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Figure 1. An overview of AETHER, trained entirely on synthetic data. The figure highlights its three key capabilities: 4D reconstruction,
action-conditioned 4D prediction, and visual planning, all demonstrated on unseen real-world data. The 4D reconstruction examples are
derived from MovieGen [48] and Veo 2 [62] generated videos, while the action-conditioned prediction uses an observation image from
a university classroom. The visual planning example utilizes observation and goal images from an office building. Better viewed when
zoomed in. Additional visualizations can be found on our website.
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Abstract

The integration of geometric reconstruction and genera-001
tive modeling remains a critical challenge in developing002
AI systems capable of human-like spatial reasoning. This003
paper proposes AETHER, a unified framework that enables004
geometry-aware reasoning in world models by jointly op-005
timizing three core capabilities: (1) 4D dynamic recon-006
struction, (2) action-conditioned video prediction, and (3)007
goal-conditioned visual planning. Through task-interleaved008
feature learning, AETHER achieves synergistic knowledge009
sharing across reconstruction, prediction, and planning ob-010
jectives. Building upon video generation models, our frame-011
work demonstrates zero-shot synthetic-to-real generaliza-012
tion despite never observing real-world data during train-013
ing. Furthermore, our approach achieves zero-shot gener-014
alization in both action following and reconstruction tasks,015
thanks to its intrinsic geometric modeling. Notably, even016
without real-world data, its reconstruction performance is017
comparable with or even better than that of domain-specific018
models. Additionally, AETHER employs camera trajecto-019
ries as geometry-informed action spaces, enabling effective020
action-conditioned prediction and visual planning. We hope021
our work inspires the community to explore new frontiers in022
physically-reasonable world modeling and its applications.023

1. Introduction024

“Prediction is not just one of the things your brain does. It is025
the primary function of the neocortex.”026

— Jeff Hawkins, On Intelligence (2004)027

The development of visual intelligence systems capa-028
ble of comprehending and forecasting the physical world029
remains a cornerstone of AI research. World models030
have emerged as a foundational paradigm for building au-031
tonomous systems that not only perceive but also anticipate032
environmental dynamics to make reasonable actions. At033
their core, three capabilities stand out: First, perception034
equips the system with the ability to capture the intricate035
four-dimensional (4D) changes—integrating spatial and tem-036
poral information—that are essential for understanding the037
physical world [37, 63, 65, 66, 82, 86]. This continuous038
sensing of dynamic cues enables a geometric representation039
of the environment. Second, prediction leverages this percep-040
tual information to forecast how the environment will evolve041
under specific actions, thereby providing a foresight into fu-042
ture states [3, 24, 28, 32, 35, 60, 77]. Finally, planning uses043
these predictive insights to determine the optimal sequence044
of actions required to achieve a given goal. Together, these045
three aspects empower world models to not only represent046
the current state of the environment but also to anticipate047
and navigate its future dynamics effectively.048

Motivated by these principles, we introduce AETHER, a 049
unified framework that, for the first time, bridges reconstruc- 050
tion, prediction, and planning, as shown in Fig. 1. AETHER 051
leverages pre-trained video generation models [28, 77] and 052
is further refined via post-training with synthetic 4D data. 053
Although multiple action modalities exist, ranging from key- 054
board inputs [2, 11, 15, 46, 79] to human or robotic mo- 055
tions [16, 84, 89, 90] and point flows [22, 69], we choose 056
camera pose trajectories as our global action representation. 057
This choice is particularly effective for ego-view tasks: in 058
navigation, camera trajectories directly correspond to the 059
navigation paths, while in robotic manipulation, the move- 060
ment of an in-hand camera captures the 6D motion of the 061
end effector. To address the scarcity of 4D data, we utilize 062
RGB-D synthetic video data and propose a robust camera 063
pose annotation pipeline to reconstruct full 4D dynamics. 064

Through a simple training strategy that randomly com- 065
bines input and output modalities, our method transforms 066
the base video generation model into a unified, multi-task 067
world model with three key capabilities: (1) Depth and cam- 068
era pose estimation from full video sequences; (2) Video 069
prediction conditioned on an initial observation—with the 070
option to incorporate a camera trajectory action; and (3) 071
Goal-conditioned visual planning based on observation–goal 072
image pairs. We transform depth videos into scale-invariant 073
normalized disparity representations to meet the tokeniza- 074
tion requirements of video VAEs. Simultaneously, we en- 075
code camera trajectories as scale-invariant raymap sequence 076
representations, structured to align with the spatiotemporal 077
framework of diffusion transformers (DiTs). By dynami- 078
cally integrating cross-task and cross-modal conditioning 079
signals during training, our framework enables synergistic 080
knowledge transfer across heterogeneous inputs, facilitating 081
joint optimization for multi-task generative modeling. 082

In summary, this work introduces AETHER, a unified 083
world model that integrates reconstruction, prediction, and 084
planning through multi-task learning on synthetic 4D data. 085
We propose a robust automatic data annotation pipeline to 086
obtain accurate 4D geometry knowledge. By combining 087
geometric reasoning with generative priors, our framework 088
achieves robust zero-shot transfer to real-world tasks, demon- 089
strating accuracy comparable to SOTA reconstruction mod- 090
els while enabling actionable planning capabilities. The 091
results underscore the value of synergistic 4D modeling for 092
advancing spatial intelligence in AI systems. We hope that 093
AETHER will serve as an effective starter framework for 094
the community to explore post-training world models with 095
scalable synthetic data. 096

2. 4D Synthetic Data Annotation Pipeline 097

For the synthetic data source, we follow DA-V [74] and The- 098
Matrix [17] to collect large-scale synthetic data with high- 099
quality video depth data. With high-resolution RGB videos 100
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Figure 2. Some visualization results of data annotated through our pipeline. Better viewed when zoomed in.
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Figure 3. Our robust automatic camera annotation pipeline.
and corresponding per-frame depth maps collected, we built101
a robust and fully automatic camera annotation pipeline102
for both camera extrinsics and intrinsics. As illustrated in103
Fig. 3, the pipeline has four stages: (1) object-level dynamic104
masking, (2) reconstruction-friendly video slicing, (3) coarse105
camera localization and calibration, and (4) tracking-based106
camera refinement with bundle adjustment. We present sev-107
eral visualizations of our annotated data in Fig. 2, ranging108
from indoor to outdoor scenes, and from static to dynamic109
scenarios, demonstrating the robustness and accuracy of our110
annotation method.111

Dynamic Masking. Distinguishing between dynamic and112
static regions is crucial for accurate camera parameters es-113
timation. Here, we utilize semantic categories that are po-114
tentially dynamic (e.g., cars, people) to segment dynamic115
objects. Although this may occasionally misclassify static116
objects, such as stationary parked cars, as dynamic, we find it117
more robust than flow-based segmentation methods. Specifi-118
cally, we use Grounded SAM 2 [50] to ensure the temporal119
consistency of dynamic masks over long sequences.120

Video Slicing. Video slicing plays a critical role in 3D recon-121
struction by serving two key purposes: First, it eliminates122
unsuitable video segments (such as scene cuts or motion-123
blurred frames) that could compromise reconstruction qual-124
ity. Second, it segments long videos into shorter, temporally125
coherent clips to enhance processing efficiency. The specific126
criteria for frame removal are as follows: (1) Insufficient127
Feature Points: We employ the SIFT [39] feature descriptor128
to extract keypoints from each frame. Frames exhibiting129

insufficient SIFT keypoints are discarded to ensure robust 130
correspondence estimation. Additionally, frames containing 131
regions with insufficient texture due to low illumination are 132
excluded, as such areas typically exhibit poor feature dis- 133
criminability and pose challenges for reliable matching. (2) 134
Large Areas of Dynamic Regions: Frames where dynamic 135
regions (obtained from dynamic annotation) dominate over 136
static regions can introduce ambiguity in camera pose esti- 137
mation. Such frames are filtered out to ensure robust results. 138
(3) Large Motion or Inaccurate Correspondence: Using an 139
off-the-shelf optical flow estimator, RAFT [61], we estimate 140
the magnitude of motion. If these magnitudes exceed a pre- 141
defined threshold, we truncate the sequence at the current 142
frame, retaining all preceding frames as a valid segment. 143
Similarly, if the ratio of forward-to-backward optical flow 144
errors surpasses a threshold value, we truncate the current 145
frames to ensure temporal coherence. 146

Coarse Camera Estimation. For each video slice, we first 147
use DroidCalib [25] to perform a coarse estimation of the 148
camera parameters, leveraging the depth information from 149
static regions. However, due to the lower input resolution 150
of the DroidCalib model and the limited accuracy of its 151
correspondence estimation, a refinement process is necessary 152
to obtain precise camera parameters. 153

Camera Refinement. We begin camera refinement by em- 154
ploying the state-of-the-art tracker, CoTracker3 [33], to 155
capture accurate long-term correspondences across the en- 156
tire slice. SIFT [39] and SuperPoint [12] feature points 157
are extracted from static regions, and then tracked to form 158
correspondences. Subsequently, bundle adjustment is per- 159
formed on all frames to minimize the accumulated reprojec- 160
tion error of all correspondences. With access to high-quality 161
dense depth, we apply forward-backward reprojection to es- 162
timate and minimize errors in 3D space [8], which improves 163
per-frame camera accuracy while preserving inter-frame ge- 164
ometric consistency. Specifically, we solve the nonlinear 165
optimization problem by Ceres Solver [1], and the Cauchy 166
loss function is applied to measure correspondence residuals, 167
which accounts for the problem’s sparsity. 168
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Figure 4. The overall pipeline of AETHER. With different condition combinations, AETHER can serve different tasks.

3. AETHER Multi-Task World Model169

In this section, we introduce how we post-train a base170
video diffusion model into a unified multi-task world model171
AETHER. We use CogVideoX-5b-I2V [77] as our base172
model. We first give an overview of our framework in173
Sec. 3.1, then we detail on the input process of depth videos174
and camera pose trajectories in Sec. 3.2 and Sec. 3.3. Finally,175
we show how we do model training in Sec. 3.4.176

3.1. Method Overview177

Mainstream video diffusion models [27, 40] typically in-178
volve two processes: a forward (noising) process and a re-179
verse (denoising) process. The forward process incremen-180
tally adds Gaussian noise, denoted as ϵ ∼ N (0, I), to a clean181
latent sample z0 ∈ Rk×c×h×w, where k, c, h, w represent182
the dimensions of the video latents. Through this process,183
the clean z0 is gradually transformed into a noisy latent zt.184
In the reverse process, a learned denoising model ϵθ progres-185
sively removes the noise from zt to reconstruct the original186
latent representation. The denoising model ϵθ is conditioned187
on auxiliary inputs c and the diffusion timestep t.188

In our method, the target latent z0 comprises three modal-189
ities: color video latents zc0, depth video latents zd0, and190
action latents za0. The model additionally takes two types191
of conditions as input: color video conditions cc and action192
conditions ca. For the action modality, we choose camera193
pose trajectory as a global action, facilitated by our auto-194
mated camera pose annotation pipeline described earlier. All195
latents and conditions are channel-wise concatenated. The196
training objective of AETHER can be expressed as:197

Lθ = E ϵ∼N (0,I)
t∼U(1,T )

z0=zc0⊗zd0⊗za0
c=cc⊗ca

∥ϵ− ϵθ(zt, t, c)∥2, (1)198

where ⊗ denotes the channel-wise concatenation operation,199
U(·) represents a uniform distribution, and T denotes the200
denoising steps.201

The multi-task objective of AETHER is determined by the 202
specific conditions c for different tasks. (1) Reconstruction: 203
cc represents the input video latents. (2) Video prediction: 204
cc takes the latent of observation image as the first frame, 205
while other latents are zero-masked. (3) Goal-conditioned 206
visual planning: The first and last latents of cc correspond 207
to the observation and goal images, respectively, with all 208
intermediate latents zero-padded. For the action condition 209
ca, it is either entirely zero-masked or contains the full target 210
camera pose trajectory in action-free or action-conditioned 211
control cases. Illustrations are show in Fig. 4. 212

3.2. Depth Videos Process 213

Given a depth video xd, we first clip the depth values to 214
a predefined range [dmin, dmax]. Next, we apply a square 215
root transformation and subsequently compute the recipro- 216
cal to convert the depth values into disparity, as described 217
in [57]. Each disparity video clip is then normalized in a 218
scale-invariant manner. Subsequently, the normalized dis- 219
parity values are linearly mapped from [0, 1] to [−1, 1]. To 220
meet the input requirements of the VAE, the single-channel 221
disparity map is replicated across three channels, as done in 222
prior works [34, 74]. The final depth latent is computed as: 223

xdisp =
1√

clip(xd, dmin, dmax)
, (2) 224

x̂disp =
xdisp

max (xdisp)
× 2− 1, (3) 225

zd = E(x̂disp ⊗ 13), (4) 226

where E denotes the 3D VAE, and ⊗13 represents the 227
channel-wise replication of 3 times. The above operations 228
are designed to be compatible with the pretrained 3D VAE 229
model, ensuring minimal reconstruction error. 230

3.3. Camera Trajectories Process 231

We transform camera parameters into raymap videos [7] so 232
that video diffusion can process them compatibly. Specifi- 233
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cally, given the intrinsic matrix K ∈ RT×3×3 and the extrin-234
sic matrix E ∈ RT×4×4, the transformation process can be235
described as follows.236
Translation Scaling and Normalization. The translation237
component of the camera pose (inverse of extrinsic matrix),238
t ∈ R3, is first scaled by a constant factor sray and normal-239
ized using the maximum disparity value dmax. To suppress240
large values, we then pass it through a signed log(1 + ·)241
transformation:242

t′ =
t

max (xdisp)
· sray, (5)243

tlog = sign(t′) · log(1 + |t′|), (6)244

where sray is a predefined scaling factor.245
Raymap Construction. Using the intrinsic matrix K, we246
compute the camera ray directions rd in homogeneous coor-247
dinates for each pixel. Note that we do not unit normalize248
it but let it have a unit value along z axis. The ray origins249
ro are set to the translation tlog, replicated across the spatial250
dimensions. The raymap in the world coordinate system is251
obtained by transforming the ray directions rd using the ex-252
trinsic matrix E. The final raymap r consists of 6 channels:253
3 for the ray directions rd and 3 for the ray origins ro.254
Resolution Downsampling. To align the raymap with the255
latent feature dimensions from the VAE, we perform adjust-256
ments both spatially and temporally. Spatially, the raymap257
is downsampled by a factor of 8 using bilinear interpolation.258
Temporally, every consecutive group of 4 frames is concate-259
nated along the channel dimension. The resulting rearranged260
tensor is denoted as za261
Converting raymap back to camera matrix. Given gen-262
erated raymap sequences rearranged by the time axis r̂ ∈263
RT×6×h×w = [r̂d, r̂o], we first recover the ray origins by:264

r̂o
′ =

1

sray
· sign(r̂o) · (exp(|r̂o|)− 1), (7)265

Then, we can recover both the intrinsics and extrinsics266
through Alg. 1 in the supplementary material.267

3.4. Model Training268

We initialize AETHER with pre-trained CogVideo-5b-269
I2V [77] weights, excluding the additional input and output270
projection layer channels for depth and raymap action tra-271
jectories, which are initialized to zero. Since text prompt272
conditions are not used, an empty text embedding is provided273
during both training and inference.274

As the dataset we use contains video clips with variable275
lengths and frames per second (FPS), we randomly select276
T ∈ {17, 25, 33, 41} frames, and the FPS is randomly sam-277
pled from {8, 10, 12, 15, 24}. The RoPE [59] coefficients278
are linearly interpolated to align with them.279

During training, conditional inputs are randomly masked280
to generalize across tasks. For cc, masking probabilities are:281

30% for both observation and goal images (visual planning 282
tasks), 40% for observation images only (video prediction), 283
28% for full-color video latents (4D reconstruction), and 2% 284
for masking all of cc. For ca, trajectory latents are either kept 285
or fully masked with equal probability (supporting action- 286
free or action-conditioned tasks with raymap conditions). 287
This strategy enables the model to adapt to diverse tasks and 288
input condition settings. 289

Our training process consists of two stages. In the first 290
stage, we adopt the loss function of a standard latent diffu- 291
sion model, which minimizes the mean squared error (MSE) 292
in the latent space. In the second stage, we refine the gener- 293
ated outputs by decoding them into the image space. Specifi- 294
cally, we introduce three additional loss terms: a Multi-Scale 295
Structure Similarity (MS-SSIM) loss [67] for color video, a 296
scale- and shift-invariant loss [49] for depth videos, and a 297
scale- and shift-invariant pointmap loss [66] for pointmaps 298
projected from the generated depths and raymaps. Further 299
details on the stage 2 loss functions are provided in the sup- 300
plementary material. Notably, the second stage takes about 301
1
4 of the training steps used in the first stage. 302

We employ a hybrid training strategy combining Fully 303
Sharded Data Parallel (FSDP) [87] with Zero-2 optimization 304
within compute nodes and Distributed Data Parallel (DDP) 305
across nodes. Since depth videos require online normaliza- 306
tion, the VAE encoder is also run online during training and 307
operates under DDP. Our implementation processes a local 308
batch size of 4 per GPU, resulting in an effective batch size 309
of 320 samples across 80 A100-80GB GPUs. Training is 310
conducted over two weeks using the AdamW [38] optimizer 311
with a OneCycle [56] learning rate scheduler. 312

4. Reconstruction Experiments 313

In this section, we demonstrate that AETHER can achieve 314
zero-shot reconstruction metrics comparable to or even better 315
than SOTA reconstruction methods. We mainly consider two 316
zero-shot reconstruction tasks: video depth estimation and 317
camera pose estimation. Note that we only denoise for 4 318
steps for reconstruction tasks. 319

4.1. Zero-Shot Video Depth Estimation 320

Implementation Details. Video depth estimation is eval- 321
uated based on two key aspects: per-frame depth quality 322
and inter-frame depth consistency. These evaluations are 323
performed by aligning the predicted depth maps with the 324
ground truth using a per-sequence scale. We use absolute rel- 325
ative error (Abs Rel) and δ < 1.25 (percentage of predicted 326
depths within a 1.25-factor of true depth) as metrics. For im- 327
plementation, we adopt the settings outlined in CUT3R [65]. 328
Our baselines include both reconstruction-based meth- 329
ods—such as DUSt3R [66], MASt3R [37], MonST3R [82], 330
Spann3R [63], and CUT3R [65]—and diffusion-based depth 331
estimators, including ChronoDepth [55], DepthCrafter [29], 332
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Table 1. Video depth Evaluation. Methods requiring global alignment are marked “GA”.

Method Sintel [6] BONN [44] KITTI [21]

Abs Rel ↓ δ < 1.25 ↑ Abs Rel ↓ δ < 1.25 ↑ Abs Rel ↓ δ < 1.25 ↑

Reconstruction Methods. Alignment: per-sequence scale
DUSt3R-GA [66] 0.656 45.2 0.155 83.3 0.144 81.3
MASt3R-GA [37] 0.641 43.9 0.252 70.1 0.183 74.5
MonST3R-GA [82] 0.378 55.8 0.067 96.3 0.168 74.4
Spann3R [63] 0.622 42.6 0.144 81.3 0.198 73.7
CUT3R [65] 0.421 47.9 0.078 93.7 0.118 88.1
AETHER (Ours) 0.324 50.2 0.273 59.4 0.056 97.8

Diffusion-Based Methods. Alignment: per-sequence scale&shift
ChronoDepth [55] 0.429 38.3 0.318 51.8 0.252 54.3
DepthCrafter [29] 0.590 55.5 0.253 56.3 0.124 86.5
DA-V [74] 1.252 43.7 0.457 31.1 0.094 93.0
AETHER (Ours) 0.314 60.4 0.308 60.2 0.054 97.7

Table 2. Evaluation on Camera Pose Estimation.

Method Sintel [6] TUM-dynamics [58] ScanNet [10]

ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓

Optimization-based Methods
Particle-SfM [86] 0.129 0.031 0.535 - - - 0.136 0.023 0.836
Robust-CVD [36] 0.360 0.154 3.443 0.153 0.026 3.528 0.227 0.064 7.374
CasualSAM [85] 0.141 0.035 0.615 0.071 0.010 1.712 0.158 0.034 1.618
DUSt3R-GA [66] 0.417 0.250 5.796 0.083 0.017 3.567 0.081 0.028 0.784
MASt3R-GA [37] 0.185 0.060 1.496 0.038 0.012 0.448 0.078 0.020 0.475
MonST3R-GA [82] 0.111 0.044 0.896 0.098 0.019 0.935 0.077 0.018 0.529

Feed-forward Methods
DUSt3R [66] 0.290 0.132 7.869 0.140 0.106 3.286 0.246 0.108 8.210
Spann3R [63] 0.329 0.110 4.471 0.056 0.021 0.591 0.096 0.023 0.661
CUT3R [65] 0.213 0.066 0.621 0.046 0.015 0.473 0.099 0.022 0.600
AETHER (Ours) 0.189 0.054 0.694 0.092 0.012 1.106 0.176 0.028 1.204

and DepthAnyVideo (DA-V) [74]. It is important to note333
that when comparing with diffusion-based depth estimators,334
we apply scale and shift alignment to the ground truth, as335
most of these methods are not inherently scale-invariant. All336
videos are resized with original aspect ratios kept to make the337
short side align with our model’s input size. For videos that338
exceed the maximum forward processing spatial or temporal339
size of our model, we employ a sliding window strategy with340
a stride size of 8. In regions of overlap between windows,341
we first estimate a relative scale by calculating the average342
of element-wise division. This relative scale is then used343
to adjust the latter window’s depth predictions. Finally, a344
linspace-weighted average is applied to the overlapping ar-345
eas, following approaches similar to prior methods [29, 80].346

Results and Analysis. Table 1 summarizes the video347
depth estimation results across Sintel [6], BONN [44],348
and KITTI [21] datasets. For reconstruction-based meth-349
ods, AETHER outperforms or is comparable with prior ap-350
proaches. On Sintel, AETHER achieves the lowest Abs Rel351
(0.324), surpassing MonST3R-GA (0.378), and competitive352
δ < 1.25 (50.2). On KITTI, AETHER sets a new benchmark353
with Abs Rel of 0.056 and δ < 1.25 of 97.8, outperform-354
ing the previous SOTA CUT3R (Abs Rel: 0.118, δ < 1.25:355
88.1). Among diffusion-based methods, AETHER shows356
consistent superiority. It achieves the best performance on357

Sintel (Abs Rel: 0.314, δ < 1.25: 60.4) and KITTI (Abs 358
Rel: 0.054, δ < 1.25: 97.7), significantly outperforming 359
ChronoDepth [55], DepthCrafter [29], and DA-V [74]. On 360
BONN, AETHER achieves the highest δ < 1.25 (60.2) with 361
competitive Abs Rel (0.308). 362

4.2. Zero-Shot Camera Pose Estimation 363

Implementation Details. Following MonST3R [82] and 364
CUT3R [65], we evaluate camera pose estimation accuracy 365
on the Sintel [6], TUM Dynamics [58], and ScanNet [10] 366
datasets. Notably, both Sintel and TUM Dynamics contain 367
highly dynamic objects, presenting significant challenges 368
for traditional Structure-from-Motion (SfM) and Simultane- 369
ous Localization and Mapping (SLAM) systems. We report 370
Absolute Translation Error (ATE), Relative Translation Er- 371
ror (RPE Trans), and Relative Rotation Error (RPE Rot) 372
after Sim(3) alignment with the ground truth, following the 373
methodology in [65]. The implementation settings are con- 374
sistent with those used in CUT3R [65]. All videos are resized 375
with original aspect ratios kept and then center cropped to 376
align with our model’s input size. For long videos exceeding 377
our model’s maximum temporal forward processing length, 378
a sliding window strategy with a stride size of 32 is em- 379
ployed. In overlapping regions between windows, camera 380
poses are aligned following prior methods [64]. Transla- 381
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tion alignment is performed using linear interpolation, while382
quaternion rotations are interpolated with spherical linear383
interpolation. Additionally, we observed that the generated384
camera trajectories exhibit noise, likely due to the limited385
number of denoising steps. To mitigate this, we apply a386
simple Kalman filter [71] to smooth the trajectories.387
Results and Analysis. Table 2 shows the evaluation re-388
sults. Among feed-forward methods, AETHER achieves389
the best ATE (0.189) and RPE Trans (0.054) on Sintel [6],390
while remaining competitive in RPE Rot (0.694) compared391
to CUT3R (0.621). On TUM Dynamics [58], AETHER392
achieves the best RPE Trans (0.012). For other metrics,393
AETHER is also comparable with other specialist models.394

5. Generation and Planning Experiments395

In this section, we first show video prediction, with or with-396
out action conditioning, quantitatively or qualitatively, in397
Sec. 5.1. We then show visual planning abilities in Sec. 5.2.398
More visualizations are in the supplementary material.399

5.1. Video Prediction400

Implementation Details. We use CogVideoX-5b-I2V [77]401
as our baseline. To ensure a fair comparison, we construct402
a validation dataset comprising two subsets: in-domain and403
out-domain data. The in-domain subset includes novel, un-404
seen scenes from the same synthetic environments as the405
training dataset, while the out-domain subset consists of data406
from entirely new synthetic environments. Both models are407
provided with the first frame as the observation image. For408
action-free prediction, since CogVideoX depends heavily409
on text prompts, we use GPT-4o [31] to generate image de-410
scriptions and predictions of future scenes as prompts for411
CogVideoX. In contrast, AETHER is evaluated using empty412
text prompts. For action-conditioned prediction, we also413
labeled camera trajectories in the validation dataset and gen-414
erated corresponding raymap sequences as action conditions415
for AETHER. For the baseline, in addition to the prompts416
used for action-free prediction, we use GPT-4o [31] to gen-417
erate detailed descriptions of object and camera movements,418
enabling the baseline to use language as action conditions.419
We use the default classifier-free guidance value of 6 on text420
prompts for CogVideoX and a value of 3 on the observation421
image for AETHER. No classifier-free guidance is applied422
to action conditions to ensure fairness. Evaluation metrics423
follow VBench [30], a standard benchmark for video gen-424
eration, with additional details on prompts and evaluation425
metrics provided in the supplementary material.426
Image-to-Video Prediction. We first evaluate image-to-427
video prediction without action conditions. The results, pre-428
sented in Tab. 3, show that AETHER consistently outperforms429
the baseline on both in-domain and out-domain validation430
sets. Notably, AETHER demonstrates a larger performance431
improvement on out-domain data, which can likely be at-432

tributed to the baseline model’s pre-training data containing 433
domains similar to the in-domain dataset. 434
Action-Conditioned Video Prediction. To assess the effec- 435
tiveness of our post-training in improving action control and 436
action-following capabilities, we conduct action-conditioned 437
video prediction experiments. The results, shown in Tab. 4, 438
indicate that AETHER consistently outperforms the base- 439
line in both in-domain and out-domain settings. Notably, 440
CogVideoX tends to generate static scenes with high visual 441
and aesthetic quality, while AETHER accurately follows the 442
action conditions, producing highly dynamic scenes. These 443
results validate the effectiveness of our framework and the 444
advantages of using camera trajectories as action conditions. 445

5.2. Visual Planning 446

Implementation Details. We evaluate the action- 447
conditioned navigation capability of AETHER on our valida- 448
tion set. To demonstrate the effectiveness of our multi-task 449
objective, particularly the incorporation of the reconstruc- 450
tion objective, we also post-train an ablation model without 451
the video depth objective, denoted as AETHER-no-depth. 452
Given the observation image, goal image, and camera tra- 453
jectory, the resulting video should be highly determined. 454
Thus, we report pixel-wise reconstruction metrics, includ- 455
ing PSNR, SSIM [68], MS-SSIM [67], and LPIPS [83], 456
for action-conditioned navigation. For the action-free case, 457
which represents a visual path navigation task, we also re- 458
port the VBench metrics. We do not use any classifier-free 459
guidance on both tasks. 460
Action-Conditioned Navigation. The quantitative re- 461
sults for action-conditioned navigation are presented in 462
Tab. 5. AETHER consistently outperforms the ablation model, 463
demonstrating the significant benefits of incorporating the 464
reconstruction objective into generative models. 465
Visual Path Planning. In the absence of action conditions, 466
this task evaluates the model’s ability to function as a “world 467
model as an agent,” requiring it to plan a path from the ob- 468
servation image to the goal image. The results, shown in 469
Tab. 6, indicate that the reconstruction objective substantially 470
improves the model’s visual path planning capability. Addi- 471
tionally, qualitative visualizations on completely in-the-wild 472
data are provided in supplementary material. 473

6. Related Work 474

World Models. World models have emerged as a critical 475
framework in artificial intelligence, enabling agents to simu- 476
late, understand, and predict environmental dynamics. Early 477
work [23] introduced latent representations and recurrent 478
neural networks for decision-making. Recent advancements 479
include Cat3D [20] for 3D scene generation, Cat4D [72] for 480
dynamic 4D environments, and Genie 2 [46], a large-scale 481
model for interactive 3D worlds. Motion Prompting [22] 482
further enables precise video generation control. These ad- 483
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Table 3. VBench [30] Metrics of Video Prediction without Action Conditions. Comparison between CogVideoX and AETHER (Ours) on
in-domain/out-domain/overall performance on the validation set. For each group, the better performance is highlighted in bold.

subject consistency b.g. consistency motion smoothness dynamic degree aesthetic quality imaging quality weighted average

CogVideoX 89.36/84.61/87.77 92.72/91.43/92.29 98.24/96.93/97.81 88.75/95.00/90.83 54.49/53.58/54.18 55.38/52.29/54.35 79.01/77.52/78.51
AETHER 91.50/87.55/90.18 94.29/93.62/94.07 98.54/98.19/98.42 96.25/100.00/97.50 54.36/52.58/53.77 55.08/54.88/55.01 80.34/79.42/80.04

Table 4. VBench [30] Metrics of Action-Conditioned Video Prediction. Comparison between CogVideoX and AETHER (Ours) on
in-domain/out-domain/overall performance on the validation set. For each metric group, the better performance is highlighted in bold.

subject consistency b.g. consistency motion smoothness dynamic degree aesthetic quality imaging quality weighted average

CogVideoX 91.56/88.23/90.51 92.98/92.29/92.77 98.44/97.81/98.24 83.87/93.02/86.76 56.19/57.43/56.58 56.48/61.60/58.10 79.56/80.70/79.92
AETHER 90.73/93.27/91.54 93.61/95.03/94.06 98.53/98.62/98.56 100.00/83.72/94.85 55.04/56.50/55.50 53.89/63.23/56.84 80.33/81.55/80.71

Table 5. Pixel-wise Metrics of Action-Conditioned Navigation. Comparison of performance between AETHER-no-depth and AETHER on
in-domain/out-domain/overall performance. For each metric group, the better performance is highlighted in bold.

PSNR ↑ SSIM ↑ MS-SSIM ↑ LPIPS ↓

AETHER-no-depth 19.13/18.67/18.97 0.5630/0.4830/0.5353 0.5467/0.5204/0.5376 0.3116/0.2995/0.3074
AETHER 19.87/19.37/19.70 0.5803/0.5058/0.5545 0.5830/0.5627/0.5760 0.2691/0.2599/0.2659

Table 6. Quantitative Results of Action-Free Visual Path Planning. Comparison of performance between Aether and Aether-no-depth on
in-domain/out-domain/overall performance. For each metric group, the better performance is highlighted in bold.

subject consistency b.g. consistency motion smoothness dynamic degree aesthetic quality imaging quality weighted average

Aether-no-depth 88.68/89.61/88.61 93.62/93.92/93.66 98.37/98.31/98.32 97.06/91.67/96.15 54.12/56.26/54.78 51.77/58.46/54.29 79.11/80.43/79.59
Aether (Ours) 89.69/91.61/90.36 93.88/94.58/94.13 98.50/98.40/98.46 97.06/91.67/95.19 55.83/56.87/56.19 54.71/61.13/56.93 80.21/81.53/80.67

vancements demonstrate the evolution of world models to-484
ward dynamic, interactive, and controllable applications in485
robotics, gaming, and simulation.486
Reconstruction. Reconstruction has been a long-standing487
topic in computer vision, with notable progress in both tra-488
ditional and learning-based methods. Classical approaches,489
such as Structure-from-Motion (SfM) [9, 26, 45, 53] and490
Multi-View Stereo (MVS) [19, 54], rely on multi-view ge-491
ometry for feature matching, pose estimation, and dense492
point cloud generation, demonstrating robust performance493
in controlled settings. Deep learning has introduced pow-494
erful alternatives, tackling sub-tasks like feature matching495
[14, 52], point tracking [13, 64], triangulation [42], and496
MVS [78, 81]. End-to-end methods now directly predict497
point maps [37, 66] or depth maps from images [4, 76],498
often incorporating camera parameters [70]. Recently,499
diffusion models have achieved breakthroughs in image500
and video generation [27, 35, 43, 73, 77], inspiring novel501
3D reconstruction approaches that leverage rich 2D priors502
[18, 29, 34, 41, 74, 75, 88, 90]. These methods demonstrate503
the potential of integrating diffusion-based 2D knowledge504
into 3D modeling.505
Video Generation. Video generation has evolved from foun-506
dational techniques like DDPM [27, 43] to modern frame-507
works leveraging diffusion-based techniques. Advances such508
as latent diffusion [51] and diffusion transformers [47] have509
improved generation quality, while models like Sora [5] and510
Stable Video Diffusion (SVD) [3] emphasize temporal con-511
sistency. Open-source models, including LTX Video [24],512
CogVideoX [77], and Hunyuan Video [35], offer increased513
flexibility, and techniques like multi-scale architectures (e.g.,514

Pyramid Flow [32]) enhance motion dynamics. These ad- 515
vancements highlight rapid progress, with ongoing efforts to 516
improve scalability and temporal stability. 517

7. Conclusion and Limitations 518

In this work, we introduce AETHER, a geometry-aware multi- 519
task world model that reconstructs 4D dynamic videos, pre- 520
dicts future frames conditioned on observation images and 521
actions, and performs visual planning based on observation 522
and goal images. We propose an automatic 4D synthetic 523
data labeling pipeline, enabling AETHER to train on syn- 524
thetic data and generalize to unseen real-world data in a zero- 525
shot manner. Post-trained on the CogVideoX base model, 526
AETHER achieves state-of-the-art or competitive reconstruc- 527
tion performance and outperforms baselines in generation 528
and planning tasks, demonstrating the value of incorporating 529
reconstruction objectives into world modeling. 530

However, limitations remain. Camera pose estimation is 531
less accurate, likely due to incompatibilities between raymap 532
representation and prior video diffusion models. Indoor 533
scene reconstruction also lags behind outdoor performance, 534
likely due to the predominance of outdoor training data. 535
Additionally, predictions without language prompts often 536
fail in highly dynamic scenes. Future work can address 537
these by exploring novel action representations, co-training 538
with real-world data, and retaining the language prompting 539
capabilities of the base model. 540
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and Michael Felsberg. Roma: Robust dense feature matching. 599
In Proceedings of the IEEE/CVF Conference on Computer 600
Vision and Pattern Recognition, pages 19790–19800, 2024. 8 601

[15] Tom Erez, Yuval Tassa, and Emanuel Todorov. Infinite- 602
horizon model predictive control for periodic tasks with con- 603
tacts. Robotics: Science and systems VII, 73, 2012. 2 604

[16] Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu, 605
Chenxi Wang, Junbo Wang, Haoyi Zhu, and Cewu Lu. Rh20t: 606
A comprehensive robotic dataset for learning diverse skills in 607
one-shot. arXiv preprint arXiv:2307.00595, 2023. 2 608

[17] Ruili Feng, Han Zhang, Zhantao Yang, Jie Xiao, Zhilei 609
Shu, Zhiheng Liu, Andy Zheng, Yukun Huang, Yu Liu, 610
and Hongyang Zhang. The matrix: Infinite-horizon world 611
generation with real-time moving control. arXiv preprint 612
arXiv:2412.03568, 2024. 2 613

[18] Xiao Fu, Wei Yin, Mu Hu, Kaixuan Wang, Yuexin Ma, Ping 614
Tan, Shaojie Shen, Dahua Lin, and Xiaoxiao Long. Ge- 615
owizard: Unleashing the diffusion priors for 3d geometry 616
estimation from a single image. In European Conference on 617
Computer Vision, pages 241–258. Springer, 2024. 8 618

[19] Yasutaka Furukawa, Carlos Hernández, et al. Multi-view 619
stereo: A tutorial. Foundations and trends® in Computer 620
Graphics and Vision, 9(1-2):1–148, 2015. 8 621

[20] Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur 622
Brussee, Ricardo Martin-Brualla, Pratul Srinivasan, 623
Jonathan T Barron, and Ben Poole. Cat3d: Create anything 624
in 3d with multi-view diffusion models. arXiv preprint 625
arXiv:2405.10314, 2024. 7 626

[21] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel 627
Urtasun. Vision meets robotics: The kitti dataset. The in- 628
ternational journal of robotics research, 32(11):1231–1237, 629
2013. 6 630

[22] Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, 631
Serena Zhang, Tobias Pfaff, Tatiana Lopez-Guevara, Carl 632
Doersch, Yusuf Aytar, Michael Rubinstein, Chen Sun, Oliver 633
Wang, Andrew Owens, and Deqing Sun. Motion prompting: 634
Controlling video generation with motion trajectories, 2024. 635
2, 7 636

[23] David Ha and Jürgen Schmidhuber. World models. arXiv 637
preprint arXiv:1803.10122, 2018. 7 638

[24] Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel 639
Shalem, Dudu Moshe, Eitan Richardson, Eran Levin, Guy 640
Shiran, Nir Zabari, Ori Gordon, Poriya Panet, Sapir Weiss- 641
buch, Victor Kulikov, Yaki Bitterman, Zeev Melumian, and 642
Ofir Bibi. Ltx-video: Realtime video latent diffusion. arXiv 643
preprint arXiv:2501.00103, 2024. 2, 8 644

[25] Annika Hagemann, Moritz Knorr, and Christoph Stiller. Deep 645
geometry-aware camera self-calibration from video. In Pro- 646
ceedings of the IEEE/CVF International Conference on Com- 647
puter Vision, pages 3438–3448, 2023. 3 648

[26] Richard Hartley and Andrew Zisserman. Multiple view geom- 649
etry in computer vision. Cambridge university press, 2003. 650
8 651

[27] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu- 652
sion probabilistic models. Advances in neural information 653
processing systems, 33:6840–6851, 2020. 4, 8 654

9



ICCV RIWM
#

ICCV RIWM
#

ICCV RIWM 2025 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[28] Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie655
Tang. Cogvideo: Large-scale pretraining for text-to-video gen-656
eration via transformers. arXiv preprint arXiv:2205.15868,657
2022. 2658

[29] Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong659
Cun, Yong Zhang, Long Quan, and Ying Shan. Depthcrafter:660
Generating consistent long depth sequences for open-world661
videos. arXiv preprint arXiv:2409.02095, 2024. 5, 6, 8662

[30] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang663
Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang664
Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive665
benchmark suite for video generative models. In Proceedings666
of the IEEE/CVF Conference on Computer Vision and Pattern667
Recognition, pages 21807–21818, 2024. 7, 8668

[31] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman,669
Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda,670
Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv671
preprint arXiv:2410.21276, 2024. 7672

[32] Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang,673
Nan Zhuang, Quzhe Huang, Yang Song, Yadong Mu, and674
Zhouchen Lin. Pyramidal flow matching for efficient video675
generative modeling. arXiv preprint arXiv:2410.05954, 2024.676
2, 8677

[33] Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia678
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-679
tracker3: Simpler and better point tracking by pseudo-680
labelling real videos. arXiv preprint arXiv:2410.11831, 2024.681
3682

[34] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Met-683
zger, Rodrigo Caye Daudt, and Konrad Schindler. Repurpos-684
ing diffusion-based image generators for monocular depth685
estimation. In Proceedings of the IEEE/CVF Conference on686
Computer Vision and Pattern Recognition, pages 9492–9502,687
2024. 4, 8688

[35] Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo689
Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei690
Zhang, Kathrina Wu, Qin Lin, Aladdin Wang, Andong Wang,691
Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei692
Wang, Jacob Song, Jiawang Bai, Jianbing Wu, Jinbao Xue,693
Joey Wang, Junkun Yuan, Kai Wang, Mengyang Liu, Pengyu694
Li, Shuai Li, Weiyan Wang, Wenqing Yu, Xinchi Deng, Yang695
Li, Yanxin Long, Yi Chen, Yutao Cui, Yuanbo Peng, Zhen-696
tao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu,697
Yangyu Tao, Qinglin Lu, Songtao Liu, Dax Zhou, Hongfa698
Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, and Cae-699
sar Zhong. Hunyuanvideo: A systematic framework for large700
video generative models, 2024. 2, 8701

[36] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Ro-702
bust consistent video depth estimation. In Proceedings of703
the IEEE/CVF Conference on Computer Vision and Pattern704
Recognition, pages 1611–1621, 2021. 6705

[37] Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Ground-706
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