of 99.9% on CIFAR-10.

• BppAttack (Wang et al., 2022): Bits Per Pixel attack is a type of backdoor attack targeting
image compression models. This attack subtly modifies the encoder parameters during
the image compression process, embedding triggers without significantly degrading image
quality. These triggers are injected in the Discrete Cosine Transform (DCT) domain and
invisible to the human eye. We achieve the ASR of 99.9% and ACC of 91.6% on CIFAR-10.

A.15 DEFENSE SETTINGS

In this part, we provide additional details on the twelve backdoor defense methodologies that we
consider.

Pruning Defense on classifier:

• Fine-Pruning (Liu et al., 2018a): Forward propagation is performed on all of the training
data D, and the activation values of neurons in the classifier are recorded and accumulated.
Neurons are then sorted based on these activation values, and 1% of neurons or weights
with the lowest activation values are pruned each time. The pruned model is tested to
ensure that the overall accuracy does not drop more than 10%. If the accuracy drop exceeds
10%, pruning is stopped. The steps of sorting, pruning, testing, and accuracy checking are
repeated until the pruning target or the upper limit of accuracy drop is reached.

• CLP (Zheng et al., 2022): In the CLP pruning method, evaluate the Lipschitz Constant on
each neruons within a classifier. The pruning process involves calculating the mean and std
of each Lipschitz Constant inside the neruons, pruning the neurons which has the Lipschitz
Constant larger than mean + std.

• ANP (Wu & Wang, 2021): In the ANP defense process, random perturbations epsilon are
first generated in the range of [-0.4, 0.4] and applied to the weights and biases of neurons.
These perturbations are optimized using Projected Gradient Descent (PGD) to maximize
the classification loss, repeating this process once. Then, the mask values are updated by
calculating a loss function that includes the losses of clean and adversarially perturbed
data, with a weight of 0.2. The mask values indicate which neurons are most sensitive to
adversarial perturbations. The training progress is recorded every 500 iterations until 2000
iterations are completed. Finally, neurons sensitive to adversarial perturbations are pruned

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

step-by-step using a threshold of 0.90 and a step size of 0.05, reducing the success rate of
backdoor attacks while maintaining accuracy on clean data.

• FMP (Huang & Bu, 2024): The FMP (Adversarial Feature Map Pruning) defense process
involves several steps: first, generating potential poisoned samples through Feature Reverse
Generation (FRG), which includes initializing the input with random noise, calculating the
loss based on the classifier hidden layer output, updating the input according to the gradient
of the loss, and ensuring the perturbed input remains within valid bounds. Then, feeding
these generated poisoned samples into the model to observe the inference accuracy of each
classifier hidden layer and identifying backdoor-related feature maps through significant
changes in accuracy. Next, pruning these identified backdoor neurons inside the classifier by
setting their weights to zero during the forward pass.

Data free defense:

• ABL (Li et al., 2021b): In the ABL backdoor defense process, the model is first pre-trained
on the backdoored dataset for 20 epochs using a Flooding loss function (flooding: 0.5).
Based on these loss values, 1% of the suspicious data (isolation_ratio: 0.01) is isolated, and
the model is further trained on the remaining clean data for 60 epochs. Finally, the model
undergoes 20 epochs of unlearning (unlearning_epochs: 20) to forget the backdoor patterns
learned from the isolated malicious data.

• CLP (Zheng et al., 2022): In the CLP pruning method, the Channel Lipschitz Constant
(CLC) is used to assess and adjust the sensitivity of each channel within a neural network.
The pruning process involves calculating the CLC for each channel, and applying pruning if
the CLC exceeds the mean plus a multiple (u) of the standard deviation. The intensity of
pruning is controlled by the parameter u, which is set to 3. Additionally, the configuration
parameters umin : 0, umax : 10, and unum : 20 allow for testing 21 different values of u
evenly distributed from 0 to 10. This helps in evaluating the impact of different pruning
intensities on model performance to optimize defense effectiveness while maintaining clean
model accuracy.

• DBD (Huang et al., 2022): In the DBD defense strategy, self-supervised learning for 100
epochs is the initial phase where the model learns intrinsic features of the data to create
feature extractors without relying on labels, and the ‘temperature=1‘ parameter controls
the sensitivity of learning. The warmup period for 10 epochs prepares the model for more
complex learning tasks. The subsequent semi-supervised learning phase trains the model
using both labeled and unlabeled data, employing a confidence threshold set at 0.5 to
distinguish between reliable and unreliable data, further optimizing model performance.

• D-ST (Chen et al., 2022): First, train a backdoored model from scratch using a poisoned
dataset without any data augmentation. Then, fine-tune the backdoored model with intra-
class loss L_intra with the same poisoned dataset. Next, compute the Feature Consistency
towards Transformations (FCT) metric for all training samples, calculate thresholds based on
the FCT values, and separate the samples into clean (bottom 20%), poisoned (top 5%), and
uncertain samples. After that, train a feature extractor using the semi-supervised contrastive
learning (SS-CTL) method with 200 epochs using the clean samples and train a classifier by
minimizing the mixed cross-entropy loss with 10 epochs using all samples. Finally, combine
the model with the feature extractor and classifier.

Additional defense:

• i-BAU (Zeng et al., 2021): In the I-BAU defense process, the model parameters are
initialized using the configured random seed and optimizer, and a clean train dataset is
loaded. 5% of the clean data is selected for training. In the inner loop, the trigger is updated
using gradient ascent to maximize the loss, with up to 5 fixed-point iterations per update. In
the outer loop, the model parameters are updated using implicit hypergradient to minimize
the loss. This process is repeated for 5 rounds, with the model’s performance on clean and
backdoor samples evaluated after each round. Finally, the updated model parameters and
defense results are saved.

• NC (Wang et al., 2019): The Neural Cleanse defense process begins by initializing param-
eters and datasets, including using 5% of the training data to train the reverse trigger and

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

mask. Poisoned classification model is first loaded. The mask and trigger are then initialized
and trained to minimize the combined classification loss and mask regularization loss for
80 epochs. After each iteration, the L1 norms of all labels are calculated to detect potential
backdoor attacks, and the regularization cost is adjusted based on a patience parameter of 5.
If the attack success rate exceeds the threshold of 98.0%, a backdoor attack is flagged. The
data is then split, selecting a cleaning subset using 5% of the data (‘cleaning_ratio: 0.05‘).
Adversarial samples are generated through reverse learning to fine-tune the model, reducing
its sensitivity to backdoor triggers. Finally, the fine-tuned model is evaluated, and the final
model and defense results are saved.

• D-BR (Chen et al., 2022): First, train a backdoored model from scratch using a poisoned
dataset without any data augmentation. Then, fine-tune the backdoored model with intra-
class loss Lintra with the same poisoned dataset. Next, compute the Feature Consistency
towards Transformations (FCT) metric for all training samples, calculate thresholds based
on the FCT values, and separate the samples into clean (bottom 20%), poisoned (top 5%),
and uncertain samples. In the two-stage Secure Training (BR) phase, the unlearning process
uses gradient ascent on poisoned samples to make the model forget the poisoned features,
with a learning rate of 0.0001, batch size of 128, and 20 epochs. The relearning process
retrains the model on clean samples using the same parameters. The model’s performance is
evaluated on clean and poisoned test datasets to measure attack success rate (ASR), accuracy
(ACC), and robust accuracy (RC).

• SAU (Wei et al., 2023): defense process involves using a small portion of the clean dataset,
specifically 5%, for adversarial training. This training is conducted over 100 rounds, during
which PGD attacks are used to generate shared adversarial examples. These examples are
constrained by the Linf norm, limiting the perturbation to a range of 0.2, with a step size
of 0.2 and iterating 5 steps. During adversarial training, the model parameters are updated
by combining adversarial loss weighted at 0.01, shared loss weighted at 1, clean data
classification loss weighted at 1, and shared adversarial risk loss weighted at 1. Each round
includes one outer optimization step. This process aims to minimize the total loss, thereby
effectively mitigating the impact of backdoor attacks while maintaining high accuracy and
robustness of the model.

29

	Introduction
	Preliminaries
	DNNs and Backdoor Attacks
	Hölder Condition
	Definitions of the Performance Metrics
	Threat Model
	Defender Model

	Proposed Method
	Hölder Pruning
	Hölder Iteration Defense

	Experiments
	Defense Performance against Backdoor attacks
	Analysis

	Conclusion

