
Mint: A Simple Test-Time Adaptation of Vision-
Language Models against Common Corruptions

Wenxuan Bao1∗, Ruxi Deng1∗, Jingrui He1
1University of Illinois Urbana-Champaign

{wbao4,ruxid2,jingrui}@illinois.edu

Abstract

Pretrained vision-language models such as CLIP achieve strong zero-shot gener-
alization but remain vulnerable to distribution shifts caused by input corruptions.
In this work, we investigate how corruptions affect CLIP’s image embeddings
and uncover a consistent phenomenon we term as embedding variance collapse,
where both intra-class and inter-class variances shrink as corruption severity in-
creases. We find that this collapse is closely tied to performance degradation,
with inter-class variance strongly correlated with classification accuracy. To ex-
plain this phenomenon, we analyze how corruptions alter the structure of the
embedding space. Our theoretical results suggest that the visual encoder tends
to encode corruption-related signals, which dilute class-discriminative features
and compress the representation geometry. We further show that maximizing
inter-class variance, even when estimated from pseudo-labels, can provably en-
hance embedding quality. Based on this insight, we propose Mint, a simple
test-time adaptation method that maximizes pseudo-label-based inter-class vari-
ance on the fly using cumulative prototypes and gradient estimates. Mint operates
effectively with small batch sizes and consistently improves performance across
multiple corruption benchmarks and CLIP architectures. Our code is available at
https://github.com/baowenxuan/Mint.

1 Introduction

Pretrained vision-language models (VLMs) such as CLIP [32] have demonstrated strong zero-
shot generalization across a wide range of vision tasks [47, 33, 29]. However, their performance
can degrade significantly under distribution shifts, such as common image corruptions [16]. Test-
time adaptation (TTA) has emerged as a promising strategy for improving model robustness under
distribution shifts, by adapting the model during test-time without accessing source data or target
labels [24, 40, 38]. This property makes TTA particularly suitable for the adaptation of pretrained
VLMs, where the source training data is often large-scale, proprietary, or unavailable at deployment.

Most existing TTA methods for VLMs focus on modifying the text prompt or embedding to improve
image-text alignment [35, 12, 1, 31, 25, 36], or leveraging similarities between different image
embeddings to adapt the model prediction [45, 19, 42]. While these approaches achieve strong
performance on standard benchmark datasets, they often overlook a key issue: the quality of image
embeddings themselves can significantly degrade under corruption. Some recent methods [15, 28]
attempt to address this by adjusting the image encoder’s normalization layers to align image-to-image
or text-to-text similarities. However, such techniques typically require large batches to perform
effective adaptation, making them unsuitable for many online TTA scenarios where only a few test
samples are available at a time. Furthermore, these methods offer limited insight into why common

*Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/baowenxuan/Mint

corruptions cause accuracy degradation, and most lack theoretical analysis, making it difficult to
understand when and why they succeed or fail.

In this work, we take a step back and ask: how exactly does corruption affect CLIP’s image
embeddings? To answer this, we evaluate the intra-class and inter-class variances of the embeddings
using ground-truth labels, referred to as GT-intra and GT-inter, respectively. This analysis reveals
a consistent and intriguing pattern: as corruption severity increases, both GT-intra and GT-inter
variances consistently decrease. We term this phenomenon variance collapse, which implies that
under corruptions, embeddings of images tend to become more similar, regardless of whether they
belong to the same class or different classes. The phenomenon is illustrated in Figure 1. Moreover,
we observe a strong correlation between inter-class variance and classification accuracy, suggesting
that variance collapse is a key factor contributing to performance degradation.

Clean
images

Corrupted
images

Figure 1: Variance collapse. Under corruptions,
embeddings of images tend to become similar, re-
gardless of whether they belong to the same class
or different classes.

To better understand and counteract variance
collapse, we conduct a theoretical analysis of
image embeddings’ variances under distribution
shifts. Our analysis shows that the simultane-
ous reduction of GT-intra and GT-inter variances
can be attributed to the visual encoder project-
ing corruption-related patterns into the embed-
ding space, which dilutes class-discriminative
information. Our theoretical analysis further
shows that even in the absence of ground-truth
labels during adaptation, maximizing the inter-
class variance computed from pseudo-labels
(PL-inter) by updating the LayerNorm parame-
ters can provably improve the quality of image
embeddings and lead to more accurate classifi-
cation.

Motivated by this result, we design Mint, a simple test-time adaptation method that Maximizes
the PL-inter variance on the fly. Mint is designed to operate reliably even when the batch size
is extremely small, which is common in online adaptation settings. To enable stable adaptation
under such constraints, Mint incorporates two key components: a mean accumulator and a gradient
accumulator. The mean accumulator maintains cumulative averages of image embeddings for
each pseudo-class and for the entire set of samples observed so far. This allows the estimation of
PL-inter variance within each batch without requiring access to the full test set. In parallel, the
gradient accumulator keeps track of the average update direction across batches, which reduces
noise in parameter updates and improves adaptation stability. These two components together allow
Mint to enhance class-discriminative signals and suppress corruption-related patterns in the image
embedding space. We evaluate our method across a wide range of corruption benchmark datasets and
CLIP architectures to demonstrate its robustness and generality. In all settings, Mint consistently
outperforms existing TTA methods for VLMs, while also offering significant efficiency advantages.
Our contributions are summarized as follows:

• We identify a phenomenon we refer to as variance collapse in CLIP image embeddings,
where both intra-class and inter-class variances decrease as corruption severity increases.

• We provide a theoretical analysis that attributes this collapse to the visual encoder embedding
corruption-related patterns, and show that maximizing PL-inter can improve embedding
quality.

• We propose Mint, a simple TTA method that maximizes PL-inter on the fly using a mean
accumulator and a gradient accumulator, enabling effective adaptation even with extremely
small batch sizes.

• We demonstrate that Mint consistently improves the performance of CLIP models across
multiple corruption benchmarks and architectures, outperforming existing TTA methods in
both accuracy and efficiency.

2

2 Related works

Test-time adaptation (TTA) adapts a source model to an unlabeled target domain during testing,
without access to source data, making it suitable for pre-trained VLMs like CLIP. Early TTA methods
for CLIP focus on modifying the text encoder or embedding, via prompt tuning [35, 12, 34], prompt
weighting [1], or ensembling [44, 31]. Memory-based approaches [19, 45, 42, 3] store embeddings of
high-confidence samples and use image similarity to guide predictions. Other training-free methods
[8, 11] apply augmentations and confidence selection to enhance robustness without updating any
model parameters. Although effective, most methods overlook a key issue: the quality of image
embeddings degrades under corruptions. Recent approaches [15, 28] attempt to mitigate this by
adjusting normalization layers, aligning the image-image and text-text similarities. However, they are
very sensitive to batch size and introduce high computational overhead, limiting their use in online
TTA settings.

Inter-class separability has been widely explored in supervised learning, where a common goal is
to increase the distance between classes while reducing the variance within each class. A classic
example is the Fisher score [10], which measures this separation and has been used for feature
selection [14] and to improve domain adaptation by applying the Fisher criterion on the labeled
source domains [46]. However, computing such metrics typically requires access to ground-truth
labels, which are unavailable in test-time adaptation. More recently, Matcha [5] extended similar
ideas to graph-based TTA by leveraging soft pseudo-labels. While effective, this method assumes
simultaneous access to all nodes in the test graph, making it unsuitable for online adaptation scenarios
where only small batches are available.

We provide a broader discussion of related works in Appendix A.1.

3 Analysis

Preliminary CLIP [32] is a VLM consisting of an image encoder and a text encoder, which aligns
images with their corresponding textual descriptions. Pretraining on a large-scale image-text dataset
enables CLIP to perform zero-shot prediction. Specifically, for a classification task with C classes,
the text encoder embeds class descriptions (e.g., “a photo of a {class}”) into normalized text
embeddings T = [t1, · · · , tC]⊤ ∈ RC×d, where d is the embedding dimension. Given a test image,
the image encoder produces a normalize image embedding zi ∈ Rd, and prediction is made via the
maximum similarity score argmaxy z

⊤
i ty . However, CLIP’s performance degrades noticeably under

common image corruptions [15, 28], as its image encoder was not explicitly trained for robustness.

3.1 Variance collapse

In this subsection, we investigate how common corruptions affect the image embeddings extracted
by CLIP’s visual encoder, and how these changes influence classification accuracy. Motivated by
Fisher score [10, 46, 14] and contrastive learning [32, 37] objectives, we posit that high-quality image
embeddings should exhibit low intra-class variance (i.e., samples from the same class are close) and
high inter-class variance (i.e., samples from different classes are well separated). To formalize this
intuition, given a target dataset with C classes and N images, we define the following variances:

• GT-total variance: VGT
total =

1
C

∑C
c=1

∑N
i=1 yic∥zi−z̄∥2

2∑N
i=1 yic

,

• GT-inter variance: VGT
inter =

1
C

∑C
c=1 ∥z̄c − z̄∥22,

• GT-intra variance: VGT
intra =

1
C

∑C
c=1

∑N
i=1 yic∥zi−z̄c∥2

2∑N
i=1 yic

,

where z̄ = 1
N

∑N
i=1 zi is the average embedding for all images, z̄c =

∑N
i=1 yiczi∑N
i=1 yic

is the average

embedding of class c, and yi = [yi1, · · · , yiC]⊤ ∈ {0, 1}C is the one-hot ground-truth label of image
i, where yic = 1 if image i corresponds to class c, and yic = 0 otherwise. Note that these variances
are computed using the ground-truth labels. To distinguish them from the pseudo-label-based
counterparts introduced later, we denote these metrics with a GT- prefix (e.g., GT-intra, GT-inter).

3

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Gaussian Noise

total
intra
inter

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Defocus Blur

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Snow

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Contrast

Figure 2: All types of variances decrease as the
severity of corruption increases (severity=0 indi-
cates original CIFAR-100 datasets without cor-
ruptions).

0.02 0.03 0.04 0.05 0.06 0.07
GT-Inter Variance

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

 = 0.98

corruption
Original
Noise
Blur
Weather
Digital

severity
level 1
level 2
level 3
level 4
level 5

Figure 3: GT-inter variance is highly correlated
with accuracy, with correlation 0.98. In compari-
son, the correlations between accuracy and GT-
intra, GT-total are 0.86 and 0.94, respectively.

We compute the GT-total, GT-inter, and GT-intra variances on the corruption benchmark [16], which
includes 15 types of common corruptions, each evaluated at 5 severity levels. Figure 2 presents
the results on four representative corruptions. Additional results across all corruption types and
datasets are included in Appendix C.1. We observe that for all types of corruptions, both GT-intra
and GT-inter variances consistently decrease as the severity increases. This indicates that the pairwise
similarity between image embeddings increases under corruptions, regardless of whether the images
belong to the same class or not. We refer to this phenomenon as variance collapse, where the image
embeddings become increasingly indistinguishable under stronger corruptions. Furthermore, we find
that variance collapse is closely linked to the drop in accuracy. We computed all three variance metrics
along with the corresponding classification accuracy under 76 corruption settings (15 corruption types
× 5 severity levels, plus the clean setting) on CIFAR-100-C. As shown in Figure 3, the inter-class
variance exhibits an extremely strong correlation with accuracy, indicating that this collapse could be
a key factor driving the performance decline.

3.2 Theoretical explanation

In this subsection, we provide a theoretical explanation for the emergence of variance collapse.
For clarity, we consider a balanced binary classification problem with yi ∈ {0, 1}. Motivated
by [39], we assume that each image can be mapped to a disentangled latent representation vi =
[vcls

i ,virr
i ,vshift

i ,vnoise
i] ∈ Rd, composed of four components:

1. Task-relevant features vcls
i : Semantic features that are directly predictive of the class label,

vcls
i = µ if yi = 1 and vcls

i = −µ if yi = 0.

2. Task-irrelevant features virr
i : Features unrelated to classification, such as background. It is

preserved during pretraining due to CLIP’s general representation learning objective. We
assume virr

i ∼ Rademacherdirr , i.e., uniformly distributed in {−1, 1}dirr .

3. Structured distribution shift vshift
i : Features representing systematic distribution changes in

the target domain, such as weather conditions or digital transforms. We assume vshift
i = s ·δ,

where s indicates the severity of corruptions or distribution shifts.
4. Unstructured noise vnoise

i : Random noise introduced by the corruption process. We assume
vnoise
i ∼ s · Rademacherdnoise , i.e., uniformly distributed in {−1, 1}dnoise .

Notice that by controlling the ratio of s, ∥µ∥2, ∥δ∥2, we can freely adjust the ratio for each component.
Following the structure of CLIP’s visual encoder, we assume that the latent representation v first
passes through a LayerNorm layer [2] with a linear transformation, followed by normalization to unit
length. For analytical simplicity, we omit the demeaning step in LayerNorm and ignore the bias term
in its parameters,1 under which the image embedding can be formulated as

zi = normalize

(
vi√

Var[vi]
⊙w

)
, (1)

1This simplification is also known as RMSNorm [41].

4

where ⊙ represents element-wise multiplication of vectors, w ∈ Rd is the learnable weight of the
LayerNorm layer, normalize(·) denotes ℓ2 normalization. For simplicity, we assume w = 1 at
initialization. w is updated during the adaptation.
Theorem 3.1 (Variance collapse). When the sample size N → +∞,

VGT
inter

p−→ ∥µ∥22
∥µ∥22 + dirr + s2 · ∥δ∥22 + s2 · dnoise

, VGT
intra

p−→ dirr + s2 · dnoise

∥µ∥22 + dirr + s2 · ∥δ∥22 + s2 · dnoise
, (2)

where s denotes the corruption severity. As s increases, VGT
inter strictly decreases. In addition, VGT

intra
also decreases when ∥δ∥2 ≥

√
dnoise/dirr · ∥µ∥2.

Theorem 3.1 characterizes how the GT-inter and GT-intra variances change with increasing corruption
severity. Combined with the empirical trends observed in Figure 2, this suggests that common
corruptions often induce significant structured distribution shifts, reflected as large δ in the latent space.
As a result, the image encoder tends to embed corruption-related patterns into the representation itself.
This dilutes class-discriminative features and introduces bias into the resulting image embeddings.

3.3 Maximization of inter variance

Theorem 3.1 also supports that GT-inter variance has strong relevance to classification accuracy,
as it reflects the proportion of task-relevant features within the overall feature representation. This
insight motivates the idea that maximizing GT-inter variance should lead to improved classification
accuracy under distribution shifts. However, several challenges arise in the context of TTA. First, the
ground-truth labels are unavailable, so we must rely on pseudo-labels, i.e., the model’s own prediction,
which are noisy due to distribution shifts. Second, model updates in TTA are typically restricted to a
small subset of parameters, such as LayerNorm weights, for better efficiency. In this part, we show
that even under these constraints, using only pseudo-labels and updating only LayerNorm parameters,
maximizing inter-class variance remains an effective and theoretically justified strategy for improving
robustness to distribution shifts.
Theorem 3.2 (Maximization of PL-inter variance). When the sample size N →∞,

VPL
inter

p−→ C(Eŷi)
2

·
4σ2

ŷy · ∥µ⊙wcls∥22 + ∥σirr ⊙wirr∥22 + ∥σnoise ⊙wnoise∥22
∥µ⊙wcls∥22 + ∥wirr∥22 + s2 · ∥δ ⊙wshift∥22 + s2 · ∥wnoise∥22

, (3)

where C(Eŷi) = 1
(Eŷi)2

+ 1
(1−Eŷi)2

, σŷy = Cov(yi, ŷi), σirr = Cov(virr, ŷi), and σnoise =

Cov(vnoise, ŷi). Furthermore, when σ2
ŷy ≥

∥σirr∥2
2

4dirr
and σ2

ŷy ≥
∥σnoise∥2

2

4dnoise
, we have

∇wclsVPL
inter = C(Eŷi) ·

(4σ2
ŷydirr − ∥σirr∥22) + 4σ2

ŷys
2∥δ∥22 + (4σ2

ŷydnoise − ∥σnoise∥22)
(∥µ∥22 + dirr + s2 · (∥δ∥22 + dnoise))2

· µ2 ≥ 0,

(4)

∇wshiftVPL
inter = −C(Eŷi) ·

VPL
inter

∥µ∥22 + dirr + s2 · (∥δ∥22 + dnoise)
· s2 · δ2 ≤ 0. (5)

This implies that when we perform a single gradient ascent step to maximize the PL-inter variance
by updating the parameters of LayerNorm, the parameters associated with structured distribution
shifts (i.e., wshift) are necessarily suppressed. Furthermore, as long as the current prediction is
reasonably accurate, meaning it depends more on task-relevant features than on task-irrelevant
components or unstructured noise, maximizing PL-inter variance will increase the weights associated
with task-relevant features (i.e., wcls). As a result, this process reweighs the components in the final
image embedding, enhancing the influence of task-relevant features while suppressing the effects of
distribution shifts.

4 Proposed method: Mint

In this section, we introduce our proposed algorithm Mint, which maximizes the PL-inter variance on
the fly. While the previous section provides theoretical justification that maximizing PL-inter variance
can improve test-time robustness, directly computing PL-inter variance requires access to the entire

5

Image encoder

Text encoder

Bird

Panda

Horse

Deer

Prompt +

Class Names

Test image batch

Mean accumulator

𝒛"! 𝒛"" 𝒛"# 𝒛"$ 𝒛"

𝒛! 𝒛" 𝒛#

𝒕! 𝒕" 𝒕# 𝒕$

Gradient
accumulator

𝒚%! 𝒚%" 𝒚%#

Text embeddings

Image embeddings

Pseudo-labels

×

Update

PL-inter variance 𝒱%&'()*+

Gradient ascent

Image encoder

Text encoder

Bird

Panda

Horse

Deer

Prompt +

Class Names

Test image batch

𝒛! 𝒛" 𝒛#

𝒕! 𝒕" 𝒕# 𝒕$

Text embeddings

Image embeddings

×

Adaptation Inference

Mean accumulator

𝒛"! 𝒛"" 𝒛"# 𝒛"$ 𝒛"+

𝒚%! 𝒚%" 𝒚%#
Final prediction

Freeze other layers

Adapt LayerNorm

𝒈(

Figure 4: Overview of Mint. Left: Adaptation phase. Given a test image batch, we compute
the PL-inter variance with the help of a mean accumulator and maximize it via gradient ascent. A
gradient accumulator aggregates update directions across batches to robustly update the LayerNorm
parameters. Right: Inference phase. The mean accumulator is used to adjust the text embeddings,
and final predictions are made based on the similarity between image and text embeddings.

test dataset. However, in the online TTA setting, the model typically adapts using only a small batch
or even a single sample at a time. This leads to noisy and potentially biased gradient directions that
deviate from the true optimization target. To address this, we reparameterize the PL-inter variance
and employ both a mean accumulator and a gradient accumulator to aggregate information across
batches, enabling a more accurate approximation of the gradient in a streaming setting. Figure 4
gives an overview of our method.

4.1 Mean accumulator

The most straightforward way to estimate PL-inter variance is to assume that the current batch fully
represents the test data distribution and compute PL-inter using only samples in that batch. Under
this approach, objectives across batches are computed independently. However, this naive strategy
introduces significant noise, and even bias, into the PL-inter estimate. For instance, ImageNet-C
contains 1,000 classes, but due to deployment and memory constraints, the test-time batch size
is typically limited to just a few dozen samples. As a result, most classes present in a batch are
represented by only a single sample, causing their estimated class means to degenerate into the
samples themselves. In such cases, the distance between a sample and its class mean becomes zero,
preventing us from estimating PL-intra variance. As a consequence, the computed objective ends
up approximating PL-total variance rather than true PL-inter variance, which degrades adaptation
performance under small batch sizes.

To address this issue, we first reparameterize PL-inter variance as the difference between PL-total
and PL-intra variance. With detailed proof in Appendix B.1, this decomposition can be written as:

1

C

C∑
c=1

∥z̃c − z̃∥22︸ ︷︷ ︸
VPL

inter

=
1

C

C∑
c=1

∑N
i=1 ŷic ∥zi − z̃∥22∑N

i=1 ŷic︸ ︷︷ ︸
VPL

total

− 1

C

C∑
c=1

∑N
i=1 ŷic ∥zi − z̃c∥22∑N

i=1 ŷic︸ ︷︷ ︸
VPL

intra

, (6)

where zi is the embedding for i-th image, z̃ = 1
N

∑N
i=1 zi is the global average embedding,

and z̃c =
∑N

i=1 ŷiczi∑N
i=1 ŷic

is the average embedding of all images predicted as class c by CLIP. This
reformulation reveals that maximizing PL-inter is equivalent to jointly maximizing PL-total variance
and minimizing PL-intra variance, encouraging each embedding zi to move away from the global
mean z̃ and toward its corresponding class mean z̃c, with the gradient direction approximately given
by z̃c− z̃ when the sample size is sufficiently large. This insight suggests that more accurate estimates
of z̃ and z̃c can lead to better gradient directions. Therefore, instead of estimating these means
using only the current batch, we use a mean accumulator to maintain cumulative averages z̃ and
{z̃c}Cc=1. Every time when we observe a new image with embedding zi and CLIP’s prediction ŷi as
pseudo-label,

z̃ ← K

K + 1
z̃ +

1

K + 1
zi, z̃ŷi

← Kŷi

Kŷi
+ 1

z̃ŷi
+

1

Kŷi
+ 1

zi, (7)

where K is the total number of seen samples, and Kŷi
is the number of seen samples with pseudo-

label ŷi. After replacing the class and global means in Equation (6) with the cumulative averages, the

6

final objective for the b-th batch Bb becomes

VPL
inter(Bb) =

1

Cb

Cb∑
c=1

∑
i∈Bb

ŷic ∥zi − z̃∥22∑
i∈Bb

ŷic
− 1

Cb

Cb∑
c=1

∑
i∈Bb

ŷic ∥zi − z̃c∥22∑
i∈Bb

ŷic
, (8)

where Cb is the number of unique classes present in batch Bb.

4.2 Gradient accumulator

While the mean accumulator mitigates systematic bias in the objective by stabilizing the estimates of
class and global means, it does not eliminate the noise in the individual gradient contributions from
zi, which are still computed over the current batch. To further reduce gradient estimation error, we
introduce a simple gradient accumulator that mimics adaptation with a larger effective batch size.
Specifically, for the b-th batch, if the gradient computed on the current batch is gb, we maintain a
cumulative average of gradients ḡ over the seen b batches:

ḡ ← b− 1

b
ḡ +

1

b
gb, (9)

and update the LayerNorm parameters in the direction of ḡ. We perform only a single step of update
on each batch.

4.3 Adjust text embedding

In addition to estimating PL-inter variance, the cumulative class means can also be leveraged to adjust
the text embeddings, thereby improving alignment between the image and text modalities. Motivated
by prior works in TTA [18] and Bayesian estimation, we adopt a simple, training-free approach
to refine the text embeddings using accumulative embedding means. Specifically, we maintain a
separate mean accumulator to store the image embeddings produced by the adapted image encoder.
The refinement of text embeddings is given by

t̃c ← normalize

(
Kprior

Kprior +K
· tc +

K

Kprior +K
· z̃c
)
, c = 1, · · · , C, (10)

where Kprior is a hyperparameter controlling the strength of prior. This design enables dynamic
adjustment of the text embedding. In the early stage of adaptation, the image embedding means may
be less reliable, so we assign more weight to the original text embedding tc. As adaptation progresses
and the quality of the estimated class-wise means z̃c improves, we gradually place more weight on
z̃c.

The final prediction is given by argmaxy z
⊤
i t̃y. After making prediction on each batch, we reset

both the image encoder and the optimizer state to their initial values. However, the mean accumulator
and gradient accumulator are preserved and carried over to the next batch, allowing information
aggregated from previous samples to guide the adaptation on subsequent inputs.

5 Experiments

In this section, we use experiments to answer the following research questions

• RQ1: Can Mint effectively improve the performance of CLIP models under common
corruptions, especially in low batch size scenarios?

• RQ2: Does Mint effectively mitigate the variance collapse?
• RQ3: How efficient is Mint in terms of computational time?

Setup and baselines We test Mint with different combination of model architectures and corruption
datasets [16]: ViT-B/32 [9] on CIFAR-10-C [21], ViT-B/16 on CIFAR-100-C, and ViT-L/14 on
ImageNet-C [7], all with corruption severity of 5. We consider a standard TTA setting, where the
model is adapted to each type of corruption independently. We compare Mint with a wide range of
existing TTA methods designed for VLMs. VTE [8] and Zero [11] aggregate image embeddings
from multiple augmentations. TPT [35] and TPS [36] minimize the marginal entropy to encourage

7

Table 1: Mean accuracy (%) on corruption benchmarks. Error bars are deferred to Appendix C.3.

ViT-B/32 on CIFAR-10-C

Method Venue Noise Blur Weather Digital
Avg.

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG

CLIP [32] ICML’21 35.5 40.0 43.2 70.0 41.4 64.5 70.2 70.8 72.3 66.7 81.4 64.5 59.6 48.2 56.7 59.0
Ensemble - 38.8 42.7 42.8 72.6 43.9 66.8 71.7 73.9 75.8 68.9 83.7 67.2 61.9 51.8 58.6 61.4
TPT [35] NeurIPS’22 42.9 46.2 47.1 71.5 46.4 68.1 72.7 73.7 75.9 68.9 83.7 73.9 62.5 50.3 58.2 62.8
TDA [19] CVPR’24 41.2 44.1 43.3 73.9 45.1 68.1 73.6 74.0 76.7 69.6 84.0 66.6 62.3 54.7 58.4 62.4
DMN-ZS [45] CVPR’24 37.6 41.5 42.5 69.4 43.8 65.9 70.5 70.2 71.2 64.0 80.7 58.6 59.4 54.9 58.1 59.2
VTE [8] ECCV-W’24 47.6 50.5 49.8 70.4 49.8 70.2 73.4 74.4 77.3 71.4 83.6 81.2 65.5 55.3 58.8 65.3
Zero [11] NeurIPS’24 47.9 50.5 50.0 70.3 50.3 69.7 73.6 74.5 77.1 71.5 83.5 80.6 66.0 55.2 58.9 65.3
WATT-S [28] NeurIPS’24 53.2 54.9 50.7 75.0 55.4 71.1 74.8 75.4 77.0 72.7 84.2 73.1 65.4 61.1 62.3 67.1
TPS [36] WACV’25 45.5 49.4 49.2 73.8 50.7 71.4 76.0 77.0 79.2 73.3 85.3 79.5 67.2 56.6 61.8 66.4
CLIPArTT [15] WACV’25 45.2 48.7 47.1 73.4 49.9 69.0 73.0 74.1 76.2 70.1 84.3 71.4 64.1 58.5 60.5 64.4
Mint - 59.0 62.4 54.2 75.8 61.8 77.1 78.9 79.0 78.9 75.2 86.3 76.9 70.1 66.6 63.4 71.0

ViT-B/16 on CIFAR-100-C

Method Venue Noise Blur Weather Digital
Avg.

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG

CLIP [32] ICML’21 19.7 21.4 25.3 42.5 20.2 43.1 48.0 48.4 49.7 41.7 57.0 34.5 29.2 23.9 32.4 35.8
Ensemble - 22.9 24.3 29.6 43.6 20.1 43.7 48.7 48.9 50.3 41.8 58.1 35.2 29.2 26.3 33.6 37.1
TPT [35] NeurIPS’22 17.3 19.2 25.6 42.4 20.0 42.2 47.9 49.0 50.0 42.7 57.5 38.0 30.3 25.5 32.5 36.0
TDA [19] CVPR’24 23.8 26.0 32.5 45.7 21.5 44.4 50.5 49.6 51.5 42.8 59.2 36.8 29.7 28.1 34.3 38.4
DMN-ZS [45] CVPR’24 23.9 25.6 31.7 45.5 21.6 45.0 51.1 49.6 52.0 43.0 60.3 36.0 30.5 27.5 34.7 38.5
VTE [8] ECCV-W’24 20.2 21.2 28.4 39.9 18.5 39.0 44.7 47.6 48.8 43.2 55.7 49.9 30.4 30.3 30.6 36.6
Zero [11] NeurIPS’24 19.9 21.5 29.6 40.4 18.5 39.6 44.8 47.8 48.3 43.3 55.8 50.0 30.6 30.4 30.7 36.8
WATT-S [28] NeurIPS’24 27.5 29.8 36.4 47.5 26.8 46.8 51.6 51.6 52.3 46.6 61.0 43.5 34.3 35.9 37.3 41.9
TPS [36] WACV’25 22.6 24.4 31.0 44.0 20.1 43.6 49.0 50.5 51.3 44.3 59.1 45.1 30.6 28.8 33.8 38.6
CLIPArTT [15] WACV’25 24.9 27.1 32.5 47.4 23.4 47.2 52.0 51.6 52.5 46.5 61.2 41.2 33.7 32.6 37.0 40.7
Mint - 29.4 30.8 38.6 50.7 27.1 49.9 55.5 53.0 51.8 50.6 65.6 48.1 36.8 34.4 38.7 44.1

ViT-L/14 on ImageNet-C

Method Venue Noise Blur Weather Digital
Avg.

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG

CLIP [32] ICML’21 27.4 29.4 28.7 34.6 25.3 41.0 36.7 49.8 44.1 49.7 65.4 35.1 30.3 53.5 42.2 39.6
Ensemble - 29.1 30.4 30.1 37.5 27.2 44.2 39.2 52.4 46.4 52.7 67.8 34.5 32.4 56.2 44.3 41.6
TPT [35] NeurIPS’22 27.2 29.1 29.3 35.7 26.6 41.1 38.1 51.4 46.3 51.6 67.7 39.4 32.1 55.9 45.5 41.1
TDA [19] CVPR’24 29.1 30.5 31.0 37.7 28.0 44.5 39.5 53.4 47.8 53.6 68.3 36.8 33.3 56.7 44.4 42.3
DMN-ZS [45] CVPR’24 29.0 30.4 30.4 37.5 27.3 44.3 39.3 52.5 46.7 52.7 67.8 34.9 32.4 56.2 44.3 41.7
VTE [8] ECCV-W’24 23.2 26.5 24.9 34.5 25.8 39.7 38.2 49.0 45.7 49.8 67.0 44.4 32.1 55.8 46.5 40.2
Zero [11] NeurIPS’24 24.1 26.9 25.8 35.8 26.9 40.3 39.4 49.5 46.2 50.7 66.8 44.9 32.6 56.4 47.4 40.9
WATT-S [28] NeurIPS’24 31.7 33.5 34.6 38.7 31.3 45.2 41.2 52.7 47.8 54.5 67.5 42.9 34.8 56.3 45.9 43.9
TPS [36] WACV’25 28.9 31.0 30.7 37.8 28.0 43.4 40.8 53.3 47.9 53.5 69.2 43.8 33.3 57.3 47.0 43.1
CLIPArTT [15] WACV’25 29.2 31.0 30.8 34.5 28.1 41.9 38.0 49.9 44.7 50.1 64.5 39.2 32.4 53.0 42.4 40.7
Mint - 33.0 34.3 37.3 39.6 37.2 46.6 45.1 55.2 46.6 57.5 67.7 48.9 43.9 58.2 54.6 47.0

Table 2: Accuracy (mean ± s.d. %) of Mint with various batch size.

Architecture Dataset CLIP
Mint

BS = 1 BS = 2 BS = 5 BS = 10 BS = 20 BS = 50 BS = 100 BS = 200

ViT-B/32 CIFAR-10-C 59.0 70.5 ± 0.1 70.5 ± 0.1 71.0 ± 0.0 71.0 ± 0.1 71.0 ± 0.1 71.0 ± 0.1 70.9 ± 0.1 70.6 ± 0.1
ViT-B/16 CIFAR-100-C 35.8 43.1 ± 0.1 43.1 ± 0.1 43.3 ± 0.1 43.6 ± 0.1 44.1 ± 0.1 44.5 ± 0.1 44.5 ± 0.1 44.6 ± 0.1
ViT-L/14 ImageNet-C 39.6 45.8 ± 0.1 46.2 ± 0.1 46.7 ± 0.1 46.8 ± 0.1 47.0 ± 0.2 47.1 ± 0.1 47.0 ± 0.2 46.8 ± 0.1

consistency across augmented views. TDA [19] and DMN-ZS [45] leverage sample-wise similarity
to adjust predictions. WATT-S [28] and CLIPArTT [15] improve modality alignment by aligning
image-to-image and text-to-text similarities. Unless otherwise specified, we use a default batch size
of 20 during adaptation. Mint uses Adam [20] optimizer with learning rate 0.007 for ViT-B models
and 0.015 for ViT-L/14, and Kprior = 10,000. Hyperparameter settings for baselines are provided in
the Appendix C.2.

Main results (RQ1) The experimental results are summarized in Table 1. We observe that training-
free methods generally perform worse, as they do not update the model during adaptation. Among
them, TPS achieves relatively strong performance by adjusting the text embeddings. CLIPArTT and
WATT-S, which allow updates to the image encoder, perform best among the baselines. However,
these methods do not share information across batches, which limits their overall effectiveness. Across
all settings, Mint consistently improves accuracy and achieves the best performance. Compared to
the strongest baselines, Mint yields absolute gains of 3.9%, 2.2%, and 3.1%, respectively.

Robustness to batch size (RQ1) To evaluate the robustness of Mint under different test-time
conditions, we run it with batch sizes ranging from 1 to 200, using the same set of hyperparameters

8

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

gaussian_noise
Adapted

before
after

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

defocus_blur

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

snow

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

contrast

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Figure 5: Mint alleviates variance collapse.

1 5 20 100
Batch size

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

No accumulators
Mean accumulator only
Gradient accumulator only

Mint
CLIP
Ensemble

Figure 6: Ablation study.

0.006 0.009 0.012 0.015 0.018
Learning Rate

38

40

42

44

46

48

Ac
cu

ra
cy

 (%
)

1 2 5 10 20 50 100 +
Kprior (×103)

CLIP Ensemble

Figure 7: Hyperparameter sensitivity.

across all settings. As shown in Table 2, Mint consistently maintains strong performance across this
range. Even in the extreme case of batch size 1, it achieves significant accuracy gains, demonstrating
its effectiveness in highly constrained online adaptation scenarios.

Variance collapse (RQ2) We investigate the underlying mechanism of Mint by analyzing its effect
on the image embeddings. Specifically, we evaluate the PL-inter variance, GT-inter variance, and
classification accuracy on CIFAR-100-C before and after adaptation, under four representative types
of corruption (same as Figure 2). As shown in Figure 5, Mint successfully increases PL-inter variance
by design, and this also leads to a clear improvement in GT-inter variance. The increased GT-inter
variance is accompanied by a rise in accuracy, indicating that Mint effectively mitigates variance
collapse. Additional results across all corruption types and datasets are provided in Appendix C.4.

Table 3: Comparison of testing time.

Method Testing Time Accuracy (%) Gain (%)

CLIP 21s 35.8 –
TPT 23m21s 36.0 +0.2
VTE 9m45s 36.6 +0.8
Zero 9m50s 36.8 +1.0
TDA 33s 38.4 +2.6
DMN-ZS 30s 38.5 +2.7
TPS 9m58s 38.6 +2.8
CLIPArTT 7m40s 40.7 +4.9
WATT-S 50m20s 41.9 +6.1
Mint 1m07s 44.1 +8.3

Efficiency (RQ3) We compare the testing time of
Mint with baseline algorithms on CIFAR-100-C by
measuring the time required to process one corruption
type (10,000 images). As shown in Table 3, Mint runs
substantially faster than other training-based TTA
methods. This efficiency primarily stems from its
simple design and the fact that it performs only a
single model update per batch, unlike methods that
require multiple iterative updates during adaptation.
Notably, Mint is only slower than CLIP and other
training-free and augmentation-free baselines.

Ablation study To understand the individual contributions of the two accumulators in Mint, we
perform an ablation study on CIFAR-10-C comparing the full method with the following variants: (1)
Mean accumulator only, which removes the gradient accumulator; (2) Gradient accumulator only,
which removes the mean accumulator; and (3) No accumulators, which disables both components.
We observe in Figure 6 that both accumulators contribute to the performance of Mint, especially
under small batch sizes. The mean accumulator is essential for estimating PL-inter variance in
extremely small batches, including the batch size of 1. Without it, gradients cannot be computed
when the batch contains only a single class instance, rendering adaptation ineffective. Meanwhile, the
gradient accumulator improves adaptation quality by reducing the noise in gradient estimates across
batches. Overall, Mint exhibits the strongest robustness and performance when both accumulators
are used, validating the necessity of their complementary roles in the online test-time adaptation
setting. Additionally, we explore adapting different layers in the visual encoder and find that updating
all LayerNorm layers yields the best performance (see Appendix C.5).

9

Hyperparameter sensitivity We study the sensitivity of Mint to its two hyperparameters: the
learning rate and the prior strength Kprior, across three datasets. Results on ImageNet-C are shown in
Figure 7, with results on CIFAR-10-C and CIFAR-100-C included in Appendix C.6. We observe that
Mint remains stable across a broad range of hyperparameter values, without requiring precise tuning.
In particular, we find that a learning rate of 0.009 and a prior size of Kprior = 10,000 consistently
perform well across different datasets and architectures, demonstrating the robustness and generality
of the method.

Additional experiments We further evaluate Mint on clean datasets (uncorrupted CIFAR-10,
CIFAR-100, and ImageNet), ImageNet variants (ImageNet-A, -V2, -R, and -Sketch), and corruption
benchmarks under the mixture-of-domain setting [27]. The corresponding results are provided
in Appendix C.7, C.8, and C.9. Mint demonstrates consistently strong performance across these
scenarios, confirming its broad applicability.

6 Conclusion

In this work, we identify variance collapse in image embeddings as a key factor behind CLIP’s per-
formance degradation under corruptions. Through theoretical analysis, we attribute this phenomenon
to the image encoder encoding corruption-related patterns, which dilutes class-discriminative signals.
We further show that maximizing inter-class variance, even when computed using pseudo labels,
can provably enhance performance. Based on this insight, we propose Mint, a simple yet effective
test-time adaptation method. Mint leverages cumulative mean and gradient accumulators to oper-
ate robustly in low-batch-size, online settings. Extensive experiments on corruption benchmarks
demonstrate its strong performance and efficiency.

Acknowledgments and Disclosure of Funding

This work is supported by National Science Foundation under Award No. IIS-2416070, IIS-2117902.
The views and conclusions are those of the authors and should not be interpreted as representing the
official policies of the funding agencies or the government.

References

[1] James Urquhart Allingham, Jie Ren, Michael W. Dusenberry, Xiuye Gu, Yin Cui, Dustin
Tran, Jeremiah Zhe Liu, and Balaji Lakshminarayanan. A simple zero-shot prompt weighting
technique to improve prompt ensembling in text-image models. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages 547–568. PMLR, 2023.

[2] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

[3] Wenxuan Bao, Ruxi Deng, Ruizhong Qiu, Tianxin Wei, Hanghang Tong, and Jingrui He.
Latte: Collaborative test-time adaptation of vision-language models in federated learning. In
IEEE/CVF International Conference on Computer Vision, ICCV 2025, Honolulu, Hawaii, USA,
October 19-23, 2025. IEEE, 2025.

[4] Wenxuan Bao, Tianxin Wei, Haohan Wang, and Jingrui He. Adaptive test-time personalization
for federated learning. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023.

[5] Wenxuan Bao, Zhichen Zeng, Zhining Liu, Hanghang Tong, and Jingrui He. Matcha: Mitigating
graph structure shifts with test-time adaptation. In The Thirteenth International Conference on
Learning Representations, 2025.

[6] Wei-Ting Chen, Yu-Jiet Vong, Sy-Yen Kuo, Sizhuo Ma, and Jian Wang. Robustsam: Segment
anything robustly on degraded images. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pages 4081–4091. IEEE,
2024.

10

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pages 248–255.
IEEE Computer Society, 2009.

[8] Mario Döbler, Robert A. Marsden, Tobias Raichle, and Bin Yang. A lost opportunity for
vision-language models: A comparative study of online test-time adaptation for vision-language
models. CoRR, abs/2405.14977, 2024.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[10] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification, 2nd Edition. Wiley,
2001.

[11] Matteo Farina, Gianni Franchi, Giovanni Iacca, Massimiliano Mancini, and Elisa Ricci. Frustrat-
ingly easy test-time adaptation of vision-language models. In Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

[12] Chun-Mei Feng, Kai Yu, Yong Liu, Salman Khan, and Wangmeng Zuo. Diverse data augmenta-
tion with diffusions for effective test-time prompt tuning. In IEEE/CVF International Conference
on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pages 2704–2714. IEEE,
2023.

[13] Jin Gao, Jialing Zhang, Xihui Liu, Trevor Darrell, Evan Shelhamer, and Dequan Wang. Back to
the source: Diffusion-driven adaptation to test-time corruption. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24,
2023, pages 11786–11796. IEEE, 2023.

[14] Quanquan Gu, Zhenhui Li, and Jiawei Han. Generalized fisher score for feature selection. In UAI
2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
Barcelona, Spain, July 14-17, 2011, pages 266–273. AUAI Press, 2011.

[15] Gustavo Adolfo Vargas Hakim, David Osowiechi, Mehrdad Noori, Milad Cheraghalikhani, Ali
Bahri, Moslem Yazdanpanah, Ismail Ben Ayed, and Christian Desrosiers. Clipartt: Adaptation
of CLIP to new domains at test time. In IEEE/CVF Winter Conference on Applications of
Computer Vision, WACV 2025, Tucson, AZ, USA, February 26 - March 6, 2025, pages 7092–
7101. IEEE, 2025.

[16] Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop
and Conference Proceedings, pages 448–456. JMLR.org, 2015.

[18] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic
domain generalization. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pages 2427–2440, 2021.

[19] Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb El-Saddik, and Eric P. Xing.
Efficient test-time adaptation of vision-language models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pages 14162–
14171. IEEE, 2024.

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

[21] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

11

[22] Jonghyun Lee, Dahuin Jung, Saehyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang,
and Sungroh Yoon. Entropy is not enough for test-time adaptation: From the perspective of
disentangled factors. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

[23] Yoonho Lee, Annie S. Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and
Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023.

[24] Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under
distribution shifts. International Journal of Computer Vision, pages 1–34, 2024.

[25] Xiaosong Ma, Jie Zhang, Song Guo, and Wenchao Xu. Swapprompt: Test-time prompt
adaptation for vision-language models. In Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

[26] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and
Mingkui Tan. Efficient test-time model adaptation without forgetting. In International Confer-
ence on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume
162 of Proceedings of Machine Learning Research, pages 16888–16905. PMLR, 2022.

[27] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023.

[28] David Osowiechi, Mehrdad Noori, Gustavo Adolfo Vargas Hakim, Moslem Yazdanpanah, Ali
Bahri, Milad Cheraghalikhani, Sahar Dastani, Farzad Beizaee, Ismail Ben Ayed, and Christian
Desrosiers. WATT: weight average test time adaptation of CLIP. In Advances in Neural
Information Processing Systems 38: Annual Conference on Neural Information Processing
Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

[29] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip:
Text-driven manipulation of stylegan imagery. In 2021 IEEE/CVF International Conference on
Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021, pages 2065–2074.
IEEE, 2021.

[30] Priyank Pathak, Shyam Marjit, Shruti Vyas, and Yogesh S Rawat. LR0.FM: LOW-
RESOLUTION ZERO-SHOT CLASSIFICATION BENCHMARK FOR FOUNDATION MOD-
ELS. In The Thirteenth International Conference on Learning Representations, 2025.

[31] Sarah M. Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like?
generating customized prompts for zero-shot image classification. In IEEE/CVF International
Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pages 15645–
15655. IEEE, 2023.

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Proceed-
ings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 8748–8763.
PMLR, 2021.

[33] Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang,
Jie Zhou, and Jiwen Lu. Denseclip: Language-guided dense prediction with context-aware
prompting. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022, pages 18061–18070. IEEE, 2022.

[34] Jameel Abdul Samadh, Hanan Gani, Noor Hussein, Muhammad Uzair Khattak, Muzammal
Naseer, Fahad Shahbaz Khan, and Salman H. Khan. Align your prompts: Test-time prompting
with distribution alignment for zero-shot generalization. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

[35] Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and
Chaowei Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models.

12

In Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, 2022.

[36] Elaine Sui, Xiaohan Wang, and Serena Yeung-Levy. Just shift it: Test-time prototype shifting
for zero-shot generalization with vision-language models. In IEEE/CVF Winter Conference on
Applications of Computer Vision, WACV 2025, Tucson, AZ, USA, February 26 - March 6, 2025,
pages 825–835. IEEE, 2025.

[37] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. CoRR, abs/1807.03748, 2018.

[38] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno A. Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[39] Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-Alvise Rebuffi, Ira Ktena, Krishnamurthy
Dvijotham, and Ali Taylan Cemgil. A fine-grained analysis on distribution shift. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022.

[40] Zehao Xiao and Cees G. M. Snoek. Beyond model adaptation at test time: A survey. CoRR,
abs/2411.03687, 2024.

[41] Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 12360–
12371, 2019.

[42] Ce Zhang, Simon Stepputtis, Katia P. Sycara, and Yaqi Xie. Dual prototype evolving for test-
time generalization of vision-language models. In Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS
2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

[43] Marvin Zhang, Sergey Levine, and Chelsea Finn. MEMO: test time robustness via adaptation
and augmentation. In Advances in Neural Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022.

[44] Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and
Hongsheng Li. Tip-adapter: Training-free adaption of CLIP for few-shot classification. In
Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27,
2022, Proceedings, Part XXXV, volume 13695 of Lecture Notes in Computer Science, pages
493–510. Springer, 2022.

[45] Yabin Zhang, Wenjie Zhu, Hui Tang, Zhiyuan Ma, Kaiyang Zhou, and Lei Zhang. Dual
memory networks: A versatile adaptation approach for vision-language models. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June
16-22, 2024, pages 28718–28728. IEEE, 2024.

[46] Yinghua Zhang, Yu Zhang, Ying Wei, Kun Bai, Yangqiu Song, and Qiang Yang. Fisher deep
domain adaptation. In Proceedings of the 2020 SIAM International Conference on Data Mining,
SDM 2020, Cincinnati, Ohio, USA, May 7-9, 2020, pages 469–477. SIAM, 2020.

[47] Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold
Li, Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, and Jianfeng Gao. Regionclip: Region-
based language-image pretraining. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 16772–16782. IEEE,
2022.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we claim that this paper focuses on test-time
adaptation of vision-language models. Contributions are clearly listed at the end of the
introduction and in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Appendix A.2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [Yes]
Justification: We clearly state the main assumptions in Section 3. Formal statements and
proofs are given in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the paper, we clearly specified the methods we used to obtain the experi-
mental results and all the hyperparameters used in the process, which can fully support the
reproducibility of the experiment. More details are provided in Appendix C.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use open-source datasets, and provide the code in the supplemental
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide key information in Section 5, and other details in Appendix C.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report results with mean and standard deviation from five independent runs
with different random seeds. Notice that for space limits, we provide the error bar of Table 1
in Appendix C.3 instead.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Appendix C.2.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We strictly adhere to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to Appendix A.3.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not release new data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in the paper are properly credited, and their licenses and terms
of use have been explicitly mentioned and respected if provided in the original paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

Contents

A Discussion 22

A.1 Additional related works . 22

A.2 Limitations . 22

A.3 Broader impacts . 22

B Theoretical analysis 23

B.1 Variance decomposition . 23

B.2 Theoretical setup . 24

B.3 Change of variances under corruption . 25

B.4 Adaptation . 26

C Experiments 28

C.1 Effect of corruptions . 28

C.2 Experiment details . 31

C.3 Full results for RQ1 . 32

C.4 Full results for RQ2 . 32

C.5 Ablation on layers to adapt . 34

C.6 Hyperparameter sensitivity . 34

C.7 Experiments on clean datasets . 35

C.8 Experiments on ImageNet variants . 35

C.9 Mixture corruption datasets . 35

21

A Discussion

A.1 Additional related works

In this subsection, we discuss additional related work on general test-time adaptation. Many of these
methods have inspired recent advances in TTA algorithms for VLMs.

Generic test-time adaptation (TTA) Most TTA methods aim to improve model accuracy by
optimizing a carefully designed unsupervised loss on unlabeled test data. A prominent line of work
minimizes the entropy of model predictions, based on the intuition that entropy quantifies prediction
uncertainty. Pioneered by Tent [38], these methods typically update the running statistics and affine
parameters of batch normalization [17] layers. However, entropy minimization is often unstable, and
many subsequent works [26, 27, 22] focus on improving its robustness. One important variant is
marginal entropy [43], which captures a model’s uncertainty across different augmentations of the
same input. This idea has inspired several follow-up TTA approaches [35, 36] for VLMs.

Another line of potential approaches focuses on restoring uncorrupted images from corrupted ones,
using generative techniques such as diffusion models [13] or super-resolution [30, 6]. These methods
do not require adapting the model at test time. However, as noted in [27], they often perform well on
certain types of corruption but poorly on others, indicating limited generalization across corruption
types.

A.2 Limitations

While our analysis reveals a consistent variance collapse pattern across multiple datasets and cor-
ruption types, it primarily focuses on natural distribution shifts and classification tasks. Extending
our analysis and algorithm to broader types of distribution shifts (e.g., adversarial perturbations) and
more diverse tasks (e.g., object detection, semantic segmentation) represents an important direction
for future work.

A.3 Broader impacts

Our work focuses on understanding and mitigating the degradation of vision-language models under
distribution shift, particularly in the context of image corruption. On the positive side, improving
model robustness can enhance the reliability of real-world applications such as accessibility tools,
autonomous systems, and content moderation, especially under suboptimal conditions. By providing
theoretical insights and simple, efficient test-time adaptation methods, our work contributes toward
safer and more dependable AI deployments.

We do not anticipate significant negative societal impacts. Our method is unsupervised, operates
solely at test time, and does not require access to sensitive data or any form of user interaction.
Nonetheless, as with all performance-enhancing techniques, there is potential for misuse in contexts
where robustness could amplify existing biases or be deployed without appropriate oversight. We
encourage future work to consider fairness and accountability as these methods are applied more
broadly.

22

B Theoretical analysis

B.1 Variance decomposition

In this section we give formal proof of variance decomposition.
Lemma B.1.

VGT
total = VGT

intra + VGT
inter, VPL

total = VPL
intra + VPL

inter. (11)

Proof. We define “prior” for each class c = 1, · · · , C:

ȳc =
1

N

N∑
i=1

yic, (12)

The class means are

z̄c :=

∑N
i=1 yic · zi∑N

i=1 yic
=

1

N

N∑
i=1

yic
ȳc
· zi. (13)

The global mean is

z̄ =
1

N

N∑
i=1

zi. (14)

Notice that for all class c = 1, · · · , C, we have

1

N

N∑
i=1

yic
ȳc

(zi − z̄c) =

(
1

N

N∑
i=1

yic
ȳc

zi

)
−

(
1

N

N∑
i=1

yic
ȳc

z̄c

)

= z̄c −

(
1

N

N∑
i=1

yic
ȳc

z̄c

)
(definition of z̄c)

= z̄c − z̄c (definition of ȳc)
= 0

Therefore,

VGT
total =

1

N · C

N∑
i=1

C∑
c=1

yic
ȳc
∥zi − z̄∥22

=
1

N · C

N∑
i=1

C∑
c=1

yic
ȳc
∥zi − z̄c + z̄c − z̄∥22

=
1

N · C

N∑
i=1

C∑
c=1

yic
ȳc

(
∥zi − z̄c∥22 + ∥z̄c − z̄∥22 + 2 (zi − z̄c)

⊤
(z̄c − z̄)

)
=

1

N · C

N∑
i=1

C∑
c=1

yic
ȳc
∥zi − z̄c∥22 +

1

N · C

N∑
i=1

C∑
c=1

yic
ȳc
∥z̄c − z̄∥22

=
1

N · C

N∑
i=1

C∑
c=1

yic
ȳc
∥zi − z̄c∥22 +

1

C

C∑
c=1

∥z̄c − z̄∥22 (definition of ȳc)

= VGT
intra + VGT

inter

By replacing each yic with ŷic, z̄c with z̃c, and z̄ with z̃, and repeating the above steps, it is
straightforward to prove VPL

total = VPL
intra + VPL

inter.

23

B.2 Theoretical setup

This section introduces the setup and assumptions of our theoretical analysis. For simplicity, we
focus on a binary classification setting where C = 2. While the standard notation of label for image
i is yi = [yi0, yi1]

⊤ ∈ R2, we write yi = yi1 for brevity, with a mild abuse of notation. We also
assume there is no label imbalance, i.e., Pr(yi = 0) = Pr(y1 = 1) = 1

2 .

Image latent representation Motivated by [39], we assume that each image can be mapped to a
disentangled latent representation vi = [vcls

i ;virr
i ;vshift

i ;vnoise
i] ∈ Rd, composed of four components:

1. Class-relevant feature vcls
i ∈ Rdcls : Semantic feature that are directly predictive of the class

label, vcls
i = µ for yi = 1 and vcls

i = −µ for yi = 0.

2. Class-irrelevant feature virr
i ∈ Rdirr : Features that are unrelated to the classification task,

such as background information. It is preserved during pretraining due to CLIP’s general rep-
resentation learning objective. We assume virr

i ∼ Rademacherdirr , i.e., uniformly distributed
in {−1, 1}dirr .

3. Structured distribution shift vshift
i ∈ Rdshift : Features representing systematic distribution

changes in the target domain, such as weather conditions or digital transforms. We assume
vshift
i = s · δ, where s indicates the severity of corruption or distribution shift.

4. Unstructured noise vnoise
i : Random noise introduced by the corruption process. We assume

vnoise ∼ s · Rademacherdnoise , i.e., uniformly distributed in {−1, 1}dnoise .

Notice that by controlling the ratio of s, ∥µ∥2, ∥δ∥2, we can freely adjust the ratio for four compo-
nents.

LayerNorm and image embedding Following the structure of CLIP’s visual encoder, we assume
that the latent representation vi first passes through a LayerNorm layer [2] with linear transformation,
and then normalized to unit length. For analytical simplicity, we omit the demeaning step LayerNorm
and ignore the bias term in its parameters. This simplification is also known as RMSNorm [41].
Under this simplification, the image embedding can be expressed as

zi = normalize

(
vi√

Var[vi]
⊙w

)
, (15)

where ⊙ represents element-wise multiplication of vectors, w = [wcls;wirr;wshift;wnoise] ∈ Rd is
the LayerNorm weights, and normalize(·) denotes ℓ2 normalization. For simplicity, we assume
w = 1 at initialization. w is updated during TTA. Since

√
Var[vi] is just a scalar, the equation above

can be further reduced to

zi = normalize (vi ⊙w) =
vi ⊙w

∥vi ⊙w∥2
. (16)

Text embedding and prediction Let t0, t1 denotes the text embedding for class 0 and 1, respec-
tively. The model prediction is given by

yi =

{
0, when z⊤

i t0 ≥ z⊤
i t1

1, when z⊤
i t0 < z⊤

i t1
(17)

24

B.3 Change of variances under corruption

This section studies the behavior of various types of variance with increasing corruption severity s.
Theorem 3.1 (Variance collapse). When the sample size N → +∞,

VGT
inter

p−→ ∥µ∥22
∥µ∥22 + dirr + s2 · ∥δ∥22 + s2 · dnoise

, VGT
intra

p−→ dirr + s2 · dnoise

∥µ∥22 + dirr + s2 · ∥δ∥22 + s2 · dnoise
, (2)

where s denotes the corruption severity. As s increases, VGT
inter strictly decreases. In addition, VGT

intra
also decreases when ∥δ∥2 ≥

√
dnoise/dirr · ∥µ∥2.

Proof. We first compute the normalizing factor for each image:
∥vi ⊙w∥22 = ∥vcls

i ⊙wcls∥22 + ∥virr
i ⊙wirr∥22 + ∥vshift

i ⊙wshift∥22 + ∥vnoise
i ⊙wnoise∥22

= ∥µ⊙wcls∥22 + ∥wirr∥22 + s2 · ∥δ ⊙wshift∥22 + s2 · ∥wnoise∥22
= ∥µ∥22 + dirr + s2 · (∥δ∥22 + dnoise) (at initialization w = 1)

Notice that this normalizing factor is the same for each image, and is a function of w and severity s.
Let

Z(w, s) =
√
∥µ⊙wcls∥22 + ∥wirr∥22 + s2 · ∥δ ⊙wshift∥22 + s2 · ∥wnoise∥22

denote the normalizing factor. Under infinite sample size, the total mean z̄ and class means z̄0, z̄1
can be expressed as:

z̄
p−→ Ezi =

1

Z(w, s)
· [0;0; s · δ ⊙wshift;0]

z̄0
p−→ E[zi|yi = 0] =

1

Z(w, s)
· [µ⊙wcls;0; s · δ ⊙wshift;0]

z̄1
p−→ E[zi|yi = 1] =

1

Z(w, s)
· [−µ⊙wcls;0; s · δ ⊙wshift;0]

The GT-total variance:
VGT

total
p−→ E∥zi − Ezi∥22

=
1

Z(w, s)2
·
(
∥µ⊙wcls∥22 + ∥wirr∥22 + 0 + ∥wnoise∥22

)
=

∥µ⊙wcls∥22 + ∥wirr∥22 + s2 · ∥wnoise∥22
∥µ⊙wcls∥22 + ∥wirr∥22 + s2 · ∥δ ⊙wshift∥22 + s2 · ∥wnoise∥22

=
∥µ∥22 + dirr + s2 · dnoise

∥µ∥22 + dirr + s2 · (∥δ∥22 + dnoise)
(at initialization w = 1)

The GT-inter variance:

VGT
inter

p−→ 1

2

2∑
c=1

∥E[zi|yi = c]− Ezi∥22

=
1

Z(w, s)2
· ∥µ∥22

=
∥µ⊙wcls∥22

∥µ⊙wcls∥22 + ∥wirr∥22 + s2 · ∥δ ⊙wshift∥22 + s2 · ∥wnoise∥22

=
∥µ∥22

∥µ∥22 + dirr + s2 · (∥δ∥22 + dnoise)
(at initialization w = 1)

And the GT-intra variance:
VGT

intra = VGT
total − VGT

inter

p−→ ∥wirr∥22 + s2 · ∥wnoise∥22
∥µ⊙wcls∥22 + ∥wirr∥22 + s2 · ∥δ ⊙wshift∥22 + s2 · ∥wnoise∥22

=
dirr + s2 · dnoise

∥µ∥22 + dirr + s2 · (∥δ∥22 + dnoise)
(at initialization w = 1)

25

B.4 Adaptation

In this section, we derive how maximizing the pseudo-label inter-class (PL-inter) variance influences
the learned representation, when only the LayerNorm parameters are updated during test-time
adaptation.
Lemma B.2. When the sample size N → +∞,

VPL
inter

p−→ 1

2

(
1

(Eŷi)2
+

1

(1− Eŷi)2

)
· ∥Cov(zi, ŷi)∥22.

Proof.

E[zi|ŷi = 1] =
E[ŷi · zi]

Eŷi
=

Eŷi · Ezi +Cov(zi, ŷi)

Eŷi
= Ezi +

Cov(zi, ŷi)

Eŷi

E[zi|ŷi = 0] = Ezi −
Cov(zi, ŷi)

1− Eŷi

VPL
inter

p−→ 1

2

2∑
c=1

∥E[zi|ŷi = c]− Ezi∥22 =
1

2

(
1

(Eŷi)2
+

1

(1− Eŷi)2

)
· ∥Cov(zi, ŷi)∥22

Remark B.3.
Cov(zi, ŷi) ∼ Cov(zi, z

⊤
i (t1 − t0)) = Σzi

(t1 − t0)

where Σzi
is the covariance matrix of zi and t0, t1 are the text embedding of class 0 and 1. This

implies that maximizing PL-inter will enhance those features that (1) have high variance, and (2) are
more relevant to the classification task described by the text embedding.
Theorem 3.2 (Maximization of PL-inter variance). When the sample size N →∞,

VPL
inter

p−→ C(Eŷi)
2

·
4σ2

ŷy · ∥µ⊙wcls∥22 + ∥σirr ⊙wirr∥22 + ∥σnoise ⊙wnoise∥22
∥µ⊙wcls∥22 + ∥wirr∥22 + s2 · ∥δ ⊙wshift∥22 + s2 · ∥wnoise∥22

, (3)

where C(Eŷi) = 1
(Eŷi)2

+ 1
(1−Eŷi)2

, σŷy = Cov(yi, ŷi), σirr = Cov(virr, ŷi), and σnoise =

Cov(vnoise, ŷi). Furthermore, when σ2
ŷy ≥

∥σirr∥2
2

4dirr
and σ2

ŷy ≥
∥σnoise∥2

2

4dnoise
, we have

∇wclsVPL
inter = C(Eŷi) ·

(4σ2
ŷydirr − ∥σirr∥22) + 4σ2

ŷys
2∥δ∥22 + (4σ2

ŷydnoise − ∥σnoise∥22)
(∥µ∥22 + dirr + s2 · (∥δ∥22 + dnoise))2

· µ2 ≥ 0,

(4)

∇wshiftVPL
inter = −C(Eŷi) ·

VPL
inter

∥µ∥22 + dirr + s2 · (∥δ∥22 + dnoise)
· s2 · δ2 ≤ 0. (5)

Proof. Similar to the procedure of deriving GT-inter, we start by computing the total mean z̃ and
pseudo-class means z̃0, z̃1.

z̃
p−→ Ezi =

1

Z(w, s)
· [0;0; s · δ ⊙wshift;0]

z̃1
p−→ E[zi|ŷi = 1] =

1

Eŷi
· 1

Z(w, s)
· E[ŷi · vi ⊙w]

z̃0
p−→ E[zi|ŷi = 0] =

1

1− Eŷi
· 1

Z(w, s)
· E[(1− ŷi) · vi ⊙w]

where Z(w, s) =
√
∥µ⊙wcls∥22 + ∥wirr∥22 + s2 · ∥δ ⊙wshift∥22 + s2 · ∥wnoise∥22 is the normalizing

factor we defined in the proof of Theorem 3.1. For four components of the feature:

E[ŷi · vcls
i ⊙wcls] = E[ŷi · (2yi − 1) · µ⊙wcls] = 2Cov(ŷi, yi) · µ⊙wcls

E[ŷi · virr
i ⊙wirr] = Cov(ŷi,v

irr)⊙wirr

E[ŷi · vshift
i ⊙wshift] = Eŷi · s · δ ⊙wshift

E[ŷi · vnoise
i ⊙wnoise] = Cov(ŷi,v

noise)⊙wnoise

26

And similarly,

E[(1− ŷi) · vcls
i ⊙wcls] = E[(1− ŷi) · (2yi − 1) · µ⊙wcls] = −2Cov(ŷi, yi) · µ⊙wcls

E[(1− ŷi) · virr
i ⊙wirr] = −Cov(ŷi,virr)⊙wirr

E[(1− ŷi) · vshift
i ⊙wshift] = E(1− ŷi) · s · δ ⊙wshift

E[(1− ŷi) · vnoise
i ⊙wnoise] = −Cov(ŷi,vnoise)⊙wnoise

Therefore, we have

VPL
inter

p−→ 1

2

2∑
c=1

∥E[zi|ŷi = c]− Ezi∥22

=
1

2
·
(

1

(Eŷi)2
+

1

(1− Eŷi)2

)
· 1

Z(w, s)2
·(

4Cov(ŷi, y)
2 · ∥µ⊙wcls∥22 + ∥Cov(ŷi,virr)⊙wirr∥22 + ∥Cov(ŷi,vnoise)⊙wnoise∥22

)
=

1

2
·
(

1

(Eŷi)2
+

1

(1− Eŷi)2

)
·

4σ2
ŷy · ∥µ⊙wcls∥22 + ∥σirr ⊙wirr∥22 + ∥σnoise ⊙wnoise∥22

∥µ⊙wcls∥22 + ∥wirr∥22 + s2 · ∥δ ⊙wshift∥22 + s2 · ∥wnoise∥22
As a simple correctness check, when the pseudo-label ŷi = yi, ∀i, substituting Eŷi = Eyi = 1

2 ,
σŷy = Var(yi) = 1

4 , σirr = 0, and σnoise = 0 recovers the result of GT-inter variance VGT
inter in

Theorem 3.1.

Finally, we compute the gradients w.r.t. four components of w at initialization. Note that although the
pseudo-labels ŷi depend on the model parameters, this dependence involves an argmax operation
and is thus non-differentiable. Therefore, during optimization, we treat the pseudo-labels as fixed
constants and do not backpropagate through them. Let C(Eŷi) = 1

(Eŷi)2
+ 1

(1−Eŷi)2
,

∇wclsVPL
inter =

C(Eŷi)
2

·
(4σ2

ŷy∥wirr∥22 − ∥σirr ⊙wirr∥22) + (4σ2
ŷys

2∥δ ⊙wshift∥22) + (4σ2
ŷy∥wnoise∥22 − ∥σnoise ⊙wnoise∥22)

Z(w, s)4
·

2µ2 ⊙wcls

= C(Eŷi) ·
(4σ2

ŷydirr − ∥σirr∥22) + 4σ2
ŷys

2∥δ∥22 + (4σ2
ŷydnoise − ∥σnoise∥22)

(∥µ∥22 + dirr + s2 · (∥δ∥22 + dnoise))2
· µ2

∇wshiftVPL
inter =

C(Eŷi)
2

· −
4σ2

ŷy · ∥µ⊙wcls∥22 + ∥σirr ⊙wirr∥22 + ∥σnoise ⊙wnoise∥22
Z(w, s)4

· s2 · 2δ2 ⊙wshift

= −C(Eŷi) ·
VPL

inter

∥µ∥22 + dirr + s2 · (∥δ∥22 + dnoise)
· s2 · δ2

27

C Experiments

C.1 Effect of corruptions

C.1.1 CIFAR-10-C

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Gaussian Noise

total
intra
inter

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Shot Noise

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Impulse Noise

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Defocus Blur

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25
Va

ria
nc

e
Glass Blur

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Motion Blur

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Zoom Blur

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Snow

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Frost

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Fog

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Brightness

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Contrast

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Elastic Transform

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Pixelate

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

0.25

Va
ria

nc
e

Jpeg Compression

Figure 8: Effect of different levels of corruptions on ViT-B/32 on CIFAR-10-C.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
GT-Inter Variance

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

 = 0.95

corruption
Original
Gauss.
Shot
Impul.
Defoc.
Glass
Motion
Zoom
Snow
Frost
Fog
Brit.
Contr.
Elastic
Pixel
JPEG

severity
level 1
level 2
level 3
level 4
level 5

Figure 9: Correlation of GT-inter variance and classification accuracy of ViT-B/32 on CIFAR-10-C.

Table 4: Pearson correlation coefficients between accuracy and variances on ViT-B/32 on CIFAR-10-
C.

VGT
total VGT

intra VGT
inter

Accuracy 0.9104 0.8286 0.9483

28

C.1.2 CIFAR-100-C

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20
Va

ria
nc

e

Gaussian Noise

total
intra
inter

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Shot Noise

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Impulse Noise

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Defocus Blur

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Glass Blur

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Motion Blur

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Zoom Blur

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Snow

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Frost

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Fog

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Brightness

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Contrast

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Elastic Transform

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20
Va

ria
nc

e

Pixelate

0 1 2 3 4 5
Severity

0.00

0.05

0.10

0.15

0.20

Va
ria

nc
e

Jpeg Compression

Figure 10: Effect of different levels of corruptions on ViT-B/16 on CIFAR-100-C.

0.02 0.03 0.04 0.05 0.06 0.07
GT-Inter Variance

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

 = 0.98

corruption
Original
Gauss.
Shot
Impul.
Defoc.
Glass
Motion
Zoom
Snow
Frost
Fog
Brit.
Contr.
Elastic
Pixel
JPEG

severity
level 1
level 2
level 3
level 4
level 5

Figure 11: Correlation of GT-inter variance and classification accuracy of ViT-B/16 on CIFAR-100-C.

Table 5: Pearson correlation coefficients between accuracy and variances on ViT-B/16 on CIFAR-
100-C.

VGT
total VGT

intra VGT
inter

Accuracy 0.9364 0.8560 0.9752

29

C.1.3 ImageNet-C

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Va

ria
nc

e

Gaussian Noise

total
intra
inter

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Shot Noise

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Impulse Noise

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Defocus Blur

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Glass Blur

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Motion Blur

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Zoom Blur

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Snow

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Frost

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Fog

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Brightness

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Contrast

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Elastic Transform

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Pixelate

0 1 2 3 4 5
Severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e

Jpeg Compression

Figure 12: Effect of different levels of corruptions on ViT-L/14 on ImageNet-C.

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275
GT-Inter Variance

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

 = 0.93

corruption
Original
Gauss.
Shot
Impul.
Defoc.
Glass
Motion
Zoom
Snow
Frost
Fog
Brit.
Contr.
Elastic
Pixel
JPEG

severity
level 1
level 2
level 3
level 4
level 5

Figure 13: Correlation of GT-inter variance and classification accuracy of ViT-L/14 on ImageNet-C.

Table 6: Pearson correlation coefficients between accuracy and variances on ViT-L/14 on ImageNet-
C.

VGT
total VGT

intra VGT
inter

Accuracy 0.8937 0.7753 0.9332

30

C.2 Experiment details

C.2.1 Baselines

For all methods, expect from TPT [35] and CLIPArTT [15] which modifies the prompts, we use the 7
template in [44]:

• “itap of a {class}”
• “a bad photo of the {class}”
• “a origami {class}”
• “a photo of the large {class}”
• “a {class} in a video game”
• “art of the {class}”
• “a photo of the small {class}”

The text embedding for each class y is computed by

ty = normalize

(
k∑

κ=1

ty,κ

)
,where ty,κ = normalize(text_encoder({templateκ, classnamey}))

The following is our detailed handling method for other baselines and the usage of hyperparameters.
The above hyperparameters are derived from those used in experiments reported in previous papers.

• For all augmentation-based baselines (TPT [35], TPS [36], Zero [11], VTE [8]), we use
AugMix to augment each test image 63 times to obtain a batch of 64 images, which includes
the original image. We select 10% of samples in the batch with lowest entropy to aggregate.

• In TPT [35], the number of prompt tokens is 4, the prompt is initialized with “a photo of a”,
and class-specific contexts are disabled. We use the AdamW optimizer and adopt a learning
rate of 0.005, consistent with the setting used for ImageNet in the original papers.

• In TDA [19], positive cache is enabled with a shot capacity of 3, an adaptation strength (α)
of 2.0, and a sharpness ratio (β) of 5.0. The negative cache is enabled with a shot capacity of
2, an adaptation strength (α) of 0.117, and a sharpness ratio (β) of 1.0, an entropy threshold
between 0.2 and 0.5, and a mask threshold between 0.03 and 1.0.

• In DMN-ZS [45], the positive cache is enabled with a shot capacity of 50, an adaptation
strength (α) of 0.3, and a sharpness ratio (β) of 5.5.

• In TPS [36], we also use the AdamW optimizer and adopt a learning rate of 0.005, consistent
with the setting used for ImageNet in the original papers.

• In WATT-S [28], the learning rate is 0.001, the weight averaging is performed in a sequential
manner, with 2 iterations per template and 5 total rounds of averaging.

• In CLIPArTT [15], the learning rate is 0.001, the adaptation process runs for 10 steps, and
the top 3 predicted classes are used to construct the pseudo-label prompt.

C.2.2 Compute resources

All of our experiments are conducted on single NVIDIA Tesla V100 with 32GB memory, except for
experiments on large batch size are conducted on single NVIDIA Tesla A100 with 80GB memory.

C.2.3 Licenses

The corruption benchmark is licensed under the Apache-2.0 License, as indicated at https://
github.com/hendrycks/robustness. CLIP is licensed under the MIT License, as stated at
https://github.com/openai/CLIP.

31

https://github.com/hendrycks/robustness
https://github.com/hendrycks/robustness
https://github.com/openai/CLIP

C.3 Full results for RQ1

Table 7: Accuracy (mean (s.d.) %) on corruption benchmarks with different batch sizes.

ViT-B/32 on CIFAR-10-C

Batch Size Noise Blur Weather Digital
Avg.

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG

1 57.9 (0.5) 61.3 (0.4) 52.3 (0.3) 76.2 (0.2) 60.0 (0.2) 76.9 (0.1) 79.2 (0.2) 79.1 (0.1) 78.9 (0.3) 75.2 (0.2) 86.4 (0.1) 76.6 (0.1) 70.3 (0.2) 63.4 (0.8) 63.3 (0.3) 70.5 (0.1)

2 58.0 (0.5) 61.3 (0.3) 52.3 (0.4) 76.2 (0.3) 60.0 (0.2) 76.9 (0.1) 79.3 (0.2) 79.1 (0.1) 78.9 (0.3) 75.2 (0.2) 86.4 (0.1) 76.6 (0.1) 70.3 (0.2) 63.4 (0.8) 63.2 (0.2) 70.5 (0.1)

5 60.6 (0.1) 62.9 (0.2) 53.3 (0.3) 76.2 (0.2) 60.8 (0.2) 77.0 (0.2) 79.2 (0.2) 79.1 (0.1) 78.9 (0.3) 75.1 (0.2) 86.4 (0.1) 76.8 (0.1) 70.4 (0.3) 64.6 (0.5) 63.2 (0.1) 71.0 (0.0)

10 59.8 (0.4) 62.8 (0.3) 54.0 (0.3) 76.0 (0.3) 61.3 (0.3) 77.1 (0.2) 79.1 (0.3) 79.0 (0.2) 78.8 (0.3) 75.1 (0.1) 86.4 (0.2) 76.8 (0.1) 70.3 (0.2) 65.7 (0.5) 63.2 (0.1) 71.0 (0.1)

50 59.0 (0.5) 62.4 (0.4) 54.2 (0.3) 75.8 (0.2) 61.8 (0.3) 77.1 (0.2) 78.9 (0.2) 79.0 (0.1) 78.9 (0.2) 75.2 (0.1) 86.3 (0.1) 76.9 (0.1) 70.1 (0.3) 66.6 (0.3) 63.4 (0.2) 71.0 (0.1)

100 58.8 (0.7) 62.0 (0.4) 54.2 (0.3) 75.6 (0.3) 62.4 (0.4) 77.0 (0.2) 78.7 (0.3) 78.9 (0.1) 78.7 (0.3) 75.1 (0.2) 86.4 (0.1) 77.1 (0.1) 69.7 (0.2) 67.2 (0.2) 63.4 (0.2) 71.0 (0.1)

200 58.0 (1.0) 61.3 (0.5) 54.7 (0.5) 75.0 (0.2) 62.2 (0.6) 77.0 (0.2) 78.4 (0.3) 78.5 (0.2) 78.6 (0.3) 74.9 (0.1) 86.2 (0.1) 77.0 (0.1) 68.0 (0.3) 67.0 (0.5) 62.0 (0.2) 70.6 (0.1)

ViT-B/16 on CIFAR-100-C

Batch Size Noise Blur Weather Digital
Avg.

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG

1 23.9 (0.4) 26.1 (0.4) 37.2 (0.2) 50.5 (0.1) 27.0 (0.2) 49.6 (0.3) 55.3 (0.2) 53.0 (0.2) 51.6 (0.2) 50.1 (0.2) 65.5 (0.1) 46.6 (0.3) 36.7 (0.2) 34.4 (0.5) 38.7 (0.6) 43.1 (0.1)

2 23.9 (0.4) 26.2 (0.4) 37.2 (0.2) 50.5 (0.1) 27.0 (0.2) 49.7 (0.3) 55.3 (0.2) 53.0 (0.2) 51.6 (0.1) 50.1 (0.2) 65.5 (0.2) 46.7 (0.3) 36.7 (0.2) 34.5 (0.5) 38.7 (0.6) 43.1 (0.1)

5 24.8 (0.3) 27.1 (0.6) 37.5 (0.2) 50.6 (0.1) 27.1 (0.2) 49.7 (0.3) 55.4 (0.1) 53.0 (0.2) 51.7 (0.2) 50.3 (0.2) 65.5 (0.2) 47.0 (0.3) 36.7 (0.2) 34.4 (0.6) 38.7 (0.5) 43.3 (0.1)

10 26.4 (0.7) 28.9 (0.8) 38.0 (0.2) 50.6 (0.1) 27.1 (0.2) 49.7 (0.2) 55.4 (0.1) 53.0 (0.2) 51.7 (0.2) 50.4 (0.1) 65.5 (0.1) 47.5 (0.3) 36.8 (0.2) 34.4 (0.6) 38.7 (0.6) 43.6 (0.1)

20 29.4 (0.5) 30.8 (0.7) 38.6 (0.2) 50.7 (0.2) 27.1 (0.2) 49.9 (0.2) 55.5 (0.1) 53.0 (0.2) 51.8 (0.1) 50.6 (0.2) 65.6 (0.1) 48.1 (0.2) 36.8 (0.2) 34.4 (0.7) 38.7 (0.5) 44.1 (0.1)

50 31.4 (0.3) 33.0 (0.5) 39.4 (0.3) 50.9 (0.1) 26.8 (0.2) 50.0 (0.3) 55.5 (0.2) 53.1 (0.2) 51.9 (0.1) 50.8 (0.1) 65.8 (0.2) 49.2 (0.1) 36.9 (0.2) 34.6 (1.0) 38.3 (0.5) 44.5 (0.1)

100 31.1 (0.2) 33.4 (0.4) 40.0 (0.3) 51.0 (0.2) 27.1 (0.3) 50.1 (0.3) 55.5 (0.1) 53.1 (0.2) 51.9 (0.1) 51.0 (0.1) 65.8 (0.1) 49.5 (0.2) 36.7 (0.2) 34.6 (0.9) 37.4 (0.4) 44.5 (0.1)

200 30.8 (0.4) 33.5 (0.5) 40.2 (0.2) 51.2 (0.2) 27.5 (0.5) 50.3 (0.2) 55.6 (0.2) 53.3 (0.2) 52.0 (0.2) 51.2 (0.1) 65.9 (0.3) 49.6 (0.2) 36.8 (0.1) 34.9 (0.7) 36.8 (0.3) 44.6 (0.1)

ViT-L/14 on ImageNet-C

Batch Size Noise Blur Weather Digital
Avg.

Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG

1 31.6 (0.5) 33.2 (0.1) 36.3 (0.2) 41.0 (0.2) 37.6 (0.3) 46.5 (0.4) 41.3 (0.4) 54.0 (0.1) 43.4 (0.1) 57.4 (0.3) 67.7 (0.1) 45.7 (0.3) 41.5 (0.1) 55.7 (0.5) 54.8 (0.2) 45.8 (0.1)

2 31.9 (0.4) 33.0 (0.3) 37.2 (0.2) 40.1 (0.2) 37.6 (0.2) 46.7 (0.3) 42.1 (0.4) 54.5 (0.3) 43.8 (0.2) 57.7 (0.2) 67.7 (0.1) 47.7 (0.5) 41.5 (0.3) 57.1 (0.3) 55.1 (0.1) 46.2 (0.1)

5 32.4 (0.4) 33.4 (0.3) 37.1 (0.3) 39.7 (0.4) 37.6 (0.3) 46.7 (0.5) 43.4 (0.3) 55.6 (0.4) 44.4 (0.4) 57.7 (0.2) 67.8 (0.1) 49.4 (0.7) 42.0 (0.4) 57.8 (0.2) 55.3 (0.1) 46.7 (0.1)

10 32.6 (0.3) 33.6 (0.2) 36.8 (0.1) 39.7 (0.4) 37.6 (0.5) 46.8 (0.4) 44.1 (0.4) 55.3 (0.2) 45.2 (0.7) 57.5 (0.2) 67.7 (0.1) 49.4 (0.8) 42.8 (0.3) 58.3 (0.1) 55.2 (0.3) 46.8 (0.1)

20 33.0 (0.3) 34.3 (0.3) 37.3 (0.2) 39.6 (0.4) 37.2 (0.4) 46.6 (0.3) 45.1 (0.5) 55.2 (0.1) 46.6 (0.7) 57.5 (0.1) 67.7 (0.2) 48.9 (0.8) 43.9 (0.4) 58.2 (0.2) 54.6 (0.7) 47.0 (0.2)

50 33.2 (0.4) 35.1 (0.2) 37.6 (0.5) 38.8 (0.3) 36.9 (0.4) 47.1 (0.2) 45.4 (0.6) 55.0 (0.3) 48.3 (0.7) 57.5 (0.2) 67.4 (0.2) 47.0 (1.1) 45.1 (0.1) 57.9 (0.3) 54.8 (0.6) 47.1 (0.1)

100 33.8 (0.5) 34.9 (0.3) 37.6 (0.2) 38.6 (0.4) 37.2 (0.5) 47.4 (0.5) 45.7 (0.4) 55.0 (0.3) 48.9 (0.2) 57.5 (0.4) 67.2 (0.2) 44.2 (1.4) 46.0 (0.3) 57.4 (0.2) 54.0 (0.4) 47.0 (0.2)

200 33.9 (0.2) 34.7 (0.5) 37.7 (0.1) 38.7 (0.1) 37.2 (0.5) 47.2 (0.4) 45.3 (0.5) 54.7 (0.3) 49.1 (0.2) 57.5 (0.3) 67.3 (0.2) 42.0 (1.9) 46.3 (0.5) 57.0 (0.3) 53.8 (0.7) 46.8 (0.1)

C.4 Full results for RQ2

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Gaussian Noise

Adapted
before
after

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Shot Noise

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Impulse Noise

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Defocus Blur

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Glass Blur

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Motion Blur

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Zoom Blur

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Snow

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Frost

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Fog

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Brightness

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Contrast

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Elastic Transform

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Pixelate

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Jpeg Compression

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Figure 14: Variance collapse mitigation on CIFAR-10-C.

32

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Gaussian Noise

Adapted
before
after

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Shot Noise

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Impulse Noise

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Defocus Blur

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Glass Blur

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Motion Blur

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Zoom Blur

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Snow

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10
Va

ria
nc

e
Frost

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Fog

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Brightness

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Contrast

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Elastic Transform

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Pixelate

PL-inter GT-inter accuracy
0.00

0.02

0.04

0.06

0.08

0.10

Va
ria

nc
e

Jpeg Compression

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Figure 15: Variance collapse mitigation on CIFAR-100-C.

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Gaussian Noise

Adapted
before
after

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Shot Noise

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Impulse Noise

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Defocus Blur

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Glass Blur

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Motion Blur

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Zoom Blur

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Snow

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Frost

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Fog

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Brightness

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Contrast

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Elastic Transform

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Pixelate

PL-inter GT-inter accuracy
0.0

0.1

0.2

0.3

0.4

0.5

Va
ria

nc
e

Jpeg Compression

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Figure 16: Variance collapse mitigation on ImageNet-C.

33

C.5 Ablation on layers to adapt

Mint adapts all LayerNorm layers in the vision encoder. Alternative choices include updating only
the last block, the last MLP layer, or the first patching layer. Our comparison shows that updating
all LayerNorm layers yields the best performance. For further discussions on which layers are most
effective to adapt, we refer readers to related studies [23, 4].

Table 8: Comparison of different parts of the image encoder to update at test-time on CIFAR-10-C
with ViT-B/32.

Layers to adapt Accuracy (%)

Last block 63.4
Last MLP 62.9
Patching layer 63.6
All LayerNorm (Mint) 71.0

C.6 Hyperparameter sensitivity

In this subsection, we provide the results of hyperparameter sensitivity experiments on CIFAR-10-C
and CIFAR-100-C.

0.003 0.006 0.009 0.012 0.015
Learning Rate

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

1 2 5 10 20 50 100 +
Kprior (×103)

CLIP Ensemble

Figure 17: Hyperparameter sensitivity on CIFAR-10-C.

0.003 0.006 0.009 0.012 0.015
Learning Rate

34

36

38

40

42

44

46

Ac
cu

ra
cy

 (%
)

1 2 5 10 20 50 100 +
Kprior (×103)

CLIP Ensemble

Figure 18: Hyperparameter sensitivity on CIFAR-100-C.

34

C.7 Experiments on clean datasets

In this subsection, we offer the comparison between Mint and currently outstanding baselines,
CLIPArTT [15], WATT-S [28], TDA [19], DMN-ZS [45], Tent [38], and ETA [26], on clean
(non-corruption) datasets with ViT-B/32 on CIFAR-10, ViT-B/16 on CIFAR-100, and ViT-L/14
on ImageNet.

Table 9: Accuracy (%) on clean datasets.

Method ViT-B/32 on CIFAR-10 ViT-B/16 on CIFAR-100 ViT-L/14 on ImageNet

CLIP 88.3 68.4 73.0
CLIPArTT 89.1 70.2 72.1
WATT-S 89.8 72.3 74.5
TDA 89.6 70.1 73.4
DMN-ZS 90.2 69.4 73.1
Tent 91.1 72.2 73.4
ETA 91.4 73.0 73.6
Mint 91.6 74.1 75.6

C.8 Experiments on ImageNet variants

In this subsection, we provide the comparison between Mint and currently outstanding baselines,
CLIPArTT [15], WATT-S [28], TDA [19], DMN-ZS [45], Tent [38], and ETA [26] in ImageNet
variants (-A, -V2, -R, -Sketch) datasets with ViT-B/16.

Table 10: Accuracy (%) on ImageNet variants with ViT-B/16.

Method ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch

CLIP 49.2 60.4 72.7 44.9
CLIPArTT 49.6 60.5 72.8 45.0
WATT-S 51.7 61.2 75.7 47.0
TDA 51.0 61.2 73.9 46.4
DMN-ZS 49.7 60.5 73.0 45.4
Tent 51.9 61.0 77.0 45.4
ETA 52.0 61.0 77.4 46.8
Mint 54.7 62.6 78.1 48.4

C.9 Mixture corruption datasets

In this subsection, we compare between Mint and currently outstanding baselines, CLIPArTT [15],
WATT-S [28], TDA [19], and DMN-ZS [45], on mixture of 15 types of corruption datasets on
CIFAR-10-C with ViT-B/32, CIFAR-100-C with ViT-B/16, and ImageNet-C with ViT-L/14. While
the results in the main text are obtained by testing on each corruption type separately, here we first
mix the data from all 15 corruptions together and then perform evaluation on this mixed-domain
setting, following the setup in [27].

Table 11: Accuracy on Mixture of 15 Types of Corruptions.

Method CIFAR-10-C CIFAR-100-C ImageNet-C

CLIP 59.0 35.8 39.6
TDA 62.1 38.3 42.3
DMN-ZS 60.2 36.0 39.9
WATT-S 63.6 39.0 43.9
CLIPArTT 56.9 38.7 40.5
Mint 65.9 39.8 45.2

35

	Introduction
	Related works
	Analysis
	Variance collapse
	Theoretical explanation
	Maximization of inter variance

	Proposed method: Mint
	Mean accumulator
	Gradient accumulator
	Adjust text embedding

	Experiments
	Conclusion
	Discussion
	Additional related works
	Limitations
	Broader impacts

	Theoretical analysis
	Variance decomposition
	Theoretical setup
	Change of variances under corruption
	Adaptation

	Experiments
	Effect of corruptions
	Experiment details
	Full results for RQ1
	Full results for RQ2
	Ablation on layers to adapt
	Hyperparameter sensitivity
	Experiments on clean datasets
	Experiments on ImageNet variants
	Mixture corruption datasets

