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ABSTRACT

Meta-learning represents a strong class of approaches for solving few-shot learn-
ing tasks. Nonetheless, recent research suggests that simply pre-training a generic
encoder can potentially surpass meta-learning algorithms. In this paper, we hy-
pothesize that the reason meta-learning fails to stand out in popular few-shot learn-
ing benchmarks is the lack of diversity among the few-shot learning tasks. We pro-
pose DRESS, a task-agnostic Disentangled REpresentation-based Self-Supervised
meta-learning approach that enables fast model adaptation on highly diversified
few-shot learning tasks. Specifically, DRESS utilizes disentangled representation
learning to create self-supervised tasks that can fuel the meta-training process. We
validate the effectiveness of DRESS through experiments on datasets with multi-
ple factors of variation and varying complexity. The results suggest that DRESS is
able to outperform competing methods on the majority of the datasets and task se-
tups. Through this paper, we advocate for a re-examination of how task adaptation
studies are conducted, and aim to reignite interest in the potential of meta-learning
for solving few-shot learning tasks via disentangled representations.

1 INTRODUCTION

Few-shot learning (Wang et al., 2020) emphasizes the ability to quickly learn and adapt to new
tasks, and is regarded as one of the trademarks of human intelligence. In the pursuit of few-shot
learning, meta-learning approaches have been widely explored (Finn et al., 2017; Snell et al., 2017;
Ravi & Larochelle, 2017), as they allow models to learn-to-learn. However, multiple recent studies
(Tian et al., 2020; Dumoulin et al., 2021; Shen et al., 2021; Shu et al., 2023) suggest that a simple
pre-training and fine-tuning approach is sufficient to support highly competitive performance in few-
shot learning tasks. Specifically, a generic encoder is trained with a self-supervised loss on a unified
dataset that aggregates samples (with their targets dropped) from all available training tasks. A
linear layer is added on top of the encoder and is fine-tuned using few-shot support samples to adapt
to new tasks. Pre-training and fine-tuning neglects two crucial sources of information: identities
of individual meta-training tasks and distinctions between them; and labels in meta-training tasks.
Yet, pre-training and fine-tuning has been shown to achieve better results than meta-learning. This
finding is unexpected, and perhaps even puzzling, as it implies that information about training tasks
and their labels may be irrelevant to achieving high learning performance.

We hypothesize that this finding can be attributed to the lack of task diversity in many popular few-
shot learning benchmarks. For instance, in canonical few-shot learning datasets such as Omniglot
(Lake et al., 2011), miniImageNet (Vinyals et al., 2016), and CIFAR-FS (Bertinetto et al., 2019), the
distinct tasks differ solely in that their targets belong to non-overlapping sets of object classes. In
essence, these tasks all share the same nature: main object classification. Hence, there is one degen-
erate strategy for solving all these tasks simultaneously: compare the main object in the query image
to the main objects in the few-shot support images, and assign the class label based on similarity to
support images. This strategy can be achieved through pre-training with contrastive learning using
common image augmentations like rotation and cropping which preserve the semantics of the main
object, while discarding factors such as orientation and background (Balestriero et al., 2023). Given
the shared nature of tasks on these benchmarks, it is not surprising that a single pre-trained encoder
can perform competitively against meta-learning methods.

To rigorously challenge a model’s adaptation ability, we advocate for the establishment of few-shot
learning benchmarks that include tasks with fundamentally distinctive natures. Specifically, we
consider tasks beyond main object classification, such as identifying object orientation, background
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color, ambient lighting, or attributes of secondary objects. In addition, models should be agnostic to
the nature of the evaluation tasks. Such setups can reveal the model’s true capacity to learn strictly
from the few-shot samples, with task identification as an essential learning component. Furthermore,
we highlight a key consequence of high task diversity: when meta-testing tasks differ significantly in
nature from meta-training tasks, the labels in meta-training tasks may provide misleading guidance
to the model, towards premature fixation on a narrow perspective of the input data. Recognizing this
issue, we reaffirm the preference of self-supervised meta-learning over supervised meta-learning.

For effective meta-learning under high task diversity, we bridge the idea of disentangled represen-
tation learning with self-supervised meta-learning in a single framework referred to as DRESS —
task-agnostic Disentangled REpresentation-based Self-Supervised meta-learning. Specifically, we
utilize an encoder trained to compute disentangled representations, and extract latent encodings of
the inputs. We then semantically align these latent representations across all inputs. Within this
aligned latent space, we perform clustering independently on each disentangled latent dimension,
and use the resultant cluster identities to define pseudo-classes of the inputs. Finally, we construct
a set of self-supervised few-shot classification tasks based on these pseudo-classes from each latent
dimension. With the disentangled latent dimensions representing distinct attributes and factors of
variation within the inputs, the constructed few-shot learning tasks are highly diversified. Using
these tasks for meta-training, the model can learn to adapt quickly to unseen tasks, regardless of the
task nature. In addition, we propose a quantitative task diversity metric based on class partitions.
Our metric is directly defined on the input space instead of any learned embedding space, therefore
allowing fair and independent comparisons between tasks of distinct semantic natures.

We conduct extensive experiments on image datasets containing multiple factors of variation, be-
yond the main object’s class, and spanning different levels of complexity and realism. To ground our
results, we establish three supervised meta-learning baselines that have differing levels of ground-
truth information. These supervised baselines not only serve as upper bounds on performance, but
also expose the negative effects of learning from labels when the natures of tasks are mismatched.
Our results suggest that DRESS enables few-shot learning performance that can surpass existing
methods, and approaches the upper bound of supervised baselines under many experimental setups.

Our main contributions can be summarized as follows:

• We identify the lack of task diversity in few-shot learning benchmarks, explaining why pre-
training and fine-tuning can seem to outperform meta-learning.

• We develop few-shot learning benchmarks with more diversified tasks for rigorous evaluation.

• We propose DRESS, a method for creating diverse tasks that enable self-supervised meta-learning
with disentangled representations.

• We introduce a task diversity metric based on task class partitions directly over the input space.

2 RELATED WORKS

Meta-Learning vs. Pre-training and Fine-tuning There has been a large volume of meta-
learning research on the general few-shot learning problem (Finn et al., 2017; Snell et al., 2017;
Lee et al., 2022; Song et al., 2022; Kim & Hospedales, 2024). Researchers have also explored un-
supervised or self-supervised meta-learning (Hsu et al., 2019; Khodadadeh et al., 2019; 2021; Lee
et al., 2021; Jang et al., 2023; Pachetti et al., 2024). Notably, CACTUS (Hsu et al., 2019) proposes
a task construction approach using an encode-then-cluster procedure. Meta-GMVAE (Lee et al.,
2021) models the dataset using a variational auto-encoder with a mixture of Gaussians as prior, and
matches latent modalities with class concepts. Studies including (Khodadadeh et al., 2019; Jang
et al., 2023) use image augmentations to create samples for pseudo classes to meta-train the model.
Although promising results are obtained on standard few-shot learning benchmarks, these works do
not explicitly address the issue of task diversity, nor its effect on fast adaptation performance.

Recent studies (Tian et al., 2020; Dumoulin et al., 2021; Shen et al., 2021; Shu et al., 2023) state
that the simple approach of pre-training a generic encoder followed by fine-tuning can show su-
perior performance compared to meta-learning. Specifically, the input samples from all available
meta-training tasks are aggregated into a large dataset, with task identities completely ignored. An
encoder is then trained on this large dataset using supervised or self-supervised training techniques
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Figure 1: DRESS creates diversified self-supervised meta-training tasks through disentanglement
learning. Images are first encoded into disentangled latent representations. The latent representa-
tions are then semantically aligned across dataset. Clusters are formed on each latent dimension
individually. Pseudo-classes are sampled from these clusters to construct self-supervised classifica-
tion tasks. Each disentangled latent dimension corresponds to a set of tasks with its unique nature.

(e.g., contrastive learning (Chen et al., 2020)). When adapting to any meta-testing task, a linear
classification layer is added and fine-tuned on top of the encoder over the support samples.

Task Diversity The main obstacle to investigating the task diversity is the difficulty of quantify-
ing it. Existing research measures task diversity either via establishing a shared embedding space
(Achille et al., 2019; Kumar et al., 2022), or through projection mappings from the input to output
spaces (Sui et al., 2024). Recently, Miranda et al. (2023) conducted thorough experiments suggest-
ing that existing meta-learning methods can show very slight improvements over the pre-training
and fine-tuning approach on tasks with higher Task2Vec diversity coefficients (Miranda et al., 2022).
Nonetheless, the intuition behind the link between task diversity and the performance of few-shot
learning has yet to be discussed. Similarly, no meta-learning approach has explicitly exploited the
idea of diversifying meta-training tasks for boosting the fast adaptation ability of a model.

Disentangled Representation Learning Disentangled representation learning has been mainly
investigated in the context of generative modeling (Higgins et al., 2017; Kim & Mnih, 2018; Singh
et al., 2022; Yang et al., 2023; Hsu et al., 2024; Jiang et al., 2023; Yue et al., 2024; Wu & Zheng,
2024), with the objective of learning representations that capture independent factors of variation
within the input distribution. For complex images, factors of variations include the main object
identity, as well as object orientation, background, ambient lighting, view angle, and so on.

3 METHODOLOGY

We introduce DRESS, our task-agnostic Disentangled REpresentation-based Self-Supervised meta-
learning approach. DRESS leverages disentangled latent representations of input images to con-
struct self-supervised few-shot learning tasks that power the meta-training process. The multi-stage
diagram and pseudo code of DRESS are provided in Figure 1 and Algorithm 1 respectively.

3.1 ENCODING DISENTANGLED REPRESENTATIONS

First, all images available for meta-training are collected, and used to train a general purpose encoder
with the objective of producing disentangled representations (e.g., a factorized diffusion autoencoder
(FDAE) (Wu & Zheng, 2024), or latent slot diffusion model (LSD) (Jiang et al., 2023)). We then use
the trained encoder to encode each image and obtain its disentangled latent representation, which
consists of a set of vectors, one for each identified semantic concept. For the remainder of the paper,
we resort to the term dimension to refer to individual semantic concepts. We rely on prior infor-
mation about the dataset to select the appropriate number of latent dimensions to encode (i.e. how
many factors of variation are expected based on image structure). However, when such information
is not available, the intrinsic dimension of the dataset can be used as a proxy (Loaiza-Ganem et al.,
2024; Kamkari et al., 2024).

The notion of entanglement is broad and may correspond to various definitions. For example, in
β-VAE (Higgins et al., 2017) and FDAE, the entanglement of latent representations is connected to
covariance; in factorVAE (Kim & Mnih, 2018), feature entanglement is quantified statistically as
total correlation; while for LSD, feature entanglement is translated to relative spatial locations in
the image space. As DRESS is compatible with various encoder designs, in Algorithm 1, we use
entanglement(·) to denote a general notion of entanglement, with its specific definition depending
on the selected encoder.

3
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Algorithm 1 DRESS Pipeline on N -way K-shot tasks

1: Input: {xi}Ktotal
i=1 .

2: Train encoder with disentanglement learning on inputs

fenc : X → RJ×L (J : dimensions, L: latent size).

3: Obtain disentangled representations
fi = fenc(xi)

s.t. entanglement(f j1i , f j2i ) ≈ 0 ∀i, ∀j1,j2∈[J],j1 ̸=j2.

4: Align latent dimensions by permuting j for each image, so that the semantic information in f ji
is consistent across all images.

5: for j ∈ [J ] do
6: Cluster {xi} on f j to define a partition Pj .
7: while not converged do
8: Sample a partition P ∼ {Pj}
9: Sample N clusters from the partition {Cci} ∼ P

10: for ci ∈ [N ] do
11: Sample K datapoints from cluster Cci as support samples, set class labels as ysi = ci.
12: Sample K datapoints from cluster Cci as query samples, set class labels as yqi = ci.
13: Perform one meta-learning optimization step.

3.2 ALIGNING LATENT DIMENSIONS

After collecting the disentangled representations for all the training images, we align the latent
dimensions of representations across images so that a given dimension conveys the same semantic
information across all images (e.g., main object color, object orientation, background color, lighting
condition). For instance, some encoders (Locatello et al., 2020; Singh et al., 2022; Jiang et al., 2023)
disentangle attributes by applying multiple attention masks over each image. For such latent spaces,
we can align latent features by aligning the attention masks in spatial dimensions. Attention masks
that are similar in shapes and spatial locations generally focus on the same semantic elements across
images. To align such attention masks, we first preprocess each attention mask by flattening it and
normalizing it into a vector on the simplex. We then gather a batch of attention masks and cluster
them with K-Means (with the number of clusters equal to the number of attention masks learned on
each image). With the obtained attention mask clusters, we reorder the latent representations from
all images by the cluster identities of their corresponding attention masks.

3.3 CLUSTERING ALONG DISENTANGLED LATENT DIMENSIONS

We perform clustering within each dimension over latent vectors. Since dimensions are disentangled
and aligned, clustering each dimension produces a distinct partition of the entire set of inputs that
corresponds to one semantic property. Similar to Section 3.1, the number of clusters in this stage is
a design choice. To shape the constructed tasks towards higher levels of difficulty, thus encouraging
the model to learn data variations on finer levels of granularity, one can increase the number of
clusters per dimension.

3.4 FORMING DIVERSE SELF-SUPERVISED TASKS

Finally, we construct self-supervised learning tasks using cluster identities as pseudo-class labels.
We create a large number of few-shot classification tasks under each disentangled latent dimension
by first sampling a subset of cluster identities as classes, and then sampling images under each class
as the few-shot support samples and query samples.

As different dimensions within the disentangled representation depict distinct aspects of the input
data, the sets of self-supervised tasks constructed from disentangled dimensions are naturally diver-
sified, requiring distinct decision rules to solve. When using these tasks for meta-training, the model
can digest each factor of variation within the data, and therefore learns to adapt to unseen few-shot
tasks regardless of their contexts, natures, and meanings.
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Task 1
Task 2

Task 1
Task 2

Figure 2: Illustration of class partition-based task diversity. A binary classification task is defined
by two ellipses of the same color on an input space. Left: Two similar tasks where classes have high
overlap among data points. Right: Two dissimilar tasks, with less overlap between class partitions.

3.5 SELECTION OF THE META-LEARNING ALGORITHM

DRESS is compatible with any conventional meta-learning algorithm for model training. However,
not all meta-learning algorithms are well-suited to the highly diversified tasks DRESS generates. In
this paper, we pair DRESS with the optimization-based adaptation approach MAML (Finn et al.,
2017) because of its simplicity and ubiquity in meta-learning benchmarks. See Figure 6 in Ap-
pendix A.1 for a general illustration of the meta-learning pipeline. Discussions of pairing DRESS
with other popular meta-learning algorithms are in Appendix A.2.

3.6 TASK DIVERSITY BASED ON CLASS PARTITIONS

In DRESS, different encoders with different embedding spaces could be used to construct tasks.
Correspondingly, we advocate for a task diversity metric that is not tied to any specific embedding
space, but is directly linked to the original input space, unlike metrics such as Task2Vec. We intro-
duce a task diversity metric based on task class partitions. Consider two classification tasks defined
on the same inputs as in Figure 2. Each task partitions the dataset based on class identities. The
similarity between the tasks can be measured by the similarity between their respective partitions.

The mathematical definition of our metric is as follows: consider an input dataset of K data points,
D = {xi}Ki=1, and two (potentially multi-class) classification tasks, T1 and T2, defined on D. As-
sume T1 and T2 both have N classes which can be mapped to {cj}Nj=1 (if one task has fewer classes,
we treat the missing classes as having zero samples). T1 and T2 can be described by two sets of
class labels {y1i }Ki=1 and {y2i }Ki=1, respectively, with one label for each input in D. Equivalently,
each task can be represented by a class-based partition of D. For T1, the class partition is denoted
as P1 = {P 1

cj}
N
j=1, where P 1

cj = {xi | y1i = cj}. Similarly, P2 represents the class partition for T2.

Our task diversity metric is computed using these class-based partitions. First, we match subsets
between P1 and P2 to maximize the pairwise overlaps, via methods such as bipartite matching.
For each matched pair of subsets, we compute the intersection-over-union (IoU) ratio. Finally, we
calculate the average IoU value across all subset pairs across the two partitions. A low average IoU
indicates that P1 and P2 differ significantly, suggesting that T1 and T2 are relatively diverse tasks.
We show pseudocode for the metric in Algorithm 2 in Appendix I. We note that during the step of
relabeling the classes, the semantic information of the classes in each task is lost. Therefore, the
proposed metric only quantifies task diversity from the function mapping perspective. Nonetheless,
learning to jointly solve tasks that are diversified in their input-output mappings (which our metric
quantifies) has been shown to enable better adaptation capacity (Sui et al., 2024).

4 EXPERIMENTAL SETUP

4.1 DATASETS

We consider curated datasets with controlled factors of variations, as well as complex real-world
datasets. For curated datasets, we consider SmallNORB (Lecun et al., 2004), Shapes3D (Burgess
& Kim, 2018), Causal3D (von Kügelgen et al., 2021), and MPI3D (Gondal et al., 2019), cov-
ering a data-complexity spectrum from easy to hard. These datasets include labels for multiple
independently varying factors. For real-world datasets, we explore CelebA (Liu et al., 2015a) and
LFWA (Liu et al., 2015b). Details of the factors of variation in each dataset are in Appendix B. We
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do not consider benchmarks such as Omniglot, miniImageNet, and CIFAR-FS, due to their lack of
task diversity among meta-training and meta-testing stages, as we elaborated in Section 1.

4.2 IMPLEMENTATION DETAILS OF DRESS
Curated Datasets: For our experiments on SmallNORB, Shapes3D, Causal3D and MPI3D, we
adopt the FDAE architecture (Wu & Zheng, 2024) for the encoder. We train a FDAE model from
scratch on each dataset and use it to encode the images into disentangled representations. The FDAE
encoder computes a content code and a mask code for each visual concept. We regard this pair of
codes as two independent latent dimensions. The number of visual concepts that we adopt for each
dataset is provided in Appendix D. When using FDAE as the encoder, no explicit computation is
required for the latent alignment stage in DRESS. Since FDAE employs deterministic convolutional
neural networks, each output head of the encoder computes a fixed semantic mapping. Therefore,
the latent dimensions are inherently organized in a consistent semantic order. This allows us to pro-
ceed directly to clustering after encoding all images. We then perform individual latent dimension
clustering and pseudo-class construction, with details in Appendix D.

Real-World Dataset: For CelebA and LFWA experiments, we adopt the LSD encoder (Jiang et al.,
2023) trained from scratch to demonstrate DRESS’s flexibility in adapting to representations from
various encoder architectures. The LSD encoder utilizes slot attention to learn disentangled latent
representations by computing visual slots, with each slot attending to different regions of the image
through a learned attention mask. Due to the stochastic nature of slot attention, the order of the
slots varies across images, requiring explicit latent alignment before clustering. We align the latent
dimensions by clustering on the attention masks from each slot, as discussed in Section 3.2. We
provide detailed description on this alignment procedure and visualizations in Appendix F. After
alignment, we perform clustering and form pseudo-classes for self-supervised meta-training tasks.

4.3 BASELINE METHODS

Supervised Meta-Learning: We implement three variations of supervised meta-learning baselines
with increasingly relevant information about ground-truth factors:

• Supervised-Original: Only use the ground-truth factors that do not define meta-testing tasks to
create supervised meta-training tasks.

• Supervised-All: Use all the ground-truth factors to create supervised meta-training tasks.
• Supervised-Oracle: Only use the ground-truth factors that define meta-testing tasks to create

supervised meta-training tasks.

These methods progressively increase the relevancy of information available to the model, but are
increasingly unrealistic. Supervised-Original must learn to generalize from a limited set of ground-
truth factors to unknown factors at meta-testing time. Specifically, for Supervised-Original, the
ground-truth factors available in meta-training and in meta-testing are mismatched. As a result
these ground truth factors can potentially misguide the model causing worse generalization abil-
ity. Supervised-All has the most information, but needs to identify task natures and relevant fac-
tors, and hence represents the upper bound on performance when the evaluation tasks are agnostic.
Supervised-Oracle has perfect knowledge of factors utilized in meta-testing tasks, and represents the
ultimate performance upper bound.

Few-Shot Direct Adaptation (FSDA): This represents the lower bound of performance when a
model is directly optimized on the support samples from each meta-testing task.
Pre-training and Fine-tuning (PTFT): We implement the pre-training and fine-tuning method as
described in (Tian et al., 2020), using SimCLR (Chen et al., 2020) with its standard image augmen-
tations, with details in Appendix C.
Unsupervised & Self-Supervised Meta-Learning: We adopt CACTUS (Hsu et al., 2019) with two
encoders: DeepCluster (Caron et al., 2018) trained from scratch, and off-the-shelf DINOv2 (Oquab
et al., 2024). We refer to these baselines as CACTUS-DC and CACTUS-DINO, with details in
Appendix D. Additionally, we experiment with two recent unsupervised and self-supervised meta-
learning approaches: Meta-GMVAE (Lee et al., 2021) and PsCo (Jang et al., 2023).
We unify the model architecture, meta-training, and meta-testing setups for these methods across all
experiments, as detailed in Appendix D. We also emphasize that for each dataset, the same set of
images is used for meta-training (either the encoder or the meta-learner model) and for pre-training
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Table 1: Few-shot classification accuracies on curated datasets, with each trial conducted over 1000
meta-testing few-shot learning tasks.

Method SmallNORB Shapes3D Causal3D MPI3D-Easy MPI3D-Hard
5-Shot 10-Shot 5-Shot 10-Shot 5-Shot 10-Shot 5-Shot 10-Shot 5-Shot 10-Shot

Supervised-
Original

61.9%
±0.8%

65.3%
±1.7%

62.0%
±1.5%

70.3%
±1.7%

52.1%
±0.3%

52.9%
±0.3%

57.8%
±0.5%

64.6%
±1.4%

63.3%
±1.3%

65.0%
±1.3%

Supervised-
All

79.6%
±0.3%

80.8%
±0.4%

99.9%
±0.0%

100.0%
±0.0%

88.8%
±1.0%

90.4%
±1.2%

99.3%
±0.3%

99.9%
±0.0%

91.0%
±1.7%

94.4%
±0.5%

Supervised-
Oracle

80.2%
±0.4%

82.0%
±0.2%

100.0%
±0.0%

100.0%
±0.0%

93.5%
±0.2%

94.4%
±0.3%

100.0%
±0.0%

100.0%
±0.0%

99.4%
±0.1%

99.7%
±0.1%

FSDA 73.9%
±0.9%

74.4%
±0.8%

65.7%
±2.0%

87.8%
±0.6%

66.9%
±0.9%

67.8%
±3.1%

60.6%
±0.3%

97.4%
±0.1%

62.3%
±0.3%

66.7%
±0.9%

PTFT 58.0%
±1.9%

61.9%
±1.1%

57.9%
±2.2%

71.6%
±0.2%

55.6%
±0.2%

57.2%
±0.6%

92.9%
±0.5%

84.8%
±0.4%

79.5%
±0.8%

94.1%
±0.3%

Meta-
GMVAE

68.6%
±0.7%

73.9%
±0.3%

59.1%
±1.7%

59.6%
±0.9%

59.2%
±0.8%

63.9%
±0.6%

99.4%
±0.1%

99.2%
±0.3%

50.0%
±0.3%

50.6%
±0.2%

PsCo 74.2%
±0.4%

74.3%
±0.6%

97.6%
± 0.6%

91.4%
±0.5%

70.8%
±0.5%

76.0%
±0.5%

83.5%
±2.0%

96.7%
±0.9%

79.5%
±0.7%

89.6%
±0.3%

CACTUS-
DC

75.8%
±0.4%

76.3%
±0.4%

86.8%
±0.7%

93.5%
±0.4%

65.7%
±0.4%

69.7%
±0.7%

85.0%
±0.6%

92.6%
±0.7%

72.8%
±1.0%

79.2%
±0.4%

CACTUS-
DINO

62.8%
±0.8%

66.9%
±1.0%

80.6%
±0.2%

89.3%
±0.0%

53.9%
±0.5%

56.0%
±0.3%

94.4%
±0.4%

97.7%
±0.3%

81.9%
±0.4%

89.0%
± 0.5%

DRESS 78.1%
± 0.4%

79.1%
± 0.2%

93.1%
±0.2%

97.1%
± 0.4%

76.4%
± 0.4%

80.4%
± 0.2%

99.9%
± 0.0%

100.0%
± 0.0%

85.0%
± 0.5%

88.4%
±0.4%

and fine-tuning, with the only exception being the DINOv2 encoder used in the CACTUS base-
line, which has been extensively trained on much larger training sets. Essentially, the information
available for training is identical in each of the competing methods.

4.4 META-TRAINING & META-TESTING TASK SETUPS

For meta-testing, we construct few-shot learning tasks based on the selection of a subset of the at-
tributes with ground-truth labels from each dataset. Consequently, the natures and levels of difficulty
of the tasks are determined by this subset of attributes. Given the subset of attributes selected, the
meta-testing tasks are created using the ground-truth labels, similar to (Hsu et al., 2019). First, we
randomly pick a few attributes from the attribute subset, and define two distinct value combinations
on those attributes. Images whose attributes match the first value combination are assigned to the
positive class, while those matching the second combination are assigned to the negative class. For
the three supervised meta-training baselines, we also create supervised meta-training tasks follow-
ing the same procedure. Details on the subsets of attributes for supervised meta-training tasks and
meta-testing tasks are provided in Appendix B for each dataset. For meta-training, we construct 2-
way 5-shot few-shot learning tasks. While for meta-testing, we also experiment with 2-way 10-shot
tasks to better examine the adaptation ability of each method.

We create multiple meta-testing configurations for the two most complex datasets, MPI3D and
CelebA, by varying how attributes are grouped. For MPI3D, we define two few-shot learning setups:
MPI3D-Easy, where the tasks focus on identifying the background and camera height; and MPI3D-
Hard, where the tasks focus on horizontal and vertical robot arm angular positions. For CelebA, we
define three few-shot learning setups: CelebA-Hair, where the tasks focus on all attributes relevant
to the person’s hair; CelebA-Primary, where the tasks focus on primary facial attributes or features;
and CelebA-Random, where the tasks are constructed from a random subset of attributes.

Lastly, to examine the ability of cross-domain adaptation, we adapt each model trained under the
CelebA dataset onto the few-shot learning tasks created based on LFWA under a subset of primary
attributes. We refer to this cross-domain adaptation setup as LFWA-Cross-Domain. Supervised-
Oracle is no longer a valid baseline under this setup. As we adapt from CelebA to LFWA, the set of
attributes are changed. Therefore, there is no oracle information on the meta-testing attributes.
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Figure 3: Two self-supervised tasks constructed by DRESS on MPI3D. Left: The task focuses on
classifying the object color. Right: The task focuses on identifying the robot arm angle.

5 RESULTS & ANALYSIS

5.1 EXPERIMENTAL RESULTS ON CURATED DATASETS

We present the few-shot classification accuracies in Table 1 for all the curated datasets.1 DRESS con-
sistently achieves the best few-shot adaptation performance among unsupervised or self-supervised
methods under the most setups with just two exceptions. Supervised-Original is unimpressive, in-
dicating that meta-training targets could mislead a supervised model when adapting to highly di-
versified tasks, as we hypothesized in Section 3. In contrast to Tian et al. (2020), pre-training and
fine-tuning is not on par with meta-learning approaches, due to the more challenging and diverse
tasks we benchmark on. CACTUS shows varying results across datasets with different encoders,
reflecting the importance of the latent representations. As DRESS uses disentangled representation
learning to construct diversified pre-training tasks, it obtains superior results across these datasets
and task setups. We provide visualizations of two tasks constructed by DRESS in Figure 3, and
additional visualizations in Appendix G.

Table 2: Few-shot classification accuracies on the realistic CelebA dataset and LFWA dataset for
cross-domain adaptation, with each trial conducted over 1000 meta-testing few-shot learning tasks.

Method CelebA-Hair CelebA-Primary CelebA-Random LFWA-Cross-Domain
5-Shot 10-Shot 5-Shot 10-Shot 5-Shot 10-Shot 5-Shot 10-Shot

Supervised-
Original

68.9%
±0.6%

71.8%
±0.2%

77.0%
±1.1%

79.9%
±1.0%

81.9%
±0.2%

83.9%
±0.2%

69.1%
±1.6%

71.6%
±1.4%

Supervised-
All

79.1%
±0.2%

81.9%
±0.1%

88.1%
±0.2%

89.2%
±0.5%

85.6%
±0.2%

87.6%
±0.1%

73.0%
±0.3%

75.3%
±0.0%

Supervised-
Oracle

87.8%
±0.3%

89.3%
±0.1%

91.2%
±0.1%

92.1%
±0.1%

90.7%
±0.1%

92.0%
±0.2%

- -

FSDA 63.3%
±0.2%

63.3%
±1.4%

69.3%
±0.5%

70.0%
±1.0%

57.7%
±0.4%

56.7%
±1.2%

61.8%
±0.9%

62.0%
±0.7%

PTFT 59.6%
±0.3%

62.0%
±0.2%

67.1%
±0.3%

70.3%
±0.2%

65.1%
±0.3%

68.0%
±0.1%

62.7%
±0.1%

65.7%
±0.1%

Meta-
GMVAE

64.2%
±0.2%

68.9%
±0.1%

67.9%
±0.3%

72.4%
±0.4%

64.9%
±0.2%

68.2%
±0.1%

59.4%
±0.2%

61.7%
±0.1%

PsCo 66.2%
±0.3%

67.2%
±0.8%

66.0%
±0.6%

70.9%
±0.5%

60.5%
±0.4%

67.5%
±0.9%

59.0%
±0.3%

61.5%
±0.5%

CACTUS-
DC

67.4%
±1.0%

70.8%
±1.4%

71.4%
±0.1%

75.8%
±0.8%

62.2%
±1.1%

66.4%
±1.6%

63.9%
±1.2%

67.1%
±0.9%

CACTUS-
DINO

69.4%
±0.2%

71.0%
±0.1%

77.0%
±0.3%

80.2%
±1.0%

74.4%
± 0.3%

77.7%
± 0.3%

65.3%
±0.3%

65.4%
±1.6%

DRESS 73.8%
± 0.1%

76.6%
± 0.4%

77.4%
± 0.1%

81.6%
± 0.4%

68.3%
±0.5%

70.8%
±0.0%

66.6%
± 0.6%

68.3%
± 1.1%
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Figure 4: Two self-supervised tasks constructed by DRESS on CelebA. Left: Task focuses on
identifying the presence of eyeglasses. Right: Task focuses on identifying the hairstyle with bangs.

1All reported results show mean and standard deviation over 4 trials under random seeds.
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Table 3: Ablation on Disentangled Representations, Latent Dimension Alignment, and Individual
Dimension Clustering.

Method Shapes3D Causal3D MPI3D-Hard CelebA-Hair CelebA-Primary

DRESS 93.1% ± 0.2% 76.4% ± 0.4% 85.0% ± 0.5% 73.8% ± 0.1% 77.4% ± 0.1%
DRESS w/o

Disent. Repsent. 75.3% ±0.4% 54.0% ±0.4% 78.8% ±0.3% 68.9% ±0.2% 77.3% ±0.2%

DRESS w/o
Lat. Dim. Align. - - - 73.0% ±0.2% 76.1% ±0.3%

DRESS w/o
Ind. Dim. Cluster. 80.3% ±0.8% 76.1% ±0.2% 66.6% ±0.5% 72.7% ±0.4% 74.2% ±0.3%

5.2 EXPERIMENTAL RESULTS ON REAL-WORLD DATASETS

We report few-shot classification accuracies on the three CelebA setups as well as the LFWA
cross-domain setup from Section 4.4 in Table 2. DRESS outperforms all unsupervised methods
on CelebA-Hair, excelling at capturing secondary features (i.e. hair features) beyond primary facial
attributes. It also ranks first on CelebA-Primary, slightly ahead of CACTUS-DINO. We note that DI-
NOv2, as a state-of-the-art high capacity vision encoder, is expected to capture information from the
main objects (i.e. the faces), so CACTUS performs well here. On CelebA-Random, DRESS falls
behind CACTUS-DINO but remains superior to other baselines. This drop likely stems from the
fact that disentangled representations struggle to model fine details like bags under eyes and bushy
eyebrows. We confirm this by visualizing the learned disentangled latent factors in Appendix H,
which indeed shows that the latent factors fail to zoom into the above-mentioned fine details within
the faces. We emphasize again that despite the practical and imperfect disentangled latent factors,
DRESS outperforms other methods. As disentangling encoders continue to improve and compute
higher quality latent factors, we believe the DRESS will also benefit. Supervised-Original still
performs poorly, showing that labels can misguide adaptation to unseen tasks. Lastly, shown by
the LFWA-Cross-Domain results, DRESS also comes first when the meta-training and meta-testing
data belongs to different domains, indicating more robust and transferable representations learned
by the model. We provide visualizations of two tasks constructed by DRESS on CelebA in Figure 4,
with additional visualizations provided in Appendix G that show the diverse facial attributes DRESS
captures for constructing tasks.

5.3 ABLATION STUDIES

We present in Table 3 ablation studies on each key design decision of DRESS.
Disentangled Representations: We replace the disentanglement learning encoder (i.e., FDAE or
LSD) with the state-of-the-art DINOv2 encoder, which does not focus on disentangled represen-
tations. After extracting representations from DINOv2, we follow the remaining steps of DRESS.
Without disentanglement, the latent dimensions do not correspond to integral features within the
data, leading to less meaningful self-supervised tasks and degradation of meta-learning capability.
Latent Dimension Alignment: As per Section 5.1, when using FDAE as the encoder, there is no
explicit alignment required. Thus, this ablation study focuses on DRESS with the LSD encoder. For
the ablation, we skip the process of clustering the attention masks and re-ordering the attention slots.
Without alignment, the same feature dimension may express different semantic concepts on different
datapoints. Small but consistent performance degradation is observed for both CelebA setups.
Clustering within each Disentangled Latent Dimension: Instead of performing independent clus-
tering on each dimension, we directly cluster the entire latent space to generate the partitions. We
then apply the final stage of DRESS to create self-supervised tasks from the obtained partitions.
When clustering all dimensions together, the generated tasks will no longer cleanly distinguish sep-
arate factors of variation in the data. The benefits of clustering within individual latent dimensions
are evident by the performance margins especially in Shapes3D, MPI3D-Hard, and CelebA-Primary.

5.4 QUANTITATIVE RESULTS ON TASK DIVERSITY

We compute the class-partition based task diversity, as proposed in Section 3.6, for tasks created
by DRESS and applicable baselines. The task diversity scores presented are 1−IoU, with IoU
being the average value across sampled class partition pairs from each method (more details on
computing the scores are provided within Algorithm 2 in Appendix I). Table 4 shows that DRESS
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Table 4: Task Diversity Score on each dataset. The diversity score is presented here as 1−IoU, with
a higher score indicating greater task diversity.

Method SmallNORB Shapes3D Causal3D MPI3D-Hard CelebA-Hair

Supervised-Original 0.95 ±0.02 0.97 ±0.01 0.99 ±0.00 0.95 ±0.01 0.89 ±0.00

Supervised-All 0.98 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.90 ±0.01

Supervised-Oracle 0.99 ±0.00 0.99 ±0.00 0.98 ±0.01 0.98 ±0.01 0.85 ±0.01

CACTUS-DC 0.71 ±0.01 0.81 ±0.01 0.88 ± 0.00 0.79 ±0.00 0.93 ±0.00

CACTUS-DINO 0.57 ±0.00 0.61 ±0.00 0.64 ±0.00 0.57 ±0.00 0.73 ±0.00

DRESS 0.74 ± 0.01 0.90 ± 0.01 0.74 ±0.00 0.91 ± 0.00 0.98 ± 0.00

produces more diverse tasks than CACTUS, which uses clustering in an embedding space, without
the disentanglement and alignment that DRESS utilizes. For supervised meta-learning methods, the
task diversity scores are computed on the partitions constructed as in Section 4.4. They serve as
upper bounds on the task diversity from each dataset, as they leverage the knowledge of the ground-
truth attributes or factors of variations.
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Figure 5: Correlation plots between the proposed diversity scores and the few-shot adaptation accu-
racies from each method on each dataset.

In Figure 5 we visualize the correlation between our proposed task diversity scores and the few-shot
adaptation performance from our experiments (for which we take the average of the classification
accuracies under 5-shot and 10-shot adaptations). Note that we use only one of the three super-
vised baselines (Supervised-All), as both Supervised-Original and Supervised-Oracle rely on hand-
selection of attributes for the meta-testing tasks. On simpler datasets with distinctive and clearly
defined factors of variations (SmallNORB, Shapes3D, and Causal3D) we see strong correlation be-
tween our proposed task diversity metric and few-shot adaptation performance. However, as the
datasets grow in complexity, the correlation become weaker, though remains positive showing that
the task diversity metric can still indicate better adaptation performance. Specifically, on these more
complex datasets, DRESS creates the most diverse meta-training tasks while achieving the best per-
formance compared to the CACTUS-based methods.

6 CONCLUSION

We surfaced an issue in popular few-shot learning benchmarks: tasks are not diverse enough to
truly test model adaptation ability. Instead, tasks with distinct natures can serve as more informative
benchmarks. We proposed a self-supervised meta-learning approach that harnesses the expressive-
ness of disentangled representations to construct self-supervised tasks. Our approach enables models
to acquire broad knowledge on underlying factors in a dataset, and quickly adapt to unseen tasks.
Experimental results validate that our approach empowers the model to adapt quickly when faced
with highly diverse meta-testing tasks.

As future work, it may be fruitful to apply our task diversity metric with curriculum learning or
active learning for task selection during the meta-training stage. This may further improve the
performance of DRESS, or meta-learning algorithms in general.

REPRODUCIBILITY STATEMENT

In the attachment submitted alongside this paper, we have included the source code for this project
required to reproduce the results presented in this paper (including all tables and figures within the
paper). Specifically, we have included the dataset loader scripts for loading and pre-processing the
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datasets (all of which are public and free to access). To support easier navigation within the code
folder, we included a README.txt file outlining the structures and brief summaries of each script
file and sub-folder. We have also provided the hardware specifications under Appendix E, describing
the computation resources we used for our experiments.
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A VISUALIZATION AND DISCUSSIONS OF META-LEARNING ALGORITHMS

A.1 META-LEARNING ON FEW-SHOT LEARNING PIPELINE

We provide the visualization for the general pipeline on applying meta-learning to solve few-shot
learning tasks in Figure 6.
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Figure 6: During the meta-training stage, the model adapts on batches of sampled tasks. The model’s
performance is optimized for meta-parameter optimization. After meta-training, the model can be
quickly adapted to meta-testing tasks and perform few-shot inference.

A.2 DISCUSSIONS ON SUITABLE SELECTION OF META-LEARNING ALGORITHM

The majority of meta-learning algorithms can be categorized under one of the three general themes:
black-box adaptation Ravi & Larochelle (2017); optimization-based adaptation, with MAML Finn
et al. (2017) being the notable example; and non-parametric adaptation, with ProtoNet Snell et al.
(2017) and RelationNet Sung et al. (2018) being the notable examples.

The non-parametric adaptation scheme often relies on a single pre-trained latent space, based on
which the adaptation to new tasks is achieved (e.g., the computation of the prototypes in ProtoNet,
or the image embedding space in RelationNet on top of which the relation score is computed).
However, as we have advocated through the design of DRESS, we need different partitions on a
given dataset based on disentangled latent dimensions to correspond to different semantics or nature
of diverse tasks, which is particularly important for adapting to agnostic new tasks. Therefore, while
there is no fundamental incompatibility, the non-parametric adaptation scheme lacks the capacity
for fully benefiting from DRESS. We also opt out of the black-box adaptation scheme for its lack of
inductive bias in the learning process, due to this same reason.

Optimization-based meta-learning algorithms are suitable to combine with DRESS for learning tasks
with diverse natures. This class of algorithms does not impose the assumption that the model should
adapt to all the tasks based on any specific latent space, therefore allowing the model the flexibility
in learning different fundamental concepts and attributes from the data, and benefiting from the
comprehensive set of meta-training tasks provided by DRESS.

B DATASET DESCRIPTIONS

B.1 SMALLNORB

SmallNORB contains 48,600 images, of which we use 24,300 images for meta-training and 24,300
images for meta-testing, following the pre-defined train-test split convention on the dataset. Each
image has a resolution of 96×96 pixels with a single gray-scale color channel. We simply repeat this
channel three times to create three-channel images to be compatible with all of the encoders tested
(such as the pre-trained DINOv2, which expects three-channel images as inputs off-the-shelf).
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The images in the dataset include 5 factors of variations, as detailed in Table 5. Note that we
ignored the additional factor of camera ID in SmallNORB, as we exclusively take images from the
first camera.

Table 5: Factors of Variation in SmallNORB

Attribute Name Cardinality Constructed Tasks

Generic Category 5 Meta-Train
Instance ID 5 Meta-Train
Elevation Angle 18 Meta-Test
Azimuth Angle 9 Meta-Test
Lighting 6 Meta-Test

B.2 SHAPES3D

Shapes3D contains 480,000 images, of which we use 400,000 images for meta-training and 50,000
images for meta-testing, following the pre-defined train-test split convention on the dataset. Each
image has a resolution of 64×64 pixels with RGB color channels.

The images in the dataset include 6 factors of variations, as detailed in Table 6.

Table 6: Factors of Variation in Shapes3D

Attribute Name Cardinality Constructed Tasks

Floor Hue 10 Meta-Test
Wall Hue 10 Meta-Test
Object Hue 10 Meta-Train
Scale 8 Meta-Train
Shape 4 Meta-Train
Orientation 15 Meta-Test

B.3 CAUSAL3D

Causal3D contains 237,600 images, of which we use 216,000 images for meta-training and 21,600
images for meta-testing, following the pre-defined train-test split convention on the dataset. Each
image has a resolution of 224×224 pixels with RGB color channels.

The images in the dataset include 7 factors of variations, as detailed in Table 7. Each of these factors
are continuous values in the original form, which we have quantized to 10 levels. We emphasize that
in DRESS and the competing unsupervised methods we experimented with, the models are agnostic
to the quantization decision (i.e. there are 10 different values in each latent dimension that we use
for creating meta-testing few-shot learning tasks). Note that the original dataset also provides labels
for additional factors which we neglected in our experiments, such as rotation angles.

Table 7: Factors of Variation in Causal3D

Attribute Name Cardinality Constructed Tasks

X Position 10 Meta-Train
Y Position 10 Meta-Train
Z Position 10 Meta-Train
Object Color 10 Meta-Train
Ground Color 10 Meta-Test
Spotlight Position 10 Meta-Test
Spotlight Color 10 Meta-Test
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B.4 MPI3D

MPI3D consists of four dataset variants. We utilize the MPI3D toy dataset containing simplistic
rendered images with clear color contrast. Throughout the paper, we refer to this dataset simply
as MPI3D. The dataset contains 1,036,800 images, of which we use 1,000,000 images for meta-
training and 30,000 images for meta-testing, following the pre-defined train-test split convention on
the dataset. Each image has a resolution of 64×64 pixels with RGB color channels.

The images in the dataset include 7 factors of variations, as detailed in Table 8. We note that for
the two factors horizontal axis and vertical axis, denoting the robot arm’s angular position, the
ground truth labels for each are based on a 40-interval partition of the entire 180-degree anglular
range, leading to a mere 4.5-degree maximum angle difference for two different factor values. In
our experiments, we re-group the partitions into 10 intervals for each of the two axes, leading to an
18-degree maximum angle difference between two factor values.

Table 8: Factors of Variation in MPI3D under each Task Setup

Attribute Name Cardinality MPI3D-Easy Task Setup MPI3D-Hard Task Setup
Object Color 6 Meta-Train Meta-Train
Object Shape 6 Meta-Train Meta-Train
Object Size 2 Meta-Train Meta-Train
Camera Height 3 Not Used Meta-Test
Background Color 3 Not Used Meta-Test
Horizontal Axis 40 Meta-Test Not Used
Vertical Axis 40 Meta-Test Not Used

B.5 CELEBA

CelebA consists of 202,599 images of celebrity faces, of which we follow the conventional split
and use 162,770 images for meta-training and the remaining images for meta-testing. Each image
has a resolution of 178×218 pixels with RGB color channels. We conduct a cropping around the
face regions in these images before feeding them into each model, for both meta-training and meta-
testing.

The images in the dataset include 40 binary factors of variations. Instead of listing out all these 40
factors, in Table 9, we only list the binary attributes reserved for meta-testing few-shot learning tasks
under each attribute split setup. The remaining attributes were used for constructing meta-training
tasks exclusively for supervised baselines.

B.6 LFWA

LFWA (Labeled Faces in the Wild with Attributes) consists of 13,233 images of faces of public fig-
ures, of which we use 2,000 randomly sampled images for meta-testing. Each image has a resolution
of 250×250 pixels with RGB color channels. We conduct a center cropping in these images before
feeding them into each model.

The images in the dataset include 73 factors of variations, with values generated using a model
from the original paper in which the dataset is presented. The original values for these factors (or
attributes) are float numbers. We convert them into binary values through simple thresholding. In
Table 10, we list the binary attributes reserved for meta-testing few-shot learning tasks.

C DETAILED SETUPS FOR PRE-TRAINING AND FINE-TUNING

For pre-training, we use an encoder backbone that shares the same architecture as the ResNet-18 He
et al. (2016) backbone used for FDAE. After pre-training, a trainable linear layer is attached on top
of the encoder for the adaptation process on evaluation tasks. The encoder is frozen throughout the
adaptation process. We include the details for this approach in Table 11. Note that we do not use a
supervised loss in pre-training in order to avoid the encoder focusing only on tasks that are irrelevant
to the meta-evaluation tasks, as we have discussed in Section 3.
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Table 9: Factors of Variation in CelebA under each Task Setup

Task Setup Attribute Name

CelebA-Hair

Bangs
Black Hair
Blond Hair
Brown Hair
Gray Hair

Receding Hairline
Straight Hair
Wavy Hair

CelebA-Primary

Bald
Big Lips
Big Nose

Blond Hair
Eyeglasses
Pale Skin

Straight Hair
Wearing Hat

CelebA-Random

5 o’Clock Shadow
Bags under Eyes

Bald
Blurry

Bushy Eyebrows
Double Chin

Goatee
Mouth Slightly Open

Table 10: Factors of Variation in LFWA-Cross-Domain Task Setup

Task Setup Attribute Name

LFWA-Transfer

Big Nose
Bangs

Blond Hair
White

Sunglasses
Rosy Cheek

Mouth Closed
Pale Skin

Regarding the number of epochs for pre-training, in the pre-training procedure the entire set of
meta-training image inputs are fed to the encoder (i.e. 400,000 images for Shapes3D; and 1,000,000
images for MPI3D). Therefore, with 10 epochs over the entire meta-training dataset, the number
of forward-backward computations for optimizing the encoder already surpasses the models trained
with the meta-learning methods.

D ADDITIONAL SETUP DETAILS FOR META-LEARNING METHODS

In this section, we further provide more details on the implementation of DRESS as well as meta-
learning baselines.

Firstly, for DRESS, the supervised meta-learning baselines, as well as the two CACTUS baselines,
we use MAML Finn et al. (2017) as the meta-optimization engine, with a convolutional neural net-
work (CNN) of identical specification as the base learner, for fair comparisons between the methods.
The few-shot direct adaptation baseline also uses a CNN of the same specification. For the remaining
baselines, we follow the design details as in the original papers.
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Table 11: Pre-Training and Fine-Tuning Setup

Setting Value

Pre-Training Epochs 10
Tasks in Meta-Evaluation 1000
Gradient Descent Steps in Adaptation 5

The number of visual concepts (or attention slots) that we adopt to for each dataset is not the same
as the number of the ground-truth factors of variations. For example, factors such as the orientation
angle of the object, the lighting condition, or the camera height do not necessarily correspond to
individual visual concepts, but instead are reflected by the relations among multiple visual concepts.
Therefore, the number of visual concepts that we use in DRESS for each dataset is estimated based
on the nature of the image composition in each dataset. We provide the values we used for the
experiments in Table 12. We note that in early explorations, the few-shot adaptation results were not
sensitive to mild changes on these values. These values are also not extensively optimized.

Table 12: Number of Visual Concepts or Attention Slots on Each Dataset

Dataset SmallNORB Shapes3D Causal3D MPI3D CelebA

Number of
Visual Concepts 8 6 8 7 12

We summarize in Table 13 and Table 14 respectively the hyper-parameter values of DRESS as
well as the meta-learning baselines CACTUS-DeepCluster and CACTUS-DINOv2. The selections
of the hyper-parameter values are largely based on the specifications from the original paper Hsu
et al. (2019) (while the number of clusters over each latent space is originally 500, through our
experiments, we find that using 300 clusters leads to no noticeable performance change over various
datasets). For the DINOv2 encoder, we use the ViT-S/14 distilled version with registers. We note that
for the DeepCluster encoder, PCA is applied on its output to reach the number of latent dimensions
as listed.

Table 13: Task Construction Setup for DRESS

Setting DRESS-
FDAE

DRESS-
LSD

Reduced Number of Components
per Latent Dimension 40 -

Clusters in
Each Latent Dimension 200 200

Table 14: Task Construction Setup for CACTUS-based Baselines

Setting CACTUS-
DC

CACTUS-
DINOv2

Latent Dimensions 256 384
Randomly Scaled
Latent Spaces 50 50

Clusters Over
Each Latent Space 300 300

In Table 15, we provide meta-training and meta-testing hyper-pamameters for DRESS and two meta-
learning baselines, CACTUS-DC and CACTUS-DINOv2.
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Table 15: Few-Shot Learning Setup for All Meta-Learning Methods

Setting Value

Tasks per Meta-Training Epoch 8
Meta-Training Epochs 30,000
Tasks in Meta-Evaluation 1,000
Gradient Descent Steps
in Task Adaptation 5

Adaptation Step Learning Rate 0.05
Meta-Optimization Step
Learning Rate 0.001

E COMPUTATION DETAILS

All the experiments include training and evaluating models on each dataset are conducted on one or
two Nvidia RTX 6000 Ada Generation GPUs, each with 48GB memory, under the standard Ubuntu
OS (Ubuntu 24.04.1 LTS). Our code implementation is based on the PyTorch library.

In terms of the computational cost of each method, the cost of performing few-shot adaptation is
negligible for every method, therefore the computational cost is dominated by the training stage.
For both DRESS and CACTUS, the training process involves two steps: training the encoder and
training the meta-learner model. For both Meta-GMVAE and PsCo, the meta-training process is
coupled with training the encoder by the algorithm design. For meta-training on the CelebA dataset,
we report the computation time in Table 16.

Table 16: Training Time for each Encoder on CelebA

Encoder LSD in DRESS DeepCluster
in CACTUS

DINOv2
in CACTUS Meta-GMVAE PsCo

Encoder
training time 8.5 Hours 12.3 Hours 3.3 Days2

7.0 Hours 21.0 Hours
Meta-Train with
constructed tasks 2.9 hours 2.9 hours 2.9 hours

F LATENT DIMENSION ALIGNMENT PROCESS

As described in Section 5.1, when using the LSD encoder for DRESS, we need the explicit latent
dimension aligment process. From the LSD encoder, each visual concept is modeled in the latent
space via an attention mask and an encoding vector. When encoding multiple images with LSD,
the order of the obtained latent representations for these visual concepts are stochastic. We use the
encoding vectors of all the visual concepts from each image as the disentangled latent representations
for DRESS. To properly align these encoding vectors, we perform a consistent semantic ordering
for the attention masks across all input images.

Our detailed procedure is as follows: for the first batch of input images, we obtain their latent
representations, including the attention masks, from the LSD encoder. We then perform K-Means
clustering with a predefined number of clusters. Through our experiments, the best results are
obtained when the number of clusters equals to the number of visual concepts we extract from each
image. With the obtained clusters, for each image in the dataset, we obtain the cluster identities of its
attention masks, and order its encoding vectors following an arbitrary but fixed order of the cluster
identities. We note that there are images whose attention masks are not strictly clustered among all
the clusters uniformly, i.e. there are clusters with more than one attention mask and clusters with
zero attention mask. For these corner cases, we simply break the tie by distributing attention masks

2As reported by the creators for the large model, DINOv2 ViT-L/14, on a large multi-GPU hardware setup.
We used DINOv2 ViT-S/14, which used more computation overall as it was distilled from the large model.
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from larger clusters to empty clusters, such that we always end up with one attention mask in each
cluster for each image before we perform the alignment.

In Figure 7, we provide visualizations on the attention mask ordering for the LSD encodings on
a random set of images before and after our latent dimension alignment procedure. Evident from
the visualization, after the latent dimension alignment process, the attention masks are aligned rea-
sonably well across all the images with just a few misaligned regions. Therefore, under each dis-
entangled latent dimension, the region as the focal point stays very close from image to image,
ensuring that the latent representations are semantically aligned across all the images. We note that
we choose this attention-mask based alignment process based on the fact that the composition is con-
sistent across images in the dataset studied (i.e. in the CelebA dataset, all the images are centered
on individual faces under the natural orientation).

Figure 7: The ordering of attention masks from LSD encoding. In both subfigures, each row lists
the ordered attention masks of an image. Left: Latent Dimension ordering before the alignment
process. Right: Latent Dimension ordering after the alignment process on the same input images.

G ADDITIONAL TASK VISUALIZATIONS FROM DRESS
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Figure 8: More self-supervised tasks constructed by DRESS on MPI3D. The top task focuses on the
background color; while the bottom task focuses on the camera height.
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Figure 9: More self-supervised tasks constructed by DRESS on CelebA. The top task focuses on the
gender of the person; while the bottom task focuses on if the person has mouth open or not.

We provide more visualizations on self-supervised few-shot learning tasks generated by DRESS on
MPI3D in Figure 8, as well as tasks generated by DRESS on CelebA in Figure 9. As evidenced
by these visualizations, the generated tasks have very distinctive natures, covering multiple aspects
and factors of variations within the corresponding datasets. When being trained on such diversified
tasks, the resulting model naturally acquires the ability to adapt well on unseen tasks, regardless of
the semantics that the tasks focus on.

H VISUALIZING LEARNED DISENTANGLED LATENT FACTORS

Specifically, we provide in Figure 10 and Figure 11 the attention masks for latent factors learned by
the FDAE encoder, on MPI3D and Shapes3D respectively. Furthermore, we provide in Figure 12
the attention slots learned by the LSD encoder on CelebA. Note that the factors shown in Figure 12
have not been aligned yet. The alignment procedure is elaborated above in Section F.

Figure 10: Visualization of attention masks of disentangled factors learned by the FDAE encoder on
MPI3D Images. Left: Original image. Right: Attention masks from disentangled factors.

I COMPUTATION DETAILS FOR CLASS-PARTITION BASED TASK DIVERSITY
METRIC

With the task diversity defined in Section 3.5, we aim to compute the intersection-over-union ratio
(IoU) over pairs of tasks created by each method. Nonetheless, as we focus on the few-shot learning
tasks (five-shot two-way tasks to be specific), the number of input samples on each task is very small.
Therefore, if we directly take two such few-shot learning tasks, there is most likely no intersection
in the samples they cover.
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Figure 11: Visualization of Attention Masks of Disentangled Factors Learned by the FDAE Encoder
on Shapes3D Images.

Figure 12: Visualization of Attention Slots of Disentangled Factors Learned by the LSD Encoder on
CelebA Images (before alignment).

To address this difficulty, we instead focus on the partitions over the entire dataset. As described in
Section 3 and Section 4.4, for DRESS, supervised meta-learning baselines, as well as the CACTUS-
based baselines, the individual tasks are directly sampled from the dataset-level partitions. There-
fore, computing the diversity metric over these partitions can give us a good proxy to the evaluation
of the task diversity from each method. We now present the procedure for computing the class-
partition based task diversity.

Consider two partitions on the same dataset generated by a specific meta-learning method: P1 =

{P1
i }

Kp

i=1 and P2 = {P2
i }

Kp

i=1, where P1
i and P2

i denotes the i-th subset in P1 and P2 respectively,
and Kp is the number of subsets in each partition. Note that if one partition has fewer subsets, we
can simply regard it as having extra empty subsets, such that the total number of subsets reaches
Kp. We use these dataset partitions to replace the class partitions defined from the counterpart pair
of supervised tasks, i.e. {P1

cj} and {P2
cj} as defined in Section 3.6.

We summarize our procedure for computing the values on the purposed task diversity metric in
Algorithm 2. Note that instead of performing strict bipartite matching for subsets between P1 and
P2, we match the subsets through a greedy process: going through the subsets one-by-one in P1,
and find the best match from the remaining subsets in P2. While this greedy procedure does not
strictly guarantee the perfect matches between the two partitions, it provides a decent estimates for
our quantitative analysis at a manageable level of computational cost.
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To produce the diversity scores as reported in Table 4, within the set of partitions that each method
creates on a given dataset, we uniformly sample 30 pairs of distinct partitions. Each pair of partitions
is fed as inputs to Algorithm 2 to compute the pairwise diversity score. The average of the 30
diversity scores is then reported as the expected task diversity score from each method.

Algorithm 2 Task Diversity Metric Computation Procedure

1: Input: P1 = {P1
i }

Kp

i=1, P2 = {P2
i }

Kp

i=1
2: idx list← [1, 2, . . . ,Kp]
3: IoU list← ∅
4: for i← 1 to Kp do
5: idx matched← 0
6: highest IoU← 0
7: for j ∈ idx list do
8: IoU =

|P1
i ∩P2

j |
|P1

i ∪P2
j |

9: if IoU > highest IoU then
10: idx matched← j
11: highest IoU← IoU
12: IoU list.append(highest IoU)
13: if idx matched > 0 then
14: idx list.pop(idx matched)
15: avg IoU score← avg(IoU list)
16: diversity score← 1− avg IoU score
17: Output: diversity score
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