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Abstract

Auctions are protocols to allocate goods to buyers who have preferences over them,
and collect payments in return. Economists have invested significant effort in de-
signing auction rules that result in allocations of the goods that are desirable for the
group as a whole. However, for settings where participants’ valuations of the items
on sale are their private information, the rules of the auction must deter buyers
from misreporting their preferences, so as to maximize their own utility, since mis-
reported preferences hinder the ability for the auctioneer to allocate goods to those
who want them most. Manual auction design has yielded excellent mechanisms for
specific settings, but requires significant effort when tackling new domains. We
propose a deep learning based approach to automatically design auctions in a wide
variety of domains, shifting the design work from human to machine. We assume
that participants’ valuations for the items for sale are independently sampled from
an unknown but fixed distribution. Our system receives a data-set consisting of
such valuation samples, and outputs an auction rule encoding the desired incentive
structure. We focus on producing truthful and efficient auctions that minimize
the economic burden on participants. We evaluate the auctions designed by our
framework on well-studied domains, such as multi-unit and combinatorial auctions,
showing that they outperform known auction designs in terms of the economic
burden placed on participants.

1 Introduction

Mechanism design is a field in economics that deals with setting incentives and interaction rules
among self-interested agents so as to achieve desired objectives for the group as a whole. It is
sometimes referred to as “inverse game theory”: in game theory we set the rules of a game, and
study the behaviors that emerge, while in mechanism design we have a target behavior we wish
to encourage, and we set the rules of the game so that agents acting in their own self-interest will
gravitate towards that desired outcome. One prominent problem in mechanism design is engineering
auction rules, as auctions account for a large proportion of economic activity, such as the sponsored
search auction (the main source of revenue for search engines), e-commerce websites such as eBay,
or the fine art market [2, 11, 21].

One possible goal of an auction design is to maximize the revenue to the auctioneer [24]. In many
cases, however, we are merely interested in allocating a set of goods in order to maximize the total
welfare of participants (and thus minimize revenue to the auctioneer). One example are spectrum
auctions [8], in which governments want to allocate the rights (licenses) to transmit signals over
specific bands of the electromagnetic spectrum. The government may wish to allocate the scarce
transmission rights to the firms who value these the most, with the goal of maximizing job creation,
trade, and economic welfare. However, the true valuation a firm has for a spectrum band is only
known to the firm, rather than to the government. If the government simply declared they would give
a band to the firm who wants it most without extracting payments, then all firms who want the band



a non-zero amount would be incentivized to lie and say they value the band arbitrarily highly, and
the government could not ensure an optimal allocation. Thus, the auction design challenge for the
government becomes: which prices should it charge in order to get truthful reports regarding firms’
valuations, and optimally allocate the spectrum bands, while still minimizing the economic burden on
participants?

We propose a learning approach to auction design. The point of departure from the existing economics
literature is that we make the (often reasonable) assumption that bidders’ valuations for the goods
up for sale cannot take any value, but rather are sampled from an unknown, but fixed, probability
distribution (e.g. it is very unlikely anyone would pay $500,000 for a burrito). Under these settings
we introduce a representation of bidders’ preferences and a network architecture that can be used to
learn auction rules that a) incentivize truthful reports from the participants, b) result in the social-
welfare-maximizing allocation of the goods in question, and c¢) place minimal economic burden on
the participants (i.e. extract minimal payments). We show that the proposed approach can learn
truthful mechanisms under a wide variety of settings, including various “bidding languges” [25] (i.e.
the set or outcomes that bidders can have preferences over), arbitrary distributions of valuations, and
arbitrary numbers of participants. Moreover, the resulting payment rules generalize over varying
number of participants.

Auctions are a pillar of economics and the market protocol of choice for a significant portion of
world-wide trade. Similar to what Hartford et al. [19] have done for modeling human strategic
behavior, here we show that, under reasonable assumptions, designing auctions that shepherd the
behavior of rational participants towards desirable outcomes can be cast as a supervised function
approximation problem, thus unlocking the application of modern machine learning methods, and in
particular deep learning, to this field.

2 Background and notation

Mechanism design Mechanism design deals with choosing from a set K of possible alternatives,
where we have aset N = {1,2,...,n} of agents who each have preferences regarding the alternatives
in K, expressed in monetary terms. Auction design relates to the specific case where we have a set [
of items, and the alternative set /' consists of all the possible ways to allocate the items to the agents.
We call a subset of items B C I a bundle, and let P(I) be the power set of I (that is, the set of all
possible bundles). An allocation of the items is a function k& : N — P(I) mapping each agent i to a
bundle of items k(z) C I, such that for any ¢ # 7 we have k(i) N k(j) = @ (i.e. no item is allocated
more than once).

Each agent, with knowledge of their own true preferences, reports what is commonly referred to as
a “type”: for each allocation k£ € K the agent communicates to the mechanism a valuation for that
outcome 6;(k) € ©;. In particular, participants may choose to report truthfully and submit v; (k).
The mechanism then selects an allocation according to a choice rule ¢ : ©1 X ... x ©,, - K and
determines the agents’ payments using a payment rule ¢; : ©1 x ... X ©,, — R, where ¢; is the
payment for the i" agent. Note that “payments” can be negative, that is the auctioneer can also pay
participants. After payments are collected, each agent thus derives utility u;(k, t;) = v;(k) — t; from
the interaction?.

Allocation efficiency The main goal of the designs we consider is to choose an efficient outcome:
allocate items to those who want them the most, maximizing social welfare. We thus fix the choice
function ¢ to ¢ = argmaxyex » ., vi(k) = k*.

Strategic behavior Selecting the welfare maximizing allocation is difficult when the mechanism
does not have access to the true preferences of each agent, but only to their reported types.
This asymmetry in information leads to strategic behavior: rational participants will report what-
ever preference f; maximizes their utility under the mechanism (post payment). Let 6_; indi-
cate all reports, truthful or otherwise, from all agents but ¢; then rational agents will report:
0; = argmaxpeo, u;(c(0—;,0),t;(0_;,0)). In general §; # v;.

'One common assumption is that each agent only cares about the items allocated to them, thatis v; = v(k(i)).

2With a slight abuse of notation, we will sometimes drop v; and 6;’s explicit dependence on each allocation
k, and simply denote with v; and 6; the collections of preferences that can be held and expressed by player <.
That is, given an arbitrary ordering of the choice set K, so that K = [kl, ka,..., k‘K|], we will use v; and 0; to
refer to the vectors v; = [vi(k1),...,vi(k|x|)], and 0; = [0:(k1), ..., 0:(kK))]-



Truthful mechanisms In the presence of rational agents, and for our choice of allocation
function, it is possible to select a payment rule that makes reporting one’s true preferences
the dominant strategy. That is, for any agent ¢, and for all possible reports, or misreports,
from other players 6y,...,0;_1,0;+1,...,0,, the best course of action is to tell the truth:
arg maxgeo, u;(k*(0-;,0),t;(0_;,0)) = v; (where we bypassed the explicit dependence on the
choice function ¢, and let k£* depend on 6 directly).

We restrict our attention to mechanisms that are both efficient and truthful. The only such mechanisms
are members of the Groves family, and their payment rule can be written as [15, 14, 13]:

ti(0—i,0;) = h(0_) = > _v; (k™ (0_:,0:)), M
Jj#i

where, h : ©_;, — R may be any function that only depends on the reported types of agents other
than 4, and £* is the optimal allocation defined previously.

Individual rationality In the presence of strategic agents, we must ensure that bidders are never
worse off participating in the auctions we design than not. We should guarantee that our auc-
tions are individually rational: any agent who truthfully reports their preferences realizes a
non-negative utility. That is, regardless of reports from other agents 6_;, we wish to have
ui(vi, 0—;) = ui(K* (v;,0—4), ti(vi, 0—;)) > 0.

Weak budget balance Finally, we wish to design mechanisms that do not require a subsidy to operate.
That is, we require that the sum of payments collected by the mechanism be non-negative: » . ¢; > 0.

Vickrey-Clarke-Groves auctions One of the main results of mechanism design is an auction rule
that satisfies all the criteria we listed above for any realization of agents’ preferences: the Vickrey-
Clarke-Groves (VCG) auction. VCG is both efficient, and truthful, and as such it is a member of the
Groves family. It is characterized by the choice of function h(#_;) that completes the payment rule in
Eq. 1: hyveg = 37,405 (k*(6-;)). In words, hycg is the collective value realized by all other agents
when agent ¢ is removed from the auction. Thus, the completed VCG payment tycg for agent i (see
Eq. 1) is the reduction in the collective value realized by all other agents due to agent ¢’s participation
in the auction.® A special case of a VCG auction for a single item is the well-known second-price
auction (e.g. an eBay auction with no reserve price). VCG is the most widely accepted truthful and
efficient mechanism (e.g. it is used for Facebook ad auctions [31]). VCG does not, however, aim to
minimize the economic burden on participants, as we do here.

Bidding languages Since we focus on efficient mechanisms, we must ensure that k* can be computed
quickly, even for relatively large numbers of players (see Allocation Efficiency). We thus restrict the
way in which participants may express their preferences. Such representations are called bidding
languages [25]. We consider the following three languages.

Multi-unit auctions with decreasing marginal utilities The first bidding language we examine
considers selling multi-unit bundles to participants’ whose preferences depend only on the size of
bundles but not on their component objects. This language is useful for selling multiple identical
units of the same kind. We further impose that larger bundles cannot be valued less than smaller ones.
In these auctions k* can be calculated greedily by allocating objects one by one.

Heterogeneous objects with unit demand The second bidding language we consider is useful when
players can take advantage of at most one of items they receive. For example, vacation packages for a
specific week. The valuation for a bundle of items, in this case, is identical to the valuation of the best
object in the bundle. The allocation function k£* is found by solving the maximum-weighted bipartite
matching between bidders and items, where participants’ preferences are incorporated as weights.

Hierarchical bundles Finally, we consider a bidding language that is useful to express preferences for
a hierarchy of bundles. For example, home builders might bid to be awarded the contract to develop
two lots, with up to two new homes within each lot. The spatial nature of the work makes building
individual homes in separate lots is less cost-effective. Thus participants can express preferences for
a hierarchy of bundles: component objects are arranged as the leaves of a binary tree, and valuations
can be expressed for leaf-nodes (individual objects), or for any sub-tree. The integer program required
to find k£* can be relaxed as a feasible linear program [25].

3For this reason, [27] summarizes the effect of the VCG payment rule as to “internalize the externality.”



3 Problem statement and main contributions

Equipped with the definitions of Sec. 2, we can proceed to state our objective: To design truthful and
allocatively-efficient auctions, minimizing the sum of payments collected by the mechanism, while
keeping the auction individually-rational and weakly budget balanced.

Minimizing the sum of payments is useful in settings such as the spectrum auction, where the goal is
to allocate a scarce resource in an optimal way; the payments ¢; are by-products resulting from the
need to elicit true reports, so it is desirable to minimize them.

Additionally, we strive to have adhere to the following desiderata: we seek a payment rule that is a)
“comvolutional” over players [22] (i.e. the same function is used to compute the payment owed by each
player), b) invariant to the order of other participants for each player (i.e. the payment of player 2
does not change if players 1 and 3 swap bids), and ¢) robust to changes in the number of participants.

In pursuit of this goal, we propose three main technical contributions. a) We show how the problem of
designing truthful and efficient auctions can be cast as supervised function approximation. b)
We introduce a novel representation of efficient auctions as a collection of counterfactual smaller
auctions. c) We propose a network architecture to learn Groves payment rules based on our
representation which supports various bidding languages and an arbitrary (and even varying) number
of bidders.

4 Related Work

Mechanism design is a relatively mature field. We rely on the framework of the Vickrey-Clarke-
Groves mechanism [5] presented in the 1970s, based on earlier work on auctions that Vickrey had
conducted in the 1960s [32]. The design of auctions and mechanisms has been done predominantly
manually, where a person uses their experience or intuition to come up with interaction or payment
rules leading to their desired objective. Economists have designed incentive schemes for various goals,
such as minimizing the burden on participants while maintaining efficiency [14, 1] or maximizing
revenue [24, 4, 29]. The field of automated mechanism design, where we let a computer design
an incentive scheme to meet desired objectives, is relatively new [6, 30, 7, 18, 16]. Early work on
automated mechanism design has focused on producing incentive compatible mechanisms, where
truthfulness is a Nash equilibrium [30, 7]. In contrast, we aim to achieve truthfulness in the strong
sense of a dominant strategy, where agents opt for a truthful report no matter what other agents do.

More recently, economists have given significant attention to efficient mechanisms where truthfulness
is a dominant strategy, characterizing the family of Groves mechanisms as the only class of mecha-
nisms which are truthful, efficient, individually rational and weakly budget balanced [15, 26]. They
have also provided negative results, showing that it is impossible to guarantee full budget-balance
(i.e. Zl t; = 0), in fully truthful and efficient mechanisms [14]. Given these results, researchers
have manually constructed Redistribution Mechanisms, specific members in the Groves family that
maximize budget-balance (i.e. minimize agent payments while requiring no subsidy) in restricted
settings. We also use the general family of Groves mechanisms, or more specialized cases of Groves
redistribution mechanisms, but rather than manually building incentive schemes to achieve high
budget balance in specific settings, we take an automated mechanism design approach, using machine
learning to identify good members of the Groves family.

Closest to our work are recent approaches for automated mechanism design through machine learning,
and deep learning in particular [10, 12, 23]. These approaches search a family of payment functions
for a mechanism with desired properties by defining a loss relating to the desired properties. While our
approach is similar, we propose a more elaborate neural network architecture to capture reasonable
auction rule properties, tackle the more demanding domain of combinatorial auctions under various
bidding languages [9, 25], and crucially we are able to learn mechanisms that are truthful in the
strong sense and support arbitrary, and even variable number of bidders.

5 Methods: mechanism design as a supervised learning problem

Here we introduce the details of our main technical contributions: we show how the problem
of completing the Groves payment is equivalent to supervised function approximation. We
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Figure 1: Example of Auction representation and network architecture (best viewed in color). In this
example we represent a multi-unit auction with decreasing marginal utilities with five players, and three objects.
We construct the network input to compute the Groves payment rule or redistribution for player 1. The input
tensor is of size (n — 1) x |K| x 2| K| + 1 =4 x 3 x 7 and is constructed as shown in the figure, on the left
(darker shades of red indicate higher valuations in the first channel). This representation is processed with a
2-layer CNN that extracts a per-player distributed representation of preferences and a per-player 2-Layer MLP
(with shared weights across the players). The resulting embeddings are sum-pooled to build invariance to the
ordering of players, and robustness to the number of participants, and decoded into a single positive number.

introduce our novel representation of efficient auctions, and we propose a network architecture
to learn social-utility-maximizing, truthful auctions.

We seek to design efficient and truthful mechanisms that are, at least in expectation, as close to budget
balanced as possible. As discussed in Sec. 2, all mechanisms that are truthful and efficient belong to
the Groves family (and vice versa), so we restrict our search to this family, and effectively seek to
complete the Groves payment rule by selecting a function h : ©_; — R (see Eq. 1).

5.1 Loss function: completing the Groves payment rule

The aim is then to complete the payment rule ¢; of a Groves mechanism so that, in expectation over
valuation profiles sampled from p, we minimize the sum total of payments received by the mechanism.
However, minimizing payments without any further constraint will result in mechanisms that require
a subsidy to operate. Since this is undesirable, we incorporate a non-deficit constraint. Similarly,
ensure that strategic players are never worse off participating in our mechanism than not, by including
an individual rationality constraint for all players. The resulting “ideal” mechanism design problem
we wish to solve is thus:
n n
h* = arg min By, Z til st Z t;| >0, and, v;(k*) — t; > 0, )
=1 =1

where ¢; is like in Eq. 1. As mentioned above, we assume we do not have access to the true distribution
p, so that we cannot solve this minimization analytically. We do, however, assume we have access to
a data-set of L realized n-player profiles D = {(v},...,vL |l =1,..., L}, sampled i.i.d. from p. We
therefore use use Lagrange multipliers )y, and A, to encode the non-deficit, and individual rationality
constraints, and minimize the empirical version of our loss:

L n n 2 n
. . . * 2
h = arg min 2 ;Zl tt + A\ | min ;Zl t0 + A il ((mln {vl(k*) —t,0}) )

3)
Selecting a Groves payment rule Concretely, we introduce two alternatives to learning a Groves

payments rule A: first, we investigate constructing a neural network to implement h directly and
minimize the empirical loss in Eq. 3, given a data-set of realized valuation profiles.



Learning a VCG redistribution mechanism Our second approach amounts to learning a VCG
redistribution mechanism. In this case, we use a neural network to implement a redistribution
function r(vy,...,0i—1,Vit1,-..,0p), and let ﬁ() = hvea(r) — r(-)*. Note that in this case
individual rationality can be guaranteed by simply ensuring that r takes non-negative values, since
VCG is individually rational and giving payments back can only increase participants’ utilities.

The same representation and network architecture is used in both settings.

5.2 The hypothesis space: auction representation and network architecture

Representing auctions We select a hypothesis space H so that, in practice, we can solve the
minimization problem in Eq. 3, given access to a data-set D of valuation profiles. To this end, we
introduce a novel representation of auctions that supports learning Groves payment rules with Deep
Neural Networks. Fig. 1 shows an example of our representation and architecture for an auction with
three objects and five participants.

When computing ¢;, the payment owed by player 4, the function we wish to learn has access to
reports from “other” players, but no knowledge of player ¢’s valuation (see Eq. 1). We construct our
representation to highlight the magnitude of each individual bid, and preference profile, relative to the
rest of the “other” players’ types. The intuition behind this choice is that by comparing the available
bids to each other, a network can construct a sense of how likely it is that these will be surpassed
or matched by the unseen preference profile. This is achieved as follows: first, since we focus on
efficient mechanisms, we assume we are given access to an “allocation oracle” (a function that for
any set of valid preferences profiles, returns the welfare maximizing allocation k* € K, see Sec. 2).
Second, we choose to represent each of the v_; as outcomes of | K| counter-factual auctions, each for
the most valuable p bundles (p = 1,. .., |K]), thus providing information about the relative rank of
each bundle valuation and preference profile.

We provide evidence that an alternative representation of the same information as a flat vector results
in substantially worse auction designs.

Precisely, given a data-set of realized valuation profiles D, and an allocation oracle, for each
player i, we construct a tall “image” with “spatial dimensions” |K| x (n — 1), and 2|K| + 1

“channels”. The first “channel” is a matrix V_; € IR{lflx(n_l) with non-negative entries (m, j)
representing the utility player j would realize from receiving bundle m. Each successive channel
p is constructed by considering the outcome of a counter-factual auction where the n — 1 players
bid for the p most valuable bundles. In particular, the second channel contains the allocation matrix
k¥ € {0, 1}1K1x(=1) with entries (m, j) = 1 if bidder j is allocated bundle m, and zero otherwise.
The third channel represents the amount of utility realized by each player for this allocation (the
element-wise product between the first and second channels). Similarly, the fourth channel contains
k3 the allocation for two bundles, and the fifth channel contains the element-wise product between
channels 1 and 4, and so on until all bundles are considered. We alter this representation slightly to in
multi-unit auctions with decreasing marginal utilities. In this case the matrix V_; contains, for each
player, the marginal utility of adding one item to their bundle and has size | B| x (n — 1), with B the
set of available items.

A network architecture to learn Groves payment rules Given our auction representation, we
propose an architecture to learn a Groves payment rule that satisfies the desiderata outlined in Sec. 3
and is: a) “convolutional” over players, b) invariant to the order of other participants for each player,
and c) robust to changes in the number of participants.

For each player 4, we construct the input tensor of size | K| x (n—1) X (2| K|+ 1) described above and
pass it through a 2-layer CNN. The first layer uses 64 filters of spatial size 1 x 1 so as to construct an
embedding of each individual bid (how soon each bundle is allocated, and how much utility it realizes
can be readily extracted from a single “column” in our representation). The second CNN layer has 64
filters of size | K| x 1. The CNN’s output has size 1 x (n — 1) x 64, and contains an embedding of
each of the n — 1 players’ preferences. We follow our CNN with a 2-Layer 64 hidden and output units
MLP, which we apply independently to each of the (n — 1) player preference embeddings to produce

*This is referred to as a “redistribution” mechanism because it can be viewed as collecting the VCG payments
and then “redistributing” some of them back to participants.
Note that this is reasonable given our choice of bidding languages.



Setting considered \ Guoetal. [17] Manishaetal. [23] G-CNN (ours) R-CNN (ours)

Arbitrary distribution NO YES YES YES
No knowledge of dist. NO YES YES YES
Arbitrary # of participants NO NO YES YES
Varying # of participants NO NO YES YES
Multi-unit auctions YES NO YES YES
Unit-demand auctions NO YES YES YES
Hierarchical bundles auctions NO NO YES YES
Guarantees no-deficit YES NO NO NO
Guarantees indiv. rationality YES YES NO YES

Table 1: Qualitative results. The method we propose here can be applied in more general settings than
previously proposed alternatives. Models: G-CNN: learns a Groves payment rule directly using our data
representation and network architecture. R-CNN: learns a VCG redistribution payment rule using our data
representation and network architecture.

a new embedding for each player. We then sum-pool over the n — 1 players (which guarantees the
desired robustness properties), and apply a linear decoder (with ReL.U rectification) to output a single

value for either h directly, or for a redistribution function 0,

5.3 Experimental procedure

For each combination of number of participants, valuation distribution and bidding language we
consider, we construct an “auction simulator” that returns sample auctions (i.e. valuation profiles
for all participants, expressed in the appropriate language). We use each simulator to construct
training and testing data-sets containing 100,000 and 2,000 auctions respectively. For each auction,
we construct the representation described in Sec. 5.2, and train the auction design network above
using Adam SGD [20] with a learning rate of 10~°, mini-batches of size 256, and for 250,000
iterations. In all experiments we set A\, = A\, = 100 (see Eq. 3). After training, we use our held-out
test set to report performance. The details of our auction simulators (details on the distributions we
consider, how we construct bundles, and how we implement the allocation function for each bidding
language) can be found in the Supplementary Material. In all experiments the number of objects for
sale were as follows: with non-decreasing marginal utilities: 15 objects, with heterogeneous objects
and unit-demand: 8 objects, and with hierarchical bundles: 8 component objects (resulting in 15
bundles).

Baselines We consider four baselines when reporting our performance. 1) VCG auctions, the most
commonly used Groves mechanism: a truthful, efficient, weakly budget balanced and individually ra-
tional auction. 2) Guo and Conitzer [17] a provably optimal-in-expectation linear VCG redistribution
mechanism, which requires n < | K|, analytical knowledge of p, and only handles multi-unit auctions.
3) Manisha et al. [23] a VCG redistribution learned using a MLP architecture that requires n < | K],
does not support hierarchical bundles, and only works with unit-demand valuations. 4) MLP based
architecture lastly, we compare to a 2-layer, 128-hidden-unit MLP that operates on a flattened version
of the same data to empirically support our choice of representation and architecture.

6 Results

Qualitative comparison with alternative methods We start with a qualitative comparison with two
existing alternative methods to automatically construct VCG redistribution mechanisms (see Sec. 4),
and highlight how our method can be applied in more general settings in Tab. 1. A quantitative
comparison with these two methods (in the settings in which they can be applied) shows how our
methods also leads to better performance in practice (see the Supplementary Material). Importantly,
while our method does not guarantee we will find auctions that are weakly budget balanced and
individually rational, our quantitative result show that, in practice, we find zero, or next-to-zero
violations of these constraints (see next paragraph).

®This architecture is effectively a DeepSets network applied to a graph of n — 1 nodes, and a single global
output [33, 3]. The node functions are our CNN+MLP and the aggregator function is a sum.
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Figure 2: Quantitative results. We report performance as the average reduction in payments collected relative
to the VCG mechanism (higher is better). Displayed: average performance across 2, 000 auctions sampled from
p, mean and standard deviation across 5 training seeds. For each choice of model and bidding language we
also report the fraction of auctions that resulted in a deficit (i.e. the mechanism had to be subsidized) (lower is
better). The right panel shows interpolation to a previously unseen number of participants (note that MLP-based
models do not support this, so their performance is not reported). Models: G-CNN: learn a groves payment rule
directly using our data-representation and network architecture (ours). G-MLP: learn a groves payment rule
directly using a MLP. R-CNN: Learning a VCG redistribution mechanism using our network architecture (ours).
R-MLP: Learning a VCG redistribution mechanism using a MLP.

Quantitative results We illustrate quantitative results on synthetic auction data-sets in Fig. 2. Our
experiments show that auctions learned using our data representation and network architecture result
in a significantly smaller economic burden on the participants than using VCG, and crucially, that
we are able to learn auction rules with zero or next to zero violations of the weak budget balance
constraint (i.e. mechanisms should operate without a subsidy). We highlight this by comparing our
designs with auction rules based on MLP architectures trained on the same data.

Fig. 2 shows results for valuations distributed as p = N (N(10.0, 1.0), NV (2.0,0.5)) (where N'(u, o)
is a Gaussian distribution with the appropriate parameters, clipped at 0 from the left). We leave 2
further examples of distributions in the Supplementary Material. The left panel of Fig. 2 shows results
on the three bidding languages we consider and for a fixed number of participants. Learning a Groves
payment rule directly with our architecture and data representation (G-CNN) results in a reduction
of payments collected, relative to VCG, by at least 60%, and in zero violations of the no-deficit
constraint. Using our representation and architecture to learn a VCG redistribution mechanism (R-
CNN) results in a higher percentage of the budget returned, and in next-to-zero violations of the weak
budget balance constraint. In this case we are able to compare our architecture with MLP baselines
which result in a relatively larger number of violations (some of which incur in egregious deficits
of up of 50% of the VCG budget, see Supplementary Material). Note how across the two design
choices of learning a Groves payment rule or learning a redistribution mechanism, our CNN based
architecture consistently results in fewer constraint violations. The right panel shows the case where
the auction rule we learn is required to interpolate to a previously unseen number of participants.
Again our data representation and network architecture result in a dramatic reduction of the economic
burden placed on participants relative to VCG, and, when we learn a redistribution (R-CNN), in zero
constraint violations. MLP baselines cannot operate on a variable number of participants so we are
unable to show a comparison. In the Supplementary Material we report results from testing the same
network on a varying number of participants. Note that since we strive to minimize payments, we
find zero, or next to zero, violations of the individual rationality constraints in any of the models (i.e.
participants never pay for a bundle more than they think it’s worth).

7 Discussion of findings and conclusion

We investigated a machine-learning based approach to automated mechanism design and introduced
the first truly general-purpose data representation, network architecture, and robust problem for-
mulation to learn truthful and efficient auction rules automatically, given access only to a data-set
of valuations. We introduced a novel way to represent auctions as a collection of “counter-factual”
smaller auctions, and proposed a neural architecture that operates on this representation, to learn
truthful and efficient mechanisms with minimal economic burden on the participants. Our methods
can be applied on a wide variety of settings including arbitrary distributions, complex bidding lan-
guages and variable number of participants. Our empirical analysis shows how the resulting auctions
collect only a small fraction of the VCG budget, and almost never require a subsidy.



Mechanism design is a pillar of economics and social sciences and the domain of choice to study
how a central authority can shape the incentives of self-interested individuals in pursuit of group
metrics of success (e.g. elicit truthful reports and maximize social welfare). Nonetheless, very few
attempts to apply machine learning ideas in this domain have been made. Here we show that under
certain reasonable assumptions, the special case of auction design can be turned into a supervised
learning problem and the modern tools of statistical learning and deep networks can be brought to
bear. The recent renaissance of Artificial Intelligence points to a future where multiple artificial agents
act in a shared environment to maximize individual rewards, realizing the vision of the machina
economicus [28]. In this context, it is paramount to investigate how to automatically translate high-
level group-wide metrics of success, such as “social welfare maximization” and “truth-telling”, to
individual-level incentive structures. This work is a first step in this direction, and builds heavily
on the economics literature on the subject. Future efforts will focus on the extension of these ideas
beyond auctions to more general decision problems.
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SM-1 Example of auction

Here we provide a simple example of how the rules of an auction dictates the behavior of rational
participants. Consider an auction with two participants, Alice and Bob, who are interested in buying
a single item for sale: a burrito. Alice is hungry, so she would gladly pay up to $12. Bob just
had breakfast, and he would not pay more than $6. Consider a mechanism that receives all agents’
bids, allocates the burrito to the highest bidder, and charges the amount that was bid to the receiver
(and zero to the other bidder). Let’s assume that Bob decides to report truthfully that he values the
burrito $6. What should Alice do? If she also tells the truth, she will end up paying $12 for her
wrap, realizing a net utility of $0. However, Alice can improve her position by reporting anything
between $6.01 and $11.99. This mechanism is not a truthful one, rational bidders will lie about their
valuations, and consequently the mechanism might allocate items sub-optimally.

Let’s modify the mechanism slightly: our new mechanism allocates the burrito to the highest bidder
(like before), but it charges the receiver the amount bid by the other participant. It is easy to see
that once Bob bids truthfully, for any report by Alice between $6.01 and $12.00 she will realize the
same utility: $6. Moreover, if she decides to bid under $6, she risks losing the burrito to Bob, so she
might as well bid her true valuation $12, to have the best chance of beating Bob’s bid (remember she
does not know what Bob’s valuation actually is, nor what he might decide to report).

The second mechanism is a special case of the VCG mechanism for a single item and two bidders.

SM-2 Auction Simulators: Implementation details

We evaluate our ideas on synthetic auction data-sets where valuations are sampled from reasonable
distributions and are expressed in the appropriate bidding language. Here we give implementation
details on the “auction simulators” used, including parameters for the valuation distributions we
considered and implementation details of the allocation oracles required for the various bidding
languages.

SM-2.1 Details on the distributions

Multi-unit auction with decreasing marginal utilities We start by sampling participants’ valua-
tions: for each player 4’s valuation, and for each individual object we sample v; (k) ~ p, where k,,
is a “bundle” containing only object m'. When considering multi-unit auctions with non-decreasing
marginal utilities, we let the 10 players bid for 15 objects and sort the per-object valuations indepen-
dently by player (see Fig. 1 in the main text for an example).

"'We assume objects are ordered absolutely so that all players agree on which exactly object m is.



Heterogeneous objects with unit demand When dealing with auctions for heterogeneous objects
and unit-demand, we again sample valuations independently for bidders and for single-object bundles
from p, like before. We then let bidders have preferences over the 8 objects and use the v; (k)
directly, since preferences are only expressed for each individual object.

Hierarchical bundles When considering hierarchical bundles we let participants have preferences
over 8§ component objects objects (for a total of 15 bundles). We again started by sampling from p
valuations for each player and for the 8 component object independently, just like we did for the two
previous languages. We then construct valuations for bundles as follows: for each bundle v;(kg), we
letv;(kp) = (3_,cpvi(ki)) - 6 - (1 + €), where v;(kp) is player ’s valuation for receiving bundle
B, § € {0,1} is sampled from a Bernoulli distribution with p = 0.2 and € ~ N (0.1,0.01), is a
Gaussian distribution with the appropriate parameters, clipped at 0 from the left. Bundles are thus
worth at least the sum of their component objects, and they have a 20% chance of being worth about
10% more.

SM-2.2 Details on the allocation oracles

Multi-unit auction with decreasing marginal utilities The allocation oracle for this case is im-
plemented greedily. Agents essentially submit preferences in the form of their utility for receiving an
additional item. We can then simply loop over the items, and assign each one to the participant with
the largest outstanding unmatched utility.

Heterogeneous objects with unit demand In this case, objects are assigned so that the sum total
of utilities is maximized. This is exactly equivalent to a weighted bipartite matching on a graph with
players on the left, objects on the right, and edges connecting all agents to all objects weighted by the
utility of the assignment.

Hierarchical bundles When considering hierarchical bundles, we place component objects at the
leaves of a binary tree, and let users express their utility for obtaining either a leaf node, or any
sub-tree. In this case we implement the allocation oracle as a linear program that maximizes the
sum of realized utilities (by all players), with linear inequality constraints ensuring objects are not
over-allocated (see Nisan et al. for further details [4]).

SM-3 Additional results

The primary performance metric for our learned mechanisms is the percent reduction in payments
collected (budget) relative to the VCG mechanism. This can also be thought of as the percent of
collected VCG payments (budget) returned to bidders. A performance of 100% means that the
auction is strongly budget balanced and no net payments are collected by the auctioneer, an ideal but
impossible goal to achieve consistently [1]. A performance below 100% means that some amount of
payments are retained by the mechanism, and a performance above 100% represents a budget deficit.
Thus, a well-performing mechanism will achieve as close to 100%, without going over, across many
auctions.

In the main text (see Fig. 2), we report the average fraction of the VCG budget returned, the percent
of auctions with a budget balance violation, and the variance of these two quantities across seeds.
Here, we provide a more fine-grained picture by reporting histograms of budgets across auctions. In
addition to the two above metrics, these histograms allow us to read off the budget variance across
auctions, as well as the magnitude of budget balance violations. To wit: 1) the average percent of the
VCG budget returned to bidders is the average of the distributions plotted, 2) the percent of auctions
with a budget balance violation is the integral of the distribution above 100%, 3) the variance of the
budget across auctions is visible in the width of the distribution, and 4) the spread of the tail above
100% represents the magnitude of budget balance violations.

In Figures S1 through S5, the three panels correspond to the three bidding languages we consider.
Left: multi-unit auction with decreasing marginal utilities. Middle: Heterogeneous objects with
unit demand. Right: hierarchical bundles. The y-axis represents the fraction of auctions (out of
2,000, and for 5 seeds for each model) that resulted in the budget reported on the x-axis. The stacked
histograms represent the different models, with the model names listed on the left. In Figures S1
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Figure SM-1: p = N (N(10.0,1.0), NV (2.0,0.5)). Train: n = 10. Test: n = 10. Left: multi-unit auction
with decreasing marginal utilities. Middle: Heterogeneous objects with unit demand. Right: hierarchical
bundles.
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Figure SM-2: p = N(10.0,2.0). Train: n = 10. Test: n = 10. We speculate that the higher variance in
budgets across models is due to overfitting, which is diminished for the more varied hierarchical distribution of
bidder preferences in the previous figure. Left: multi-unit auction with decreasing marginal utilities. Middle:
Heterogeneous objects with unit demand. Right: hierarchical bundles.

through S3, the number of bidders is fixed (n = 10) and only the distribution over bidder preferences,
p, varies. Here, we consider models G-CNN and R-CNN (our network architecture and auction
representation to learn a Groves payment rule, or a VCG redistribution, respectively); and G-MLP and
R-MLP (Groves and redistribution mechanisms parameterized by a MLP, respectively). In Figures S4
and S5, the number of bidders varies, with training on n € {9, 11} and testing on n = 10 for Figure
S4, and training / testing on training on n € {9, 10, 11} for Figure S5. The MLP models cannot
handle variable numbers of bidders, so we only compare G-CNN and R-CNN. As for the distribution
over bidder preferences, p, U(a, b) represents a uniform distribution between a and b, while N (u, o)
represents a normal distribution with mean p and standard deviation o.

The general trends we see are that: 1) the redistribution methods tend to result in larger budget
reductions relative to VCG than do the Groves mechanisms. However, 2) the Groves mechanisms
tend to better avoid budget balance violations, and thus the need for subsidies. 3) The redistribution
mechanisms also tend to result in a lower variance in budget. Although it is easier to see in Fig. 2 in
the main text than the plots here, 4) the CNN models avoid budget balance violations better than
the MLP models.

SM-4 Comparison with alternative methods

SM-4.1 Comparison with Learning Optimal Redistribution Mechanisms Through Neural
Networks, Manisha et al. 2018

Here we present a quantitative comparison with the recent work by Manisha et al. [3] (which we
re-implemented). The authors also considered learning nonlinear mechanisms, restricted to the case
of heterogeneous objects with unit demand. Their architecture was essentially an MLP mapping
from bidder preferences to redistributed payments. We reproduce their model and compare to
our set of models in Figure S6. Across bidder preference distributions, Manisha et al.’s model
(purple) leads to significantly more budget balance violations. Note that unlike other figures in
the Supplementary Material, the three panels correspond to various bidding languages, but rather
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Figure SM-3: p = 1/(0.0,1.0). Train: n = 10. Test: n = 10. Left: multi-unit auction with decreasing
marginal utilities. Middle: Heterogeneous objects with unit demand. Right: hierarchical bundles.
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Figure SM-4: p = N(N(10.0,1.0),N(2.0,0.5)). Train: n € {9,11}. Test: n = 10. Left: multi-unit
auction with decreasing marginal utilities. Middle: Heterogeneous objects with unit demand. Right: hierarchical
bundles.

to choices of valuation distributions; the bidding language is fixed to the only one considered by
Manisha et al.: heterogeneous objects with unit-demand.

SM-5 Comparison with Optimal-in-expectation redistribution mechanisms Guo
and Conitzer. 2010

Here we present a quantitative comparison with the work by Guo and Conitzer [2]. The authors
present a provably optimal-in-expectation linear VCG redistribution mechanism. This method can
only be applied when the number of participants is greater than the number of objects; the authors
only report quantitative results for the a 2-unit auction with either n = 3 or n = 7 participants. Here
we report the reduction in VCG budget and fraction of auctions resulting in violations of the budget
balance constraints. These results show how the methods we propose here are competitive with
optimal linear redistribution methods in terms of budget reduction, and empirically result in virtually
no budget balance violations.
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Figure SM-5: p = N (N(10.0,1.0), N'(2.0,0.5)). Train: n € {9,10,11}. Test: n € {9, 10, 11}. The three
peaks in the distribution of budgets corresponds to the three possible numbers of bidders. Left: multi-unit
auction with decreasing marginal utilities. Middle: Heterogeneous objects with unit demand. Right: hierarchical
bundles.
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Figure SM-6: Left: p = N(N(10.0,1.0),N(2.0,0.5)). Middle: p = AN(10.0,2.0), Right: p =
4(0.0,1.0). n = 10. Bidding language: Heterogeneous objects with unit-demand.

\ R-CNN (ours) \ G-CNN (ours) \ Guo et al. [2]
| budgetred. w/deficit | budgetred. w/deficit | budget red. ~ w/deficit

80+1% 0£0% 87+1% 0+£1% | 76+0% 0+ 0%
84+6% 0+£0% 95+0% 0+1% | 94+ 0% 0+ 0%

Table 1: Quantitative comparison with Guo and Conitzer [2]. Our G-CNN method achieves competi-
tive budget reductions, with no budget balance violations. Our R-CNN (non-linear) redistribution
mechanism outperforms the budget reduction of the optimal linear case, at a cost of very few bud-
get balance violation. Reported: average budget reduction and fraction of auctions resulting in a
budget balance violation across 2, 000 auctions. Shown are mean and standard deviation across five
model initialization seeds. Bidding language: Multi-unit auction with decreasing marginal utilities.
p =1U(0.0,1.0).
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