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Abstract

In lifelong learning, a model learns different tasks sequentially throughout its
lifetime. State-of-the-art deep learning models, however, struggle to generalize
in this setting and suffer from catastrophic forgetting of old tasks when learning
new ones. While a number of approaches have been developed in an attempt to
ameliorate this problem, there are no established, unified or generalized frameworks
for rigorous evaluations of proposed solutions; a problem which is particularly
pronounced in the domain of NLP. The few existing benchmarks are typically
limited to a specific flavor of lifelong learning – continual open-set classification
– where new classes, as opposed to tasks, are learned incrementally. Moreover,
the only general lifelong learning benchmark combines a multi-label classification
setup with a multi-class classification setup resulting in misleading gradients during
training. We empirically demonstrate that the catastrophic forgetting observed here
can be attributed to the experimental design rather than to any inherent modeling
limitations. To address these issues, we propose an experimental framework
for true, general lifelong learning in NLP. Using this framework, we develop a
comprehensive suite of benchmarks that target different properties of lifelong
learning (e.g., forgetting or intransigence); experiment with diverse facets of
language learning: multi-domain, multilingual, and different levels of linguistic
hierarchy; and present a continuous evaluation scheme under a new metric: Area
Under the Lifelong Test Curve. Our framework reveals shortcomings of prevalent
memory-based solutions, demonstrating they are unable to outperform a simple
experience replay baseline under the realistic lifelong learning setup.

1 Introduction

Research has shown that modern deep learning methods are able to learn a variety of complex language
tasks such as text classification and document ranking [57], language modeling and common sense
reasoning [6], question answering and document summarization [60]. In a single-task learning
setting, these models can learn a given task well and achieve state-of-the-art performance. However
in the lifelong learning setting, where several tasks are learned in sequence, such models often
fail to generalize and suffer from catastrophic forgetting [35], forgetting old tasks when learning
new ones. While there is a substantial ongoing effort to solve this problem, existing work has
shown that simple baselines can outperform a multitude of recently proposed solutions [39], pointing
that, despite existing progress, current methods are far from solving lifelong learning. Crucially,
for substantial progress to be made, there is a need for established consensus and/or unified and
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standardized approaches to evaluating lifelong learning. Parisi et al. [37] note that considerably less
attention has been paid to the rigorous evaluation of such solutions, while Farquhar and Gal [17] have
furthermore demonstrated a number of issues with existing lifelong learning experimental settings,
showing that existing evaluations are biased towards prior-focused (regularization) approaches. They
discover several blindspots in the existing evaluations that have created misleading comparisons in
recent works. Specifically, approaches to lifelong learning often adopt assumptions that simplify the
problem by assuming access to explicit task identifiers [27, 46] or by allowing unrestricted access to
the entire dataset of the current task to perform multiple passes over the data [42]. However, such
assumptions do not extend to general lifelong learning which must be able to adapt and generalize to
new unseen tasks in a realistic setting that precludes the use of any such explicit cues.

A recent survey [4] highlights that the dearth of dedicated datasets and benchmarks for evaluating
lifelong learning is particularly pronounced in the domain of natural language processing (NLP).
The few existing benchmarks in NLP are typically limited to a specific flavor of lifelong learning
– continual open-set classification [47]. They are predominantly focused on sequentially learning
new classes from a single task or very similar tasks. However, general lifelong learning must
incorporate truly diverse tasks if it is to be robust, versatile, and represent a holistic approach to
learning. Particularly within the NLP domain, the majority of existing benchmarks are not general in
scope. d'Autume et al. [15] present an exception by building a benchmark for the general lifelong
learning scenario: learning multiple tasks without explicit task identifiers. However, a shortcoming
we identify is the lack of distinction between different learning settings (multi-label vs. multi-class
classification), resulting in misleading gradients during training, which we show directly leads to
catastrophic forgetting (Section 3). Furthermore, we find the benchmark accidentally leaks explicit
task identifiers, and experimentally demonstrate that, once task identifiers are given, a simple system
that utilizes multiple task-specific heads outperforms the top-performing system on this benchmark.

Therefore, we consider lifelong learning in NLP in its true, generalized form, i.e., distinct multiple
tasks without giving away task identifiers explicitly. Specifically, we choose to work with pre-trained,
contextualized language models considering they have been a mainstay of this field. Our contributions
are as follows: 1) We analyze existing and prevalent lifelong learning benchmarks in NLP, and present
and discuss shortcomings in their design towards truly generalized lifelong learning; 2) We propose
Degree-of-Belief, a novel experimental framework that facilitates a general lifelong learning setting
for language models by incorporating multiple tasks without explicit task identifiers – Figure 3
illustrates Degree-of-Belief whereby the model must state its belief in the truth of a statement given
the context and its past knowledge; 3) We extend our framework with a comprehensive suite of
benchmarks that target different properties of lifelong learning (e.g., forgetting, intransigence) as
well as multiple facets of language learning: multi-domain, multilingual and different levels of
linguistic hierarchy; 4) We propose a new metric, Area Under the Lifelong Test Curve, that allows for
continuous model evaluation by measuring test accuracy throughout the lifelong learning process;
5) We release an open-source Lifelong Learning Library1 to evaluate proposed solutions to general
lifelong learning and investigate different properties of lifelong learning using a suite of data streams
(our framework can be easily extended with new data streams and tasks); 6) We present and evaluate
a number of baselines on our benchmarks and show that prevalent memory-based solutions are unable
to outperform simple experience replay models in a general lifelong learning setup.

2 General Lifelong Learning

In supervised learning, our aim is to learn a model f : X → Y to predict the target Y given the input
X using a dataset Dtr = {(xi,yi)}ni=1 of n examples, each consisting of an input vector xi ∈ X and
a target vector yi ∈ Y . The examples are iid (independently and identically distributed), assumed to
be independently sampled from a fixed distribution PT which characterizes the target task. Conversely
in lifelong learning, we observe a data stream of n examples {(x11, y11), . . . , (xji , y

j
i ), . . . , (xmn , y

m
n )}

sampled from a sequence of m different task distributions {P1, . . . , Pj , . . . , Pm}. The examples
are not sampled from identical distributions and the sampling process is dependent on the sequence
of tasks. Therefore, the iid assumption is violated during lifelong learning, posing a much more
challenging setting than “standard” single-task learning. During lifelong learning, models often suffer
from catastrophic forgetting where performance on previously seen tasks drops precipitously as new
tasks are learned.

1https://amanhussain.com/lifelong-learning/
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Herewith, we lay the following desiderata and define lifelong learning within a set of predefined
conditions that must simultaneously hold for it to be considered truly ‘general’:

A: Task plurality A lifelong learning model must learn multiple different tasks sequentially. This is
not to be conflated with open-set classification where new unseen classes are learned incrementally
instead. Continual open-set classification and open-world recognition have a flavor of lifelong
learning [18], but they are essentially classification tasks.

B: Task generality A lifelong learning model must generalize to new unseen tasks without requiring
explicit task identifiers. The use of explicit task identifiers oversimplifies the problem as one can
directly train a separate model for each task. When models are trained separately, there is no helpful
transfer of knowledge since the weights are not shared at all. Correspondingly, there is also no
catastrophic interference when there are no shared model parameters. The transfer-interference
trade-off is discussed in detail by Riemer et al. [43].

C: Online stream A lifelong learning model does not have access to the training data of previously
seen tasks; otherwise, it can simply re-learn from past data streams to ameliorate catastrophic
forgetting. It may, however, have capacity to save past data in some (compressed) form (e.g., a
memory component), while simultaneously being constrained by the fourth desideratum below. In
practice, there may be substantial computational cost involved in data retrieval, which can limit its use.
Also, a model that re-learns previously seen tasks in short intervals using a high retrieval rate may
start to resemble multi-task learning, diverging from the lifelong learning paradigm (Section 4.4).

D: Space complexity A lifelong learning model must have bounded space complexity where, for
example, the growth of model parameters and available memory is capped. An unconstrained model
memory may lead to learning settings where all previously seen data is directly stored and maintained
by the model in some (compressed) form. Lifelong learning is not required if all the training data can
be stored and re-trained upon.

The desiderata proposed above are in close alignment with several lifelong learning papers [17, 4, 30,
39], thereby establishing consensus on what general lifelong learning should look like.

3 Related Work and Limitations

In general, solutions proposed for lifelong learning can be classified into the following categories: i)
replay based approaches [44, 42, 50, 33, 9]; ii) regularization based approaches [27]; iii) architecture
based approaches [46, 59, 54]. In the domain of language, a number of lifelong learning methods
have also been proposed, including embedding aligned episodic memory replay [53]; memory-based
parameter adaptation with sparse experience replay (MbPA++) [15]; meta-learning with sparse
experience replay [23]; and language modeling for lifelong language learning [52].

However, we lack a unified and standardized approach for evaluating and benchmarking these
solutions. While some of the recent works, e.g. Sun et al. [52], have adopted multi-task benchmarks
such as decaNLP [34], others [58] have designed their own experiments to study the specifics of the
problem. Kruszewski et al. [28] propose CALM, a lifelong learning benchmark of character- and
word-based language modeling tasks. d'Autume et al. [15] present the Lifelong Text Classification
benchmark which consists of five different text classification tasks adopted from Zhang et al. [64]:
AG News article classifcation (4 classes), DBPedia ontology classification (14 classes), Yahoo
Answers topics classification (10 classes), sentiment analysis on the Yelp and Amazon reviews data
(5 classes each). They additionally present the Lifelong Extractive Question Answering benchmark
comprising three datasets: SQuAD 1.1 [41], TriviaQA [24], and QuAC [10]. Wang et al. [53] present
two different benchmarks: Lifelong FewRel, a lifelong few-shot relation classification dataset [21]
separated into 10 disjoint clusters of relation classes; and Lifelong Question Relations, a lifelong
single-relation question–answer dataset [5] with 20 disjoint clusters. Models learn to classify the
relations from each disjoint cluster, as they are presented sequentially.

Limitations of existing work include: 1) Lack of task plurality: Barring the Lifelong Text Classi-
fication benchmark, none of the datasets include multiple different tasks. Lifelong Extractive QA [15]
concerns extractive question–answering task on different datasets, primarily targeting multi-domain
lifelong learning; while CALM [28] only concerns language modeling tasks. The Lifelong FewRel
and Lifelong Question Relations datasets [53] focus on classifying relations within each disjoint
cluster as a task on its own. This resembles continual open-set classification rather than general
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Figure 1: Gradients for each class on the shared classifier head when training on the stream of {Yelp
Reviews, AG News, DBPedia, Amazon Reviews, Yahoo Answers Topics} with 10k examples each.

Figure 2: Left: test accuracy of each task while training a shared classifier head; right: test accuracy
of each task while training multiple classifier heads (one for each task).

lifelong learning in that it involves the single task of relation detection, albeit over an increasing
number of relation classes. All the above datasets are limited in scope in that they adopt a narrow
definition of a “task”. 2) Lack of task generality: The Lifelong Text Classification benchmark [15]
meets most of the desiderata for general lifelong learning. It defines no explicit task identifiers and
incorporates task plurality to an extent, as it comprises two different tasks: sentiment analysis and
topic classification (although both fall under text classification). The dataset consists of 38 classes in
total; although the authors reduce the number to 33 by treating the class labels from Amazon and
Yelp reviews the same. We conduct an analysis of this benchmark and experimental setup, keeping
the 38 classes separate for a more generalized setting. Following the authors’ original work, we train
a shared classifier head on top of pre-trained BERT [14] such that it learns to classify the classes from
each task in sequence. In effect, the model generates a probability distribution over N classes given
an input text x and model parameters W : pi = P (y = i|x,W ) ∀i ∈ {1, 2, . . . , N} where N = 38.
It is trained using cross-entropy loss: −

∑N
i=1 ti log(pi), where the true probability distribution is

represented by a one-hot truth vector t ∈ RN . It is thus framed as a multi-class classification problem.

However, we identify two issues with this experimental setup. First, an input text can belong to more
than one class and, therefore, a more appropriate learning setting would be multi-label as opposed to
multi-class classification; for example, a news article can belong to the “politics” topic and have a
“negative” sentiment. However, the one-hot truth vector zeros out all other labels except the target
one, therefore presenting an incomplete truth distribution. When training on new tasks sequentially,
the model is penalized for giving any amount of probability mass to classes outside the current task.

We verify this empirically by training the model described above on 10k examples from each dataset
using order (i) from [15]: Yelp reviews, AG News, DBPedia, Amazon reviews and Yahoo answers
topics. During training, we record the gradients received by the classifier head weights. In Figure 1,
we see the aggregated gradients (y-axis) on the shared classifier head across the training iterations
(x-axis). The gradients have been summed across the hidden dimension of the head such that the
aggregate reflects the total gradient for each of the 38 classes at every training iteration. The vertical
lines after every 10k examples mark the task boundaries. When the model is being trained on a
particular task, the class heads of that task receive diverse and informative gradients. When training
on a new task begins at the task boundaries, the class heads of the previous task start receiving
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uniform and uninformative gradients. These gradients might reverse all the learning on the previous
task since they are based on incomplete ground truth labels. The largest deterioration in performance
is observed immediately after the tasks are switched, i.e., right after the task boundaries. On the left of
Figure 2, we plot the train-time test accuracy of each task when using a shared classifier head. When
a new task is introduced, the accuracy on that task increases, whereas the accuracy on previous tasks
drops precipitously, demonstrating the patterns of catastrophic forgetting during training. However,
the drops in the accuracy of previous tasks are rather associated with the strength of the misleading /
incomplete gradients on the class heads of other tasks.

The second issue we identify with the experiment setup is that it inadvertently leaks explicit task
identifiers. All the classes, except those from the current task, are always set to zero. Thus, during
training, we can directly exploit this information to infer the current task identity. For example, we
can use the labels trick [62] to train only the heads which correspond to labels that exist in the current
batch; thereby training each of the task-specific heads separately. Ultimately, if the task identity
is known, we can use multiple heads, one for each task, instead of a shared head. In Figure 2, we
compare the shared head setup (left) against the multiple head one (right). For a direct comparison
with the results in d'Autume et al. [15], we train on the datasets (115k training examples each)
using order (i) and five different seeds: [1,2,3,4,42]. As hypothesized, we see no major catastrophic
forgetting in the multiple head setting (the average test accuracy is 72.68% ± 0.005). Therefore,
multiple heads alone can get very close to the multi-task learning upper bound (73.7%) achieved in
d'Autume et al. [15], when task identifiers are present or can be inferred. This suggests that almost
all of catastrophic forgetting in this benchmark seems to stem from the adopted experimental setup.

One may argue that switching to a multi-label classification setting would present an immediate
solution. However, we are practically constrained by the availability of data annotated across sets
of different tasks. Therefore, in the shared setup, it is impractical to incorporate multiple tasks
without additional annotations. Another way to incorporate multiple tasks would be to have multiple
task-specific heads, so as to avoid misleading gradients on other task heads. However, in this case, the
model will need explicit task identifiers to know which head to use, leading to loss of task generality.
To ensure a general lifelong learning setup, we need to implement the desiderata of both task plurality
and task generality without explicitly or indirectly leaking task identifiers.

4 Experimental Framework

4.1 Implementation of desiderata

We propose Degree-of-Belief, a framework that satisfies the task plurality and task generality desider-
ata for general lifelong learning. In this framework, the model should state its belief in the truth of a
statement given a context and its past knowledge. Formally, we model the probability of a statement
x being true as: P (y = 1|x, c,W ), where the context c is some input text, the statement x is some
assertion about that text, and the past knowledge is expressed by the learned weights W of the model.

Multiple different tasks can be encoded into this framework by using textual task descriptions in the
statement x itself. Instead of using explicit task identifiers which need to be hard-coded manually,
the model is required to implicitly understand task descriptions. Consider, for example, the task
of natural language inference, where the context may be formed by concatenating the hypothesis
sentence after the premise sentence, and example statements can take the form of: “This implies
entailment” or “It is a contradiction”. To ensure that the implicit task identifiers cannot be hard-coded
or memorized, we use semantically similar but syntactically different statements when encoding a
task in our framework; e.g., for word-in-context classification, the context is created by joining two
sentences that use the same word w but in a different sense, and the statement is formed by randomly
choosing either one of these two templates: “w is used in the same sense” or “w is the polysemous
word”. The training data stream, however, comprises of both true and false statements about a context,
such that the model has both positive and negative examples to learn from. The false statements are
formed by using incorrect labels for classification tasks or partially corrupting the token labels for
structured prediction tasks. The Datasheet B in the appendix provides the detailed processing steps
to encode all the different tasks. Figure 3 presents an example instantiation of our degree-of-belief
framework, exemplifying the statement, context and truth label for five different tasks.

Limitations The degree-of-belief framework is designed such that it can cover a diverse set of
language understanding tasks (such as inference, parsing, multi-choice QA, and relation extraction);
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Figure 3: Example instantiation of degree-of-belief for general lifelong learning with pre-trained
language models, demonstrating the statement, context, and truth labels for our stream of 5 tasks.

Figure 4: Lifelong learning evaluation metrics: forgetting Fm; intransigence Im; final average
accuracy Am; area under the lifelong test curve (AULTC). The accuracy matrix (left) records the
evaluation accuracy ai,j on task j when training on task i. The single task accuracy vector records
the evaluation accuracy a∗i,i on task i when training a single model for each task i ∈ 1, . . . ,m.

however, a limitation is that, in its current form, it does not cover generation and retrieval tasks. One
framework that can cover the full range of diverse and distinct NLP tasks presents a challenge to
the research community: among others, there is a need for architectures that fulfill the desiderata of
task generality by eschewing task-specific implementations, while tasks such as generation pose an
additional challenge in the requirement of objective evaluations of text quality and/or reference texts
[7], conflating the challenge of learning and evaluating the task with the challenge of catastrophic
forgetting in lifelong learning. We hope that degree-of-belief will serve as a platform for future work
in lifelong learning that seeks to extend and adapt it to cover additional types of NLP tasks, drawing
inspiration from work such as Text2Text [40] and the Multitask QA framework [34].

4.2 Evaluation scheme

We follow the work of Chaudhry et al. [8] and evaluate lifelong learning models on this set of metrics:
average accuracy Am, forgetting Fm, and intransigence Im (see Figure 4). Forgetting Fm is defined
as the difference between the maximum performance achieved on a task during lifelong learning
and the final performance on the task. Intransigence Im is defined as the inability to learn new tasks
during lifelong learning. The average accuracy defines the final performance of the model – it is
measured at the end of lifelong learning when the model has been trained on all tasks from 1 to m.
As lifelong learning is a continuous process, we extend this set and propose an online metric that
measures performance continuously throughout learning – area under the lifelong test curve (AULTC).
Rather than solely measuring average accuracy at the end of the training process, this metric allows us
to assess the average accuracy of the model across all m tasks after every b training iterations, where
the frequency of evaluation b controls the metric’s level of granularity; b can be varied depending on
computational constraints. On plotting the average accuracy of the model throughout training, we get
the lifelong test accuracy curve representing the overall lifelong learning performance.

6



4.3 Benchmark design

To design our benchmark, we consider a total of 16 different datasets encompassing 10 distinct tasks
(Appendix B). Among these, we seek to identify tasks for which pre-trained language models like
BERT [14] have been shown to achieve good (single-task) performance after task-specific fine-tuning.
We check for this criteria to avoid conflating the challenge of learning the task with the challenge of
catastrophic forgetting in lifelong learning. Specifically, we find the following 10 datasets to meet this
criterion: part-of-speech tagging (UDPOS) [61], named entity recognition (PANNER) [36], few-shot
relation extraction (FewRel) [22], Word-in-Context (WiC) [38], boolean question answering (BoolQ)
[11], DBPedia ontology classification [29], Amazon Reviews sentiment analysis [25], AG News
article classification, Yahoo Answers topics classification and Yelp Reviews sentiment analysis [65].

Overall performance: We start by considering two different settings based on the number of tasks
in the data stream. For our default Standard Stream, we randomly select 5 datasets: UDPOS,
FewRel, WiC, Yelp Reviews and BoolQ; for our Long Stream, we use all of the 10 datasets and
arrange them in a random order. In order to identify the most challenging sequence of tasks for
the Standard Stream, we measure the performance of all its possible permutations (120) on all
the evaluation metrics in Section 4.2. Figure 6 in Appendix A.1 presents the distribution of each
evaluation metric across all permutations. Based on this, we select the order for the Standard Stream
as: BoolQ, UDPOS, WiC, FewRel and Yelp Reviews. The task order permutation above has the
minimum AULTC (0.5872), the minimum final accuracy Am (0.6294), and the highest forgetting
Fm (0.1677). While this stream does not have the highest possible intransigence (Im = 0.0338
vs 0.0607), we nevertheless select it since it presents the most challenging order overall. To keep
the experiment runtime manageable (see Appendix A.4), we use 10k randomly sampled training
examples per dataset in all the data streams (we find that 10k is sufficient for our tasks to achieve
good single-task performance; Table 9). However, we further seek to study training set size effects
and additionally design a Large Stream and a Larger Stream. These are the same as Standard
Stream but with 50k and 100k training examples per dataset respectively.

Metric-specific performance: To further specialize our study, we identify task orders at the level
of each individual metric. Specifically, we identify the order that displays the highest intransigence
since the Standard Stream does not show this behavior. However, for the other four metrics, we
want to capture the most frequent behavior since the Standard Stream already records their worst
possible numbers. Therefore, we find the most frequent value of each metric and select any one of
the orders that falls in that frequency bin. The resulting streams targeting each metric specifically
are: Forgetting Stream: FewRel, UDPOS, WiC, Yelp Reviews and BoolQ; Intransigence Stream:
Yelp Reviews, UDPOS, WiC, BoolQ and FewRel; Final Accuracy Stream: WiC, UDPOS, BoolQ,
FewRel and Yelp Reviews; AULTC Stream: UDPOS, WiC, FewRel, Yelp Reviews and BoolQ.

We extend our suite of benchmark streams even further such that it can assess disparate and comple-
mentary facets of language understanding: multi-domain learning, multilingual learning, and learning
at different levels of linguistic hierarchy.

Multi-domain and multilingual: To study multi-domain lifelong learning, we design two different
streams. In the first, MultidomainA, we take the notion of ‘domain’ to the extreme and focus on five
distinct text classification tasks: Yelp Reviews, AG News, DBPedia, Amazon Reviews and Yahoo
Answers Topics; in the second, MultidomainB, we focus on task-specific domain variance and adopt
the Multigenre Natural Language Inference dataset [55]. We select and order the most frequent NLI
genres / domains in the data stream as follows: Fiction, Government, Slate, Telephone and Travel.
For multilingual lifelong learning, we propose two different streams where we keep the task fixed
and vary the language. We select languages from five different language (sub)families (Semitic,
Indo-European, Turkic, Uralic, Sino-Tibetan) to construct two different streams: MultilingualA,
tackling part-of-speech tagging (UDPOS) across the following (random) order of languages: Arabic,
Hindi, Turkish, Finnish, (traditional) Chinese; MultilingualB, focusing on named entity recognition
(PANNER) across the following (random) order: Arabic, Bengali, Turkish, Finnish, Chinese.

Linguistic hierarchy: To study lifelong learning across different levels of linguistic hierarchy, we
select the following five tasks in order of increasing complexity: part-of-speech tagging (UDPOS),
named entity recognition (PANNER), Word-in-Context classification (WiC), co-reference resolution
(WSC) [31] and relation extraction (FewRel).
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4.4 Baselines and comparison systems

We implement a set of strong baselines for our benchmark suite. We use the BERT-base architecture
(mBERT for multilingual streams) with a binary classification head on top. The Transformers library
[56] provides the pre-trained weights and the default hyperparameters. The learning rate is set to
3× 10−5 and the batch size to 25. Following our online stream desideratum, all training is done in a
single pass of the data stream. To control for computational complexity, we evaluate after every 500
training examples (b = 500) and limit the test set size of each task to 1000. Our test set is randomly
sampled from the full test set and maintains the original class distribution. However, in Appendix A.7,
we present additional experiments where we empirically validate that our conclusions on our test set
(for the Standard Stream2) match those on the full set of test examples.

Multi-task and single-task learning: In multi-task learning, the model learns multiple tasks si-
multaneously as opposed to sequentially. The multi-task training examples are randomly sampled
from the task distributions PT in no particular order. Given that the iid assumption holds in this
setting, it serves as a strong point of reference against non-iid lifelong learning. Further inspired
by the effectiveness of explicit task identifiers, we train single-task learning models on each task
individually. As strong equivalents of achievable task-specific performance, we compare their final
average accuracy against the lifelong learning counterpart.

Experience replay: Experience replay is another way to approximate the iid property in the data
stream. In experience replay, the model maintains a memory buffer, and stores the examples seen
during training, each with a probability Pwrite. At specific intervals during training, the model
retrieves some of the stored examples and re-trains on them. The replay interval Rinterval [23]
is defined as the number of examples the model has seen between two successive draws from
memory. The replay rate is defined as Rrate = Nreplay/Rinterval, where Nreplay is the number
of examples sampled from memory. When Pwrite, Rinterval and Rrate all equal to 1, the learning
setting transforms into a multi-task one. For experience replay, we use the following hyperparameters:
Pwrite = 0.1, Rinterval = 1000, Nreplay = 100, thereby having a replay rate Rrate of 10%.

5 Experiments and Discussion

Lifelong learning baselines: We evaluate all baseline methods discussed in Section 4.4 on all the
streams described in Section 4.3. Tables 2 and 3 in the appendix present the full set of results for
all metrics in our evaluation scheme (Section 4.2). Comparing the Standard Stream against the
Large Stream and Larger Stream, we observe that, for lifelong learning, when the number of
training examples per dataset is increased, Forgetting and Intransigence decrease, while AULTC
and Final Accuracy increase. A similar pattern is observed when increasing the number of tasks
in the Long Stream where, again, Forgetting and Intransigence decrease, and AULTC and Final
Accuracy increase. However, when lifelong learning performance is compared against the multi-
task/single-task learning models within each stream, we find that the relative performance difference
remains largely the same as in the Standard Stream (Table 5). On the one hand, this indicates
that more data alone is not enough to ameliorate catastrophic forgetting; on the other hand, the
results present evidence that longer streams of data may not necessarily deteriorate lifelong learning
performance if related but diverse tasks exist within the same (long) stream (e.g., includes 3 topic
classification tasks and 2 sentiment analysis ones). In the Linguistic Stream (Table 2), we find that
lifelong learning performance is again substantially lower compared to multi-task and single-task
learning. This indicates that curriculum learning, where tasks are ordered by increasing complexity
[2], may also suffer from catastrophic forgetting. In contrast to the above, however, we observe
negligible Forgetting in both the MultilingualA and MultidomainB streams. For MultidomainB,
this can be explained by the fact that it consists of one task (NLI) across different domains, whereas
MultidomainA consists of different tasks (topic classification, sentiment analysis) from different
domains. In contrast, MultilingualA tackles part-of-speech tagging, whereas MultilingualB focuses
on named entity recognition which can be particularly language specific. The results suggest that
catastrophic forgetting can be more or less pronounced depending on the given data stream and its
characteristics. Overall, we observe that the AULTC of multi-task learning is much higher than that

2We primarily use this stream as runtime increases prohibitively with the increase in test set size – 2 hours to
run an experiment using our test set vs 51 hours using the full version.
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of lifelong learning, with MultilingualA being the only exception. For Final Accuracy, we observe
the following performance: single-task ≥ multi-task ≥ lifelong learning, except for MultidomainB.

Overall, we observe that lifelong learning often shows lower intransigence than multi-task learning
(e.g., Linguistic and AULTC stream; Tables 2 and 3). This suggests that the lifelong learning models
are more adaptable to learning new tasks than multi-task ones. As expected, we also observe that
experience replay reduces Forgetting whenever it is used by the model. Even though replay serves as
a simple baseline, it is particularly effective. However, our online stream desideratum limits the replay
interval and number of replay examples in experience replay. The space complexity desideratum also
discourages the use of experience replay due to the linear growth in its space requirements.

Finally, we perform two further analyses: 1) we examine performance on the minority classes and
less representative examples, and plot the F1 scores and true positive/negative rates on the ‘true’ class
(where the input statements are true; Figure 3) throughout lifelong learning on the Standard stream
(Appendix A.6). Overall, we observe the true positive rate suffers given the majority of examples
belong to the ‘false’ class. The F1 scores for the ‘true’ class/examples drop, sometimes rapidly, as new
tasks arrive. 2) We test whether explicit cues in implicit task identifiers are memorized by the model
(even though we devise semantically similar but also syntactically different statements), and run an
experiment where we increase the number of different statements when encoding a task (Appendix
A.8). In the Standard stream, we remove the punctuation marks from some of the statement templates
of the BoolQ, UDPOS and FewRel tasks, and replace keywords such as ‘positive’ with ‘good’ and
‘negative’ with ‘bad’ in some of the Yelp Review task statements. We find this does not affect our
conclusions and observed patterns, suggesting that the model does not rely solely on specific cues in
the input implicit statements when attempting to identify tasks and make predictions.

Task-specific learning and identification: As discussed in Section 4.1, it is desirable for the model
to learn to understand implicit task descriptions and make predictions accordingly. One way in which
we can investigate whether the model has learned to identify tasks is by inspecting its parameter space
and, specifically, whether it resorts to using a subset of its parameters to learn and make predictions
on the identified task. To quantitatively assess this, we measure the gradient overlap throughout
lifelong learning. At every train step t, we store the set of model parameters that receive non-zero
gradients as St. These set of parameters form a sub-network that is actively learning at that step
t. When a new task arrives, we expect the model to recognize the change and switch to a different
sub-network. The intersection or overlap between the old and the new sub-network should depend on
the similarity between the old and the new task. To measure this overlap, we take the set intersection
of St with St−1. In Figure 5, we plot the gradient overlap during lifelong learning and multi-task
learning on the Standard Stream. For lifelong learning, we observe that gradient overlap stays
roughly the same when learning a single task but it changes drastically when the task changes. We
observe small fluctuations in the gradient overlap for multi-task learning since the model is learning
multiple different tasks simultaneously (alternate training). Overall, we find that the lifelong learning
model is able to recognize the change in tasks and utilizes diverse parameter subsets for these. In
Appendix A.9, we plot the gradient overlap for all remaining data streams in our benchmark. We
consistently observe the same behaviour but at varying degrees, depending on the task similarities in
the data stream. Although gradient overlap may be viewed as a coarse measure of assessment, our
results suggest that the model is able to identify tasks and use its parameter space accordingly.

Memory-based vs experience replay: We now turn to experiments where we use our benchmark
to study prevalent memory-based solutions to lifelong learning. Specifically, we experiment with
Average Gradient Episodic Memory (A-GEM) [9], and Memory-based Parameter Adaptation with
replay (MbPA++) [15]. A-GEM aims to prevent the loss on previous tasks from increasing by solving
a constrained optimization problem based on the gradients from examples of past tasks in the memory.
While A-GEM, by design, needs explicit task identifiers to retrieve samples from memory, we adapt
it to work within our realistic framework by randomly sampling from its memory instead. MbPA++
performs local adaptation on K-nearest neighbors from the memory during inference while carrying
out experience replay during training. For MbPA++, we use pre-trained BERT base as our key
network. We set the number of neighbours K = 25 and number of local adaptation steps to L = 10.

These two methods are specifically selected since they are designed as an advancement over experi-
ence replay. We, therefore, compare them against our experience replay baseline (Rrate = 10%) to
see how they improve upon it. For both A-GEM and MbPA++, we use the same experience replay
hyperparameters for a fair comparison. We run the experiments with five random seeds: [1, 2, 3, 4, 42].
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Figure 5: Gradient overlap during lifelong learning and multi-task learning on the Standard stream.
The y-axis shows the number of parameters that are shared between two consecutive sub-networks,
i.e., parameters which received non-zero gradients at time t and t− 1.

Table 1: Comparison of memory-based solutions on the Standard stream.

AULTC Forgetting Intransigence Final Accuracy
Lifelong 60.95 ± 1.64 12.78 ± 3.30 1.52 ± 1.70 68.26 ± 3.87
Replay 10% 62.81 ± 2.14 4.35 ± 2.13 1.82 ± 2.95 76.21 ± 5.08
A-GEM 61.27 ± 1.48 6.93 ± 2.48 1.56 ± 1.84 74.30 ± 2.59
MbPA++ 62.93 ± 3.20 4.21 ± 2.98 1.79 ± 3.67 76.45 ± 5.11
Single task – – – 80.64 ± 1.37
Multi-task 74.34 ± 0.30 3.95 ± 0.74 6.17 ± 1.37 77.72 ± 0.89

Table 1 presents the results on the Standard Stream. Using a two-tailed paired t-test (α = 0.05), we
find that the experience replay baseline leads to significant reduction in Forgetting (p = 0.016) over
lifelong learning. For the other metrics, however, experience replay does not lead to any significant
improvements. Using the same t-test, we find that neither A-GEM nor MbPA++ perform significantly
better than the experience replay baseline on any of the metrics. MbPA++, in particular, seems to
have a high variance which might be due to the stochastic local adaptation procedure. The results
indicate that, on our Standard Stream, these methods do not lead to a significant improvement over
the experience replay baseline. In Appendix A.5, we further experiment with different experience
replay rates and find that, as expected, the majority lead to a significant decrease in Forgetting and a
significant increase in Final Accuracy compared to lifelong learning.

In conclusion, we find that the prevalent memory-based solutions to lifelong learning cannot outper-
form our simple experience replay baseline on any of the metrics. Although experience replay shows
significant improvements in Forgetting and Final Accuracy, our general lifelong learning desiderata
precludes its extensive use. The memory requirement of experience replay, parameterized by the write
probability Pwrite, grows linearly with lifelong data stream while the space complexity desideratum
calls for constraining the size of the memory buffer. Furthermore, the online stream desideratum
necessitates limiting the replay interval and the number of replay examples. While sparse experience
replay represents a simple and sound baseline, it is not an exemplar solution to lifelong learning.
There is a need for more effective and realistic general lifelong learning solutions.

Future work could investigate prompt-based learning as a means to expanding degree-of-belief to
generation tasks through auto-regressive blank-filling of cloze-style question prompts [16]. Recent
advancements such as pattern-exploiting training (PET) [48] have been shown to perform well in
few-shot learning of various NLP tasks [49]. Methods such as continuous task-specific vectors as
defined in prefix-tuning [32] and AutoPrompt [51] can be used to build on the utilization of implicit
task descriptors further.

Broader impact Advancements in lifelong learning will decrease unnecessary re-training of old
models leading to reduced financial and environmental costs [1]. Our online stream desideratum
encourages development of models suitable for privacy-sensitive scenarios where data (e.g., private
medical records) are only used for training once without requiring to store them forever. We
present our experimental framework as a unified and generalized benchmark suite that can facilitate
comparative studies as well as the development of realistic models in this emerging field of research.

10



References

[1] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On the dangers of stochastic
parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, FAccT ’21, page 610–623, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450383097. doi: 10.1145/3442188.
3445922. URL https://doi.org/10.1145/3442188.3445922.

[2] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. volume 60, page 6,
01 2009. doi: 10.1145/1553374.1553380.

[3] L. Bentivogli, I. Dagan, H. T. Dang, D. Giampiccolo, and B. Magnini. The fifth pascal
recognizing textual entailment challenge. In In Proc Text Analysis Conference (TAC’09, 2009.

[4] M. Biesialska, K. Biesialska, and M. R. Costa-jussà. Continual lifelong learning in natural
language processing: A survey. In Proceedings of the 28th International Conference on Com-
putational Linguistics, pages 6523–6541, Barcelona, Spain (Online), Dec. 2020. International
Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.574. URL
https://www.aclweb.org/anthology/2020.coling-main.574.

[5] A. Bordes, N. Usunier, S. Chopra, and J. Weston. Large-scale simple question answering
with memory networks. CoRR, abs/1506.02075, 2015. URL http://arxiv.org/abs/1506.
02075.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.
Language models are few-shot learners. In Advances in Neural Information Processing Sys-
tems, volume 33, 2020. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[7] A. Celikyilmaz, E. Clark, and J. Gao. Evaluation of text generation: A survey. CoRR,
abs/2006.14799, 2020. URL https://arxiv.org/abs/2006.14799.

[8] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. S. Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In
Proceedings of the European Conference on Computer Vision (ECCV), September
2018. URL https://openaccess.thecvf.com/content_ECCV_2018/html/Arslan_
Chaudhry__Riemannian_Walk_ECCV_2018_paper.html.

[9] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient lifelong learning with
a-GEM. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=Hkf2_sC5FX.

[10] E. Choi, H. He, M. Iyyer, M. Yatskar, W.-t. Yih, Y. Choi, P. Liang, and L. Zettlemoyer.
QuAC: Question answering in context. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 2174–2184, Brussels, Belgium, Oct.-Nov.
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1241. URL https:
//www.aclweb.org/anthology/D18-1241.

[11] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. BoolQ: Explor-
ing the surprising difficulty of natural yes/no questions. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 2924–2936, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300.
URL https://www.aclweb.org/anthology/N19-1300.

[12] I. Dagan, O. Glickman, and B. Magnini. The pascal recognising textual entailment challenge.
In J. Quiñonero-Candela, I. Dagan, B. Magnini, and F. d’Alché Buc, editors, Machine Learning
Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising
Tectual Entailment, pages 177–190, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN
978-3-540-33428-6.

11

https://doi.org/10.1145/3442188.3445922
https://www.aclweb.org/anthology/2020.coling-main.574
http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1506.02075
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2006.14799
https://openaccess.thecvf.com/content_ECCV_2018/html/Arslan_Chaudhry__Riemannian_Walk_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Arslan_Chaudhry__Riemannian_Walk_ECCV_2018_paper.html
https://openreview.net/forum?id=Hkf2_sC5FX
https://openreview.net/forum?id=Hkf2_sC5FX
https://www.aclweb.org/anthology/D18-1241
https://www.aclweb.org/anthology/D18-1241
https://www.aclweb.org/anthology/N19-1300


[13] M.-C. de Marneffe, M. Simons, and J. Tonhauser. The commitmentbank: Investigating projec-
tion in naturally occurring discourse. Proceedings of Sinn und Bedeutung, 23(2):107–124, Jul.
2019. doi: 10.18148/sub/2019.v23i2.601. URL https://ojs.ub.uni-konstanz.de/sub/
index.php/sub/article/view/601.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://www.aclweb.org/anthology/N19-1423.

[15] C. d. M. d'Autume, S. Ruder, L. Kong, and D. Yogatama. Episodic memory in lifelong
language learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf.

[16] Z. Du, Y. Qian, X. Liu, M. Ding, J. Qiu, Z. Yang, and J. Tang. All NLP Tasks Are Generation
Tasks: A General Pretraining Framework. arXiv:2103.10360 [cs], Mar. 2021. URL http:
//arxiv.org/abs/2103.10360. arXiv: 2103.10360.

[17] S. Farquhar and Y. Gal. Towards robust evaluations of continual learning. CoRR,
abs/1805.09733, 2018. URL http://arxiv.org/abs/1805.09733.

[18] C. Geng, S.-J. Huang, and S. Chen. Recent advances in open set recognition: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, page 1–1, 2020. ISSN
1939-3539. doi: 10.1109/tpami.2020.2981604. URL http://dx.doi.org/10.1109/TPAMI.
2020.2981604.

[19] D. Giampiccolo, B. Magnini, I. Dagan, and B. Dolan. The third pascal recognizing textual
entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, RTE ’07, page 1–9, USA, 2007. Association for Computational Linguistics.

[20] D. Giampiccolo, B. Magnini, I. Dagan, and B. Dolan. The third PASCAL recognizing textual
entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 1–9, Prague, June 2007. Association for Computational Linguistics. URL
https://aclanthology.org/W07-1401.

[21] X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun. FewRel: A large-scale supervised
few-shot relation classification dataset with state-of-the-art evaluation. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4803–
4809, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1514. URL https://www.aclweb.org/anthology/D18-1514.

[22] X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun. FewRel: A large-scale supervised
few-shot relation classification dataset with state-of-the-art evaluation. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4803–
4809, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1514. URL https://www.aclweb.org/anthology/D18-1514.

[23] N. Holla, P. Mishra, H. Yannakoudakis, and E. Shutova. Meta-learning with sparse experience
replay for lifelong language learning. CoRR, abs/2009.04891, 2020. URL https://arxiv.
org/abs/2009.04891.

[24] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. TriviaQA: A large scale distantly supervised
challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1601–1611,
Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/
P17-1147. URL https://www.aclweb.org/anthology/P17-1147.

[25] P. Keung, Y. Lu, G. Szarvas, and N. A. Smith. The multilingual amazon reviews corpus. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,
2020.

12

https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/view/601
https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/view/601
https://www.aclweb.org/anthology/N19-1423
https://proceedings.neurips.cc/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
http://arxiv.org/abs/2103.10360
http://arxiv.org/abs/2103.10360
http://arxiv.org/abs/1805.09733
http://dx.doi.org/10.1109/TPAMI.2020.2981604
http://dx.doi.org/10.1109/TPAMI.2020.2981604
https://aclanthology.org/W07-1401
https://www.aclweb.org/anthology/D18-1514
https://www.aclweb.org/anthology/D18-1514
https://arxiv.org/abs/2009.04891
https://arxiv.org/abs/2009.04891
https://www.aclweb.org/anthology/P17-1147


[26] D. Khashabi, S. Chaturvedi, M. Roth, S. Upadhyay, and D. Roth. Looking beyond the surface:
A challenge set for reading comprehension over multiple sentences. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long Papers), pages 252–262, New Orleans,
Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1023.
URL https://aclanthology.org/N18-1023.

[27] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and
R. Hadsell. Overcoming catastrophic forgetting in neural networks. Proceedings of the
National Academy of Sciences, 114(13):3521–3526, 2017. ISSN 0027-8424. doi: 10.1073/pnas.
1611835114. URL https://www.pnas.org/content/114/13/3521.

[28] G. Kruszewski, I. T. Sorodoc, and T. Mikolov. Evaluating online continual learning with {calm},
2021. URL https://openreview.net/forum?id=vC8hNRk9dOR.

[29] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. Van Kleef, S. Auer, et al. Dbpedia–a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic web, 6(2):167–195, 2015.

[30] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Díaz-Rodríguez. Con-
tinual learning for robotics: Definition, framework, learning strategies, opportunities and
challenges. Information Fusion, 58:52–68, 2020. ISSN 1566-2535. doi: https://doi.org/10.
1016/j.inffus.2019.12.004. URL https://www.sciencedirect.com/science/article/
pii/S1566253519307377.

[31] H. Levesque, E. Davis, and L. Morgenstern. The winograd schema challenge. In Thirteenth
International Conference on the Principles of Knowledge Representation and Reasoning, 2012.

[32] X. L. Li and P. Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation.
arXiv:2101.00190 [cs], Jan. 2021. URL http://arxiv.org/abs/2101.00190. arXiv:
2101.00190.

[33] D. Lopez-Paz and M. A. Ranzato. Gradient episodic memory for continual learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
f87522788a2be2d171666752f97ddebb-Paper.pdf.

[34] B. McCann, N. S. Keskar, C. Xiong, and R. Socher. The natural language decathlon: Mul-
titask learning as question answering, 2019. URL https://openreview.net/forum?id=
B1lfHhR9tm.

[35] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. volume 24 of Psychology of Learning and Motivation, pages
109–165. Academic Press, 1989. doi: https://doi.org/10.1016/S0079-7421(08)60536-8. URL
https://www.sciencedirect.com/science/article/pii/S0079742108605368.

[36] X. Pan, B. Zhang, J. May, J. Nothman, K. Knight, and H. Ji. Cross-lingual name tagging and
linking for 282 languages. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1946–1958, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1178. URL
https://www.aclweb.org/anthology/P17-1178.

[37] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning with
neural networks: A review. Neural Networks, 113:54–71, 2019. ISSN 0893-6080. doi: https://
doi.org/10.1016/j.neunet.2019.01.012. URL https://www.sciencedirect.com/science/
article/pii/S0893608019300231.

[38] M. T. Pilehvar and osé Camacho-Collados. WiC: 10, 000 example pairs for evaluating context-
sensitive representations. CoRR, abs/1808.09121, 2018. URL http://arxiv.org/abs/1808.
09121.

13

https://aclanthology.org/N18-1023
https://www.pnas.org/content/114/13/3521
https://openreview.net/forum?id=vC8hNRk9dOR
https://www.sciencedirect.com/science/article/pii/S1566253519307377
https://www.sciencedirect.com/science/article/pii/S1566253519307377
http://arxiv.org/abs/2101.00190
https://proceedings.neurips.cc/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://openreview.net/forum?id=B1lfHhR9tm
https://openreview.net/forum?id=B1lfHhR9tm
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.aclweb.org/anthology/P17-1178
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://www.sciencedirect.com/science/article/pii/S0893608019300231
http://arxiv.org/abs/1808.09121
http://arxiv.org/abs/1808.09121


[39] A. Prabhu, P. H. S. Torr, and P. K. Dokania. Gdumb: A simple approach that questions our
progress in continual learning. In A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, editors,
Computer Vision – ECCV 2020, pages 524–540, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-58536-5.

[40] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/
20-074.html.

[41] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ questions for machine
comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2383–2392, Austin, Texas, Nov. 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://www.aclweb.org/
anthology/D16-1264.

[42] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. iCaRL: Incremental classifier and
representation learning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5533–5542, 2017. doi: 10.1109/CVPR.2017.587.

[43] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, , and G. Tesauro. Learning to
learn without forgetting by maximizing transfer and minimizing interference. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=B1gTShAct7.

[44] A. Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7
(2):123–146, 1995. doi: 10.1080/09540099550039318. URL https://doi.org/10.1080/
09540099550039318.

[45] M. Roemmele, C. Bejan, and A. Gordon. Choice of plausible alternatives: An evaluation of
commonsense causal reasoning. 01 2011.

[46] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell. Progressive neural networks. CoRR, abs/1606.04671, 2016. URL
http://arxiv.org/abs/1606.04671.

[47] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult. Toward open set recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7):1757–1772, 2013. doi:
10.1109/TPAMI.2012.256.

[48] T. Schick and H. Schütze. Exploiting Cloze Questions for Few Shot Text Classification and
Natural Language Inference. arXiv:2001.07676 [cs], Jan. 2021. URL http://arxiv.org/
abs/2001.07676. arXiv: 2001.07676.

[49] T. Schick and H. Schütze. It’s Not Just Size That Matters: Small Language Models Are Also
Few-Shot Learners. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 2339–
2352, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.185. URL https://aclanthology.org/2021.naacl-main.185.

[50] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning with deep generative replay.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf.

[51] T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh. AutoPrompt: Eliciting Knowledge
from Language Models with Automatically Generated Prompts. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4222–
4235, Online, Nov. 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.346. URL https://aclanthology.org/2020.emnlp-main.346.

14

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://openreview.net/forum?id=B1gTShAct7
https://openreview.net/forum?id=B1gTShAct7
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/2001.07676
http://arxiv.org/abs/2001.07676
https://aclanthology.org/2021.naacl-main.185
https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf
https://aclanthology.org/2020.emnlp-main.346


[52] F.-K. Sun, C.-H. Ho, and H.-Y. Lee. Lamol: Language modeling for lifelong language learning.
In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=Skgxcn4YDS.

[53] H. Wang, W. Xiong, M. Yu, X. Guo, S. Chang, and W. Y. Wang. Sentence embedding
alignment for lifelong relation extraction. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 796–806, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1086. URL
https://www.aclweb.org/anthology/N19-1086.

[54] Y. Wen, D. Tran, and J. Ba. Batchensemble: an alternative approach to efficient ensemble
and lifelong learning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=Sklf1yrYDr.

[55] A. Williams, N. Nangia, and S. Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1112–1122. Association for Computational Linguistics, 2018.
URL http://aclweb.org/anthology/N18-1101.

[56] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L.
Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38–45, Online, Oct. 2020.
Association for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

[57] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. Xlnet: Generalized
autoregressive pretraining for language understanding. In Advances in Neural Information
Processing Systems, volume 32, 2019. URL https://proceedings.neurips.cc/paper/
2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

[58] D. Yogatama, C. de Masson d’Autume, J. Connor, T. Kocisky, M. Chrzanowski, L. Kong,
A. Lazaridou, W. Ling, L. Yu, C. Dyer, and P. Blunsom. Learning and evaluating general
linguistic intelligence, 2019. URL https://arxiv.org/abs/1901.11373.

[59] J. Yoon, E. Yang, J. Lee, and S. J. Hwang. Lifelong learning with dynamically expandable
networks. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Sk7KsfW0-.

[60] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham,
A. Ravula, Q. Wang, L. Yang, and A. Ahmed. Big bird: Transformers for longer se-
quences. In Advances in Neural Information Processing Systems, volume 33, pages
17283–17297, 2020. URL https://proceedings.neurips.cc/paper/2020/file/
c8512d142a2d849725f31a9a7a361ab9-Paper.pdf.

[61] D. Zeman et al. Universal dependencies 2.7, 2020. URL http://hdl.handle.net/11234/
1-3424. LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

[62] C. Zeno, I. Golan, E. Hoffer, and D. Soudry. Task agnostic continual learning using online
variational bayes, 2019. URL https://arxiv.org/abs/1803.10123.

[63] S. Zhang, X. Liu, J. Liu, J. Gao, K. Duh, and B. V. Durme. ReCoRD: Bridging the gap between
human and machine commonsense reading comprehension. CoRR, abs/1810.12885, 2018. URL
http://arxiv.org/abs/1810.12885.

[64] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text
classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.

15

https://openreview.net/forum?id=Skgxcn4YDS
https://openreview.net/forum?id=Skgxcn4YDS
https://www.aclweb.org/anthology/N19-1086
https://openreview.net/forum?id=Sklf1yrYDr
http://aclweb.org/anthology/N18-1101
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://arxiv.org/abs/1901.11373
https://openreview.net/forum?id=Sk7KsfW0-
https://openreview.net/forum?id=Sk7KsfW0-
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
http://hdl.handle.net/11234/1-3424
http://hdl.handle.net/11234/1-3424
https://arxiv.org/abs/1803.10123
http://arxiv.org/abs/1810.12885
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf


[65] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text
classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.

16

https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

	Introduction
	General Lifelong Learning
	Related Work and Limitations
	Experimental Framework
	Implementation of desiderata
	Evaluation scheme
	Benchmark design
	Baselines and comparison systems

	Experiments and Discussion

