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ABSTRACT

In many critical applications, resource constraints prevent observing all features
at test time, motivating selective information acquisition for the predictions. For
example, in healthcare, patient data spans diverse features ranging from lab tests
to imaging studies, each may carry different information and must be acquired
at a cost of time, money, or risk to the patient. Moreover, temporal prediction
tasks, where both instance features and labels evolve over time, introduce ad-
ditional complexity in deciding when or what information is important. In this
work, we propose NOCTA, a Non-Greedy Objective Cost-Tradeoff Acquisition
method that sequentially acquires the most informative features at inference time
while accounting for both temporal dynamics and acquisition cost. We first in-
troduce a cohesive estimation target for our NOCTA setting, and then develop two
complementary estimators: 1) a non-parametric method based on nearest neigh-
bors to guide acquisitions (NOCTA-NP), and 2) a parametric method that directly
predicts the utility of potential acquisitions (NOCTA-P). Experiments on synthetic
and real-world medical datasets demonstrate that both NOCTA variants outperform
existing baselines, achieving higher accuracy at lower acquisition costs.

1 INTRODUCTION

In many real-world scenarios, acquiring features at inference time comes at a cost. For example, in
clinical settings (a driving application for this work), diagnostic decisions often rely on sequentially
gathering information such as lab tests or imaging. Each type of data acquisition comes at the
cost of time, financial expense, or risk to the patient. In contrast, many of the existing machine
learning frameworks assume that all features are freely available at the outset. In this work, we
focus on a longitudinal Active Feature Acquisition (AFA) (Saar-Tsechansky et al., 2009; Kossen
et al., 2022) setting, where a model is responsible for (1) sequentially deciding which features to
acquire and at what time during inference, balancing their utility against acquisition costs, and (2)
making predictions with the partially observed features it has chosen to acquire.

In particular, we focus on a longitudinal setting, where long temporal contexts may be crucial for
both selecting valuable feature acquisitions and making accurate predictions. Fig. 1 illustrates an
example of longitudinal AFA methods driven by an autonomous agent operating in a clinical sce-
nario. At each visit, the agent (1) reviews previously collected data alongside any measurement
acquired during the current visit, (2) predicts the patient’s current status, and (3) recommends a fu-
ture follow-up plan by specifying both the visit interval from a predefined discrete time point (e.g., 3
or 6 months) and the informative tests to perform at the visit, while accounting for acquisition costs.
Although in principle a comprehensive set of tests could be performed, practical constraints such
as time, cost, and resource limitations necessitate a more selective approach. As a result, the agent
prioritizes the most informative acquisitions. Between the visits, the agent projects the patient’s
health trajectory to future time points, using the data acquired so far and the length of the proposed
time interval. Because the agent cannot revisit earlier time points, it must carefully decide whether
to defer or perform tests at each time step to avoid missing potentially important acquisitions.

This longitudinal AFA setting presents challenges, including: deciding which features to acquire at
each visit, facilitating early predictions for timely interventions, and accounting for temporal settings
where missed acquisitions at earlier time points are permanently inaccessible. Although previous
work has explored various approaches for longitudinal AFA, some methods (Kossen et al., 2022)
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Figure 1: Illustration of longitudinal active feature acquisition in a clinical scenario: at each time
point, an autonomous agent reviews previously collected and newly acquired data, predicts the pa-
tient’s current status, and recommends a subset of examinations for the next visit. This process is
repeated until no further follow-up is recommended by the agent.

make a single prediction across all time points, neglecting dynamic predictions, which are critical
in clinical settings to detect deterioration early and adjust treatment plans (Qin et al., 2024). Fur-
thermore, recent reinforcement learning (RL)-based methods (Qin et al., 2024; Nguyen et al., 2024)
often face optimization challenges, while greedy strategies (Ghosh and Lan, 2023; Gadgil et al.,
2024) risk suboptimal decisions by failing to anticipate the joint information of future acquisitions.

Contributions. In this work, we propose NOCTA, Non-Greedy Objective Cost-Tradeoff
Acquisition, a non-greedy method that explicitly addresses longitudinal AFA challenges without
training an RL policy, while maintaining an effective acquisition strategy. Firstly, we introduce
the estimation target of NOCTA that balances prediction accuracy against the cost of acquiring fea-
tures. Secondly, we develop two alternative approaches within the NOCTA framework: (1) a non-
parametric approach that leverages nearest neighbors to guide the acquisition (NOCTA-NP), and (2)
a parametric approach that directly estimates the utility of future acquisitions (NOCTA-P). Thirdly,
we evaluate our method on both synthetic and real-world medical datasets, demonstrating NOCTA
consistently outperforms state-of-the-art baselines while achieving a lower acquisition cost.

2 RELATED WORK

Active Feature Acquisition. Prior work in AFA (Saar-Tsechansky et al., 2009; Sheng and Ling,
2006) studies the trade-off between prediction and feature acquisition cost in a non-longitudinal
context. Recent works (Shim et al., 2018; Yin et al., 2020; Janisch et al., 2020) frame AFA as an RL
problem; however, they are challenging to train in practice due to the complicated state and action
space with dynamically evolving dimensions. Other works (Li and Oliva, 2021) use surrogate gen-
erative models, which model multidimensional distributions, or employ greedy policies that ignore
joint informativeness (Covert et al., 2023; Ma et al., 2018; Gong et al., 2019). To overcome these
issues, Valancius et al. (2023) employs a non-parametric oracle-based method, and Ghosh and Lan
(2023) learn a differentiable acquisition policy by jointly optimizing selection and prediction models
through end-to-end training. However, these works address AFA in a non-temporal context, whereas
many real-world tasks require sequential decisions over time, motivating the longitudinal AFA.

Longitudinal Active Feature Acquisition. Longitudinal AFA extends the standard AFA to in-
clude the temporal dimension. In this setting, a policy must account for temporal constraints where
past time points can no longer be accessed. As a result, a policy must decide which features to
acquire and determine the optimal timing for each acquisition. For instance, Zois and Mitra (2017)
derives dynamic-programming and low-complexity myopic policies for finite-state Markov chains,
ASAC (Yoon et al., 2019) uses actor-critic to jointly train feature selection and predictor network for
prediction. Additionally, Nguyen et al. (2024) uses RL to optimize acquisition timing but acquires
all available features at the selected time point. Recently, Qin et al. (2024) prioritizes timely detec-
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tion by allowing flexible follow-up intervals in continuous-time settings, ensuring that predictions
are timely and accurate. However, RL-based approaches can be challenging to train due to issues
such as sparse rewards, high-dimensional observation spaces, and complex temporal dependencies
(Li and Oliva, 2021). Rather than relying on RL to learn a policy, our proposed approach, NOCTA,
explicitly models and optimizes the trade-off between predictive accuracy and acquisition cost.

3 METHODOLOGY

NOCTA-P
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Accuracy-Cost

Tradeoff

Observed
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Plans NOCTA-NP

PredictionsAcquisitions

1

2

3

4

Estimate

Predict

Acquire
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Figure 2: An overview of NOCTA. The framework starts at time t with observed features xo and a set
of |O| binary candidate masks v of size M × (L− t), indicating plans of future features to acquire
from time t+1 to L. NOCTA provides two complementary estimators (NOCTA-NP and NOCTA-P)
to predict the accuracy-cost tradeoff for each plan. After selecting the optimal plan, NOCTA predicts
for the time points up to the next scheduled visit tnext, and acquires the corresponding features xtnext ,
which are appended to xo. After acquiring this new data, the entire process repeats and moves to
the immediate next time step tnext > t. This allows NOCTA to dynamically reassess and revise its
acquisition plan based on the most recent information rather than being locked into a static plan.

Notation. We formally define the longitudinal AFA setup: let D = {(xi, yi)}Ni=1 denote the
dataset of N instances (e.g., patients). For each i, xi is a temporal sequence with L time steps,
i.e., xi = {xi,t}Lt=1, with t ∈ {1, . . . , L} indexing the time step. At each time step, xi,t ∈ R
includes measurements of M (costly) features (note that it is possible to extend to individual acqui-
sitions that yield multi-dimensional feature vectors for multi-modal cases), i.e., xi,t = {xm

i,t}Mm=1.
Note that it is possible for xm

i,t = ∅, which indicates the feature is unobserved. In this work, we
focus on a classification task where labels yi,t ∈ {1, 2, . . . , C} are defined for each timepoint t, and
C represents the number of classes. Following Qin et al. (2024); Yoon et al. (2019), each feature
m has a time-invariant 1 cost cm. Lastly, we use colons to represent selecting subsequences along a
specific axis; for example, x1:t = (x1, . . . , xt) represents the measurements from timepoint 1 to t.

3.1 LONGITUDINAL AFA MODELED AS AN MDP

Longitudinal AFA can be formulated as a Markov Decision Process (MDP). The state st =(
xo, o, t

)
, where xo denotes the (partial) observations before time t and o ⊆ {(m, t′) | m ∈

{1, . . . ,M}, t′ ∈ {1, . . . , t − 1}} records which features were acquired. We suppose access to
a pre-trained arbitrary conditioning classifier ŷ (Shim et al., 2018; Li and Oliva, 2021) , that can
predict the label at any timepoint k with xo: ŷk(xo). The action space is a ∈ {at′}Lt′=t ∪ {∅},
where at′ ∈ {0, 1}M indicates which of the M features to acquire at the current or future time
t′, or, when a = ∅, to terminate and predict for all remaining timepoints. For a non-terminal
action, the transition is

(
xo, o, t

)
→

(
xo∪at′ , o ∪ at′ , t

′ + 1
)
, where (for notational simplic-

ity) o ∪ at′ denotes the union of the previous acquisitions and tuples of features at time t′ in
at′ . Since this implies that we are not acquiring any information until time t′, the reward is the
negative cross-entropy (CE) loss of making predictions up to t′ (i.e., ŷt, . . . , ŷt′−1) with previ-
ous information (xo) and respective negative CE loss and cost of acquiring new features at time

1NOCTA easily extends to time-varying costs by replacing cm with cm,t (cost of modality m at time t),
while leaving all other components unchanged.
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t′: −
∑t′−1

k=t CE(ŷk(xo), yk
)
− CE(ŷt′(xo∪at′ ), yt′

)
− α

∑M
m=1 at′,mcm, where α is an accuracy-

cost tradeoff hyperparameter. When terminated (a = ∅) at timepoint t, we are not acquiring any
additional information for the remaining timepoints, thus the reward is −

∑L
k=t CE(ŷk(xo), yk

)
,

which represents the negative cross-entropy loss accumulated from t to L. We denote our policy as
π
(
xo, o, t

)
, which selects actions to maximize the expected cumulative rewards through L.

Why is Longitudinal AFA MDP a Challenging Problem? The challenges of longitudinal AFA
with MDP include: 1) large and complex action space, which requires decisions on when to acquire
and which features to acquire; 2) complicated state space, as it evolves dynamically as new features
are captured over time; and 3) credit assignment problem, since acquisitions are awarded at an
aggregate level, it is hard to disentangle exactly which of the acquisitions were most responsible for
prediction rewards (Li and Oliva, 2021). Despite these, existing works (Qin et al., 2024; Yoon et al.,
2019; Kossen et al., 2022; Nguyen et al., 2024) often rely on RL. In this work, we propose NOCTA,
an RL-free approach that not only provides a theoretical lower bound for the optimal longitudinal
AFA MDP (see Appx. A.5), but also empirically outperforms RL-based baselines.

3.2 NOCTA: GENERALIZED COST OBJECTIVE AND ACQUISITION ALGORITHM

We now introduce NOCTA through a novel objective that shall act as a proxy for the MDP value of
states. Let V = {(m, t′) | m ∈ {1, . . . ,M}, t′ ∈ {t + 1, . . . , L}} represent the set of candidate
feature-time pairs that are still available to acquire after time t. We ask: (1) which subset in V should
we acquire to balance the tradeoff between improved accuracy and acquisition cost, or (2) should we
terminate and make the prediction for the remaining time points based on what we have observed in
xo? That is, NOCTA determines the set of potential future acquisitions u:

u
(
xo, o

)
= argmin

v⊆V
Eyt+1:L,xv|xo

[ℓ(xo ∪ xv, y, t)] + α
∑

(m,t′)∈v

cm, (1)

where

ℓ(xo ∪ xv, y, t) =

L∑
k=t+1

CE
(
ŷk(xo ∪ xvt+1:k

), yk
)
, (2)

represents the accumulated loss when only acquiring the set of future feature-time pairs v, and
xvt+1:k

denotes the features in the candidate subset v from time step t + 1 to time step k. Because
the full trajectories (xv, yt+1:L) are available for the training set D, the expectation in Eq. (1) can be
evaluated during training. Note that predictions can only rely on the current and previously captured
data, but not on that which will be obtained in the future. The choice of α is application-specific:
some applications allow a higher cost (i.e., low α) and some are more cost-restricted (i.e., high α).
Intuitively, Eq. (1) non-greedily looks ahead at how acquiring a new set of feature-time pairs in
V might reduce the classification loss from t + 1 to L, while penalizing the acquisition cost. For
simplicity, we refer to feature-time pairs as ”features” in the remainder of the paper.

When Eq. (1) returns u
(
xo, o

)
= ∅, it indicates that the loss improvement does not justify the cost

of acquiring a new feature, so we stop acquiring and predict for all subsequent time points using
observed features xo. Otherwise, if new features u

(
xo, o

)
= v ⊆ V are acquired, the model predicts

for the subsequent time points until the next scheduled acquisitions. This non-greedy policy for
NOCTA directly balances the tradeoff between acquisition cost and predictive performance.

Acquisition Algorithm. The acquisition process of NOCTA is detailed in Algorithm 1. Intuitively,
NOCTA mirrors the clinical workflow: order tests, read results, and reassess. When NOCTA selects
the acquisition plan û(xo, o), we do not commit to the entire sequence. Instead, we only execute the
acquisition scheduled at the immediate next time point tnext, update the observed features (xo, o),
and replan the acquisition schedule. Note that the model can also continue on with its original plan
if it still believes those remaining acquisitions are optimal in light of the new acquired information
in tnext. This iterative design reflects the principle that as new observed features alter our belief about
the labels, it should also update our estimate of the utility of yet-to-be-acquired information.

Theorem 1. (Informal) NOCTA lower bounds the value of the optimal longitudinal AFA MDP policy.

In other words, acquiring according to the NOCTA objective (Eq.(1)) serves as an approximation
to the optimum longitudinal AFA MDP (proof in Appx. A.5). However, evaluating this objective
is intractable as in practice we do not have access to the true expectation of labels and unacquired
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Algorithm 1 NOCTA: Non-Greedy Objective Cost-Tradeoff Acquisition
Require: Observed features o (possibly o = ∅), instance values xo, number of features M , number of time

steps L, cost for feature m as cm, tradeoff parameter α > 0, estimator ŷk.
1: Initialize: predictions← [ ]; terminate← false; t← 0
2: while not terminate do
3: V ← {(m, t′) | m ∈ {1, . . . ,M}, t′ ∈ {t+ 1, . . . , L}} \ o
4: û(xo, o) ≈ argmin

v⊆V

[
Eyt+1:L,xv|xo [ℓ(xo ∪ xv, y, t)] + α

∑
m∈v c

m
]

5: if û(xo, o) = ∅ then
6: tnext ← L; terminate← true
7: else
8: tnext ← min{ t′ | (m, t′) ∈ û(xo, o)}
9: o← o ∪ {(m, tnext) | (m, tnext) ∈ û(xo, o)}

10: end if
11: for t′ = t+ 1, . . . , tnext do
12: append ŷt′

(
xo1:t′

)
to predictions

13: end for
14: t← tnext
15: end while
16: return predictions

values for the test samples, Eyt+1:L,xv|xo
in Eq. (1). We therefore develop two ways to estimate

u
(
xo, o

)
: a non-parametric method that uses nearest neighbors on learned embedding space (Sec.

3.3) and a parametric method that directly predicts the accuracy-cost tradeoff (Sec. 3.4).

3.3 NOCTA-NP: NON-PARAMETRIC METHOD

In this subsection, we show how to estimate u
(
xo, o

)
using a non-parametric method, coined

NOCTA-NP. The method uses the observed features and estimates Eq. (1) by finding similar cases
in the training set identified via nearest neighbors. In order to assuage issues with the curse of
dimensionality, we propose to compute nearest-neighbor distances using representations from an
embedding network trained to encode information for future candidate selection.

Estimating u
(
xo, o

)
. We first demonstrate the acquisition process through neighbors in the raw

feature space. To estimate the optimal acquisition plan u
(
xo, o

)
, we search for the candidate subset

v ∈ V that minimizes the accuracy-cost tradeoff. For any given candidate plan v at the time t, we
estimate its accuracy-cost tradeoff by sampling labels and unacquired features through neighbors:

Eyt:L,xv|xo

[
ℓ
(
xo ∪ xv, y, t

)]
≈ 1

K

∑
i∈NK(xo)

L∑
k=t+1

CE(ŷk(xi,o ∪ xi,v1:k), yi,k
)
, (3)

where NK(xo) represents the set of K-nearest neighbors (K-NN) in the dataset D = {(xi, yi)}Ni=1,
with neighbors identified based on the observed features o at the current time t. Specifically, the
neighbors could be determined by comparing the distance d(xo, xi,o) → R+, which directly uses
the raw feature values, for example d(xo, xi,o) = ∥xo − xi,o∥2. That is, Eq. (3) leverages the
neighbors to approximate the expected cross-entropy loss for any candidate acquisition plan v.

Limitations of Raw Features. Since xo accrues features through multiple time points, the raw fea-
tures become high-dimensional, which impairs distance metrics due to the curse of dimensionality.
To mitigate this, we propose computing distance within an efficient embedding space RE learned by
a network gϕ, which is tailored to capture future candidate selection for longitudinal AFA task. This
controlled, lower-dimensional space allows for a more effective nearest neighbor search.

Embedding Network. We first introduce the embedding network that maps partially observed
features into a smaller embedding space where distances capture the similarity of their acquisition
characteristics. Formally, we learn an embedding network gϕ : xi,o 7→ RE such that two instances
xi,o and xj,o are mapped to nearby points in RE if the additional (future) acquisitions available
to them are expected to influence their accuracy-cost tradeoff in a similar manner. Conversely,
instances with divergent accuracy-cost tradeoff are pushed away in RE .

5
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To achieve this, we define a similarity score between instances based on their future-candidate dis-
tribution (detailed later in this section). Given two partially observed samples xi,o and xj,o, we can
quantify similarity between their respective future-candidate distribution, denoted as ζi,o and ζj,o,
using the exponential of their negative Jensen-Shannon (JS) divergence:

simij = exp
(
−β JS(ζi,o, ζj,o)

)
, (4)

where β > 0 controls how strongly divergence affects similarity. Letting δij =
∥∥gϕ(xi,o

)
−

gϕ
(
xj,o

)∥∥2 be the embedding distance, we minimize a contrastive-type loss (Chopra et al., 2005):

Lemb =
1

2

(
simij · δij + (1− simij) ·max

(
0, γ − δij

)2)
, (5)

where γ > 0 is the margin parameter. Minimizing Lemb encourages gϕ to create an embedding space
where distance reflects the similarity of future-candidate distributions. Instead of applying K-NN
in the raw high-dimensional feature space, we compute distance in RE with controlled dimension
E ≪ ML. This reduction not only improves the effectiveness of distance metrics (we later show in
the ablations) but also makes neighbor search more computationally efficient. That is, we find the
K neighbors of any observation xo using the embedding space distance d(xo, xi,o) = ∥gϕ(xo) −
gϕ(xi,o)∥2. Using these K neighbors, we estimate Eq. (3) to derive the acquisition plan u

(
xo, o).

Future-Candidate Distribution ζo. We now formally introduce the future-candidate distribu-
tion ζo. For any partially observed features xo at time t and the corresponding labels y of the
training dataset D, we identify the top-κ candidate subsets v1, . . . , vκ ⊆ V = {(m, t′) | m ∈
{1, . . . ,M}, t′ ∈ {t+ 1, . . . , L}}, in ascending order of:

rl = ℓ(xo ∪ xvl , y, t) + α
∑

(m,t′)∈vl

cm. (6)

Eq. (6) quantifies the accuracy-cost tradeoff for candidate vl, and we have access to xvl since xvl
is from the training set. Now, each candidate vl induces a uniform distribution νvl over its selected
feature-time pairs (and termination), defined as νvl(m, t′) = 1

|vl| if (m, t′) ∈ vl and 0 otherwise.
Intuitively, νvl spreads equal probability mass over all acquisitions in the future candidate plan vl.
In the case that vl contains no further acquisition, νvl(∅) = 1. The future-candidate distribution ζo
for observed features xo is the weighted sum of νvl as

ζo =

κ∑
l=1

wl νvl (7)

where wl = exp(−rl)∑κ
k=1 exp(−rk)

. Intuitively, given a partially observed feature xo, ζo indicates how
likely each feature at each timestep (and the termination) is chosen by weighting their accuracy-cost
tradeoff. For each training sample (xi, yi) ∈ D, we construct ζi,o accordingly.

3.4 NOCTA-P: PARAMETRIC METHOD

Above, we proposed a non-parametric, neighbor-based approach to estimate our generalized NOCTA
cost objective Eq. (1). We also develop a direct parametric approach, which estimates the cost
objective using a network. We expound on our parametric approach, coined NOCTA-P, below.

Estimating u
(
xo, o

)
. In order to estimate u(xo, o) in Eq. (1) parametrically, we attempt to calculate

the utility for all potential subsets v ⊆ V at current time t:

Iv(xo, o, t) = ℓ(xo ∪ xv, y, t) + α
∑

(m,t′)∈v

cm. (8)

Since we have access to data during training, this value can be directly calculated for all subsets v
for training instances (xi, yi). However, this is not the case during evaluation time when xv becomes
unknown. Therefore, we estimate Iv(xo, o, t) through a value network, which we describe below.

Value Network. The value network fθ predict the utility Iv(xo, o, t) for all potential subsets. Since
future features xv are unknown during evaluation, the network is only conditioned on observed

6
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features xo, a candidate mask v, and the current time t; and its output is denoted as fθ(xo, v, t).
Since this output estimates the utility of Iv(xo, o, t), we optimize through the mean squared error as:

Lvalue = MSE (fθ(xo, v, t), Iv(xo, o, t)) . (9)

Using this value network, we can estimate Eq. (1) to derive the future acquisition plan u
(
xo, o).

To minimize the distribution shift between the features evaluated by the value network and those
used by the predictor, we jointly optimize the prediction network ŷk and the value network fθ over
the candidate subset, resulting in the final loss function as:

LNOCTA-P =
1

L

L∑
k=1

CE
(
ŷk(xo1:k), yk

)
+ λ · Lvalue , (10)

where λ balances the tradeoff between minimizing the prediction error (the cross-entropy loss) and
accurately estimating the utility of future acquisitions with the value network (Lvalue).

4 EXPERIMENTS

4.1 DATASETS

Synthetic. Inspired by Kossen et al. (2022), we construct a synthetic dataset of N = 8, 000 sam-
ples with L = 10 non-i.i.d timepoints. Each timepoint contains two features: digit and counter.
Labels are the cumulative sum of the digit, where the counter values are zero. We expound below.

The digit feature is a sequence of uniformly random L integers from {0, 1, 2}, e.g., 1010220110.
The counter feature is created by concatenating countdown sequences that begin with randomly
chosen starting values from {0, 1, 2} and truncating to maintain a fixed length of L. For example,
starting values 2, 1, 2, and 1 yield 210, 10, 210, 10, and the final counter feature is their concatenation
2101021010 (of length L). Unlike Kossen et al. (2022), we assign labels at every timestep: yt is the
cumulative sum of the digit values at all previous timesteps where the corresponding counter value is
0, e.g., label 0011333444 in the case of counter:

digit:
2101021010
1010220110 . The policy should begin with acquiring

the digit and counter at t = 1, then acquiring the digit at the anticipated 0 counter location, then the
next counter, and so on. Following Kossen et al. (2022), we split data into train/val/test (70/15/15).

ADNI. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset2 (Petersen et al., 2010)
is a longitudinal, multi-center, observational study. Patients are categorized into cognitively unim-
paired, mild cognitive impairment, and Alzheimer’s Disease. Following Qin et al. (2024), we use
N = 1, 002 patients with four biomarkers extracted from PET (FDG and AV45) and MRI (Hip-
pocampus and Entorhinal) across L = 12 visits, and split the dataset into train/val/test (64/16/20).

OAI. The Osteoarthritis Initiative (OAI) dataset3 contains N = 4, 796 patients with separate
left/right knee evaluations, and each patient is monitored longitudinally for up to 96 months. We use
the tabular data from Chen et al. (2024) and joint space width, totaling 27 features per visit across
L = 7 visits. We predict the two clinical scores: Kellgren-Lawrence grade (KLG) (Kellgren et al.,
1957) (range 0 ∼ 4) and WOMAC pain score (McConnell et al., 2001) (range 0 ∼ 20). Following
previous works (Chen et al., 2024; Nguyen et al., 2024), we merge KLG = 0 and 1, and define
WOMAC < 5 as no pain and ≥ 5 as pain, and split the dataset into train/val/test (50/12.5/37.5).

4.2 BASELINES

We expand the comparisons performed in recent work by Qin et al. (2024) in longitudinal AFA by
comparing to two other state-of-the-art AFA methods, DIME (Gadgil et al., 2024) and DiFA (Ghosh
and Lan, 2023), in addition to the RL method considered by Qin et al. (2024).

In total, we consider the following baselines: 1) ASAC (Yoon et al., 2019): actor-critic method to
jointly train a feature selector and a predictor network; 2) RAS (Qin et al., 2024): RL to decide when
and which features to capture for longitudinal data where the predicted acquisition times are contin-

2https://adni.loni.usc.edu
3https://nda.nih.gov/oai/
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Figure 3: Performance/cost of models across various average acquisition costs (budgets). Follow-
ing Kossen et al. (2022), we show accuracy rather than average precision for the synthetic dataset.
Our NOCTA variants show the highest accuracies for a given cost. Best viewed digitally.

uous and not restricted to certain discrete timepoints; 3) AS (Qin et al., 2024): RAS with a constant
acquisition interval; 4) DIME (Gadgil et al., 2024): greedy method to sequentially select the most
informative features; 5) DiFA (Ghosh and Lan, 2023): Gumbel-softmax-based differentiable policy.

We adapt DIME and DiFA for longitudinal data by restricting acquisitions to either the current or
future time points. Note that DIME and DiFA acquire features one at a time, allowing repeated
selection within the same time step t, while NOCTA and other baselines simultaneously select all
desired features at t before moving to the next time steps. This gives both DiFA and DIME an
advantage: they can decide whether to keep acquiring at the current visit or move forward.

4.3 IMPLEMENTATION

Data Availability and Missingness. Unlike standard AFA methods that assume fully observed
data (Rahbar et al., 2025; Shim et al., 2018; Nan et al., 2015), our work is general and handles
missingness completely at random. This is done by excluding missing features from candidate sets
and pretraining the value and prediction network with random dropout of the input features.

Prediction Network Implementation. At each time t, the prediction network ŷk predicts outcomes
at future timepoints k ≥ t. We train an MLP that takes all the features observed up to time t, denoted
xo1:t

4 and the future time indicator k. For predictions at k > t, the network must predict without
access to any additional features beyond those observed by time t (i.e., ŷk ∼ P (yk|xo1:t) for k > t).

NOCTA-NP Implementation. We pretrain the MLP predictor ŷk and then train the MLP em-
bedding network gϕ, both optimized with Adam (Kingma, 2014) (learning rate of 1e−3). We set
β = γ = 1, κ = K = 5, and embedding dimension E = 32 (Synthetic/ADNI) and E = 64 (OAI).

NOCTA-P Implementation. We first pretrain the MLP predictor ŷk, followed by jointly fine-
tuning the predictor and the MLP-based value network fθ. Both steps use Adam (Kingma, 2014)
with learning rate of 1e− 3 and use λ = 1.

Subset Size |O|. For experiments, we uniformly sample 1000 candidate acquisitions to balance ef-
fectiveness and overhead. As shown in Appx. A.6, accuracy stabilizes and returns diminish beyond
this cardinality. In practice, we observed uniform sampling is effective and fast, but other discrete
optimization methods can be utilized (Parker and Rardin, 2014; Rajeev and Krishnamoorthy, 1992).

We report predictive performance results as the mean over five independent runs (standard errors for
each run are provided in Appx. C). Feature costs and further details on the experimental setup can be
found in Appx. B. Moreover, Appx. A.6 shows a hyperparameter sensitivity analysis, demonstrating
that our method remains robust across different settings and can be applied without extensive tuning.
Upon publication, we will make our code publicly available.

4.4 PERFORMANCE-COST RESULTS

We show results across different datasets in Fig. 3. For each figure, the x-axis represents different
average acquisition costs (across instances), and the y-axis represents the performance. As the

4xo may contain missingness inherent to the data collection process. Additionally, unobserved features
(missing or not acquired) are being masked out during implementation.
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Table 1: Result comparisons of using the feature values, ŷ prediction embedding (last hidden layer),
and learned representation gϕ(·) to compute nearest neighbors on datasets. We report the mean ±
standard errors across five runs

METHOD
ADNI WOMAC KLG

AP ROC COST AP ROC COST AP ROC COST

FEATURE
VALUES

0.545± 0.004 0.727± 0.002 7.052± 0.069 0.315± 0.003 0.617± 0.004 9.014± 2.863 0.629± 0.003 0.821± 0.002 11.024± 0.011
0.550± 0.007 0.732± 0.008 10.297± 1.168 0.331± 0.013 0.633± 0.013 17.574± 0.070 0.651± 0.010 0.826± 0.021 17.741± 0.033

PREDICTION
EMBEDDING

0.567± 0.005 0.744± 0.004 6.218± 0.038 0.290± 0.005 0.618± 0.002 6.998± 0.023 0.639± 0.004 0.825± 0.002 13.706± 0.055
0.571± 0.021 0.744± 0.013 7.866± 0.068 0.290± 0.004 0.618± 0.002 19.681± 0.081 0.648± 0.001 0.829± 0.001 24.705± 0.043

EMBEDDING
NETWORK

0.578± 0.004 0.760± 0.003 4.434± 0.042 0.328± 0.004 0.646± 0.003 8.729± 0.011 0.644± 0.003 0.822± 0.001 10.687± 0.018
0.584± 0.013 0.760± 0.006 7.727± 0.094 0.339± 0.008 0.647± 0.003 20.921± 0.058 0.649± 0.002 0.822± 0.002 16.192± 0.062

budget increases, more features can be acquired, and prediction performance typically improves.
We use different hyperparameters to obtain prediction results under different average acquisition
costs. Details on the performance-cost tradeoff hyperparameters are in Appx. B.

Synthetic Dataset. Following Kossen et al. (2022), we use accuracy for performance on the syn-
thetic dataset. NOCTA-NP outperforms the other baselines, followed by NOCTA-P, indicating that
the baseline methods fail to model the dependency between features and necessary acquisitions.

ADNI Dataset. Following Qin et al. (2024), we show the average precision (AP) result for different
costs. We can see that both the parametric and non-parametric versions of NOCTA consistently
outperform all other baseline methods while using lower overall acquisition cost.

OAI Dataset. Similar to the ADNI results, we show the AP result on KLG and WOMAC prediction
in Fig. 3. NOCTA variants perform well and outperform the baselines, while RL-based approaches
(ASAC, AS, and RAS) underperform compared to the greedy approach (DIME), suggesting that RL-
based frameworks may struggle with the complexity and noise of longitudinal feature acquisition.

Overall, our NOCTA-NP model achieves highest accuracy across benchmarks, and our NOCTA-P
model achieves comparable performance without the need to search for neighbors. For detailed time
complexity and runtime analysis, please see Appx. A.4, and for additional results reporting AUC
ROC, please refer to Appx. C.

4.5 ABLATION OF NOCTA-NP NEIGHBOR DISTANCE

We evaluate the effectiveness of the learned representation during the nearest neighbors process.
That is, we compare defining neighbors using the learned representation gϕ versus using the native
feature values and using the last hidden layer from the predictor ŷ. For any two samples xi and xj

having the same observed feature o, we define feature-based distance as: d(xi,o, xj,o) = ∥xi,o −
xj,o∥2. Moreover, we define the prediction embedding using the last hidden layer of the predictor
ŷ, denoted as h(·). Thus, the distance for the prediction embedding is computed as d(xi,o, xj,o) =
∥h(xi,o)−h(xj,o)∥2. Tab. 1 shows results under two cost regimes, low and high. Our non-parametric
approach is robust to various choices of metrics and performs relatively well throughout. Moreover,
the learned embedding gϕ(·) outperforms both the feature values and the prediction embedding
h(·) on both ADNI and WOMAC datasets, and it shows comparable results on the KLG dataset.
Notably, on ADNI, the low-cost result for gϕ(·) (cost = 4.343) already outperforms the high-cost
performance of both alternatives (cost = 7.866 and 10.297). This indicates the embedding network
is able to learn informative representations that can be used for real-world AFA tasks.

5 CONCLUSION

In this work, we proposed NOCTA, a non-greedy longitudinal active feature acquisition framework
designed to directly balance acquisition cost with prediction accuracy. We introduced a cohesive
estimation target for our NOCTA framework with two complementary solution strategies. Results on
both synthetic and real-world medical datasets show that NOCTA outperforms other baseline meth-
ods while achieving lower overall acquisition cost. While our non-parametric approach provides
consistently strong performance, the parametric approach provides comparable performance with
more lightweight (non-neighbor based) inference. Either NOCTA-P or NOCTA-NP can be easily
validated against held-out data or ensembles if one seeks a single policy.
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APPENDIX

A ADDITIONAL DISCUSSION

A.1 USAGE OF LLMS STATEMENT

We used Grammarly (https://www.grammarly.com/) to identify and correct grammatical
errors. All revisions were manually reviewed by the authors to ensure the original meaning remained
unchanged.

A.2 BROADER IMPACT

In this paper, we introduce a non-greedy longitudinal active feature acquisition method, NOCTA,
which could aid the decision-making process in real-world applications such as healthcare by se-
lectively acquiring essential examinations; thus minimizing patient burden (e.g., time and costs)
through personalized and timely intervention, as in any ML system, using NOCTA should involve
thorough/robust evaluations and supervision by medical professionals to prevent any potential neg-
ative impact.

Broader Application. We acknowledge that our experiments focus on the healthcare section, an
important application area; however, our method is not specific to any domain. Similar resource-
constrained scenarios also exist in other domains, such as in energy-aware audio recognition (Monjur
et al., 2023) or IoT devices (Dunkels et al., 2011). In fact, our AFA formulation has applications
across a myriad of domains, including robotics (acquisition of sensors with resource constraints),
education (acquisition of different exam types without over-burdening students), and beyond.

A.3 ASSUMPTIONS & LIMITATIONS

Like traditional AFA methods and RL-based baselines, NOCTA assumes that the problem has a finite
horizon with a limited number of time steps. Additionally, we acknowledge that, similar to other
baselines presented in this paper, the performance of NOCTA is sensitive to the data quality. In
particular, poor label annotation in real-world clinical datasets can degrade the accuracy. However,
extending to an infinite-horizon setting and mitigating the sensitivity to the data quality are beyond
the scope of this paper. We will leave these challenges for future work.

A.4 TIME COMPLEXITY

With a total of time steps L and a total number of features M , the time complexity is O(ML2) for
RL baselines (RAS, AS, ASAC), and O(M2L2) for DiFA and DIME. For our parametric method
NOCTA-P, with a random subset search of size |O|, the time complexity is O(ML2|O|). However,
if you want to incorporate the nearest neighbor NOCTA-NP with the number of training points n,
the time complexity is O(nML2|O|), where a naive nearest neighbor search is O(nML). Note that
NOCTA can further parallelize the |O| subsets across independent workers.

A.5 PROOF OF THEOREM 1

Theorem 1. (Informal) NOCTA lower bounds the value of the optimal longitudinal AFA MDP policy

Problem Setup. For any observations (xo, o, t), let the set of all feature-time pairs that are available
be:

Vt = {(m, t′) | m ∈ {1, . . . ,M}, t′ ∈ {t+ 1, . . . , L}}.

To follow the convention of reinforcement learning literature, we redefine the objective for NOCTA
(Eq. (1)) as maximization instead of minimization without loss of generality. That is, for any partial
observation (xo, t), we define NOCTAs

t (xo) as:

NOCTAs
t (xo) := max

v⊆Vt

s.t |rounds(v)|≤s

[
−Eyt+1:L,xv|xo

[ℓ(xo ∪ xv, y, t)]− α
∑

(m,t′)∈v

cm
]
,
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where s ∈ N represents the maximum number of possible future acquisition rounds, and let
rounds(v) := {t′ | ∃m ∈ {1, . . . ,M} : (m, t′) ∈ v}. We then define

V 0
t (xo) := −Eyt+1:L|xo

[ℓ(xo, y, t)]

and

V s
t (xo) := max

{
V 0
t (xo), max

t′∈{t+1,...,L}
at′∈{0,1}M

[
−α

∑
m

at′,mcm + Exa
t′
|xo

[V s−1
t′ (xo∪at′ )]

]}
. (11)

We see that V 0
t is the expected negative cumulative loss when we immediately terminate at t, and

we predict the future labels using only what we have acquired so far, xo. Thus, V s
t is the value for

the optimal longitudinal AFA policy, such that it either (i) terminates, returning V 0
t or (ii) executes

another acquisition at the future time step t′ ∈ (t+1, ..., L) and acquires the feature at′ ∈ {0, 1}M .

Claim. For every (xo, t) with s ∈ N ≥ 0, we have V s
t (xo) ≥ NOCTAs

t (xo).

Proof.

Base case s = 0. Since there is no further action, both the MDP agent and NOCTA terminate:

V 0
t (xo) = −Eyt+1:L|xo

[ℓ(xo, y, t)] = NOCTA0
t (xo).

Inductive hypothesis. Assume for s− 1 ≥ 0, we have:

V s−1
t′ (x) ≥ NOCTAs−1

t′ (x) ∀(x, t′). (IH)

Inductive step. We fix (xo, t) and see that:

V s
t (xo)

= max
{
V 0
t (xo), max

t′∈{t+1,...,L}
at′∈{0,1}M

[
−α

∑
m

at′,mcm + Exa′
t
|xo

[V s−1
t′ (xo∪at′ )]

]}
(IH)

≥ max
{
V 0
t (xo), max

t′∈{t+1,...,L}
at′∈{0,1}M

[
−α

∑
m

at′,mcm + Exa′
t
|xo

[NOCTAs−1
t′ (xo∪at′ )]

]}
= max

{
V 0
t (xo),

max
t′∈{t+1,...,L}
at′∈{0,1}M

[
−α

∑
m

at′,mcm + Exa
t′
|xo

[
max
v′⊆Vt′

s.t |rounds(v′)|≤s−1

(
−Eyt′+1:L,xv′ |xo,xa

t′
[ℓ(xo ∪ xat′ ∪ xv′ , y, t′)]− α

∑
(m,t′′)∈v′

cm
)]]}

∗
≥ max

{
V 0
t (xo),

max
t′∈{t+1,...,L}
at′∈{0,1}M

max
v′⊆Vt′

s.t |rounds(v′)|≤s−1

−Eyt′+1:L,xv′ ,xa
t′
|xo

[ℓ(xo ∪ xat′ ∪ xv′ , y, t′)]− α
( ∑
(m,t′′)∈v′

cm +
∑
m

at′,mcm
)}

= max
{
V 0
t (xo), max

v∈Vt

s.t |rounds(v)≤s|

[−Eyt+1:L,xv|xo
[ℓ(xo ∪ xv, y, t)]− α

∑
(m,t′′)∈v

cm]
}

= NOCTAs
t (xo).

where * follows from:
∀v′ ∈ Ω, xat′ ,max

v∈Ω
L
(
xat′ , v

)
≥ L

(
xat′ , v

′) =⇒

∀v′ ∈ Ω,Exa
t′
|xo

[
max
v∈Ω

L
(
xat′ , v

)]
≥ Exa

t′
|xo

[
L
(
xat′ , v

′)] =⇒
Exa

t′
|xo

[
max
v∈Ω

L
(
xat′ , v

)]
≥ max

v∈Ω
Exa

t′
|xo

[
L
(
xat′ , v

)]
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for Ω :=
{
v ⊆ Vt′

∣∣ |rounds(v)| ≤ s− 1
}

and

L(xat′ , v) := −Eyt+1:L,xv′ |xo,xa
t′
[ℓ(xo ∪ xat′ ∪ xv′ , y, t)]− α

 ∑
(m,t′′)∈v′

cm +
∑
m

at′,mcm

 .

Note that one may recover the non-cardinality constrained problem by considering large enough s,
yielding a lower bound on the longitudinal AFA MDP.

A.6 SENSITIVITY ANALYSIS

In this section, we provide further explanations for hyperparameters and how the hyperparameters
affect performance. Overall, we find that our proposed method is robust to different settings, indi-
cating that our method can be applied readily without excessive fine-tuning.

|O|: this specifies the size of the candidate subset in our search. As |O| increases, NOCTA can
explore a broader set of potential acquisition plans. As seen in Table 2 and 3, both NOCTA-NP and
NOCTA-P exhibit clear diminishing returns once |O| exceeds 1000.

κ: this controls how many top candidate subsets are aggregated to form the future acquisition distri-
bution. Please refer to Table 5 for different settings.

K: this controls how many neighbors in the learned embedding space are used to estimate future
acquisition gains. Small values of K might result in high variance from too few neighbors, while
high K may include dissimilar samples. Please refer to Table 4 for different settings.

β: this controls the sensitivity that translates Jessen-Shannon divergence into a similarity score. A
larger β will penalize divergences more strongly, while a smaller β will be more lenient. Please
refer to Table 6 for different settings.

γ: this determines the margin in the contrastive loss, making sure that dissimilar embeddings are
pushed far apart. If γ is too small, the embedding network might not push dissimilar pairs far
enough, and if γ is too large, it might push moderately different samples by a large distance. Please
refer to Table 7 for different settings.

Table 2: Ablation on the subset size |O| for NOCTA-NP used in the synthetic dataset

|O| Accuracy Cost

100 0.907± 0.001 13.252± 0.044
1000 0.919± 0.002 11.345± 0.012
5000 0.921± 0.001 12.046± 0.021
10000 0.921± 0.002 11.945± 0.012

Table 3: Ablation on the subset size |O| for NOCTA-P used in the synthetic dataset

|O| Accuracy Cost

100 0.731± 0.010 11.401± 0.040
1000 0.745± 0.006 11.624± 0.087
5000 0.749± 0.016 11.430± 0.115
10000 0.742± 0.017 11.419± 0.150
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Table 4: Ablation on the number of neighbors K used in the synthetic dataset

K Accuracy Cost

5 0.888± 0.005 9.471± 0.033
10 0.874± 0.003 9.489± 0.006
25 0.889± 0.001 9.512± 0.006

Table 5: Ablation on the number of top candidate subset κ used in the synthetic dataset

κ Accuracy Cost

5 0.884± 0.005 9.471± 0.033
10 0.883± 0.001 9.618± 0.022
25 0.880± 0.002 9.564± 0.067

Table 7: Ablation on the margin in contrastive loss γ used in the synthetic dataset

γ Accuracy Cost

0.5 0.882± 0.010 9.592± 0.035
1 0.884± 0.005 9.471± 0.033
2 0.879± 0.005 9.638± 0.033
5 0.880± 0.001 9.688± 0.017

B EXPERIMENTAL SETUP

B.1 COST OF FEATURES

Synthetic data. Our synthetic dataset includes 2 features, one being the digit and the other being
the counter. Since both are generated through random selection, we assign an equal cost, 1, to the
two features. Upon publication, we will release the synthetic dataset.

ADNI. The ADNI dataset includes 4 features per time point, with FDG and AV45 extracted from
PET scan and Hippocampus and Entorhinal extracted from MRI scan. Since PET is a more ex-
pensive diagnosis, we follow Qin et al. (2024) and assign a cost 1 to FDG and AV45, and a
cost 0.5 to Hippocampus and Entorhinal. Access to ADNI data may be requested via https:
//adni.loni.usc.edu, and the Data Use Agreement is available at https://adni.loni.
usc.edu/terms-of-use/.

OAI. We use a total of 27 features for the OAI dataset, with 17 clinical measurements, and 10 joint
space width (JSW) extracted from knee radiography. For the clinical measurements, we assign a low
cost of 0.3 to those that require minimum effort, e.g., age, sex, and race, and a slightly higher cost
of 0.5 to blood pressure and BMI calculation. For JSW, a cost of 1.0 is assigned for the minimum
JSW and 0.8 for those measured at different positions. Access to the OAI data may be requested via
https://nda.nih.gov/oai/.

B.2 BASELINE IMPLEMENTATION

Following Qin et al. (2024), we share the same neural CDE predictor (Kidger et al., 2020)
for ASAC, RAS, and AS. For ASAC, RAS, and AS, we use the implementation available at
https://github.com/yvchao/cvar_sensing, which is under the BSD-3-Clause license.
For DIME (Gadgil et al., 2024), we extend the method to longitudinal by building on top of the
official implementation available at https://github.com/suinleelab/DIME. The DiFA
codebase is not publicly released, and researchers may request it directly from the authors.

ASAC (Yoon et al., 2019). We select the coefficient for the acquisition cost: 1)
µ ∈ {0.0015, 0.002, 0.003} for the synthetic dataset, 2) µ ∈ {0.005, 0.02} for ADNI,
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Table 6: Ablation on the scaling in similarity function β used in the synthetic dataset

β Accuracy Cost

0.5 0.879± 0.002 9.660± 0.054
1 0.884± 0.005 9.471± 0.033
2 0.890± 0.001 9.592± 0.022
5 0.888± 0.003 9.640± 0.048

3) µ ∈ {0.0012, 0.0016, 0.003} for the WOMAC of OAI dataset, and 4) µ ∈
{0.00125, 0.0015, 0.00175, 0.005} for the KLG of OAI dataset.

RAS (Qin et al., 2024). For the synthetic dataset, we set the allowed acquisition interval to (∆min =
0.2,∆max = 1.0) for the synthetic dataset and (∆min = 0.5,∆max = 4.5) for ADNI, WOMAC,
and KLG.

Moreover, we use the coefficient for diagnostic error: 1) γ ∈ {5000, 7000, 9000} for the synthetic
dataset, 2) γ ∈ {50, 75, 100, 175} for ADNI dataset, 3) γ ∈ {2000, 4500, 9000} for WOMAC of
OAI, and 4) γ ∈ {1200, 1700} for KLG of OAI dataset. For all datasets, we use a tail-risk quantile
of 0.1, a penalty for invalid visits of 10, and a discount factor (for tackling long trajectories) of 0.99.

AS (Qin et al., 2024). We set the minimum and maximum allowed acquisition intervals as in the
RAS setting. In addition, we select fixed acquisition interval of: 1) ∆̃ ∈ {0.2, 0.4} for the synthetic
dataset, 2) ∆̃ ∈ {0.5, 1.0, 1.5} for ADNI dataset, 3) ∆̃ ∈ {0.5, 1.5} for WOMAC of OAI, and 4)
∆̃ ∈ {0.5, 1.5} for KLG of OAI dataset.

DIME (Gadgil et al., 2024). For this baseline, we extend the original model to the longitudinal
setting, while still keeping its greedy feature acquisition strategy. Both the prediction network and
value network share the same architecture as our NOCTA-P model, and hence we use the same
training strategies.

DiFA (Ghosh and Lan, 2023). Following Ghosh and Lan (2023), we use a variational autoen-
coder with arbitrary conditioning (VAEAC) probabilistic model (Ivanov et al., 2018) for imputation.
When using the same architecture with NOCTA-P, DiFA performs poorly. Hence, we gave DiFA an
advantage and used the recommended architecture from the DiFA paper. That is, both the prediction
network and the feature policy model have two fully connected layers (hidden size 128) with skip
connections, dropout regularizer, and LeakyReLU activation function.

B.3 NOCTA IMPLEMENTATION

Prediction Network. We share the same MLP architecture for both NOCTA-NP and NOCTA-P.
Specifically, the network consists of two hidden layers with ReLU. Each hidden layer contains 10
units for the synthetic and ADNI datasets, and 32 units for the WOMAC and KLG of the OAI dataset,
respectively. Moreover, we apply random dropout for the input during training of the predictor.

NOCTA-NP. We select the accuracy-cost trade-off hyperparameter: 1) α ∈
{0.002, 0.006, 0.02, 0.03} for the synthetic dataset, 2) α ∈ {0.003, 0.005, 0.01} for ADNI dataset,
3) α ∈ {0.00075, 0.005, 0.01} for WOMAC of OAI dataset, and 4) α ∈ {0.0025, 0.001, 0.006} for
KLG of OAI dataset.

For the embedding network, we use four hidden layers with ReLU. Each hidden layer contains 32
units for the synthetic and ADNI datasets, and 64 units for the WOMAC and KLG of the OAI
dataset, respectively.

NOCTA-P. For the value network, we use an MLP architecture with two hidden layers and ReLU
as the activation function. We use the same hidden size as the prediction network, but the number
of outputs is set to be 1 for estimating the utility of the potential subset. We set the accuracy-cost
trade-off hyperparameter α to 5e− 5 for WOMAC and 5e−4 for all other tasks, and the acquisition
terminates by either selecting the empty set or reaching the budget.

To promote more stable training for Eq. (8) in NOCTA-P, we slightly modify the value network
objective in two ways: 1) remove the acquisition cost and train the value network to estimate only
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the CE loss, i.e., Īv(xo, o) = Iv(xo, o)− α
∑

(m,t′)∈v c
m. Since the cost of each subset is fixed and

can be directly added during subset selection, excluding it from the prediction target simplifies the
learning process without affecting the final decision; 2) consider the relative prediction improvement
over the current feature set: ¯̄Iv(xo, o) = ℓ(xo, y, t) − Īv(xo, o). This represents the potential gain
from acquiring new features and implicitly normalizes the loss scale. Since ℓ(xo, y, t) is a constant,
this will not change the selection (i.e., through argmax), and hence remains the same objective as
Eq. (1).

B.4 HARDWARES

We employed two different clusters for our experiments: (1) Intel Xeon CPU E5-2630 v4 and
NVIDIA GeForce GTX 1080 for experiments, and (2) Intel Xeon Silver 4114 CPU and NVIDIA
GeForce GTX 2080. We used cluster (1) for RAS, AS, ASAC, DiFA, NOCTA-NP, and cluster (2)
for DIME and NOCTA-P.

C ADDITIONAL RESULTS

C.1 ROC AUC ON REAL-WORLD DATASETS

Following Qin et al. (2024), Figure 4 shows additional ROC AUC results on real-world datasets
across varying average acquisition budgets. Our method consistently outperforms all baselines while
using a lower cost.

Figure 4: Additional results on performance/cost of models, measured by ROC AUC across varying
average acquisition budgets on real-world datasets. Best viewed in color.

C.2 FULL RESULTS WITH MEAN AND STANDARD DEVIATION

Tables 8, 9, 10, and 11 report the mean and standard deviation for each data point presented in
Figures 3 and 4, computed over five independent runs.
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Table 8: Full results for accuracy vs. average cost on Synthetic Dataset.

METHOD
SYNTHETIC

ACCURACY COST

ASAC
0.449± 0.078 5.803± 5.180
0.567± 0.161 9.929± 8.365
0.624± 0.136 11.780± 5.211

RAS
0.316± 0.031 6.390± 5.316
0.315± 0.032 6.852± 5.129
0.336± 0.022 11.003± 2.638

AS 0.320± 0.014 9.210± 2.344
0.335± 0.033 12.870± 3.762

DIME
0.497± 0.078 4.000± 0.000
0.501± 0.080 4.662± 0.557
0.509± 0.084 5.375± 1.213

DIFA
0.444± 0.015 6.466± 0.058
0.463± 0.017 8.249± 0.420
0.504± 0.010 10.138± 0.129

NOCTA-NP

0.698± 0.008 5.028± 0.022
0.795± 0.002 6.504± 0.005
0.884± 0.005 9.471± 0.033
0.919± 0.002 11.345± 0.012

NOCTA-P

0.512± 0.018 3.580± 0.292
0.589± 0.022 5.666± 0.221
0.630± 0.026 7.697± 0.174
0.707± 0.017 9.624± 0.164
0.745± 0.006 11.624± 0.087

Table 9: Full results for AP and ROC vs. average cost on ADNI prediction.

METHOD
ADNI

AP ROC COST

ASAC 0.449± 0.041 0.657± 0.038 6.442± 6.093
0.497± 0.034 0.679± 0.015 12.242± 2.648

RAS

0.538± 0.036 0.717± 0.024 4.087± 0.735
0.567± 0.015 0.735± 0.008 5.064± 0.324
0.567± 0.022 0.737± 0.012 6.560± 2.459
0.572± 0.012 0.739± 0.011 9.197± 1.438

AS
0.514± 0.046 0.702± 0.038 5.133± 1.659
0.536± 0.021 0.721± 0.014 6.394± 2.477
0.546± 0.021 0.734± 0.013 12.054± 1.763

DIME
0.519± 0.037 0.671± 0.047 1.801± 0.050
0.538± 0.045 0.695± 0.048 3.607± 0.084
0.544± 0.048 0.703± 0.049 4.587± 0.330

DIFA
0.520± 0.027 0.717± 0.029 2.925± 0.127
0.529± 0.025 0.725± 0.028 4.180± 0.043
0.530± 0.027 0.727± 0.033 5.292± 0.107

NOCTA-NP
0.578± 0.004 0.760± 0.003 4.434± 0.042
0.579± 0.009 0.760± 0.003 6.164± 0.068
0.584± 0.013 0.760± 0.006 7.727± 0.094

NOCTA-P
0.548± 0.025 0.719± 0.025 1.851± 0.019
0.569± 0.023 0.730± 0.015 3.729± 0.079
0.576± 0.021 0.742± 0.012 6.743± 0.330
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Table 10: Full results for AP and ROC vs. average cost on WOMAC score prediction.

METHOD
WOMAC

AP ROC COST

ASAC
0.269± 0.032 0.586± 0.060 8.541± 2.136
0.293± 0.018 0.619± 0.028 21.423± 6.480
0.299± 0.025 0.626± 0.026 27.175± 6.933

RAS
0.226± 0.008 0.534± 0.019 15.930± 3.475
0.231± 0.007 0.543± 0.009 18.810± 1.802
0.251± 0.019 0.565± 0.024 24.939± 3.796

AS 0.225± 0.005 0.528± 0.008 9.160± 2.271
0.235± 0.011 0.536± 0.012 19.826± 10.326

DIME

0.297± 0.025 0.598± 0.043 7.073± 0.093
0.297± 0.025 0.601± 0.043 9.036± 0.198
0.302± 0.028 0.603± 0.044 11.009± 0.310
0.305± 0.027 0.617± 0.037 12.696± 0.357
0.310± 0.028 0.621± 0.038 13.325± 0.643

DIFA
0.199± 0.009 0.504± 0.004 9.532± 0.091
0.211± 0.005 0.502± 0.002 11.584± 0.630
0.217± 0.004 0.507± 0.008 14.936± 1.433

NOCTA-NP
0.317± 0.003 0.636± 0.0012 7.063± 0.004
0.328± 0.004 0.646± 0.003 8.729± 0.011
0.339± 0.008 0.647± 0.003 20.921± 0.058

NOCTA-P

0.311± 0.007 0.625± 0.006 11.862± 0.074
0.327± 0.020 0.641± 0.018 13.212± 0.180
0.335± 0.015 0.649± 0.015 18.178± 0.082
0.340± 0.013 0.658± 0.011 23.061± 0.059

Table 11: Full results for AP and ROC vs. average cost on KLG prediction.

METHOD
KLG

AP ROC COST

ASAC

0.258± 0.021 0.513± 0.035 7.284± 4.694
0.266± 0.018 0.519± 0.019 12.756± 6.584
0.283± 0.009 0.546± 0.024 20.025± 6.504
0.304± 0.008 0.589± 0.015 24.361± 15.940

RAS 0.290± 0.012 0.571± 0.023 20.253± 11.269
0.313± 0.049 0.593± 0.063 31.044± 8.560

AS 0.277± 0.012 0.552± 0.021 12.394± 2.027
0.285± 0.022 0.555± 0.015 36.499± 8.124

DIME
0.418± 0.016 0.672± 0.023 9.787± 0.040
0.438± 0.018 0.688± 0.028 12.281± 0.005
0.486± 0.026 0.734± 0.024 14.359± 0.148

DIFA
0.310± 0.006 0.595± 0.019 9.611± 1.743
0.322± 0.011 0.598± 0.015 22.331± 3.465
0.336± 0.010 0.606± 0.013 27.615± 6.411

NOCTA-NP
0.644± 0.003 0.822± 0.001 10.687± 0.018
0.649± 0.002 0.822± 0.002 16.192± 0.062
0.663± 0.004 0.831± 0.001 29.546± 0.052

NOCTA-P
0.641± 0.054 0.844± 0.020 13.144± 0.107
0.639± 0.056 0.845± 0.022 16.448± 0.228
0.655± 0.042 0.853± 0.017 21.776± 0.323
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