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Abstract

We study Online Convex Optimization with adversarial constraints (COCO). At
each round a learner selects an action from a convex decision set and then an
adversary reveals a convex cost and a convex constraint function. The goal of
the learner is to select a sequence of actions to minimize both regret and the
cumulative constraint violation (CCV) over a horizon of length T . The best-known
policy for this problem achieves O(

√
T ) regret and Õ(

√
T ) CCV. In this paper,

we improve this by trading off regret to achieve substantially smaller CCV. This
trade-off is especially important in safety-critical applications, where satisfying the
safety constraints is non-negotiable. Specifically, for any bounded convex cost and
constraint functions, we propose an online policy that achieves Õ(

√
dT+T β) regret

and Õ(dT 1−β) CCV, where d is the dimension of the decision set and β ∈ [0,1] is a
tunable parameter. We begin with a special case, called the CONSTRAINED EXPERT
problem, where the decision set is a probability simplex and the cost and constraint
functions are linear. Leveraging a new adaptive small-loss regret bound, we propose
a computationally efficient policy for the CONSTRAINED EXPERT problem, that
attains O(

√
T lnN +T β) regret and Õ(T 1−β lnN) CCV for N number of experts.

The original problem is then reduced to the CONSTRAINED EXPERT problem via
a covering argument. Finally, with an additional M -smoothness assumption, we
propose a computationally efficient first-order policy attaining O(

√
MT + T β)

regret and Õ(MT 1−β) CCV.

1 Introduction

Online Convex Optimization (OCO) is a standard framework for sequential decision-making under
adversarial uncertainty [Hazan, 2022]. At each round 1 ≤ t ≤ T , a learner selects an action xt from
a convex decision set X with finite diameter D. The environment then reveals a convex, Lipschitz
continuous cost function ft ∶ X ↦ R, and the learner incurs a cost of ft(xt). The objective is to
minimize the regret relative to the best fixed action in hindsight. For any comparator action x⋆ ∈ X ,
the regret is defined as:

RegretT (x⋆) =
T

∑
t=1

ft(xt) −
T

∑
t=1

ft(x⋆). (1)

The worst-case regret is defined to be supx⋆∈X RegretT (x⋆). It is well-known that simple algorithms
such as Online Mirror Descent (OMD) attain an O(

√
T ) worst-case regret, which is also minimax

optimal [Hazan, 2022].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Online Convex Optimization with adversarial constraints (COCO) generalizes the standard OCO
framework and underpins a variety of emerging applications, including AI safety [Amodei et al.,
2016, Sun et al., 2017], fair allocation [Sinha, 2024], online ad markets with budget constraints
[Liakopoulos et al., 2019], and multi-task learning [Ruder, 2017, Dekel et al., 2006]. In COCO, on
each round 1 ≤ t ≤ T, the learner selects an action xt from a convex decision set X with diameter
D. The adversary then reveals two convex functions - a cost function ft ∶ X ↦ R and a constraint
function gt ∶ X ↦ R. For simplicity, we make the following mild assumption:
Assumption 1 (Bounded Cost and Constraints). The cost and constraint functions are bounded within
their domain. In particular, via appropriate translation and scaling, we assume that 0 ≤ ft, gt ≤ 1,∀t.

See Section 8.1 in the Appendix for a brief discussion on Assumption 1. The constraint function gt
corresponds to a constraint of the form ht(x) ≤ 0 where we define gt(x) ≡ max(0, ht(x)). Thus,
gt(xt) quantifies the penalty incurred by the learner for violating the hard constraint of ht(x) ≤ 0 at
round t. If an action x⋆ satisfies gt(x⋆) = 0,∀t, then it is feasible throughout the horizon. To measure
long-term constraint violation of a policy, we define Cumulative Constraint Violation (CCV) as:

CCVT =
T

∑
t=1

gt(xt). (2)

Since the constraint on each round is revealed after the learner selects action - and may be chosen
adversarially - it is generally impossible for an online policy to satisfy the constraints on every round.
Therefore, to ensure the problem is well-posed, one must impose some restrictions on the constraint
functions [Mannor et al., 2009]. In the COCO literature, the following feasibility assumption is
universally made [Sinha and Vaze, 2024, Guo et al., 2022, Neely and Yu, 2017, Yuan and Lamperski,
2018, Yi et al., 2021].

We define the feasible set X ⋆ to be the subset of actions that satisfy the constraints across all rounds:

X ⋆ = {x ∈ X ∶ gt(x) = 0, ∀t ≥ 1}. (3)

Assumption 2 (Feasibility). The feasible set is non-empty, i.e., X ⋆ ≠ ∅.

The feasibility assumption is not essential for our results. In particular, our algorithmic and analytical
techniques naturally extend to the more general setting where the feasible actions are allowed to
violate the constraints up to a prescribed budget of BT ≥ 0 [Sarkar et al., 2025]. Please refer to
Appendix 8.6 and Theorem 6 for this generalization.

In the COCO problem, the regret of any policy is computed relative to the best feasible action in
hindsight, i.e.,

RegretT = sup
x⋆∈X⋆

RegretT (x⋆). (4)

Goal: The standard objective in the COCO problem is to design an online policy that achieves
both small regret and small cumulative constraint violation (CCV). In this work, our primary focus is
on designing a flexible framework that minimizes the CCV to the extent possible, while ensuring
that the regret remains sublinear in the horizon length T . This trade-off is particularly important in
safety-critical applications, such as autonomous driving, where reducing constraint violation (e.g.,
safety breaches) takes precedence over minimizing regret (e.g., fuel or battery optimization, commute
time reduction).

Background and Our Contribution

Recently, Sinha and Vaze [2024] proposed a computationally efficient first-order policy for the COCO
problem, which achieves O(

√
T ) regret and Õ(

√
T ) CCV. They also established the tightness of

their results in the high-dimensional regime, where the dimension d of the decision set X is at least
T. It is well-known that even in the standard OCO problem, where gt = 0,∀t, the regret is lower
bounded by Ω(

√
T ), even for d = 1 [Hazan, 2022, Theorem 3.2]. Thus the unconditional O(

√
T )

regret guarantee for COCO cannot be improved. However, the question of whether one can achieve a
CCV substantially smaller than Õ(

√
T ) under additional natural assumptions was left open.

Our main contribution in this paper is to affirmatively answer this question. In particular, we show
that in the fixed-dimensional setting where d ≪ T, it is possible to achieve significantly smaller
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cumulative constraint violation (CCV) while appropriately trading off the regret. Furthermore, when
the cost and constraint functions are smooth, we show that a computationally efficient online gradient
descent-based policy can achieve improved guarantees. A summary of our results is provided in
Table 1. From the table, we also note that with an appropriate choice of the parameters (β = 1), our
proposed policy achieves O(lnT ) CCV in the special case of ONLINE CONSTRAINT SATISFACTION
(OCS) problem when all cost functions are zero and the only goal is to satisfy the constraints [Sinha
and Vaze, 2024].

A key technical ingredient in our analysis is the use of small-loss regret bounds, also known as L⋆
bounds in the online learning literature [Cesa-Bianchi and Lugosi, 2006, Orabona, 2019]. These
bounds yield guarantees that improve upon the minimax optimal O(

√
T ) rate for standard regret

minimization problem when the fixed comparator incurs a small cumulative loss. In Section 2,
we extend these classical results by proposing a new adaptive policy for the EXPERT problem that
achieves a small-loss regret bound in the general setting where the per-round loss vectors can be
potentially unbounded. In Section 3, we consider a special case of COCO, called the CONSTRAINED
EXPERT problem, where the decision set is an N -dimensional simplex and the cost and constraint
functions are linear. In Section 4, we reduce the general COCO problem to the CONSTRAINED
EXPERT problem via a covering argument. In Section 5, we give a computationally efficient first-
order policy with improved bounds for smooth and convex functions. Due to space constraints,
experimental results have been deferred to Section 8.7 in the Appendix.

Reference Regret CCV Complexity Assumptions

Jenatton et al. [2016] O(Tmax(β,1−β)) O(T 1−β/2) Projection FC
Neely and Yu [2017] O(

√
T ) O(

√
T /η) Conv-OPT Slater condition

Yuan and Lamperski [2018] O(Tmax(β,1−β)) O(T 1−β/2) Projection FC
Yu and Neely [2020] O(

√
T ) O(1/η) Conv-OPT Slater, FC

Yi et al. [2021] O(Tmax(β,1−β)) O(T (1−β)/2) Conv-OPT FC
Guo et al. [2022] O(

√
T ) O(T 3/4) Conv-OPT -

Yi et al. [2023] O(Tmax(β,1−β)) O(T 1−β/2) Conv-OPT -
Sinha and Vaze [2024] O(

√
T ) Õ(

√
T ) Projection -

Vaze and Sinha [2025] O(
√
T ) Instance dependent Projection -

This paper O(
√
T lnN + T β) Õ(T 1−β lnN) O(N) CONSTR. EXPERT

This paper Õ(
√
dT + T β) Õ(dT 1−β) O(T d) d-dim. decision set

This paper O(
√
MT + T β) Õ(MT 1−β) Projection Smooth

Table 1: Summary of the key results on the COCO problem. In the above table, β ∈ [0,1] is a tunable parameter,
η > 0 denotes the Slater’s constant, N denotes the number of experts, d denotes the dimension of the decision
set X , M denotes the smoothness constant, and Õ(⋅) hides polylogarithmic factors in T . CONSTR. EXPERT
refers to the CONSTRAINED EXPERT problem described in Section 3, Conv-OPT refers to solving a constrained
convex optimization problem on each round, Projection refers to the Euclidean projection operation on the
decision set X , and FC refers to the Fixed Constraints setting.

Intuition for the results: We now give some intuition for why the Cumulative Constraint Violation
(CCV) can be expected to be made smaller than the current-best bound of Õ(

√
T ) by crucially

utilizing small-loss regret bounds. Consider the Online Constraint Satisfaction (OCS) problem,
introduced by Sinha and Vaze [2024], where all cost functions are identically equal to zero and the
goal is to minimize the CCV only. Let the constraint functions (i.e., {gt}t≥1’s), be non-negative,
M -smooth, and convex.

For solving this problem, we run the Online Gradient Descent policy on the sequence of con-
straint functions with an adaptive step size schedule. Specifically, we choose the next action
as xt+1 = PROJX (xt − ηt∇t), where ∇t ≡ ∇gt(xt) and the step sizes are adaptively chosen as

ηt = D/
√

2∑t
τ=1 ∣∣∇τ ∣∣22, t ≥ 1. The following small-loss regret bound achieved by this policy

for non-negative smooth functions is well-known [Orabona, 2019, Theorem 4.25] (please see the
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statement of Theorem 4 in Section 5 for a quick reference):

T

∑
t=1

gt(xt) −
T

∑
t=1

gt(u) ≤ 4D2M + 4D

¿
ÁÁÀM

T

∑
t=1

gt(u), ∀u ∈ X . (5)

Now, if we choose the comparator u to be a feasible action by setting u = x⋆, x⋆ ∈ X ⋆, we have
gt(x⋆) = 0,∀t. Thus the regret bound (5) implies CCVT = ∑T

t=1 gt(xt) ≤ 4D2M - which is a
constant independent of T. This result is surprising as the O(

√
T ) lower bound for regret holds even

for linear functions [Hazan, 2022].

In this paper, we generalize this observation by exploring the trade-off between regret and CCV while
taking into account both the cost and constraint functions. Our main result roughly says that any
(RegretT ,CCVT ) pair with RegretT ≥ Θ̃(

√
T ) and RegretT ×CCVT = Õ(T ) is achievable.

1.1 Prior work

Online convex optimization with constraints has been extensively studied under various modeling
assumptions. Table 1 provides a summary of key results in the literature.

In the fixed-constraint setting, where gt = g for all t, Yi et al. [2021] proposed a policy that achieves
O(Tmax(β,1−β)) regret and O(T (1−β)/2) CCV. Under the stronger assumption of Slater’s condition,
which requires the existence of a uniformly strictly feasible action x⋆ ∈ X such that gt(x⋆) ≤ −η for
some constant η > 0 and all t, Yu and Neely [2020] showed that the CCV can be reduced to O(1/η)
while maintaining O(

√
T ) regret.

The problem becomes significantly more challenging in the presence of time-varying adversarial
constraints. Under Slater’s condition, Neely and Yu [2017] developed an algorithm achieving O(

√
T )

regret and O(
√
T /η) CCV. However, since this condition is quite strong, difficult to verify in practice,

and leads to vacuous CCV bounds as η → 0+, recent works have focused on avoiding this assumption.

Guo et al. [2022] proposed an algorithm that needs to solve a separate offline convex optimization
problem in each round, achieving O(

√
T ) regret and O(T 3/4) CCV. Subsequently, Sinha and Vaze

[2024] introduced a simpler gradient-based policy that improves the CCV bound to Õ(
√
T ) while

still maintaining O(
√
T ) regret. See also Lekeufack and Jordan [2024], Lu et al. [2025], Supantha

and Sinha [2025], Sarkar et al. [2025] for various extensions of their result. More recently, Vaze and
Sinha [2025] proposed an algorithm that achieves O(

√
T ) regret and constant CCV for some special

classes of the constraint sets.

The algorithms proposed in this paper make use of Lipschitz-adaptive small-loss regret bounds.
Small-loss regret bounds for the standard regret minimization problem with bounded Lipschitz
constants, where the regret scales with the cumulative loss of the benchmark (instead of the time
horizon T ), have been well studied [Cesa-Bianchi et al., 1997, Auer et al., 2002, Hazan and Kale,
2010]. Mhammedi et al. [2019] propose Lipschitz-adaptive algorithms in the EXPERT setting, which
rely on multiple restart phases and incur additional computational overhead. Similarly, Cesa-Bianchi
et al. [2007] uses doubling trick to estimate the unknown parameters. Restarting learning algorithms
during their course of execution is practically wasteful as it discards all past data prior to the restarts.
To the best of our knowledge, continuously adaptive, scale-free variants of the small-loss regret
bounds in the EXPERT setting have not been investigated before in the literature. In the following, we
review the EXPERT problem and derive an adaptive small-loss regret bound.

2 Preliminaries: Adaptive Small-Loss Regret Bound for the EXPERT Problem

The Prediction with Expert Advice problem, also known as the EXPERT problem in the literature,
refers to a repeated game where, in each round t ≥ 1, the learner chooses a probability distribution pt
over a set of N experts (experts may be identified with the set of actions). After that, the adversary
chooses a bounded loss vector lt ∈ [0,1]N , where lt(i) denotes the loss for the ith expert, i ∈ [N].
Consequently, the learner incurs an expected loss of ft(pt) = ⟨lt, pt⟩ in round t. The full loss
vector lt is revealed to the learner at the end of round t. The learner’s objective is to choose a
sequence of distributions {pt}t≥1 to minimize its regret over T rounds. The EXPERT problem is the
full-information counterpart of the Multi-armed Bandit (MAB) problem [Bubeck et al., 2012].
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The Exponential Weights algorithm, also known as Hedge, is a well-known solution to the EXPERT
problem. The Hedge algorithm selects the ith expert on round t with probability

pt(i) = exp ( − η
t−1
∑
τ=1

lτ(i))/Z, i ∈ [N], (6)

where η > 0 is a suitably chosen learning rate and Z is the normalizing constant. Hedge is known to
achieve the following small-loss regret bound [Cesa-Bianchi and Lugosi, 2006, Corollary 2.4]:

RegretT = L̃T −LT (i⋆) ≤
√
2LT (i⋆) lnN + lnN, (7)

where L̃T = ∑T
τ=1⟨lτ , pt⟩ is the learner’s cumulative loss, LT (i⋆) = ∑T

τ=1 lτ(i⋆) is the cumulative
loss of a comparator arm i⋆ ∈ [N]. See also the Squint algorithm proposed by Koolen and Van Erven
[2015]. The small-loss bound (7) offers a significant improvement over the standard O(

√
T ) regret

bound when the comparator’s loss is small, i.e., LT (i⋆) = o(T ). While the bound (7) is well-known, it
assumes that that all loss values are bounded [Cesa-Bianchi and Lugosi, 2006, Section 2.4]. However,
for reasons that will become clear in the sequel, we cannot use (7) in our algorithm, as we will need
to control the regret when the losses, defined appropriately by the algorithm, are unbounded.

To address this technical challenge, Theorem 1 presents a small-loss regret bound for the EXPERT
problem that generalizes (7) by accommodating potentially unbounded losses. This regret bound is
achieved by an adaptive variant of the Hedge policy that employs a self-confident variable learning
rate. The full pseudocode for this policy is provided in Algorithm 4 in Appendix 8.2.

Theorem 1. Consider the EXPERT problem with N experts. Let the vector lt denote the losses of the
experts at round t ≥ 1, where lt(i) ≥ 0,∀i, t. The losses need not be uniformly bounded above for all
rounds. Let Gt be an upper bound to ∣∣lt∣∣∞ satisfying the following conditions1:

1. The sequence {Gt}t≥1 is monotonically non-decreasing, i.e., Gt ≥ Gt−1,∀t ≥ 1,G0 = 1.

2. The growth of Gt in consecutive rounds is bounded: max1≤t≤T Gt

Gt−1
≤ γ for some known

constant γ ≥ 1.

Then the following adaptive Hedge algorithm, which selects the ith expert with probability pt(i) ∝
exp(−ηtLt−1(i)),∀i, with an adaptive learning rate ηt = 1√

Gt−1

√
lnN

L̃t−1+γGt−1
, achieves the following

regret bound:

L̃T −LT (i⋆) ≤ 2γ
√
LT (i⋆)GT lnN + 7γ2GT lnN. (8)

In the above, L̃t = ∑t
τ=1⟨pτ , lτ ⟩ denotes the algorithm’s cumulative loss up to round t and LT (i⋆) =

∑T
τ=1 lτ(i⋆) is the cumulative loss of any comparator expert i⋆ ∈ [N] up to round T.

See Appendix 8.3 for a proof of Theorem 1.

Remarks: 1. The monotonicity assumption on the sequence {Gt}t≥1 entails no loss of generality,
since one can always define a new sequence of upper bounds as G′t ∶=max1≤τ≤tGτ , t ≥ 1, which is
monotonic by construction.

2. The proof of Theorem 1 is non-trivial because the value of GT is unknown in advance. As a
result, we cannot simply rescale all losses by GT and directly apply the small-loss bound in (7) to the
normalized losses. Instead, we carefully design an adaptive learning rate schedule that accounts for
the growth of the loss scale and the cumulative loss of the best expert over time.

3 The CONSTRAINED EXPERT problem: Simplex Decision Set, Linear Cost,
and Linear Constraint Functions

In this section, we focus on an important special case of the COCO problem, called CONSTRAINED
EXPERT problem, where the cost and constraint functions are linear and the decision set is the

1Naturally, the {Gt}t≥1 sequence is causal i.e., Gt can be computed only after observing the loss vector lt
on round t.
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N − 1-dimensional simplex ∆N , i.e.,

X =∆N = {p ∈ RN ∶
N

∑
i=1

pi = 1, pi ≥ 0,∀i} .

In this problem, at each round t, the learner first computes a distribution pt ∈ ∆N over N experts,
and then it samples an expert from the distribution pt. Choosing expert i incurs a cost of ft(i) and a
constraint violation of gt(i). Consequently, the learner incurs an expected cost of ft(pt) ≡ ⟨ft, pt⟩
and an expected constraint violation of gt(pt) ≡ ⟨gt, pt⟩ on round t2. Both the cost vector ft and the
constraint vector gt are revealed to the learner at the end of the round. The feasibility assumption
(Assumption 2), specialized to this setting, implies that there exists at least one expert i⋆ ∈ [N] such
that gt(i⋆) = 0,∀t. The learner’s objective is to generate a sequence of distributions {pt}Tt=1 that
minimizes both the regret and the cumulative constraint violation (CCV).

3.1 An Online Policy for the CONSTRAINED EXPERT Problem

Let Φ ∶ R ↦ R be a non-decreasing convex Lyapunov function, to be specified later, and let i⋆ be
an uniformly feasible expert with gt(i⋆) = 0,∀t. As stated earlier, the existence of i⋆ is guaranteed
by Assumption 2. Let Q(t) denote the cumulative constraint violation (CCV) up to round t, which
evolves as follows:

Q(t) = Q(t − 1) + ⟨gt, pt⟩. (9)
We now use the regret decomposition framework introduced by Sinha and Vaze [2024] to design
an online policy for the CONSTRAINED EXPERT problem. Using the convexity of the Lyapunov
function Φ(⋅), we have for any 1 ≤ t ≤ T :

Φ(Q(t)) −Φ(Q(t − 1)) ≤ Φ′(Q(t))(Q(t) −Q(t − 1))
(a)= Φ′(Q(t))⟨gt, pt⟩
(b)= Φ′(Q(t))(⟨gt, pt⟩ − gt(i⋆)), (10)

where (a) follows from Eqn. (9) and (b) uses the fact that gt(i⋆) = 0,∀t. Adding the term ⟨ft, pt⟩ −
ft(i⋆) to both sides of the inequality, we obtain

Φ(Q(t)) −Φ(Q(t − 1)) + (⟨ft, pt⟩ − ft(i⋆))
≤ ⟨ft +Φ′(Q(t))gt, pt⟩ − (ft(i⋆) +Φ′(Q(t))gt(i⋆)). (11)

Define the tth surrogate cost function f̂t ∶∆N ↦ R to be the following linear function:

f̂t(p) ∶= ⟨ft +Φ′(Q(t))gt, p⟩, t ≥ 1. (12)
Summing up Eqn. (11) for 1 ≤ t ≤ T, we obtain the following regret decomposition inequality:

Φ(Q(T )) −Φ(Q(0)) +RegretT (i⋆) ≤ Regret′T (i⋆). (13)

In Eqn. (13), RegretT (i⋆) ≡ ∑T
t=1⟨ft, pt − ei⋆⟩ and Regret′T (i⋆) ≡ ∑T

t=1⟨f̂t, pt − ei⋆⟩ correspond to
the regret for the original cost functions {ft}Tt=1 and the surrogate cost functions {f̂t}Tt=1, respectively,
with respect to a feasible expert i⋆ ∈ [N].
Algorithm 1 presents our proposed online policy for the CONSTRAINED EXPERT problem. It employs
the adaptive Hedge subroutine from Theorem 1 to select the sampling distributions {pt}t≥1 which
minimize Regret′T (i⋆) appearing on the RHS of Eqn. (13). Observe that the surrogate cost function
f̂t involves the term Φ′(Q(t)), which may grow indefinitely with t as Q(t) grows. Hence, it is
imperative to use the adaptive Hedge algorithm (Algorithm 4) which can handle unbounded loss, in
contrast to the standard Hedge algorithm (6), which assumes bounded loss vectors. The following
theorem gives an upper bound to the regret and CCV achieved by Algorithm 1.
Theorem 2. Consider the Lyapunov function Φ(x) = eλx, where λ = T −(1−β)/(2c lnN), c = 10,
and β ∈ [0,1] is a tunable parameter. Then, under Assumptions 1 and 2, Algorithm 1 achieves the
following guarantees for the CONSTRAINED EXPERT problem for any feasible expert i⋆ ∈ [N]:

RegretT (i⋆) = O(
√
T lnN + T β + lnN), CCVT = O(T 1−β lnN lnT ).

In particular, if ft = 0,∀t, upon setting β = 1, we obtain CCVT = O(lnN lnT ).
2To simplify the notations, we use the same symbol for denoting a linear function and its associated coefficient

vector.
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Algorithm 1 Algorithm for the CONSTRAINED EXPERT problem

1: Input: Number of experts N , Horizon length T , Cost vectors {ft}Tt=1 and Constraint vectors
{gt}Tt=1, Tunable parameter β ∈ [0,1].

2: Parameter settings: Φ(x) = eλx, λ = T −(1−β)/(2c lnN), c = 10.
3: Initialization: Set Q(0) ← 0, Algorithm’s loss L̃0 ← 0, Experts’ cumulative loss L0 ← 0,G0 =

1 +Φ′(Q(0)).
4: for each t = 1 ∶ T do
5: Compute self-confident learning rate

ηt =
1√
Gt−1

¿
ÁÁÀ lnN

L̃t−1 + γGt−1
. (14)

6: Play adaptive Hedge by choosing the ith expert with probability

pt(i) = exp(−ηtLt−1(i))/
N

∑
j=1

exp(−ηtLt−1(j)), ∀i ∈ [N].

7: Observe the vectors ft, gt. Incur a cost of ⟨ft, pt⟩ and constraint violation of ⟨gt, pt⟩.
8: Update CCV and Gt:

Q(t) = Q(t − 1) + ⟨gt, pt⟩, Gt = 1 +Φ′(Q(t)).

9: Compute the surrogate cost vector: f̂t = ft +Φ′(Q(t))gt. (coordinate-wise vector addition)
10: Update the cumulative loss of the algorithm and the cumulative loss of each expert

L̃t = L̃t−1 + ⟨f̂t, pt⟩, Lt(i) = Lt−1(i) + f̂t(i), i ∈ [N].
11: end for each

Experimental results, presented in Section 8.7 of the Appendix, qualitatively support the expected
variations of Regret and CCV as a function of the parameter β.

3.2 Proof of Theorem 2

Define the sequence Gt ≡ 1 + Φ′(Q(t)), t ≥ 0, where the Lyapunov function Φ(⋅) is chosen as
specified in the statement of Theorem 2. From the definition of the surrogate costs (Eqn. (12)), it
follows that Gt is an upper bound to the maximum component of the surrogate cost vector:

∣∣f̂t∣∣∞ ≤ ∣∣ft∣∣∞ +Φ′(Q(t))∣∣gt∣∣∞ ≤ 1 +Φ′(Q(t)) = Gt,∀t.

Since Q(t) is non-decreasing in t and the function Φ(⋅) is convex, it follows that the sequence {Gt}t≥1
is also non-decreasing. Furthermore, from Lemma 2 in the Appendix, we have that max1≤t≤T Gt

Gt−1
≤

1.08. Thus all conditions in Theorem 1 are fulfilled with γ = 1.08, and we can use the small-loss regret
bound (8) of the adaptive Hedge algorithm for the surrogate cost sequence {f̂t}Tt=1. Let i⋆ ∈ [N] be a
uniformly feasible expert which incurs zero constraint violation on every round, i.e., gt(i⋆) = 0,∀t.
The cumulative surrogate cost incurred by expert i⋆ can be upper bounded as:

LT (i⋆) =
T

∑
t=1
(ft(i⋆) +Φ′(Q(t))gt(i⋆)) ≤ T,

where we have used the fact that ∣∣ft∣∣∞ ≤ 1 and gt(i⋆) = 0,∀t ≥ 1. Hence, using the small-loss regret
bound (8), the regret for the surrogate cost functions with respect to any feasible arm i⋆ can be upper
bounded as:

Regret′T (i⋆) ≤ c
√
T (1 +Φ′(Q(T )) lnN + c(1 +Φ′(Q(T ))) lnN, (15)

where we have used the fact that max(2γ,7γ2) ≤ 10 ≡ c (say). Using the inequality
√
x + y ≤√

x+√y, x ≥ 0, y ≥ 0, and substituting the upper bound from Eqn. (15) into the regret decomposition
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inequality (13), we obtain

Φ(Q(T )) +RegretT (i⋆) ≤ Φ(Q(0)) + c(
√
T lnN +

√
TΦ′(Q(T )) lnN

+Φ′(Q(T )) lnN + lnN). (16)

1. Bounding the CCV: Using the fact that RegretT (i⋆) ≥ −LT (i⋆) ≥ −T, inequality (16) yields

eλQ(T ) ≤ T + 1 + c
√
T lnN + c

√
λTeλQ(T ) lnN + (λc lnN)eλQ(T ) + c lnN. (17)

Since T ≥ 1, our choice of the parameter λ = T −(1−β)/(2c lnN) ensures that λc lnN ≤ 1/2. Using this
inequality to bound the coefficient of the penultimate term on the RHS of Eqn. (17) and transposing,
we obtain

eλQ(T ) ≤ 8max(T + 1, c
√
T lnN, c

√
λT lnNeλQ(T )/2, c lnN).

Since the maximum value on the RHS is achieved by at least one term on the right, comparing the
LHS with each term on the RHS separately and simplifying, we obtain the following bound for CCV:

Q(T ) ≤ λ−1(c1 + c2 lnT + c3 ln lnN), (18)
where c1, c2, c3 are universal constants.

2. Bounding the Regret: Transposing the term Φ(Q(T )) = eλQ(T ) to the RHS of Eqn. (16) and
using the fact that λc lnN ≤ 1/2 for our chosen parameter λ, we obtain

RegretT (i⋆) ≤ 1 + c
√
T lnN + c

√
λT lnNeλQ(T )/2 − 1

2
eλQ(T ) + c lnN.

Using the fact that ax − bx2 ≤ a2

4b
,∀b > 0, the above inequality implies the following regret bound:

RegretT (i⋆) ≤ 1 + c
√
T lnN + c2

2
λT lnN + c lnN. (19)

Substituting λ = T−(1−β)
2c lnN

into Eqns. (19) and Eqn. (18), we obtain the following regret and CCV
bounds:

RegretT (i⋆) = O(
√
T lnN + T β + lnN), CCVT = O(T 1−β lnN lnT ).

◻

4 Convex Cost and Constraint functions

In this section, we generalize our previous results to the general convex setting. In particular, we
make the following assumption.
Assumption 3 (Convexity and Lipschitzness). All cost and constraint functions are convex and
G-Lipschitz. The decision set X is a bounded subset of the d-dimensional Euclidean space Rd.

We begin by recalling the notion of a δ-cover from Wainwright [2019]. See Figure 1 in the Appendix
for a schematic.
Definition 1 (Covering number). A δ-cover of a set T with respect to a metric ρ is a set
{θ1, θ2, . . . , θN} ⊆ T such that for each θ ∈ T, there exists some i ∈ [N] such that ρ(θ, θi) ≤ δ. The
δ-covering number N(δ;T, ρ) is the cardinality of the smallest δ-cover.

Construction: Let Nδ = {x1, x2, . . . , xNδ} be the smallest δ-cover of the decision set X with
δ = 1/T . Since X is contained within a d-dimensional ball of diameter D, its covering number is
bounded by Nδ ≤ (1 + 2D

δ
)d [Wainwright, 2019, Lemma 5.7]. We construct an instance of the

CONSTRAINED EXPERT problem with Nδ experts where the ith expert corresponds to the point
xi, i ∈ [Nδ]. The cost and constraint violation for the experts are defined as:

fCE
t (i) = ft(xi), gCEt (i) = (gt(xi) −Gδ)+, i ∈ [Nδ]. (20)

Intuitively, the learner reduces the complex continuous decision space to a finite set of representative
points, allowing us to apply the CONSTRAINED EXPERT algorithm.
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Feasibility: To show the feasibility of the above CONSTRAINED EXPERT problem, consider any
feasible action in the decision set x⋆ ∈ X that satisfies gt(x⋆) = 0,∀t. Let xi⋆ be the nearest point in
the δ-cover, such that ∣∣xi⋆ − x⋆∣∣ ≤ δ. Using the Lipschitzness of the constraint function, we have

gCEt (i⋆) ≡ gt(xi⋆) ≤ gt(x⋆) +G∣∣xi⋆ − x⋆∣∣ ≤ 0 +Gδ.

Hence, from Eqn. (20), it follows that expert i⋆ is feasible as gCEt (i⋆) = 0,∀t.

Algorithm: Our policy is summarized in Algorithm 2 where, on every round, we run Algorithm 1
on the CONSTRAINED EXPERT instance defined above. We then use the output distribution from
Algorithm 1 to select the next action as the corresponding convex combination of the points in Nδ .

Algorithm 2 COCO Algorithm for Convex Cost and Constraints

1: Input: A minimal δ-cover of X : Nδ = {x1, x2, . . . , xNδ}, with δ = 1/T . Parameter β ∈ [0,1].
2: for each t = 1 ∶ T do
3: Run Algorithm 1 on the CONSTRAINED EXPERT problem with Nδ experts where the cost

and constraint vectors are given by Eqn. (20). Obtain the distribution pt over Nδ.
4: Play xt = ∑i pt(i)xi

5: end for

Analysis: By Eqn. (20) and Jensen’s inequality, the cost and constraint violation on any round can
be upper bounded by the cost and constraint violation of the CONSTRAINED EXPERT instance as:

ft(xt) = ft(∑
i

pt(i)xi) ≤ ∑
i

pt(i)ft(xi) = ⟨fCE
t , pt⟩, gt(xt) = gt(∑

i

pt(i)xi) ≤ ⟨gCEt , pt⟩ +Gδ.

In addition, using the Lipschitzness of ft, we have ft(xi⋆) − ft(x⋆) ≤ Gδ,∀t. Hence, the regret and
CCV of Algorithm 2 differs from that of the CONSTRAINED EXPERT instance by at most GδT ≤ G,
which is a constant. Finally, using the fact that lnNδ = O(d lnT ), we invoke Theorem 2 to obtain
the following bounds for Algorithm 2. The results are summarized in Theorem 3.

RegretT (x⋆) = O(
√
dT ln(T ) + T β + d lnT ), CCVT = O(dT 1−β(lnT )2). (21)

Theorem 3. Under Assumptions 1, 2, and 3, Algorithm 2 achieves Õ(
√
dT + T β) regret and

Õ(dT 1−β) CCV for any β ∈ [0,1].

5 Convex and Smooth Cost and Constraint Functions

While the previous reduction-based approach, given by Algorithm 2, is interesting, it can be compu-
tationally prohibitive when the dimension d is large. To address this problem, we now propose an
efficient gradient-based policy for the class of non-negative, smooth, and convex cost and constraint
functions. We will make use of the following small-loss regret bound achieved by the Online Gradient
Descent (OGD) policy for this class of functions.
Theorem 4 (Orabona [2019], Theorem 4.25). Let X be a closed non-empty convex decision set
with diameter D. Let l1, l2, . . . , lT be an arbitrary sequence of non-negative convex and M -smooth
functions. Let ∇t be the gradient of lt at xt, t ≥ 1. Pick any x1 ∈ X , set the step sizes adaptively

as ηt = D/
√

2∑t
τ=1 ∣∣∇τ ∣∣22, t ≥ 1, and consider the Online Gradient Descent (OGD) policy with

adaptive step sizes which selects the next action as: xt+1 = PROJX (xt − ηt∇t), where PROJX (⋅)
denotes the Euclidean projection operator on to the decision set X . Then we have:

RegretT (u) =
T

∑
t=1

lt(xt) −
T

∑
t=1

lt(u) ≤ 4D

¿
ÁÁÀM

T

∑
t=1

lt(u) + 4D2M, u ∈ X . (22)

In this section, we make the following assumption.
Assumption 4 (Convexity and Smoothness). All cost and constraint functions are convex and
M -smooth.
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Algorithm and Analysis: Let Φ ∶ R↦ R be a non-decreasing convex Lyapunov function, x⋆ ∈ X
be a feasible action, and Q(t) be the CCV up to round t. Following identical arguments as in the
CONSTRAINED EXPERT problem in Section 3, we define the surrogate cost function

f̂t(x) ∶= ft(x) +Φ′(Q(t))gt(x), x ∈ X . (23)

From Assumption 4, it follows that all surrogate cost functions are non-negative, convex, and
MT ≡ M(1 + Φ′(Q(T ))-smooth. Our proposed algorithm is described in Algorithm 3 where we

Algorithm 3 COCO Algorithm for Smooth and Convex Cost and Constraints

1: Initialization: Choose x1 ∈ X arbitrarily
2: for each t = 1 ∶ T do
3: Compute gradient ∇t = ∇f̂t(xt) from Eqn. (23)

4: Set the step size ηt =D/
√

2∑t
τ=1 ∣∣∇τ ∣∣22.

5: Choose next action using OGD: xt+1 = PROJX (xt − ηt∇t)
6: end for

run the standard OGD policy on the surrogate cost functions {lt ≡ f̂t}t≥1, with adaptive step sizes
given by Theorem 4. It is crucial to note that the step sizes {ηt}t≥1, which are derived from the past
gradients, are oblivious to the smoothness parameter MT , which is unknown a priori. Using Eqn.
(22) from Theorem 4, the regret for the surrogate costs for any feasible action x⋆ can be bounded as:

Regret′T (x⋆) ≤ 4D
√
MT (1 +Φ′(Q(T )) + 4(1 +Φ′(Q(T ))D2M. (24)

We have used the fact that the cumulative surrogate cost is upper bounded by ∑T
t=1 f̂t(x⋆) ≤ T as

gt(x⋆) = 0,∀t ≥ 1. The regret bound (24) becomes algebraically identical to Eqn. (15) under the
substitutions c← 4, lnN ←D2M . Thus, reusing the same analysis and parameter choices (including
the Lyapunov function) from the proof of Theorem 2, we arrive at the following result.
Theorem 5. Let β ∈ [0,1] be a tunable parameter, and define the Lyapunov function as Φ(x) = eλx
with λ = T −(1−β)/(8D2M). Then, under Assumptions 1, 2, and 4, Algorithm 3 achieves the following
guarantee for any feasible action x⋆ ∈ X ⋆:

RegretT (x⋆) = O(D
√
MT + T β +D2M), CCVT = O(T 1−βM lnT ).

In particular, if ft = 0,∀t, upon setting β = 1, we obtain CCVT = O(M lnT ).

See Section 8.6 in the Appendix for an extension of the above result that relaxes the feasibility as-
sumption (Assumption 2) by allowing the benchmark x⋆ to violate the constraints within a prescribed
long term budget of BT .

6 Conclusion

In this paper we propose online policies for the COCO problem that achieve improved cumulative
constraint violation (CCV) by carefully trading it off with regret. These results are particularly
important in applications where violating the constraints are costly, such as autonomous driving or
budget-constrained advertising. An important direction for future work is to design computationally
efficient algorithms that achieve sharper CCV guarantees in the fixed-dimensional setting without the
smoothness assumption. Additionally, it would be interesting to establish matching lower bounds.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide complete theorem statements along with detailed proofs for all
claims presented in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our results critically rely on the feasibility assumption (Assumption 2), which
is standard in the COCO literature. While this assumption is widely adopted, it remains an
interesting direction for future work to explore how and to what extent it can be relaxed.
Additionally, as discussed in the conclusion, deriving matching lower bounds remains an
open and important problem.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We clearly state the assumptions under which our theoretical results hold.
Complete proofs of all theoretical claims have been provided either in the main paper or in
the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The complete experimental set up with all relevant parameter values has been
included in Section 8.7 of the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code has been made publicly available [Sinha, 2025].

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The complete experimental set up with all relevant parameter values has been
included in Section 8.7 of the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Since our paper proves bounds on the worst-case performance metric, error-
bars are not essential for the experimental results.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
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8 Appendix

8.1 On the Boundedness Assumption

Assumption 1 implies that there exist constants Kf ,Kg such that

∣ft(x)∣ ≤Kf , ∣gt(x)∣ ≤Kg,∀x ∈ X ,∀t ≥ 1.

Since the constraint function gt is non-negative, the above implies

∣ft(x)∣ ≤Kf , 0 ≤ gt(x) ≤Kg,∀x ∈ X ,∀t ≥ 1.

Now consider the following translated and scaled version of the cost and constraint functions:

f̃t(x) ∶=
ft(x)
2Kf

+ 1

2
, g̃t(x) ∶=

gt(x)
Kg

, x ∈ X , t ≥ 1.

It is easy to verify that 0 ≤ f̃t, g̃t ≤ 1,∀t ≥ 1. Hence, we can work with these modified cost and
constraint functions.

P.S. With the feasibility assumption (Assumption 2), we can even obtain an explicit expression for
Kg . Let x⋆ be a feasible action. Using the G-Lipschitzness of the function gt, we have

gt(x) ≤ gt(x⋆) +G∣∣xt − x⋆∣∣ ≤ 0 +GD.

Thus we can take Kg ≡ GD. Consequently, we only need to assume the cost functions to be bounded.

8.2 Pseudocode for the Adaptive Hedge Policy

Algorithm 4 Adaptive Hedge Algorithm for the EXPERT problem with Unbounded Losses

1: Input: Number of experts N, Horizon length T , Non-negative and potentially unbounded loss
vectors {lt}Tt=1, γ ≥ 1.

2: Initialization: Algorithm’s loss L̃0 = 0, Losses of the experts L0 = 0, G0 = 1.
3: for each t = 1 ∶ T do
4: Compute self-confident learning rate

ηt =
1√
Gt−1

¿
ÁÁÀ lnN

L̃t−1 + γGt−1
. (25)

5: Play adaptive Hedge by choosing the ith expert with probability

pt(i) = exp(−ηtLt−1(i))/
N

∑
j=1

exp(−ηtLt−1(j)), ∀i ∈ [N].

6: The loss vector lt is revealed to the learner
7: Update the algorithm’s and experts’ losses

L̃t ← L̃t−1 + ⟨lt, pt⟩, Lt ← Lt−1 + lt
8: Gt is an upper bound to ∣∣lt∣∣∞ such that 1 ≤ Gt+1/Gt ≤ γ
9: end for each

8.3 Proof of Theorem 1

Our proof adapts the arguments given in Luo [2017] while accounting for unbounded losses. Let
Lt(i) denote the cumulative loss of the ith expert up to round t, i.e., Lt(i) = ∑t

τ=1 lτ(i), i ∈ [N].
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Define the potential function Φt(η) = 1
η
log ( 1

N ∑
N
i=1 exp(−ηLt(i))). We have

Φt(ηt) −Φt−1(ηt) = 1

ηt
ln( ∑

N
i=1 exp(−ηtLt(i))

∑N
i=1 exp(−ηtLt−1(i))

)

= 1

ηt
ln(

N

∑
i=1

pt(i) exp(−ηtlt(i)))

(a)
≤ 1

ηt
ln(

N

∑
i=1

pt(i)(1 − ηtlt(i) +
η2t l

2
t (i)
2
))

= 1

ηt
ln(1 − ηt⟨pt, lt⟩ +

η2t
2

N

∑
i=1

pt(i)l2t (i))

(b)
≤ −⟨pt, lt⟩ +

ηt
2

N

∑
i=1

pt(i)l2t (i).

where in inequality (a), we have used the fact that e−y ≤ 1 − y + y2

2
,∀y ≥ 0, and in (b), we have used

the fact that 1 + y ≤ ey,∀y ∈ R. Thus we have that

⟨pt, ℓt⟩ ≤ Φt−1(ηt) −Φt(ηt) +
ηt
2

N

∑
i=1

pt(i)ℓ2t (i).

Summing the above inequality for 1 ≤ t ≤ T yields
L̃T

=
T

∑
t=1
⟨pt, lt⟩

≤ Φ0(η1) −ΦT (ηT+1) +
T

∑
t=1

ηt
2

N

∑
i=1

pt(i)ℓ2t (i) +
T

∑
t=1
(Φt(ηt+1) −Φt(ηt))

(a)
≤ lnN

ηT+1
− 1

ηT+1
ln (exp(−ηT+1LT (i∗))) +

T

∑
t=1

ηt
2
Gt

N

∑
i=1

pt(i)ℓt(i) +
T

∑
t=1
(Φt(ηt+1) −Φt(ηt))

(b)
≤
√
(L̃T + γGT )GT lnN +LT (i∗) + γ

√
GT lnN

T

∑
t=1

⟨pt, ℓt⟩
2
√
L̃t−1 + γGt−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(A)

+
T

∑
t=1
(Φt(ηt+1) −Φt(ηt))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(B)

,

(26)
where, in (a) we have used the fact that ∣∣lt∣∣∞ ≤ Gt, and in (b) we have used the expression (25) for
the learning rate ηt along with the fact that Gt ≤ γGt−1 and Gt ≤ GT ,∀t.
To bound term (A) in Eqn. (26), observe that

L̃t = L̃t−1 + ⟨pt, lt⟩ ≤ L̃t−1 +Gt ≤ L̃t−1 + γGt−1.
Hence,

T

∑
t=1

⟨pt, ℓt⟩√
L̃t−1 + γGt−1

≤
T

∑
t=1

L̃t − L̃t−1√
L̃t

(c)
≤ ∫

L̃T

L̃0

dx√
x
= 2
√

L̃T ,

where in inequality (c), we have used the monotonicity of the sequence {L̃t}t≥1.
Furthermore, it can be readily verified that the potential function Φt(η) is non-decreasing in η as
Φ′t(η) ≥ 0 [Luo, 2017]. Since the learning rate ηt is non-increasing in t, we conclude that each term
in term (B) in Eqn. (26) is non-positive. Hence, using the inequality

√
a + b ≤ √a +

√
b, from Eqn.

(26), we have

L̃T ≤ 2γ
√

L̃TGT lnN +LT (i∗) +GT

√
γ lnN.

In the above, we have used the fact that γ ≥ 1. Solving the above quadratic inequality using Lemma 1
below, we conclude that the adaptive Hedge policy enjoys the following small-loss regret bound for
the EXPERT problem:

L̃T −LT (i⋆) ≤ 2γ
√
LT (i⋆)GT lnN + 7γ2GT lnN.
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8.4 Proof of Auxiliary Lemmas

Lemma 1 (A quadratic inequality). Consider the following quadratic inequality x2 ≤ ax + b, where
a ≥ 0, b ≥ 0. Then we have x2 ≤ a2 + b + a

√
b.

Proof. Solving the given inequality using the usual quadratic formula and the fact that
√
x + y ≤√

x +√y, x, y ≥ 0,, we have

x ≤ a +
√
a2 + 4b
2

≤ a + a + 2
√
b

2
= a +

√
b.

Hence,

x2 ≤ a(a +
√
b) + b = a2 + b + a

√
b.

Lemma 2 (Bounding γ). Let Φ(x) = eλx, λ = T −(1−β)/(2c lnN), where c = 10. Define Gt =
1 +Φ′(Q(t)), t ≥ 0 and γ ≡max1≤t≤T Gt

Gt−1
. Then we have γ ≤ 1.08.

Proof. Since 0 ≤ gt ≤ 1, from Eqn. (9), we have

Q(t) = Q(t − 1) + ⟨gt, pt⟩ ≤ Q(t − 1) + 1. (27)

Thus

Gt

Gt−1
= 1 + λeλQ(t)

1 + λeλQ(t−1)
(a)
≤ 1 + λeλeλQ(t−1)

1 + λeλQ(t−1) ≤ e
λ. (28)

where in (a) we have used inequality (27). Since N ≥ 2 and T ≥ 1, we have λ ≤ (2c ln 2)−1. Hence,
Eqn. (28) implies that

γ ≤ e1/(20 ln2) ≤ 1.08.

8.5 Construction of a Minimal δ-cover of the Decision Set X

x1 x2 x3

x4 x5 x6

x7 x8

x9

x10

x⋆

X

Figure 1: Schematic depicting the greedy construction of a minimal δ-cover of the decision set X . If
a point x ∈ X is not covered yet, we construct a ball of radius δ centred at x and include the point x
in the δ-cover. The process continues till the entire set X is covered.
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8.6 Relaxing the Feasibility Assumption

In this Section, we relax the feasibility Assumption 2 by allowing the benchmark actions to violate
the constraints up to a given budget BT ≥ 0. In particular, we consider the following feasible set of
actions which are budget feasible in the long term:

X ⋆BT
= {x ∈ X ∶

T

∑
t=1

gt(x) ≤ BT }. (29)

We now replace Assumption 2 with the following assumption.

Assumption 5 (Long-term Feasibility). The feasible set is non-empty, i.e., X ⋆BT
≠ ∅.

Note that X ⋆BT
= X ⋆ when BT = 0. Since 0 ≤ gt ≤ 1 (Assumption 1), we clearly have X ⋆T = X , where

X is the entire decision set. Thus, without any loss of generality, we can assume that BT ≤ T.

8.6.1 The Generalized Regret Decomposition Inequality

We now generalize the regret decomposition inequality (13) by taking into account the long-term
feasibility constraint (29). Let Φ ∶ R↦ R be any non-decreasing convex Lyapunov function defined
as in Section 5 and let x⋆ ∈ X ⋆BT

be any long-term feasible action satisfying the budget constraint
(29). Recall that CCV evolves as Q(t) = Q(t − 1) + gt(xt). Hence, using the convexity of Φ(⋅), we
obtain

Φ(Q(t)) −Φ(Q(t − 1)) + (ft(xt) − ft(x⋆))
≤ (ft(xt) +Φ′(Q(t))gt(xt)) − (ft(x⋆) +Φ′(Q(t))gt(x⋆)) +Φ′(Q(t))gt(x⋆).

where, unlike in Section 5, the violation gt(x⋆) in this case could be strictly positive. Summing up
the above inequalities, we conclude

Φ(Q(T )) −Φ(Q(0)) +RegretT (x⋆)
(a)
≤ Regret′T (x⋆) +Φ′(Q(T ))

T

∑
t=1

gt(x⋆)

(b)
≤ Regret′T (x⋆) +Φ′(Q(T ))BT , (30)

where, as before, RegretT (x⋆) and Regret′T (x⋆) denote the regrets for learning the original cost
functions {ft}t≥1 and the surrogate cost functions {f̂t}t≥1 respectively w.r.t. the long-term feasible
benchmark x⋆ (see Eqn. (23) for the definition of the surrogate cost functions). In the above inequality,
the upper bound in step (a) follows from the monotonicity of the CCV (Q(t))t≥1 and the convexity
of the Lyapunov function Φ(⋅), while step (b) uses the budget constraint for x⋆ ∈ X ⋆BT

.

In the following, we consider the case of convex and smooth cost and constraint functions under the
relaxed feasibility assumption (see Section 5). The analysis for the CONSTRAINED EXPERT problem
is identical.

8.6.2 Convex and Smooth Cost and Constraints with Long-term Budget Constraints

Inequality (30) is of the same form as the regret decomposition inequality (13) under Assumption 2,
albeit with an extra additive term Φ′(Q(T ))BT appearing on the right-hand side. By using the same
exponential Lyapunov function as before (with the parameter λ now adapted to the budget BT ), we
can analogously solve the above functional inequality and derive the corresponding regret and CCV
bounds under long-term violation budget constraints.

The cumulative cost of the surrogate functions under any long-term feasible action x⋆ ∈ X ⋆BT
can be

upper bounded as

T

∑
t=1

f̂t(x⋆) =
T

∑
t=1

ft(x⋆) +
T

∑
t=1

Φ′(Q(t))gt(x⋆)
(a)
≤ T +Φ′(Q(T ))

T

∑
t=1

gt(x⋆)
(b)
≤ T +Φ′(Q(T ))BT , (31)

where in inequality (a), we have again made use of the convexity of the Lyapunov function and the
non-decreasing property of the CCV, and in (b), we have used the budget constraint for x⋆. Hence,
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using Eqn. (22) from Theorem 4, the regret for the surrogate costs under the action of Algorithm 3
can be upper bounded as:

Regret′T (x⋆) ≤ 4D
√
M(T +Φ′(Q(T )BT )(1 +Φ′(Q(T )) + 4(1 +Φ′(Q(T ))D2M

≤ c1
√
T + c2

√
TΦ′(Q(T )) + c3Φ′(Q(T ))

√
BT , (32)

where c1, c2, c3 are generic constants which depend only on the problem-specific parameters M and
D. If necessary, the reader can easily figure out the explicit values of these constants in each line of
the derivation below.

As in Section 3.1, we now set Φ(⋅) to be the exponential Lyapunov function, i.e., Φ(x) ∶= exp(λx),
for a suitable value of the parameter λ which will be fixed later. With this choice, the regret
decomposition inequality (30) yields

eλQ(T ) +RegretT (x⋆) ≤ c1
√
T + c2

√
λTeλQ(T )/2 + c3λBT e

λQ(T ).

We now choose some λ such that λ ≤ (2c3BT )−1. Hence, the above equation yields

1

2
eλQ(T ) +RegretT (x⋆) ≤ c1

√
T + c2

√
λTeλQ(T )/2. (33)

The Regret and CCV bounds are obtained by solving the above inequality.

Bounding the CCV: Using the fact that RegretT (x⋆) ≥ −T, Eqn. (33) yields

eλQ(T ) ≤ c1T + c2
√
λTeλQ(T )/2 ≤ 2max(c1T, c2

√
λTeλQ(T )/2).

This implies the following bounds for Q(T ) ∶

Q(T ) ≤ λ−1(c1 + logλ + logT ) = O(λ−1 logT ).

Bounding the Regret: Starting from inequality (33) once again, we have the following upper
bound on regret

RegretT (x⋆) ≤ c1
√
T + c2

√
λTeλQ(T )/2 − 1

2
eλQ(T ).

Using the fact that ax − bx2 ≤ a2

4b
,∀b > 0, and taking x = eλQ(T )/2, the regret can be further upper

bounded as follows:

RegretT (x⋆) ≤ c1
√
T + c22

2
λT = O(max(

√
T ,λT )).

Finally, choosing λ =min( 1
2c3BT

, T −(1−β)) for some 0 ≤ β ≤ 1, we obtain the following trade-off

Q(T ) = Õ(max(BT , T
1−β)), RegretT (x⋆) = O(max(

√
T ,T β)). (34)

As an example, if BT = O(T 1/3), then by choosing β = 2/3, we obtain RegretT (x⋆) = O(T
2/3) and

CCVT = Õ(T 1/3).
The above results are summarized in the following Theorem.

Theorem 6. Let BT ≥ 0 be the prescribed long-term constraint violation budget. Consider the
Lyapunov function Φ(x) = eλx with λ =min( 1

cBT
, T −(1−β)) where β ∈ [0,1] is a tunable parameter

and c is a constant which depends on the problem parameters (D and M ) as discussed above. Then,
under Assumptions 1, 4, and 5, Algorithm 3 achieves the following guarantee for any long-term
feasible benchmark action x⋆ ∈ X ⋆BT

:

RegretT (x⋆) = O(max(
√
T ,T β)), Õ(max(BT , T

1−β)).
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Fig A: Cumulative Regret
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Fig C: Adaptive Hedge: Action Probabilities
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Fig D: Gradient COCO: Action Probabilities
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Figure 2: Comparison of the proposed adaptive Hedge-based policy (Algorithm 1) with β = 0.75 and the
OGD-based policy from Sinha and Vaze [2024, Algorithm 1]. (A) Regret vs. time. (B) Cumulative Constraint
Violation (CCV) vs. time. (C) Selection frequency of experts under our adaptive Hedge-based policy. (D)
Selection frequency of experts under the OGD-based policy. The proposed policy quickly identifies and sticks
to the best feasible expert, leading to significantly lower CCV, whereas the OGD-based policy initially selects
infeasible experts and takes longer to converge.

8.7 Experiments

Problem instance: We consider the CONSTRAINED EXPERT problem on a synthetic dataset with
N = 20 experts over a horizon of length T = 5000. Two experts are designated as special: the best
feasible expert, denoted by E⋆, and the best unconstrained expert, denoted by UE⋆. The expert E⋆ is
feasible, with i.i.d. costs drawn from a distribution with mean f̄E⋆ = 0.21, and zero constraint violation
on all rounds, i.e., ḡE⋆ = 0.0. In contrast, UE⋆ is infeasible, with i.i.d. costs and constraint violations
having a smaller mean f̄UE⋆ = 0.11 and higher average constraint violation ḡUE⋆ = 0.91, respectively.
The remaining experts incur i.i.d. random costs with mean f̄ = 0.41 plus a zero-mean periodic
component over time, and their constraint violations are i.i.d. with mean ḡ = 0.6. Additionally, two
more experts, DE1 and DE2, distinct from both E⋆ and UE⋆, are made feasible by setting their constraint
violations to zero on all rounds. Table 2 summarizes the parameters used in the experiments. The
experiments have been run on a quad-core CPU with 8 GB RAM. The source code has been made
publicly available [Sinha, 2025].

Expert(s) Index Average cost Average constraint violation

E⋆ #12 f̄E⋆ = 0.21 ḡE⋆ = 0.0
UE⋆ #8 f̄E⋆ = 0.11 ḡE⋆ = 0.91
DE1,DE2 #3,#6 f̄E⋆ = 0.41 ḡE⋆ = 0.0
The rest [20] ∖ {3,6,8,12} f̄E⋆ = 0.41 ḡE⋆ = 0.6

Table 2: Parameter settings for generating cost and constraint vectors for N = 20 experts.

Summary of the results. Parts (A) and (B) of Figure 2 compare the performance of our proposed
adaptive Hedge-based policy (Algorithm 1) with β = 0.75 with that of the Online Gradient Descent
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Figure 3: Performance comparison for different values of β

(OGD)-based policy proposed by Sinha and Vaze [2024, Algorithm 1]. From the plots, it is evident
that the proposed algorithm incurs significantly lower cumulative constraint violation (CCV) while
maintaining a sub-linear regret.

To gain deeper insight into the working of the algorithms, parts (C) and (D) of Figure 2 show the
relative frequency with which each expert is selected by our algorithm and the OGD-based policy,
respectively. These plots clearly demonstrate that the adaptive Hedge-based policy quickly identifies
the best feasible expert and predominantly selects it thereafter. In contrast, the OGD-based policy
initially incurs a substantial amount of constraint violation by frequently selecting infeasible experts.
Only after a considerable number of rounds does it converge to the best feasible expert and begin
exploiting it consistently.

Figure 3 illustrates the trade-off between regret and cumulative constraint violation (CCV) for
different values of the tuning parameter β in the proposed policy. As β increases from 0.6 to 0.9, the
algorithm incurs lower CCV at the expense of higher regret. This behavior aligns with the theoretical
performance guarantees established in Theorem 2.
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