

# 000 001 002 003 004 005 DRESS: DISENTANGLLED REPRESENTATION-BASED 006 SELF-SUPERVISED META-LEARNING FOR DIVERSE TASKS 007 008 009

010 **Anonymous authors**  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026

Paper under double-blind review

## ABSTRACT

010 Meta-learning represents a strong class of approaches for solving few-shot learn-  
011 ing tasks. Nonetheless, recent research suggests that simply pre-training a generic  
012 encoder can potentially surpass meta-learning algorithms. In this paper, we hy-  
013 pothesize that the reason meta-learning fails to stand out in popular few-shot learn-  
014 ing benchmarks is the lack of diversity among the few-shot learning tasks. We pro-  
015 pose *DRESS*, a task-agnostic Disentangled REpresentation-based Self-Supervised  
016 meta-learning approach that enables fast model adaptation on highly diversified  
017 few-shot learning tasks. Specifically, DRESS utilizes disentangled representation  
018 learning to create self-supervised tasks that can fuel the meta-training process. We  
019 validate the effectiveness of DRESS through experiments on datasets with multi-  
020 ple factors of variation and varying complexity. The results suggest that DRESS is  
021 able to outperform competing methods on the majority of the datasets and task se-  
022 tups. Through this paper, we advocate for a re-examination of how task adaptation  
023 studies are conducted, and aim to reignite interest in the potential of meta-learning  
024 for solving few-shot learning tasks via disentangled representations.

## 1 INTRODUCTION

025 Few-shot learning (Wang et al., 2020) emphasizes the ability to quickly learn and adapt to new  
026 tasks, and is regarded as one of the trademarks of human intelligence. In the pursuit of few-shot  
027 learning, meta-learning approaches have been widely explored (Finn et al., 2017; Snell et al., 2017;  
028 Ravi & Larochelle, 2017), as they allow models to *learn-to-learn*. However, multiple recent studies  
029 (Tian et al., 2020; Dumoulin et al., 2021; Shen et al., 2021; Shu et al., 2023) suggest that a simple  
030 *pre-training and fine-tuning* approach is sufficient to support highly competitive performance in few-  
031 shot learning tasks. Specifically, a generic encoder is trained with a self-supervised loss on a unified  
032 dataset that aggregates samples (with their targets dropped) from all available training tasks. A  
033 linear layer is added on top of the encoder and is fine-tuned using few-shot support samples to adapt  
034 to new tasks. Pre-training and fine-tuning neglects two crucial sources of information: identities  
035 of individual meta-training tasks and distinctions between them; and labels in meta-training tasks.  
036 Yet, pre-training and fine-tuning has been shown to achieve better results than meta-learning. This  
037 finding is unexpected, and perhaps even puzzling, as it implies that information about training tasks  
038 and their labels may be irrelevant to achieving high learning performance.

039 We hypothesize that this finding can be attributed to the lack of *task diversity* in many popular few-  
040 shot learning benchmarks. For instance, in canonical few-shot learning datasets such as Omniglot  
041 (Lake et al., 2011), *miniImageNet* (Vinyals et al., 2016), and CIFAR-FS (Bertinetto et al., 2019), the  
042 distinct tasks differ solely in that their targets belong to non-overlapping sets of object classes. In  
043 essence, these tasks all share the same nature: main object classification. Hence, there is one degen-  
044 erate strategy for solving all these tasks simultaneously: compare the main object in the query image  
045 to the main objects in the few-shot support images, and assign the class label based on similarity to  
046 support images. This strategy can be achieved through pre-training with contrastive learning using  
047 common image augmentations like rotation and cropping which preserve the semantics of the main  
048 object, while discarding factors such as orientation and background (Balestrieri et al., 2023). Given  
049 the shared nature of tasks on these benchmarks, it is not surprising that a single pre-trained encoder  
050 can perform competitively against meta-learning methods.

051 To rigorously challenge a model’s adaptation ability, we advocate for the establishment of few-shot  
052 learning benchmarks that include tasks with fundamentally distinctive natures. Specifically, we  
053 consider tasks beyond main object classification, such as identifying object orientation, background

color, ambient lighting, or attributes of secondary objects. In addition, models should be *agnostic* to the nature of the evaluation tasks. Such setups can reveal the model’s true capacity to learn strictly from the few-shot samples, with *task identification* as an essential learning component. Furthermore, we highlight a key consequence of high task diversity: when meta-testing tasks differ significantly in nature from meta-training tasks, the labels in meta-training tasks may provide misleading guidance to the model, towards premature fixation on a narrow perspective of the input data. Recognizing this issue, we reaffirm the preference of *self-supervised* meta-learning over supervised meta-learning.

For effective meta-learning under high task diversity, we bridge the idea of disentangled representation learning with self-supervised meta-learning in a single framework referred to as *DRESS* — *task-agnostic Disentangled REpresentation-based Self-Supervised meta-learning*. Specifically, we utilize an encoder trained to compute disentangled representations, and extract latent encodings of the inputs. We then semantically align these latent representations across all inputs. Within this aligned latent space, we perform clustering independently on each disentangled latent dimension, and use the resultant cluster identities to define pseudo-classes of the inputs. Finally, we construct a set of self-supervised few-shot classification tasks based on these pseudo-classes from each latent dimension. With the disentangled latent dimensions representing distinct attributes and factors of variation within the inputs, the constructed few-shot learning tasks are highly diversified. Using these tasks for meta-training, the model can learn to adapt quickly to unseen tasks, regardless of the task nature. In addition, we propose a quantitative task diversity metric based on class partitions. Our metric is directly defined on the input space instead of any learned embedding space, therefore allowing fair and independent comparisons between tasks of distinct semantic natures.

We conduct extensive experiments on image datasets containing multiple factors of variation, beyond the main object’s class, and spanning different levels of complexity and realism. To ground our results, we establish three supervised meta-learning baselines that have differing levels of ground-truth information. These supervised baselines not only serve as upper bounds on performance, but also expose the negative effects of learning from labels when the natures of tasks are mismatched. Our results suggest that DRESS enables few-shot learning performance that can surpass existing methods, and approaches the upper bound of supervised baselines under many experimental setups.

Our main contributions can be summarized as follows:

- We identify the lack of task diversity in few-shot learning benchmarks, explaining why pre-training and fine-tuning can seem to outperform meta-learning.
- We develop few-shot learning benchmarks with more diversified tasks for rigorous evaluation.
- We propose DRESS, a method for creating diverse tasks that enable self-supervised meta-learning with disentangled representations.
- We introduce a task diversity metric based on task class partitions directly over the input space.

## 2 RELATED WORKS

**Meta-Learning vs. Pre-training and Fine-tuning** There has been a large volume of meta-learning research on the general few-shot learning problem (Finn et al., 2017; Snell et al., 2017; Lee et al., 2022; Song et al., 2022; Kim & Hospedales, 2024). Researchers have also explored unsupervised or self-supervised meta-learning (Hsu et al., 2019; Khodadadeh et al., 2019; 2021; Lee et al., 2021; Jang et al., 2023; Pachetti et al., 2024). Notably, CACTUS (Hsu et al., 2019) proposes a task construction approach using an encode-then-cluster procedure. Meta-GMVAE (Lee et al., 2021) models the dataset using a variational auto-encoder with a mixture of Gaussians as prior, and matches latent modalities with class concepts. Studies including (Khodadadeh et al., 2019; Jang et al., 2023) use image augmentations to create samples for pseudo classes to meta-train the model. Although promising results are obtained on standard few-shot learning benchmarks, these works do not explicitly address the issue of task diversity, nor its effect on fast adaptation performance.

Recent studies (Tian et al., 2020; Dumoulin et al., 2021; Shen et al., 2021; Shu et al., 2023) state that the simple approach of pre-training a generic encoder followed by fine-tuning can show superior performance compared to meta-learning. Specifically, the input samples from all available meta-training tasks are aggregated into a large dataset, with task identities completely ignored. An encoder is then trained on this large dataset using supervised or self-supervised training techniques



Figure 1: DRESS creates diversified self-supervised meta-training tasks through disentanglement learning. Images are first encoded into disentangled latent representations. The latent representations are then semantically aligned across dataset. Clusters are formed on each latent dimension individually. Pseudo-classes are sampled from these clusters to construct self-supervised classification tasks. Each disentangled latent dimension corresponds to a set of tasks with its unique nature.

(e.g., contrastive learning (Chen et al., 2020)). When adapting to any meta-testing task, a linear classification layer is added and fine-tuned on top of the encoder over the support samples.

**Task Diversity** The main obstacle to investigating the task diversity is the difficulty of quantifying it. Existing research measures task diversity either via establishing a shared embedding space (Achille et al., 2019; Kumar et al., 2022), or through projection mappings from the input to output spaces (Sui et al., 2024). Recently, Miranda et al. (2023) conducted thorough experiments suggesting that existing meta-learning methods can show very slight improvements over the pre-training and fine-tuning approach on tasks with higher *Task2Vec* diversity coefficients (Miranda et al., 2022). Nonetheless, the intuition behind the link between task diversity and the performance of few-shot learning has yet to be discussed. Similarly, no meta-learning approach has explicitly exploited the idea of diversifying meta-training tasks for boosting the fast adaptation ability of a model.

**Disentangled Representation Learning** Disentangled representation learning has been mainly investigated in the context of generative modeling (Higgins et al., 2017; Kim & Mnih, 2018; Singh et al., 2022; Yang et al., 2023; Hsu et al., 2024; Jiang et al., 2023; Yue et al., 2024; Wu & Zheng, 2024), with the objective of learning representations that capture independent factors of variation within the input distribution. For complex images, factors of variations include the main object identity, as well as object orientation, background, ambient lighting, view angle, and so on.

### 3 METHODOLOGY

We introduce DRESS, our task-agnostic Disentangled REpresentation-based Self-Supervised meta-learning approach. DRESS leverages disentangled latent representations of input images to construct self-supervised few-shot learning tasks that power the meta-training process. The multi-stage diagram and pseudo code of DRESS are provided in Figure 1 and Algorithm 1 respectively.

#### 3.1 ENCODING DISENTANGLED REPRESENTATIONS

First, all images available for meta-training are collected, and used to train a general purpose encoder with the objective of producing disentangled representations (e.g., a factorized diffusion autoencoder (FDAE) (Wu & Zheng, 2024), or latent slot diffusion model (LSD) (Jiang et al., 2023)). We then use the trained encoder to encode each image and obtain its disentangled latent representation, which consists of a set of vectors, one for each identified semantic concept. For the remainder of the paper, we resort to the term *dimension* to refer to individual semantic concepts. We rely on prior information about the dataset to select the appropriate number of latent dimensions to encode (i.e. how many factors of variation are expected based on image structure). However, when such information is not available, the intrinsic dimension of the dataset can be used as a proxy (Loaiza-Ganem et al., 2024; Kamkari et al., 2024).

The notion of *entanglement* is broad and may correspond to various definitions. For example, in  $\beta$ -VAE (Higgins et al., 2017) and FDAE, the entanglement of latent representations is connected to covariance; in factorVAE (Kim & Mnih, 2018), feature entanglement is quantified statistically as *total correlation*; while for LSD, feature entanglement is translated to relative spatial locations in the image space. As DRESS is compatible with various encoder designs, in Algorithm 1, we use *entanglement*( $\cdot$ ) to denote a general notion of entanglement, with its specific definition depending on the selected encoder.

162

**Algorithm 1** DRESS Pipeline on  $N$ -way  $K$ -shot tasks

163

1: **Input:**  $\{x_i\}_{i=1}^{K_{\text{total}}}$ .

164

2: Train encoder with disentanglement learning on inputs

165

$$f_{\text{enc}} : \mathcal{X} \rightarrow \mathcal{R}^{J \times L} \quad (J: \text{dimensions}, L: \text{latent size}).$$

166

3: Obtain disentangled representations

167

$$\mathbf{f}_i = f_{\text{enc}}(x_i)$$

168

$$\text{s.t. entanglement}(\mathbf{f}_i^{j_1}, \mathbf{f}_i^{j_2}) \approx 0 \quad \forall i, \forall j_1, j_2 \in [J], j_1 \neq j_2.$$

169

4: Align latent dimensions by permuting  $j$  for each image, so that the semantic information in  $\mathbf{f}_i^j$  is consistent across all images.

170

5: **for**  $j \in [J]$  **do**

171

6: Cluster  $\{x_i\}$  on  $\mathbf{f}_i^j$  to define a partition  $P_j$ .

172

7: **while** not converged **do**

173

8: Sample a partition  $P \sim \{P_j\}$ 

174

9: Sample  $N$  clusters from the partition  $\{C_{c_i}\} \sim P$ 

175

10: **for**  $c_i \in [N]$  **do**

176

11: Sample  $K$  datapoints from cluster  $C_{c_i}$  as *support* samples, set class labels as  $y_i^s = c_i$ .

177

12: Sample  $K$  datapoints from cluster  $C_{c_i}$  as *query* samples, set class labels as  $y_i^q = c_i$ .

178

13: Perform one meta-learning optimization step.

179

180

181

182

183

184

## 3.2 ALIGNING LATENT DIMENSIONS

185

After collecting the disentangled representations for all the training images, we align the latent dimensions of representations across images so that a given dimension conveys the same semantic information across all images (*e.g.*, main object color, object orientation, background color, lighting condition). For instance, some encoders (Locatello et al., 2020; Singh et al., 2022; Jiang et al., 2023) disentangle attributes by applying multiple attention masks over each image. For such latent spaces, we can align latent features by aligning the attention masks in spatial dimensions. Attention masks that are similar in shapes and spatial locations generally focus on the same semantic elements across images. To align such attention masks, we first preprocess each attention mask by flattening it and normalizing it into a vector on the simplex. We then gather a batch of attention masks and cluster them with K-Means (with the number of clusters equal to the number of attention masks learned on each image). With the obtained attention mask clusters, we reorder the latent representations from all images by the cluster identities of their corresponding attention masks.

186

187

## 3.3 CLUSTERING ALONG DISENTANGLED LATENT DIMENSIONS

188

189

190

191

192

193

194

195

196

197

198

We perform clustering within each dimension over latent vectors. Since dimensions are disentangled and aligned, clustering each dimension produces a distinct partition of the entire set of inputs that corresponds to one semantic property. Similar to Section 3.1, the number of clusters in this stage is a design choice. To shape the constructed tasks towards higher levels of difficulty, thus encouraging the model to learn data variations on finer levels of granularity, one can increase the number of clusters per dimension.

199

200

201

202

203

204

205

206

207

## 3.4 FORMING DIVERSE SELF-SUPERVISED TASKS

208

209

210

211

212

213

214

215

Finally, we construct self-supervised learning tasks using cluster identities as *pseudo-class* labels. We create a large number of few-shot classification tasks under each disentangled latent dimension by first sampling a subset of cluster identities as classes, and then sampling images under each class as the few-shot support samples and query samples.

216

217

218

219

220

221

222

As different dimensions within the disentangled representation depict distinct aspects of the input data, the sets of self-supervised tasks constructed from disentangled dimensions are naturally diversified, requiring distinct decision rules to solve. When using these tasks for meta-training, the model can digest each factor of variation within the data, and therefore learns to adapt to unseen few-shot tasks regardless of their contexts, natures, and meanings.



Figure 2: Illustration of class partition-based task diversity. A binary classification task is defined by two ellipses of the same color on an input space. **Left:** Two similar tasks where classes have high overlap among data points. **Right:** Two dissimilar tasks, with less overlap between class partitions.

### 3.5 SELECTION OF THE META-LEARNING ALGORITHM

DRESS is compatible with any conventional meta-learning algorithm for model training. However, not all meta-learning algorithms are well-suited to the highly diversified tasks DRESS generates. In this paper, we pair DRESS with the optimization-based adaptation approach MAML (Finn et al., 2017) because of its simplicity and ubiquity in meta-learning benchmarks. See Figure 6 in Appendix A.1 for a general illustration of the meta-learning pipeline. Discussions of pairing DRESS with other popular meta-learning algorithms are in Appendix A.2.

### 3.6 TASK DIVERSITY BASED ON CLASS PARTITIONS

In DRESS, different encoders with different embedding spaces could be used to construct tasks. Correspondingly, we advocate for a task diversity metric that is not tied to any specific embedding space, but is directly linked to the original input space, unlike metrics such as Task2Vec. We introduce a task diversity metric based on task class partitions. Consider two classification tasks defined on the same inputs as in Figure 2. Each task partitions the dataset based on class identities. The similarity between the tasks can be measured by the similarity between their respective partitions.

The mathematical definition of our metric is as follows: consider an input dataset of  $K$  data points,  $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^K$ , and two (potentially multi-class) classification tasks,  $T_1$  and  $T_2$ , defined on  $\mathcal{D}$ . Assume  $T_1$  and  $T_2$  both have  $N$  classes which can be mapped to  $\{c_j\}_{j=1}^N$  (if one task has fewer classes, we treat the missing classes as having zero samples).  $T_1$  and  $T_2$  can be described by two sets of class labels  $\{y_i^1\}_{i=1}^K$  and  $\{y_i^2\}_{i=1}^K$ , respectively, with one label for each input in  $\mathcal{D}$ . Equivalently, each task can be represented by a class-based partition of  $\mathcal{D}$ . For  $T_1$ , the class partition is denoted as  $\mathcal{P}^1 = \{P_{c_j}^1\}_{j=1}^N$ , where  $P_{c_j}^1 = \{x_i \mid y_i^1 = c_j\}$ . Similarly,  $\mathcal{P}^2$  represents the class partition for  $T_2$ .

Our task diversity metric is computed using these class-based partitions. First, we match subsets between  $\mathcal{P}^1$  and  $\mathcal{P}^2$  to maximize the pairwise overlaps, via methods such as bipartite matching. For each matched pair of subsets, we compute the intersection-over-union (IoU) ratio. Finally, we calculate the average IoU value across all subset pairs across the two partitions. A low average IoU indicates that  $\mathcal{P}^1$  and  $\mathcal{P}^2$  differ significantly, suggesting that  $T_1$  and  $T_2$  are relatively diverse tasks. We show pseudocode for the metric in Algorithm 2 in Appendix I. We note that during the step of relabeling the classes, the semantic information of the classes in each task is lost. Therefore, the proposed metric only quantifies task diversity from the function mapping perspective. Nonetheless, learning to jointly solve tasks that are diversified in their input-output mappings (which our metric quantifies) has been shown to enable better adaptation capacity (Sui et al., 2024).

## 4 EXPERIMENTAL SETUP

### 4.1 DATASETS

We consider curated datasets with controlled factors of variations, as well as complex real-world datasets. For curated datasets, we consider *SmallNORB* (Lecun et al., 2004), *Shapes3D* (Burgess & Kim, 2018), *Causal3D* (von Kügelgen et al., 2021), and *MPI3D* (Gondal et al., 2019), covering a data-complexity spectrum from easy to hard. These datasets include labels for multiple independently varying factors. For real-world datasets, we explore *CelebA* (Liu et al., 2015a) and *LFWA* (Liu et al., 2015b). Details of the factors of variation in each dataset are in Appendix B. We

270 do not consider benchmarks such as Omniglot, *miniImageNet*, and CIFAR-FS, due to their lack of  
 271 task diversity among meta-training and meta-testing stages, as we elaborated in Section 1.  
 272

#### 273 4.2 IMPLEMENTATION DETAILS OF DRESS

274 **Curated Datasets:** For our experiments on SmallNORB, Shapes3D, Causal3D and MPI3D, we  
 275 adopt the FDAE architecture (Wu & Zheng, 2024) for the encoder. We train a FDAE model from  
 276 scratch on each dataset and use it to encode the images into disentangled representations. The FDAE  
 277 encoder computes a content code and a mask code for each visual concept. We regard this pair of  
 278 codes as two independent latent dimensions. The number of visual concepts that we adopt for each  
 279 dataset is provided in Appendix D. When using FDAE as the encoder, no explicit computation is  
 280 required for the latent alignment stage in DRESS. Since FDAE employs deterministic convolutional  
 281 neural networks, each output head of the encoder computes a fixed semantic mapping. Therefore,  
 282 the latent dimensions are inherently organized in a consistent semantic order. This allows us to pro-  
 283 ceed directly to clustering after encoding all images. We then perform individual latent dimension  
 284 clustering and pseudo-class construction, with details in Appendix D.

285 **Real-World Dataset:** For CelebA and LFWA experiments, we adopt the LSD encoder (Jiang et al.,  
 286 2023) trained from scratch to demonstrate DRESS’s flexibility in adapting to representations from  
 287 various encoder architectures. The LSD encoder utilizes slot attention to learn disentangled latent  
 288 representations by computing visual *slots*, with each slot attending to different regions of the image  
 289 through a learned attention mask. Due to the stochastic nature of slot attention, the order of the  
 290 slots varies across images, requiring explicit latent alignment before clustering. We align the latent  
 291 dimensions by clustering on the attention masks from each slot, as discussed in Section 3.2. We  
 292 provide detailed description on this alignment procedure and visualizations in Appendix F. After  
 293 alignment, we perform clustering and form pseudo-classes for self-supervised meta-training tasks.

#### 294 4.3 BASELINE METHODS

295 **Supervised Meta-Learning:** We implement three variations of supervised meta-learning baselines  
 296 with increasingly relevant information about ground-truth factors:

- 297 • *Supervised-Original*: Only use the ground-truth factors that do not define meta-testing tasks to  
 298 create supervised meta-training tasks.
- 299 • *Supervised-All*: Use all the ground-truth factors to create supervised meta-training tasks.
- 300 • *Supervised-Oracle*: Only use the ground-truth factors that define meta-testing tasks to create  
 301 supervised meta-training tasks.

302 These methods progressively increase the relevancy of information available to the model, but are  
 303 increasingly unrealistic. Supervised-Original must learn to generalize from a limited set of ground-  
 304 truth factors to unknown factors at meta-testing time. Specifically, for Supervised-Original, the  
 305 ground-truth factors available in meta-training and in meta-testing are mismatched. As a result  
 306 these ground truth factors can potentially misguide the model causing worse generalization abil-  
 307 ity. Supervised-All has the most information, but needs to identify task natures and relevant fac-  
 308 tors, and hence represents the upper bound on performance when the evaluation tasks are agnostic.  
 309 Supervised-Oracle has perfect knowledge of factors utilized in meta-testing tasks, and represents the  
 310 ultimate performance upper bound.

311 **Few-Shot Direct Adaptation (FSDA):** This represents the lower bound of performance when a  
 312 model is directly optimized on the support samples from each meta-testing task.

314 **Pre-training and Fine-tuning (PTFT):** We implement the pre-training and fine-tuning method as  
 315 described in (Tian et al., 2020), using SimCLR (Chen et al., 2020) with its standard image augmen-  
 316 tations, with details in Appendix C.

317 **Unsupervised & Self-Supervised Meta-Learning:** We adopt *CACTUS* (Hsu et al., 2019) with two  
 318 encoders: DeepCluster (Caron et al., 2018) trained from scratch, and off-the-shelf DINOv2 (Oquab  
 319 et al., 2024). We refer to these baselines as *CACTUS-DC* and *CACTUS-DINO*, with details in  
 320 Appendix D. Additionally, we experiment with two recent unsupervised and self-supervised meta-  
 321 learning approaches: *Meta-GMVAE* (Lee et al., 2021) and *PsCo* (Jang et al., 2023).

322 We unify the model architecture, meta-training, and meta-testing setups for these methods across all  
 323 experiments, as detailed in Appendix D. **We also emphasize that for each dataset, the same set of**  
**images is used for meta-training (either the encoder or the meta-learner model) and for pre-training**

Table 1: Few-shot classification accuracies on curated datasets, with each trial conducted over 1000 meta-testing few-shot learning tasks.

| Method              | SmallNORB |         | Shapes3D |         | Causal3D |         | MPI3D-Easy |         | MPI3D-Hard |         |
|---------------------|-----------|---------|----------|---------|----------|---------|------------|---------|------------|---------|
|                     | 5-Shot    | 10-Shot | 5-Shot   | 10-Shot | 5-Shot   | 10-Shot | 5-Shot     | 10-Shot | 5-Shot     | 10-Shot |
| Supervised-Original | 61.9%     | 65.3%   | 62.0%    | 70.3%   | 52.1%    | 52.9%   | 57.8%      | 64.6%   | 63.3%      | 65.0%   |
|                     | ±0.8%     | ±1.7%   | ±1.5%    | ±1.7%   | ±0.3%    | ±0.3%   | ±0.5%      | ±1.4%   | ±1.3%      | ±1.3%   |
| Supervised-All      | 79.6%     | 80.8%   | 99.9%    | 100.0%  | 88.8%    | 90.4%   | 99.3%      | 99.9%   | 91.0%      | 94.4%   |
|                     | ±0.3%     | ±0.4%   | ±0.0%    | ±0.0%   | ±1.0%    | ±1.2%   | ±0.3%      | ±0.0%   | ±1.7%      | ±0.5%   |
| Supervised-Oracle   | 80.2%     | 82.0%   | 100.0%   | 100.0%  | 93.5%    | 94.4%   | 100.0%     | 100.0%  | 99.4%      | 99.7%   |
|                     | ±0.4%     | ±0.2%   | ±0.0%    | ±0.0%   | ±0.2%    | ±0.3%   | ±0.0%      | ±0.0%   | ±0.1%      | ±0.1%   |
| FSDA                | 73.9%     | 74.4%   | 65.7%    | 87.8%   | 66.9%    | 67.8%   | 60.6%      | 97.4%   | 62.3%      | 66.7%   |
|                     | ±0.9%     | ±0.8%   | ±2.0%    | ±0.6%   | ±0.9%    | ±3.1%   | ±0.3%      | ±0.1%   | ±0.3%      | ±0.9%   |
| PTFT                | 58.0%     | 61.9%   | 57.9%    | 71.6%   | 55.6%    | 57.2%   | 92.9%      | 84.8%   | 79.5%      | 94.1%   |
|                     | ±1.9%     | ±1.1%   | ±2.2%    | ±0.2%   | ±0.2%    | ±0.6%   | ±0.5%      | ±0.4%   | ±0.8%      | ±0.3%   |
| Meta-GMVAE          | 68.6%     | 73.9%   | 59.1%    | 59.6%   | 59.2%    | 63.9%   | 99.4%      | 99.2%   | 50.0%      | 50.6%   |
|                     | ±0.7%     | ±0.3%   | ±1.7%    | ±0.9%   | ±0.8%    | ±0.6%   | ±0.1%      | ±0.3%   | ±0.3%      | ±0.2%   |
| PsCo                | 74.2%     | 74.3%   | 97.6%    | 91.4%   | 70.8%    | 76.0%   | 83.5%      | 96.7%   | 79.5%      | 89.6%   |
|                     | ±0.4%     | ±0.6%   | ±0.6%    | ±0.5%   | ±0.5%    | ±0.5%   | ±2.0%      | ±0.9%   | ±0.7%      | ±0.3%   |
| CACTUS-DC           | 75.8%     | 76.3%   | 86.8%    | 93.5%   | 65.7%    | 69.7%   | 85.0%      | 92.6%   | 72.8%      | 79.2%   |
|                     | ±0.4%     | ±0.4%   | ±0.7%    | ±0.4%   | ±0.4%    | ±0.7%   | ±0.6%      | ±0.7%   | ±1.0%      | ±0.4%   |
| CACTUS-DINO         | 62.8%     | 66.9%   | 80.6%    | 89.3%   | 53.9%    | 56.0%   | 94.4%      | 97.7%   | 81.9%      | 89.0%   |
|                     | ±0.8%     | ±1.0%   | ±0.2%    | ±0.0%   | ±0.5%    | ±0.3%   | ±0.4%      | ±0.3%   | ±0.4%      | ±0.5%   |
| DRESS               | 78.1%     | 79.1%   | 93.1%    | 97.1%   | 76.4%    | 80.4%   | 99.9%      | 100.0%  | 85.0%      | 88.4%   |
|                     | ±0.4%     | ±0.2%   | ±0.2%    | ±0.4%   | ±0.4%    | ±0.2%   | ±0.0%      | ±0.0%   | ±0.5%      | ±0.4%   |

and fine-tuning, with the only exception being the DINOv2 encoder used in the CACTUS baseline, which has been extensively trained on much larger training sets. Essentially, the information available for training is identical in each of the competing methods.

#### 4.4 META-TRAINING & META-TESTING TASK SETUPS

For meta-testing, we construct few-shot learning tasks based on the selection of a *subset* of the attributes with ground-truth labels from each dataset. Consequently, the natures and levels of difficulty of the tasks are determined by this subset of attributes. Given the subset of attributes selected, the meta-testing tasks are created using the ground-truth labels, similar to (Hsu et al., 2019). First, we randomly pick a few attributes from the attribute subset, and define two distinct value combinations on those attributes. Images whose attributes match the first value combination are assigned to the positive class, while those matching the second combination are assigned to the negative class. For the three supervised meta-training baselines, we also create supervised meta-training tasks following the same procedure. Details on the subsets of attributes for supervised meta-training tasks and meta-testing tasks are provided in Appendix B for each dataset. For meta-training, we construct 2-way 5-shot few-shot learning tasks. While for meta-testing, we also experiment with 2-way 10-shot tasks to better examine the adaptation ability of each method.

We create multiple meta-testing configurations for the two most complex datasets, MPI3D and CelebA, by varying how attributes are grouped. For MPI3D, we define two few-shot learning setups: *MPI3D-Easy*, where the tasks focus on identifying the background and camera height; and *MPI3D-Hard*, where the tasks focus on horizontal and vertical robot arm angular positions. For CelebA, we define three few-shot learning setups: *CelebA-Hair*, where the tasks focus on all attributes relevant to the person’s hair; *CelebA-Primary*, where the tasks focus on primary facial attributes or features; and *CelebA-Random*, where the tasks are constructed from a random subset of attributes.

Lastly, to examine the ability of *cross-domain adaptation*, we adapt each model trained under the CelebA dataset onto the few-shot learning tasks created based on LFWA under a subset of primary attributes. We refer to this cross-domain adaptation setup as *LFWA-Cross-Domain*. *Supervised-Oracle* is no longer a valid baseline under this setup. As we adapt from CelebA to LFWA, the set of attributes are changed. Therefore, there is no oracle information on the meta-testing attributes.



Figure 3: Two self-supervised tasks constructed by DRESS on MPI3D. **Left:** The task focuses on classifying the object color. **Right:** The task focuses on identifying the robot arm angle.

## 5 RESULTS & ANALYSIS

### 5.1 EXPERIMENTAL RESULTS ON CURATED DATASETS

We present the few-shot classification accuracies in Table 1 for all the curated datasets.<sup>1</sup> DRESS consistently achieves the best few-shot adaptation performance among unsupervised or self-supervised methods under the most setups with just two exceptions. Supervised-Original is unimpressive, indicating that meta-training targets could mislead a supervised model when adapting to highly diversified tasks, as we hypothesized in Section 3. In contrast to Tian et al. (2020), pre-training and fine-tuning is not on par with meta-learning approaches, due to the more challenging and diverse tasks we benchmark on. CACTUS shows varying results across datasets with different encoders, reflecting the importance of the latent representations. As DRESS uses disentangled representation learning to construct diversified pre-training tasks, it obtains superior results across these datasets and task setups. We provide visualizations of two tasks constructed by DRESS in Figure 3, and additional visualizations in Appendix G.

Table 2: Few-shot classification accuracies on the realistic CelebA dataset and LFWA dataset for cross-domain adaptation, with each trial conducted over 1000 meta-testing few-shot learning tasks.

| Method              | CelebA-Hair           |                       | CelebA-Primary        |                       | CelebA-Random         |                       | LFWA-Cross-Domain     |                       |
|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                     | 5-Shot                | 10-Shot               | 5-Shot                | 10-Shot               | 5-Shot                | 10-Shot               | 5-Shot                | 10-Shot               |
| Supervised-Original | 68.9%<br>±0.6%        | 71.8%<br>±0.2%        | 77.0%<br>±1.1%        | 79.9%<br>±1.0%        | 81.9%<br>±0.2%        | 83.9%<br>±0.2%        | 69.1%<br>±1.6%        | 71.6%<br>±1.4%        |
| Supervised-All      | 79.1%<br>±0.2%        | 81.9%<br>±0.1%        | 88.1%<br>±0.2%        | 89.2%<br>±0.5%        | 85.6%<br>±0.2%        | 87.6%<br>±0.1%        | 73.0%<br>±0.3%        | 75.3%<br>±0.0%        |
| Supervised-Oracle   | 87.8%<br>±0.3%        | 89.3%<br>±0.1%        | 91.2%<br>±0.1%        | 92.1%<br>±0.1%        | 90.7%<br>±0.1%        | 92.0%<br>±0.2%        | -                     | -                     |
| FSDA                | 63.3%<br>±0.2%        | 63.3%<br>±1.4%        | 69.3%<br>±0.5%        | 70.0%<br>±1.0%        | 57.7%<br>±0.4%        | 56.7%<br>±1.2%        | 61.8%<br>±0.9%        | 62.0%<br>±0.7%        |
| PTFT                | 59.6%<br>±0.3%        | 62.0%<br>±0.2%        | 67.1%<br>±0.3%        | 70.3%<br>±0.2%        | 65.1%<br>±0.3%        | 68.0%<br>±0.1%        | 62.7%<br>±0.1%        | 65.7%<br>±0.1%        |
| Meta-GMVAE          | 64.2%<br>±0.2%        | 68.9%<br>±0.1%        | 67.9%<br>±0.3%        | 72.4%<br>±0.4%        | 64.9%<br>±0.2%        | 68.2%<br>±0.1%        | 59.4%<br>±0.2%        | 61.7%<br>±0.1%        |
| PsCo                | 66.2%<br>±0.3%        | 67.2%<br>±0.8%        | 66.0%<br>±0.6%        | 70.9%<br>±0.5%        | 60.5%<br>±0.4%        | 67.5%<br>±0.9%        | 59.0%<br>±0.3%        | 61.5%<br>±0.5%        |
| CACTUS-DC           | 67.4%<br>±1.0%        | 70.8%<br>±1.4%        | 71.4%<br>±0.1%        | 75.8%<br>±0.8%        | 62.2%<br>±1.1%        | 66.4%<br>±1.6%        | 63.9%<br>±1.2%        | 67.1%<br>±0.9%        |
| CACTUS-DINO         | 69.4%<br>±0.2%        | 71.0%<br>±0.1%        | 77.0%<br>±0.3%        | 80.2%<br>±1.0%        | <b>74.4%</b><br>±0.3% | <b>77.7%</b><br>±0.3% | 65.3%<br>±0.3%        | 65.4%<br>±1.6%        |
| <b>DRESS</b>        | <b>73.8%</b><br>±0.1% | <b>76.6%</b><br>±0.4% | <b>77.4%</b><br>±0.1% | <b>81.6%</b><br>±0.4% | 68.3%<br>±0.5%        | 70.8%<br>±0.0%        | <b>66.6%</b><br>±0.6% | <b>68.3%</b><br>±1.1% |



Figure 4: Two self-supervised tasks constructed by DRESS on CelebA. **Left:** Task focuses on identifying the presence of eyeglasses. **Right:** Task focuses on identifying the hairstyle with bangs.

<sup>1</sup>All reported results show mean and standard deviation over 4 trials under random seeds.

432 Table 3: Ablation on Disentangled Representations, Latent Dimension Alignment, and Individual  
 433 Dimension Clustering.

| Method                          | Shapes3D                           | Causal3D                           | MPI3D-Hard                         | CelebA-Hair                        | CelebA-Primary                     |
|---------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| DRESS                           | <b>93.1% <math>\pm</math> 0.2%</b> | <b>76.4% <math>\pm</math> 0.4%</b> | <b>85.0% <math>\pm</math> 0.5%</b> | <b>73.8% <math>\pm</math> 0.1%</b> | <b>77.4% <math>\pm</math> 0.1%</b> |
| DRESS w/o<br>Disent. Repsent.   | 75.3% $\pm$ 0.4%                   | 54.0% $\pm$ 0.4%                   | 78.8% $\pm$ 0.3%                   | 68.9% $\pm$ 0.2%                   | 77.3% $\pm$ 0.2%                   |
| DRESS w/o<br>Lat. Dim. Align.   | -                                  | -                                  | -                                  | 73.0% $\pm$ 0.2%                   | 76.1% $\pm$ 0.3%                   |
| DRESS w/o<br>Ind. Dim. Cluster. | 80.3% $\pm$ 0.8%                   | 76.1% $\pm$ 0.2%                   | 66.6% $\pm$ 0.5%                   | 72.7% $\pm$ 0.4%                   | 74.2% $\pm$ 0.3%                   |

## 442 5.2 EXPERIMENTAL RESULTS ON REAL-WORLD DATASETS

443 We report few-shot classification accuracies on the three CelebA setups as well as the LFWA  
 444 cross-domain setup from Section 4.4 in Table 2. DRESS outperforms all unsupervised methods  
 445 on CelebA-Hair, excelling at capturing secondary features (i.e. hair features) beyond primary facial  
 446 attributes. It also ranks first on CelebA-Primary, slightly ahead of CACTUS-DINO. We note that DI-  
 447 NOv2, as a state-of-the-art high capacity vision encoder, is expected to capture information from the  
 448 main objects (i.e. the faces), so CACTUS performs well here. On CelebA-Random, DRESS falls  
 449 behind CACTUS-DINO but remains superior to other baselines. This drop likely stems from the  
 450 fact that disentangled representations struggle to model fine details like *bags under eyes* and *bushy*  
 451 *eyebrows*. We confirm this by visualizing the learned disentangled latent factors in Appendix H,  
 452 which indeed shows that the latent factors fail to zoom into the above-mentioned fine details within  
 453 the faces. We emphasize again that despite the practical and imperfect disentangled latent factors,  
 454 DRESS outperforms other methods. As disentangling encoders continue to improve and compute  
 455 higher quality latent factors, we believe the DRESS will also benefit. Supervised-Original still  
 456 performs poorly, showing that labels can misguide adaptation to unseen tasks. Lastly, shown by  
 457 the LFWA-Cross-Domain results, DRESS also comes first when the meta-training and meta-testing  
 458 data belongs to different domains, indicating more robust and transferable representations learned  
 459 by the model. We provide visualizations of two tasks constructed by DRESS on CelebA in Figure 4,  
 460 with additional visualizations provided in Appendix G that show the diverse facial attributes DRESS  
 461 captures for constructing tasks.

## 462 5.3 ABLATION STUDIES

463 We present in Table 3 ablation studies on each key design decision of DRESS.

464 **Disentangled Representations:** We replace the disentanglement learning encoder (*i.e.*, FDAE or  
 465 LSD) with the state-of-the-art DINOv2 encoder, which does not focus on disentangled repres-  
 466 sentations. After extracting representations from DINOv2, we follow the remaining steps of DRESS.  
 467 Without disentanglement, the latent dimensions do not correspond to integral features within the  
 468 data, leading to less meaningful self-supervised tasks and degradation of meta-learning capability.

469 **Latent Dimension Alignment:** As per Section 5.1, when using FDAE as the encoder, there is no  
 470 explicit alignment required. Thus, this ablation study focuses on DRESS with the LSD encoder. For  
 471 the ablation, we skip the process of clustering the attention masks and re-ordering the attention slots.  
 472 Without alignment, the same feature dimension may express different semantic concepts on different  
 473 datapoints. Small but consistent performance degradation is observed for both CelebA setups.

474 **Clustering within each Disentangled Latent Dimension:** Instead of performing independent clus-  
 475 tering on each dimension, we directly cluster the entire latent space to generate the partitions. We  
 476 then apply the final stage of DRESS to create self-supervised tasks from the obtained partitions.  
 477 When clustering all dimensions together, the generated tasks will no longer cleanly distinguish sep-  
 478 arate factors of variation in the data. The benefits of clustering within individual latent dimensions  
 479 are evident by the performance margins especially in Shapes3D, MPI3D-Hard, and CelebA-Primary.

## 481 5.4 QUANTITATIVE RESULTS ON TASK DIVERSITY

482 We compute the class-partition based task diversity, as proposed in Section 3.6, for tasks created  
 483 by DRESS and applicable baselines. The task diversity scores presented are 1–IoU, with IoU  
 484 being the average value across sampled class partition pairs from each method (more details on  
 485 computing the scores are provided within Algorithm 2 in Appendix I). Table 4 shows that DRESS

486  
487 Table 4: Task Diversity Score on each dataset. The diversity score is presented here as  $1 - \text{IoU}$ , with  
a higher score indicating greater task diversity.

| Method              | SmallNORB                         | Shapes3D                          | Causal3D                          | MPI3D-Hard                        | CelebA-Hair                       |
|---------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Supervised-Original | $0.95 \pm 0.02$                   | $0.97 \pm 0.01$                   | $0.99 \pm 0.00$                   | $0.95 \pm 0.01$                   | $0.89 \pm 0.00$                   |
| Supervised-All      | $0.98 \pm 0.00$                   | $0.99 \pm 0.00$                   | $0.99 \pm 0.00$                   | $0.99 \pm 0.00$                   | $0.90 \pm 0.01$                   |
| Supervised-Oracle   | $0.99 \pm 0.00$                   | $0.99 \pm 0.00$                   | $0.98 \pm 0.01$                   | $0.98 \pm 0.01$                   | $0.85 \pm 0.01$                   |
| CACTUS-DC           | $0.71 \pm 0.01$                   | $0.81 \pm 0.01$                   | <b><math>0.88 \pm 0.00</math></b> | $0.79 \pm 0.00$                   | $0.93 \pm 0.00$                   |
| CACTUS-DINO         | $0.57 \pm 0.00$                   | $0.61 \pm 0.00$                   | $0.64 \pm 0.00$                   | $0.57 \pm 0.00$                   | $0.73 \pm 0.00$                   |
| <b>DRESS</b>        | <b><math>0.74 \pm 0.01</math></b> | <b><math>0.90 \pm 0.01</math></b> | $0.74 \pm 0.00$                   | <b><math>0.91 \pm 0.00</math></b> | <b><math>0.98 \pm 0.00</math></b> |

495  
496 produces more diverse tasks than CACTUS, which uses clustering in an embedding space, without  
497 the disentanglement and alignment that DRESS utilizes. For supervised meta-learning methods, the  
498 task diversity scores are computed on the partitions constructed as in Section 4.4. They serve as  
499 upper bounds on the task diversity from each dataset, as they leverage the knowledge of the ground-  
500 truth attributes or factors of variations.  
501



509 Figure 5: Correlation plots between the proposed diversity scores and the few-shot adaptation accu-  
510 racies from each method on each dataset.  
511

512 In Figure 5 we visualize the correlation between our proposed task diversity scores and the few-shot  
513 adaptation performance from our experiments (for which we take the average of the classification  
514 accuracies under 5-shot and 10-shot adaptations). Note that we use only one of the three super-  
515 vised baselines (Supervised-All), as both Supervised-Original and Supervised-Oracle rely on hand-  
516 selection of attributes for the meta-testing tasks. On simpler datasets with distinctive and clearly  
517 defined factors of variations (SmallNORB, Shapes3D, and Causal3D) we see strong correlation be-  
518 tween our proposed task diversity metric and few-shot adaptation performance. However, as the  
519 datasets grow in complexity, the correlation become weaker, though remains positive showing that  
520 the task diversity metric can still indicate better adaptation performance. Specifically, on these more  
521 complex datasets, DRESS creates the most diverse meta-training tasks while achieving the best per-  
522 formance compared to the CACTUS-based methods.  
523

## 6 CONCLUSION

524 We surfaced an issue in popular few-shot learning benchmarks: tasks are not diverse enough to  
525 truly test model adaptation ability. Instead, tasks with distinct natures can serve as more informative  
526 benchmarks. We proposed a self-supervised meta-learning approach that harnesses the expressive-  
527 ness of disentangled representations to construct self-supervised tasks. Our approach enables models  
528 to acquire broad knowledge on underlying factors in a dataset, and quickly adapt to unseen tasks.  
529 Experimental results validate that our approach empowers the model to adapt quickly when faced  
530 with highly diverse meta-testing tasks.  
531

532 As future work, it may be fruitful to apply our task diversity metric with *curriculum learning* or  
533 *active learning* for task selection during the meta-training stage. This may further improve the  
534 performance of DRESS, or meta-learning algorithms in general.  
535

## 536 REPRODUCIBILITY STATEMENT

537 In the attachment submitted alongside this paper, we have included the source code for this project  
538 required to reproduce the results presented in this paper (including all tables and figures within the  
539 paper). Specifically, we have included the dataset loader scripts for loading and pre-processing the  
540

540 datasets (all of which are public and free to access). To support easier navigation within the code  
 541 folder, we included a README.txt file outlining the structures and brief summaries of each script  
 542 file and sub-folder. We have also provided the hardware specifications under Appendix E, describing  
 543 the computation resources we used for our experiments.  
 544

545 **REFERENCES**  
 546

547 Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Char-  
 548 less C. Fowlkes, Stefano Soatto, and Pietro Perona. Task2Vec: Task Embedding for Meta-  
 549 Learning. In *CVPR*, October 2019.

550 Randall Balestrieri, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein, Flo-  
 551 rian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi Schwarzschild, Andrew Gor-  
 552 don Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash,  
 553 Yann LeCun, and Micah Goldblum. A cookbook of self-supervised learning. *arXiv:2304.12210*,  
 554 2023.

555 Luca Bertinetto, Joao F. Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with differen-  
 556 tiable closed-form solvers. In *ICLR*, 2019.

557 Chris Burgess and Hyunjik Kim. 3D shapes dataset. <https://github.com/deepmind/3dshapes-dataset>, 2018.

558 Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsu-  
 559 pervised learning of visual features. In *ECCV*, 2018.

560 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for  
 561 contrastive learning of visual representations. In *ICML*, volume 119, pp. 1597–1607, 13–18 Jul  
 562 2020.

563 Vincent Dumoulin, Neil Houlsby, Utku Evci, Xiaohua Zhai, Ross Goroshin, Sylvain Gelly, and  
 564 Hugo Larochelle. A unified few-shot classification benchmark to compare transfer and meta  
 565 learning approaches. In *NeurIPS*, 2021.

566 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation  
 567 of deep networks. In *ICML*, volume 70, pp. 1126–1135, 2017.

568 Muhammad Waleed Gondal, Manuel Wuthrich, Djordje Miladinovic, Francesco Locatello, Martin  
 569 Breidt, Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard Schölkopf, and Stefan Bauer.  
 570 On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset.  
 571 In *NeurIPS*, 2019.

572 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-  
 573 nition. In *CVPR*, June 2016.

574 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,  
 575 Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a  
 576 constrained variational framework. In *ICLR*, 2017.

577 Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised learning via meta-learning. In *ICLR*,  
 578 2019.

579 Kyle Hsu, Jubayer Ibn Hamid, Kaylee Burns, Chelsea Finn, and Jiajun Wu. Tripod: Three com-  
 580 plementary inductive biases for disentangled representation learning. In *Proceedings of the 41st*  
 581 *International Conference on Machine Learning*, volume 235, pp. 19101–19122, 2024.

582 Huiwon Jang, Hankook Lee, and Jinwoo Shin. Unsupervised meta-learning via few-shot pseudo-  
 583 supervised contrastive learning. In *ICLR*, 2023.

584 Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. In *NeurIPS*,  
 585 2023.

594 Hamidreza Kamkari, Brendan Leigh Ross, Rasa Hosseinzadeh, Jesse C. Cresswell, and Gabriel  
 595 Loaiza-Ganem. A geometric view of data complexity: Efficient local intrinsic dimension estima-  
 596 tion with diffusion models. In *NeurIPS*, 2024.

597

598 Siavash Khodadadeh, Ladislau Böloni, and Mubarak Shah. Unsupervised meta-learning for few-  
 599 shot image classification. In *NeurIPS*, 2019.

600 Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahidian, Weijia Wang, Bill Lin, and Ladislau  
 601 Boloni. Unsupervised meta-learning through latent-space interpolation in generative models. In  
 602 *ICLR*, 2021.

603

604 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In *ICML*, volume 80, pp. 2649–2658,  
 605 2018.

606 Minyoung Kim and Timothy M. Hospedales. A Hierarchical Bayesian Model for Few-Shot Meta  
 607 Learning. In *ICLR*, 2024.

608

609 Ramnath Kumar, Tristan Deleu, and Yoshua Bengio. The effect of diversity in meta-learning. In  
 610 *AAAI*, 2022.

611 Brenden M. Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B. Tenenbaum. One shot learning  
 612 of simple visual concepts. In *Conference of the Cognitive Science Society*, 2011.

613

614 Yann Lecun, Fujie Huang, and Leon Bottou. Learning methods for generic object recognition with  
 615 invariance to pose and lighting. In *CVPR*, 2004.

616 Dong Bok Lee, Dongchan Min, Seanie Lee, and Sung Ju Hwang. Meta-GMVAE: Mixture of gaus-  
 617 sian VAE for unsupervised meta-learning. In *ICLR*, 2021.

618

619 Hae Beom Lee, Hayeon Lee, Jaewoong Shin, Eunho Yang, Timothy M. Hospedales, and Sung Ju  
 620 Hwang. Online hyperparameter meta-learning with hypergradient distillation. In *ICLR*, 2022.

621

622 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.  
 623 In *ICCV*, December 2015a.

624 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.  
 625 In *ICCV*, pp. 3730–3738, 2015b.

626

627 Gabriel Loaiza-Ganem, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L. Caterini, and Jesse C.  
 628 Cresswell. Deep generative models through the lens of the manifold hypothesis: A survey and  
 629 new connections. *TMLR*, 2024. ISSN 2835-8856.

630

631 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,  
 632 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-  
 633 tion. In *NeurIPS*, 2020.

634

Brando Miranda, Patrick Yu, Yu-Xiong Wang, and Sanmi Koyejo. The curse of low task diver-  
 635 sity: On the failure of transfer learning to outperform maml and their empirical equivalence.  
 636 *arXiv:2208.01545*, 2022.

637

Brando Miranda, Patrick Yu, Saumya Goyal, Yu-Xiong Wang, and Sanmi Koyejo. Is pre-training  
 638 truly better than meta-learning? *arXiv:2306.13841*, 2023.

639

640 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,  
 641 Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas  
 642 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael  
 643 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut,  
 644 Armand Joulin, and Piotr Bojanowski. DINov2: Learning robust visual features without super-  
 645 vision. *TMLR*, 2024. ISSN 2835-8856.

646

Eva Pachetti, Sotirios Tsaftaris, and Sara Colantonio. Boosting few-shot learning with disentangled  
 647 self-supervised learning and meta-learning for medical image classification. *arXiv:2403.17530*,  
 2024.

648 Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In *ICLR*, 2017.  
 649

650 Zhiqiang Shen, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng. Partial is better  
 651 than all: Revisiting fine-tuning strategy for few-shot learning. In *AAAI*, 2021.

652 Yang Shu, Zhangjie Cao, Jinghan Gao, Jianmin Wang, Philip S. Yu, and Mingsheng Long. Omni-  
 653 training: Bridging pre-training and meta-training for few-shot learning. *TPAMI*, 45:15275–15291,  
 654 2023.

655 Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALL-E learns to compose. In *ICLR*, 2022.

656

657 Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In  
 658 *NeurIPS*, 2017.

659

660 Xiaozhuang Song, Shun Zheng, Wei Cao, James J.Q. Yu, and Jiang Bian. Efficient and effective  
 661 multi-task grouping via meta learning on task combinations. In *NeurIPS*, 2022.

662 Yi Sui, Tongzi Wu, Jesse C. Cresswell, Ga Wu, George Stein, Xiao Shi Huang, Xiaochen Zhang,  
 663 and Maksims Volkovs. Self-supervised representation learning from random data projectors. In  
 664 *ICLR*, 2024.

665

666 Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, and Timothy M. Hospedales.  
 667 Learning to compare: Relation network for few-shot learning. In *CVPR*, 2018.

668

669 Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B. Tenenbaum, and Phillip Isola. Rethinking  
 670 few-shot image classification: a good embedding is all you need? In *ECCV*, 2020.

671

672 Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching-  
 673 networks for one shot learning. In *NeurIPS*, 2016.

674

675 Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel  
 676 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably  
 677 isolates content from style. In *NeurIPS*, 2021.

678

679 Yaqing Wang, Quanming Yao, Joern-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, and  
 680 Kevin Swersky. Generalizing from a few examples: A survey on few-shot learning. *ACM Com-  
 681 puting Surveys*, 53(3):1–34, 2020.

682

683 Ancong Wu and Wei-Shi Zheng. Factorized diffusion autoencoder for unsupervised disentangled  
 684 representation learning. In *AAAI*, 2024.

685

686 Tao Yang, Yuwang Wang, Yan Lu, and Nanning Zheng. DisDiff: Unsupervised disentanglement of  
 687 diffusion probabilistic models. In *NeurIPS*, 2023.

688

689 Zhongqi Yue, Jiankun Wang, Qianru Sun, Lei Ji, Eric I-Chao Chang, and Hanwang Zhang. Explor-  
 690 ing diffusion time-steps for unsupervised representation learning. In *ICLR*, 2024.

691

692

693

694

695

696

697

698

699

700

701

702 **A VISUALIZATION AND DISCUSSIONS OF META-LEARNING ALGORITHMS**  
703704 **A.1 META-LEARNING ON FEW-SHOT LEARNING PIPELINE**  
705706 We provide the visualization for the general pipeline on applying meta-learning to solve few-shot  
707 learning tasks in Figure 6.  
708721 Figure 6: During the meta-training stage, the model adapts on batches of sampled tasks. The model’s  
722 performance is optimized for meta-parameter optimization. After meta-training, the model can be  
723 quickly adapted to meta-testing tasks and perform few-shot inference.  
724725 **A.2 DISCUSSIONS ON SUITABLE SELECTION OF META-LEARNING ALGORITHM**  
726727 The majority of meta-learning algorithms can be categorized under one of the three general themes:  
728 black-box adaptation Ravi & Larochelle (2017); optimization-based adaptation, with MAML Finn  
729 et al. (2017) being the notable example; and non-parametric adaptation, with ProtoNet Snell et al.  
730 (2017) and RelationNet Sung et al. (2018) being the notable examples.  
731732 The non-parametric adaptation scheme often relies on a single pre-trained latent space, based on  
733 which the adaptation to new tasks is achieved (*e.g.*, the computation of the *prototypes* in ProtoNet,  
734 or the image embedding space in RelationNet on top of which the relation score is computed).  
735 However, as we have advocated through the design of DRESS, we need different partitions on a  
736 given dataset based on disentangled latent dimensions to correspond to different semantics or nature  
737 of diverse tasks, which is particularly important for adapting to agnostic new tasks. Therefore, while  
738 there is no fundamental incompatibility, the non-parametric adaptation scheme lacks the capacity  
739 for fully benefiting from DRESS. We also opt out of the black-box adaptation scheme for its lack of  
740 inductive bias in the learning process, due to this same reason.  
741742 Optimization-based meta-learning algorithms are suitable to combine with DRESS for learning tasks  
743 with diverse natures. This class of algorithms does not impose the assumption that the model should  
744 adapt to all the tasks based on any specific latent space, therefore allowing the model the flexibility  
745 in learning different fundamental concepts and attributes from the data, and benefiting from the  
746 comprehensive set of meta-training tasks provided by DRESS.  
747748 **B DATASET DESCRIPTIONS**  
749750 **B.1 SMALLNORB**  
751752 SmallNORB contains 48,600 images, of which we use 24,300 images for meta-training and 24,300  
753 images for meta-testing, following the pre-defined train-test split convention on the dataset. Each  
754 image has a resolution of  $96 \times 96$  pixels with a single gray-scale color channel. We simply repeat this  
755 channel three times to create three-channel images to be compatible with all of the encoders tested  
(such as the pre-trained DINOv2, which expects three-channel images as inputs off-the-shelf).

756 The images in the dataset include 5 factors of variations, as detailed in Table 5. Note that we  
 757 ignored the additional factor of *camera ID* in SmallNORB, as we exclusively take images from the  
 758 first camera.

760 Table 5: Factors of Variation in SmallNORB  
 761

| Attribute Name   | Cardinality | Constructed Tasks |
|------------------|-------------|-------------------|
| Generic Category | 5           | Meta-Train        |
| Instance ID      | 5           | Meta-Train        |
| Elevation Angle  | 18          | Meta-Test         |
| Azimuth Angle    | 9           | Meta-Test         |
| Lighting         | 6           | Meta-Test         |

770 **B.2 SHAPES3D**  
 771

772 Shapes3D contains 480,000 images, of which we use 400,000 images for meta-training and 50,000  
 773 images for meta-testing, following the pre-defined train-test split convention on the dataset. Each  
 774 image has a resolution of  $64 \times 64$  pixels with RGB color channels.

775 The images in the dataset include 6 factors of variations, as detailed in Table 6.  
 776

777 Table 6: Factors of Variation in Shapes3D  
 778

| Attribute Name | Cardinality | Constructed Tasks |
|----------------|-------------|-------------------|
| Floor Hue      | 10          | Meta-Test         |
| Wall Hue       | 10          | Meta-Test         |
| Object Hue     | 10          | Meta-Train        |
| Scale          | 8           | Meta-Train        |
| Shape          | 4           | Meta-Train        |
| Orientation    | 15          | Meta-Test         |

787 **B.3 CAUSAL3D**

790 Causal3D contains 237,600 images, of which we use 216,000 images for meta-training and 21,600  
 791 images for meta-testing, following the pre-defined train-test split convention on the dataset. Each  
 792 image has a resolution of  $224 \times 224$  pixels with RGB color channels.

793 The images in the dataset include 7 factors of variations, as detailed in Table 7. Each of these factors  
 794 are continuous values in the original form, which we have quantized to 10 levels. We emphasize that  
 795 in DRESS and the competing unsupervised methods we experimented with, the models are agnostic  
 796 to the quantization decision (i.e. there are 10 different values in each latent dimension that we use  
 797 for creating meta-testing few-shot learning tasks). Note that the original dataset also provides labels  
 798 for additional factors which we neglected in our experiments, such as rotation angles.

800 Table 7: Factors of Variation in Causal3D  
 801

| Attribute Name     | Cardinality | Constructed Tasks |
|--------------------|-------------|-------------------|
| X Position         | 10          | Meta-Train        |
| Y Position         | 10          | Meta-Train        |
| Z Position         | 10          | Meta-Train        |
| Object Color       | 10          | Meta-Train        |
| Ground Color       | 10          | Meta-Test         |
| Spotlight Position | 10          | Meta-Test         |
| Spotlight Color    | 10          | Meta-Test         |

810 B.4 MPI3D  
811

812 MPI3D consists of four dataset variants. We utilize the *MPI3D\_toy* dataset containing simplistic  
813 rendered images with clear color contrast. Throughout the paper, we refer to this dataset simply  
814 as MPI3D. The dataset contains 1,036,800 images, of which we use 1,000,000 images for meta-  
815 training and 30,000 images for meta-testing, following the pre-defined train-test split convention on  
816 the dataset. Each image has a resolution of  $64 \times 64$  pixels with RGB color channels.

817 The images in the dataset include 7 factors of variations, as detailed in Table 8. We note that for  
818 the two factors *horizontal axis* and *vertical axis*, denoting the robot arm’s angular position, the  
819 ground truth labels for each are based on a 40-interval partition of the entire 180-degree angular  
820 range, leading to a mere 4.5-degree maximum angle difference for two different factor values. In  
821 our experiments, we re-group the partitions into 10 intervals for each of the two axes, leading to an  
822 18-degree maximum angle difference between two factor values.

823 Table 8: Factors of Variation in MPI3D under each Task Setup  
824

| Attribute Name   | Cardinality | MPI3D-Easy Task Setup | MPI3D-Hard Task Setup |
|------------------|-------------|-----------------------|-----------------------|
| Object Color     | 6           | Meta-Train            | Meta-Train            |
| Object Shape     | 6           | Meta-Train            | Meta-Train            |
| Object Size      | 2           | Meta-Train            | Meta-Train            |
| Camera Height    | 3           | Not Used              | Meta-Test             |
| Background Color | 3           | Not Used              | Meta-Test             |
| Horizontal Axis  | 40          | Meta-Test             | Not Used              |
| Vertical Axis    | 40          | Meta-Test             | Not Used              |

834 B.5 CELEBA  
835

836 CelebA consists of 202,599 images of celebrity faces, of which we follow the conventional split  
837 and use 162,770 images for meta-training and the remaining images for meta-testing. Each image  
838 has a resolution of  $178 \times 218$  pixels with RGB color channels. We conduct a cropping around the  
839 face regions in these images before feeding them into each model, for both meta-training and meta-  
840 testing.

841 The images in the dataset include 40 binary factors of variations. Instead of listing out all these 40  
842 factors, in Table 9, we only list the binary attributes reserved for meta-testing few-shot learning tasks  
843 under each attribute split setup. The remaining attributes were used for constructing meta-training  
844 tasks exclusively for supervised baselines.

846 B.6 LFWA  
847

848 LFWA (Labeled Faces in the Wild with Attributes) consists of 13,233 images of faces of public fig-  
849 ures, of which we use 2,000 randomly sampled images for meta-testing. Each image has a resolution  
850 of  $250 \times 250$  pixels with RGB color channels. We conduct a center cropping in these images before  
851 feeding them into each model.

852 The images in the dataset include 73 factors of variations, with values generated using a model  
853 from the original paper in which the dataset is presented. The original values for these factors (or  
854 attributes) are float numbers. We convert them into binary values through simple thresholding. In  
855 Table 10, we list the binary attributes reserved for meta-testing few-shot learning tasks.

857 C DETAILED SETUPS FOR PRE-TRAINING AND FINE-TUNING  
858

859 For pre-training, we use an encoder backbone that shares the same architecture as the ResNet-18 He  
860 et al. (2016) backbone used for FDAE. After pre-training, a trainable linear layer is attached on top  
861 of the encoder for the adaptation process on evaluation tasks. The encoder is frozen throughout the  
862 adaptation process. We include the details for this approach in Table 11. Note that we do not use a  
863 supervised loss in pre-training in order to avoid the encoder focusing only on tasks that are irrelevant  
864 to the meta-evaluation tasks, as we have discussed in Section 3.

864  
865  
866 Table 9: Factors of Variation in CelebA under each Task Setup  
867  
868  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917

| Task Setup     | Attribute Name      |
|----------------|---------------------|
| CelebA-Hair    | Bangs               |
|                | Black Hair          |
|                | Blond Hair          |
|                | Brown Hair          |
|                | Gray Hair           |
|                | Receding Hairline   |
|                | Straight Hair       |
|                | Wavy Hair           |
|                | Bald                |
| CelebA-Primary | Big Lips            |
|                | Big Nose            |
|                | Blond Hair          |
|                | Eye glasses         |
|                | Pale Skin           |
|                | Straight Hair       |
| CelebA-Random  | Wearing Hat         |
|                | 5 o’Clock Shadow    |
|                | Bags under Eyes     |
|                | Bald                |
|                | Blurry              |
| LFWA-Transfer  | Bushy Eyebrows      |
|                | Double Chin         |
|                | Goatee              |
|                | Mouth Slightly Open |
|                |                     |

890  
891 Table 10: Factors of Variation in LFWA-Cross-Domain Task Setup  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917

| Task Setup    | Attribute Name |
|---------------|----------------|
| LFWA-Transfer | Big Nose       |
|               | Bangs          |
|               | Blond Hair     |
|               | White          |
|               | Sunglasses     |
|               | Rosy Cheek     |
|               | Mouth Closed   |
|               | Pale Skin      |
|               |                |

Regarding the number of epochs for pre-training, in the pre-training procedure the entire set of meta-training image inputs are fed to the encoder (i.e. 400,000 images for Shapes3D; and 1,000,000 images for MPI3D). Therefore, with 10 epochs over the entire meta-training dataset, the number of forward-backward computations for optimizing the encoder already surpasses the models trained with the meta-learning methods.

## D ADDITIONAL SETUP DETAILS FOR META-LEARNING METHODS

In this section, we further provide more details on the implementation of DRESS as well as meta-learning baselines.

Firstly, for DRESS, the supervised meta-learning baselines, as well as the two CACTUS baselines, we use MAML Finn et al. (2017) as the meta-optimization engine, with a convolutional neural network (CNN) of identical specification as the base learner, for fair comparisons between the methods. The few-shot direct adaptation baseline also uses a CNN of the same specification. For the remaining baselines, we follow the design details as in the original papers.

918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
Table 11: Pre-Training and Fine-Tuning Setup

| Setting                              | Value |
|--------------------------------------|-------|
| Pre-Training Epochs                  | 10    |
| Tasks in Meta-Evaluation             | 1000  |
| Gradient Descent Steps in Adaptation | 5     |

The number of visual concepts (or attention slots) that we adopt to for each dataset is not the same as the number of the ground-truth factors of variations. For example, factors such as the orientation angle of the object, the lighting condition, or the camera height do not necessarily correspond to individual visual concepts, but instead are reflected by the relations among multiple visual concepts. Therefore, the number of visual concepts that we use in DRESS for each dataset is estimated based on the nature of the image composition in each dataset. We provide the values we used for the experiments in Table 12. We note that in early explorations, the few-shot adaptation results were not sensitive to mild changes on these values. These values are also not extensively optimized.

936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
Table 12: Number of Visual Concepts or Attention Slots on Each Dataset

| Dataset                   | SmallNORB | Shapes3D | Causal3D | MPI3D | CelebA |
|---------------------------|-----------|----------|----------|-------|--------|
| Number of Visual Concepts | 8         | 6        | 8        | 7     | 12     |

We summarize in Table 13 and Table 14 respectively the hyper-parameter values of DRESS as well as the meta-learning baselines CACTUS-DeepCluster and CACTUS-DINOv2. The selections of the hyper-parameter values are largely based on the specifications from the original paper Hsu et al. (2019) (while the number of clusters over each latent space is originally 500, through our experiments, we find that using 300 clusters leads to no noticeable performance change over various datasets). [For the DINOv2 encoder, we use the ViT-S/14 distilled version with registers](#). We note that for the DeepCluster encoder, PCA is applied on its output to reach the number of latent dimensions as listed.

949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
Table 13: Task Construction Setup for DRESS

| Setting                                           | DRESS-FDAE | DRESS-LSD |
|---------------------------------------------------|------------|-----------|
| Reduced Number of Components per Latent Dimension | 40         | -         |
| Clusters in Each Latent Dimension                 | 200        | 200       |

959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
Table 14: Task Construction Setup for CACTUS-based Baselines

| Setting                         | CACTUS-DC | CACTUS-DINOv2 |
|---------------------------------|-----------|---------------|
| Latent Dimensions               | 256       | 384           |
| Randomly Scaled Latent Spaces   | 50        | 50            |
| Clusters Over Each Latent Space | 300       | 300           |

In Table 15, we provide meta-training and meta-testing hyper-parameters for DRESS and two meta-learning baselines, CACTUS-DC and CACTUS-DINOv2.

972 Table 15: Few-Shot Learning Setup for All Meta-Learning Methods  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984

| Setting                                      | Value  |
|----------------------------------------------|--------|
| Tasks per Meta-Training Epoch                | 8      |
| Meta-Training Epochs                         | 30,000 |
| Tasks in Meta-Evaluation                     | 1,000  |
| Gradient Descent Steps<br>in Task Adaptation | 5      |
| Adaptation Step Learning Rate                | 0.05   |
| Meta-Optimization Step<br>Learning Rate      | 0.001  |

985 

## E COMPUTATION DETAILS

  
986987 All the experiments include training and evaluating models on each dataset are conducted on one or  
988 two Nvidia RTX 6000 Ada Generation GPUs, each with 48GB memory, under the standard Ubuntu  
989 OS (Ubuntu 24.04.1 LTS). Our code implementation is based on the PyTorch library.990 In terms of the computational cost of each method, the cost of performing few-shot adaptation is  
991 negligible for every method, therefore the computational cost is dominated by the training stage.  
992 For both DRESS and CACTUS, the training process involves two steps: training the encoder and  
993 training the meta-learner model. For both Meta-GMVAE and PsCo, the meta-training process is  
994 coupled with training the encoder by the algorithm design. For meta-training on the CelebA dataset,  
995 we report the computation time in Table 16.996  
997 Table 16: Training Time for each Encoder on CelebA  
998

| Encoder                              | LSD in DRESS | DeepCluster<br>in CACTUS | DINOv2<br>in CACTUS   | Meta-GMVAE | PsCo       |
|--------------------------------------|--------------|--------------------------|-----------------------|------------|------------|
| Encoder<br>training time             | 8.5 Hours    | 12.3 Hours               | 3.3 Days <sup>2</sup> | 7.0 Hours  | 21.0 Hours |
| Meta-Train with<br>constructed tasks | 2.9 hours    | 2.9 hours                | 2.9 hours             |            |            |

1006 

## F LATENT DIMENSION ALIGNMENT PROCESS

1008 As described in Section 5.1, when using the LSD encoder for DRESS, we need the explicit latent  
1009 dimension alignment process. From the LSD encoder, each *visual concept* is modeled in the latent  
1010 space via an attention mask and an encoding vector. When encoding multiple images with LSD,  
1011 the order of the obtained latent representations for these visual concepts are stochastic. We use the  
1012 encoding vectors of all the visual concepts from each image as the disentangled latent representations  
1013 for DRESS. To properly align these encoding vectors, we perform a consistent semantic ordering  
1014 for the attention masks across all input images.1016 Our detailed procedure is as follows: for the first batch of input images, we obtain their latent  
1017 representations, including the attention masks, from the LSD encoder. We then perform K-Means  
1018 clustering with a predefined number of clusters. Through our experiments, the best results are  
1019 obtained when the number of clusters equals to the number of visual concepts we extract from each  
1020 image. With the obtained clusters, for each image in the dataset, we obtain the cluster identities of its  
1021 attention masks, and order its encoding vectors following an arbitrary but fixed order of the cluster  
1022 identities. We note that there are images whose attention masks are not strictly clustered among all  
1023 the clusters uniformly, i.e. there are clusters with more than one attention mask and clusters with  
1024 zero attention mask. For these corner cases, we simply break the tie by distributing attention masks1025  
1026 <sup>2</sup>As reported by the creators for the large model, DINOv2 ViT-L/14, on a large multi-GPU hardware setup.  
1027 We used DINOv2 ViT-S/14, which used more computation overall as it was distilled from the large model.

1026 from larger clusters to empty clusters, such that we always end up with one attention mask in each  
 1027 cluster for each image before we perform the alignment.  
 1028

1029 In Figure 7, we provide visualizations on the attention mask ordering for the LSD encodings on  
 1030 a random set of images before and after our latent dimension alignment procedure. Evident from  
 1031 the visualization, after the latent dimension alignment process, the attention masks are aligned rea-  
 1032 sonably well across all the images with just a few misaligned regions. Therefore, under each dis-  
 1033 entangled latent dimension, the region as the focal point stays very close from image to image,  
 1034 ensuring that the latent representations are semantically aligned across all the images. We note that  
 1035 we choose this attention-mask based alignment process based on the fact that the composition is con-  
 1036 sistent across images in the dataset studied (i.e. in the CelebA dataset, all the images are centered  
 1037 on individual faces under the natural orientation).



1054 Figure 7: The ordering of attention masks from LSD encoding. In both subfigures, each row lists  
 1055 the ordered attention masks of an image. **Left:** Latent Dimension ordering *before* the alignment  
 1056 process. **Right:** Latent Dimension ordering *after* the alignment process on the same input images.

## 1059 G ADDITIONAL TASK VISUALIZATIONS FROM DRESS



1078 Figure 8: More self-supervised tasks constructed by DRESS on MPI3D. The top task focuses on the  
 1079 background color; while the bottom task focuses on the camera height.



Figure 9: More self-supervised tasks constructed by DRESS on CelebA. The top task focuses on the gender of the person; while the bottom task focuses on if the person has mouth open or not.

We provide more visualizations on self-supervised few-shot learning tasks generated by DRESS on MPI3D in Figure 8, as well as tasks generated by DRESS on CelebA in Figure 9. As evidenced by these visualizations, the generated tasks have very distinctive natures, covering multiple aspects and factors of variations within the corresponding datasets. When being trained on such diversified tasks, the resulting model naturally acquires the ability to adapt well on unseen tasks, regardless of the semantics that the tasks focus on.

## H VISUALIZING LEARNED DISENTANGLED LATENT FACTORS

Specifically, we provide in Figure 10 and Figure 11 the attention masks for latent factors learned by the FDAE encoder, on MPI3D and Shapes3D respectively. Furthermore, we provide in Figure 12 the attention slots learned by the LSD encoder on CelebA. Note that the factors shown in Figure 12 have not been aligned yet. The alignment procedure is elaborated above in Section F.



Figure 10: Visualization of attention masks of disentangled factors learned by the FDAE encoder on MPI3D Images. **Left:** Original image. **Right:** Attention masks from disentangled factors.

## I COMPUTATION DETAILS FOR CLASS-PARTITION BASED TASK DIVERSITY METRIC

With the task diversity defined in Section 3.5, we aim to compute the intersection-over-union ratio (IoU) over pairs of tasks created by each method. Nonetheless, as we focus on the few-shot learning tasks (five-shot two-way tasks to be specific), the number of input samples on each task is very small. Therefore, if we directly take two such few-shot learning tasks, there is most likely no intersection in the samples they cover.



1145 Figure 11: Visualization of Attention Masks of Disentangled Factors Learned by the FDAE Encoder  
1146 on Shapes3D Images.



1166 Figure 12: Visualization of Attention Slots of Disentangled Factors Learned by the LSD Encoder on  
1167 CelebA Images (before alignment).

1168  
1169  
1170 To address this difficulty, we instead focus on the partitions over the entire dataset. As described in  
1171 Section 3 and Section 4.4, for DRESS, supervised meta-learning baselines, as well as the CACTUS-  
1172 based baselines, the individual tasks are directly sampled from the dataset-level partitions. There-  
1173 fore, computing the diversity metric over these partitions can give us a good proxy to the evalua-  
1174 tion of the task diversity from each method. We now present the procedure for computing the class-  
1175 partition based task diversity.

1176 Consider two partitions on the same dataset generated by a specific meta-learning method:  $\mathcal{P}^1 =$   
1177  $\{\mathcal{P}_i^1\}_{i=1}^{K_p}$  and  $\mathcal{P}^2 = \{\mathcal{P}_i^2\}_{i=1}^{K_p}$ , where  $\mathcal{P}_i^1$  and  $\mathcal{P}_i^2$  denotes the  $i$ -th subset in  $\mathcal{P}^1$  and  $\mathcal{P}^2$  respectively,  
1178 and  $K_p$  is the number of subsets in each partition. Note that if one partition has fewer subsets, we  
1179 can simply regard it as having extra empty subsets, such that the total number of subsets reaches  
1180  $K_p$ . We use these dataset partitions to replace the class partitions defined from the counterpart pair  
1181 of supervised tasks, i.e.  $\{\mathcal{P}_{c_j}^1\}$  and  $\{\mathcal{P}_{c_j}^2\}$  as defined in Section 3.6.

1182 We summarize our procedure for computing the values on the purposed task diversity metric in  
1183 Algorithm 2. Note that instead of performing strict bipartite matching for subsets between  $\mathcal{P}^1$  and  
1184  $\mathcal{P}^2$ , we match the subsets through a greedy process: going through the subsets one-by-one in  $\mathcal{P}^1$ ,  
1185 and find the best match from the remaining subsets in  $\mathcal{P}^2$ . While this greedy procedure does not  
1186 strictly guarantee the perfect matches between the two partitions, it provides a decent estimates for  
1187 our quantitative analysis at a manageable level of computational cost.

1188  
 1189 To produce the diversity scores as reported in Table 4, within the set of partitions that each method  
 1190 creates on a given dataset, we uniformly sample 30 pairs of distinct partitions. Each pair of partitions  
 1191 is fed as inputs to Algorithm 2 to compute the pairwise diversity score. The average of the 30  
 1192 diversity scores is then reported as the expected task diversity score from each method.  
 1193

---

**Algorithm 2** Task Diversity Metric Computation Procedure
 

---

1194 1: **Input:**  $\mathcal{P}^1 = \{\mathcal{P}_i^1\}_{i=1}^{K_p}$ ,  $\mathcal{P}^2 = \{\mathcal{P}_i^2\}_{i=1}^{K_p}$   
 1195 2:  $\text{idx\_list} \leftarrow [1, 2, \dots, K_p]$   
 1196 3:  $\text{IoU\_list} \leftarrow \emptyset$   
 1197 4: **for**  $i \leftarrow 1$  to  $K_p$  **do**  
 1198 5:    $\text{idx\_matched} \leftarrow 0$   
 1199 6:    $\text{highest\_IoU} \leftarrow 0$   
 1200 7:   **for**  $j \in \text{idx\_list}$  **do**  
 1201 8:      $\text{IoU} = \frac{|\mathcal{P}_i^1 \cap \mathcal{P}_j^2|}{|\mathcal{P}_i^1 \cup \mathcal{P}_j^2|}$   
 1202 9:     **if**  $\text{IoU} > \text{highest\_IoU}$  **then**  
 1203 10:        $\text{idx\_matched} \leftarrow j$   
 1204 11:        $\text{highest\_IoU} \leftarrow \text{IoU}$   
 1205 12:      $\text{IoU\_list.append}(\text{highest\_IoU})$   
 1206 13:     **if**  $\text{idx\_matched} > 0$  **then**  
 1207 14:        $\text{idx\_list.pop}(\text{idx\_matched})$   
 1208 15:      $\text{avg\_IoU\_score} \leftarrow \text{avg}(\text{IoU\_list})$   
 1209 16:      $\text{diversity\_score} \leftarrow 1 - \text{avg\_IoU\_score}$   
 1210 17: **Output:**  $\text{diversity\_score}$   
 1211  
 1212  
 1213  
 1214  
 1215  
 1216  
 1217  
 1218  
 1219  
 1220  
 1221  
 1222  
 1223  
 1224  
 1225  
 1226  
 1227  
 1228  
 1229  
 1230  
 1231  
 1232  
 1233  
 1234  
 1235  
 1236  
 1237  
 1238  
 1239  
 1240  
 1241

---