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Abstract

Time series imputation is important for numer-
ous real-world applications. To overcome the
limitations of diffusion model-based imputation
methods, e.g., slow convergence in inference, we
propose a novel method for time series imputa-
tion in this work, called Conditional Lagrangian
Wasserstein Flow (CLWF). Following the prin-
ciple of least action in Lagrangian mechanics,
we learn the velocity by minimizing the corre-
sponding kinetic energy. Moreover, to enhance
the model’s performance, we estimate the gra-
dient of a task-specific potential function using
a time-dependent denoising autoencoder and in-
tegrate it into the base estimator to reduce the
sampling variance. Finally, the proposed method
demonstrates competitive performance compared
to other state-of-the-art imputation approaches.

1. Introduction

Time series imputation is essential for various practical sce-
narios in many fields, such as transportation, environment,
and medical care, etc. Deep learning-based approaches,
such as RNNs, VAEs, and GANSs, have been proved to
be advantageous compared to traditional machine learning
methods on various complex real-world multivariate time
series analysis tasks (Fortuin et al., 2020). More recently,
diffusion models, such as denoising diffusion probabilistic
models (DDPMs) (Ho et al., 2020) and score-based genera-
tive models (SBGMs) (Song et al., 2020), have gained more
and more attention in the field of time series analysis due to
their powerful modelling capability (Lin et al., 2023; Meijer
& Chen, 2024).

Although many diffusion model-based time series imputa-
tion approaches have been proposed and show their ad-
vantages compared to conventional deep learning mod-
els (Tashiro et al., 2021; Chen et al., 2021; 2023), they are
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limited to slow convergence or large computational costs.
Such limitations may prevent them being applied to real-
world applications. To address the aforementioned issues,
in this work, we leverage the optimal transport theory (Vil-
lani et al., 2009) and Lagrangian mechanics (Arnol’d, 2013)
to propose a novel method, called Conditional Lagrangian
Wasserstein Flow (CLWF), for fast and accurate time series
imputation.

In our method, we treat the multivariate time series im-
putation task as a conditional optimal transport problem,
whereby the random noise is the source distribution, the
missing data is the target distribution, and the observed data
is the conditional information. To generate new data sam-
ples efficiently and accurately, we need to find the shortest
path in the probability space according to the optimal trans-
port theory. To this end, we first project the original source
and target distributions into the Wasserstein space via sam-
pling mini-batch OT maps. Afterwards, we construct the
time-dependent intermediate samples through interpolating
the source distribution and target distribution. Then accord-
ing to the principle of least action in Lagrangian mechan-
ics (Arnol’d, 2013), the optimal velocity function moving
the source distribution to the target distribution is learned in
a self-supervised manner by minimizing the corresponding
kinetic energy. We can solve the model efficiently using
flow matching in a simulation-free manner (Lipman et al.,
2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2023;
Tong et al., 2023).

To further improve the model’s performance, we leverage
the denoising affect of the time-dependent denoising autoen-
coder (TDAE) model which is trained on the observed time
series data to estimate the gradient of task-specific potential
function. By doing so, combined with the aforementioned
flow model, we can formulate a new path sampler to reduce
the sampling variances. Furthermore, we can interpret the
gradient of the potential function as the control signal from
the perspective of stochastic optimal control (SOC) in data
generation (Bellman, 1966; Chen et al., 2021; Caluya &
Halder, 2021; Berner et al., 2024), Consequently, the sam-
pling procedure can be viewed as a controlled path integral
(Zhang & Chen, 2022). We also explain the variance re-
duction effect of the new sampler using the Rao-Blackwell
theorem (Casella & Robert, 1996). Moreover, we propose
a resampling technique using the interpolated conditional
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samples to enhance the model’s imputation performance.

Finally, CLWF is assessed on three real-word and one syn-
thetic time series datasets for validation. The results ob-
tained show that the proposed method achieves competitive
performance and admits faster convergence compared with
other state-of-the-art time series imputation methods.

The contributions of the paper are summarized as follows:

* We present Conditional Lagrangian Wasserstein Flow,
a novel conditional generative framework based on the
optimal transport theory and Lagrangian mechanics;

* We develop the efficient training and inference algo-
rithms to solve the time series imputation problem:;

* We establish theoretical links between optimal trans-
port, stochastic optimal control and path measures;

* We demonstrate that the proposed method has achieved
competitive performance on time series imputation
tasks compared to other state-of-the-art methods.

2. Preliminaries

In this section, we will succinctly introduce the fundamen-
tals of stochastic differential equations, optimal transport,
Shrodinger Bridge, and Lagrangian mechanics.

2.1. Stochastic Differential Equations

We treat the data generation task as an initial value prob-
lem (IVP), in which X, € R is the initial data (e.g., some
random noise) at the initial time ¢ = 0, and X7 € R? is
target data at the terminal time ¢ = 7. To solve the IVP,
we consider a stochastic differential equation (SDE) de-
fined by a Borel measurable time-dependent drift function
we : R% x [0,7] — R?, and a positive Borel measurable
time-dependent diffusion function oy : [0,7] — RZ . Ac-
cordingly, the Itd6 form of the SDE can be described as
follows (Oksendal, 2013):

dXt = /,Lt(Xt7t)dt+0't(t)th, (1)

where W, is a Brownian motion/Wiener process. Note that
when the diffusion term is not considered, the SDE degen-
erates to an ordinary differential equation (ODE), which
is typically easier to solve numerically. Nonetheless, we
will use the SDE for theoretical analysis throughout the pa-
per, as it provides a more general framework. Accordingly,
The above SDE’s associated forward Fokker-Planck Kol-
mogorov (FPK) equatio (Risken & Frank, 2012) describing
the evolution of the marginal density p;(X;) reads

PV ) = DO,V ), @

o' (t)o(t), V? represents the Hessian
:= trace(- ', -) represents the Frobenius

where D(t) :=
operator, and (-,
inner product.

%
)

In fact, both Eq. (1) and Eq. (2) reveal the system’s dynam-
ics and act as the boundary conditions for the optimization
problems introduced in later sections, each with a different
focus. When the constraint is given by Eq. (1), the formal-
ism is Lagrangian, depicting the movement of each indi-
vidual particle. In contrast, when the constraint is Eq. (2),
the formalism is Eulerian, representing the evolution of the
population as a whole.

2.2. Optimal Transport

The optimal transport (OT) problem aims to find the optimal
transport plans/maps that move the source distribution to
the target distribution (Villani et al., 2009; Santambrogio,
2015; Peyré et al., 2019). In the Kantorovich’s formulation
of the OT problem, the transport costs are minimized with
respect to some probabilistic couplings/joint distributions
(Villani et al., 2009; Santambrogio, 2015; Peyré et al., 2019).
Let pg and pr be two Borel probability measures with finite
second moments on the space 2 € R%. TI(py, pr) denotes
a set of transport plans between these two marginals. Then,
the Kantorovich’s OT problem is defined as follows:

) 1 2
inf —||x —y||"7(x, y)dxdy, 3
B sl dny, 6

where I(po, pr) = {7 € P(X x ) : (7%) 47 = po, (7¥) 7 = pr},
with 7® and 7¥ being two projections of X x ) on (2. The
minimizer of Eq. (3), 7*, always exists and is referred to as
the OT plan.

Note that Eq. (3) can also include an entropy regularization

term, the Kullback-Leibler (KL) divergence Dk, (7||po ® pr)-
This transforms the original OT problem into the entropy-
regularized optimal transport (EROT) problem with Eq. (2)

serving as the constraint, which frames the transport

problem better in terms of convexity and stability (Cuturi,
2013). In particular, from a data generation perspective,

po is some random initial noise and pr is the target data

distribution, and we can sample the corresponding OT plan

in a mini-batch manner (Tong et al., 2023; 2024; Pooladian

et al., 2023).

2.3. Shrodinger Bridge

The transport problem in Sec. 2.2 can be further viewed from
a distribution evolution perspective, which is particularly
suitable for developing the flow-based models that model
data generation process. For this reason, the Shrodinger
Bridge (SB) problem is introduced herein (Léonard, 2012).
Assume that 2 € C1(R? x [0,T]), P(Q) is a probability
path measure on the path space €2, then the goal of the SB
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problem is to find the following optimal path measure:

P* = arg min Dk, (P||Q),
PEP(Q) “4)

subject to Py = go and Py = qr,

1 (di’)dﬂ», ifP < Q,
where Dk1,(P||Q) = & \aq P <Q
400, otherwise,

areference path measure, e.g., Brownian motion or Ornstein-
Uhlenbeck process. Moreover, the distribution matching
problem in Eq. (3) can be reframed as a dynamical SB
problem as well (Gushchin et al., 2024; Koshizuka & Sato,
2023; Liu et al., 2024):

and Qs

1
argmin Eyx,) [gHMtg(X“ tW] ’

subject to Eq. (1) or Eq. (2),

&)

where 6 is the parameters of the variational drift function
Ht-

2.4. Lagrangian Mechanics

In this section, we formulate the data generation problem
within the framework of Lagrangian mechanics (Arnol’d,
2013). Let p; and p; := dp;/dt be the density and law of
the generalized coordinates X, respectively. Denoting the
kinetic energy as K(p¢, pt, t) and the potential energy as
U(p¢, t), then the corresponding Lagrangian is given by

E(phpht) = K(phpt?t) _u(pt) (6)

Further, we assume that Eq. (6) is lower semi-continuous
(Isc) and strictly convex in p; in the Wasserstein space. Con-
sequently, K(xzy, pi, t) and U (p¢, t) are defined as follows,
respectively:

T
’C(Ita,u‘tat) = Ept(mt) [/() 2ut(xfat)||2dt]7 (7)
Ulpi, 1) = / V(e pi (o) des, ®)
Rg

where V;(X}) is the potential function. Then the action in
the context of Lagrangian mechanics is defined as follows:

T
A(ﬂt(mst)) = A /R E(xt,ut,t)dxtdt. (9)

According to the principle of least action (Feynman, 2005),
the shortest path is the one minimizing the action, which
is aligned with Eq. (4) in the SB theory as well. There-
fore, we can leverage the Lagrangian dynamics to tackle
the OT problem for data generation. Moreover, to solve
Eq. (6), the corresponding stationary condition, i.e., the

Euler-Lagrangian equation (Arnol’d, 2013), needs to be
satisfied:

d o 0

——=—L t)y=—2°L i, t 10

dt 8[715 (xtaﬂh ) 5'pt (pt7pt7 )7 ( )
with the boundary conditions: dji‘ = [, Po = qo, and

Pr = d4r-

3. Conditional Lagrangian Wasserstein Flow
for Time Series Imputation

In this section, building on the theory introduced in Sec. 2,
we propose Conditional Lagrangian Wasserstein Flow, a
novel conditional generative method for time series imputa-
tion.

3.1. Time Series Imputation

Our goal is to impute the missing time series data points
based on the observations. To this end, we adopt a condi-
tionally generative approach for time series imputation in
the sample space R <% where K represents the dimension
of the multivariate time series and L represents sequence
length. In our self-supervised learning approach, the to-
tal observed data x°"% € RE*L are partitioned into the
imputation target z**" := 2°P% © M*'*" and the condition
geond .— gobs o preond where o) denotes the Hadamard
product, AMeond ¢ REXL and Mtar ¢ REXL are the con-
dition and target masks, respectively.

Consequently, the missing data points z'3" can be gener-

ated based on the conditions z°°? joint with some un-
informative initial distribution o € RX*! (e.g., Gaus-
sian noise) at the initial time ¢ = 0. Thereby, the imputa-
tion task can be described as: x'* ~ p(x'¥|zi"), where
xit := Concatenate(z°°"4, zo) € RE*L*2 i the the total
input of the model.

3.2. Interpolation in Wasserstein Space

To solve Eq. (7), we need to sample the intermediate variable
X in the Wasserstein space first. To do so, the interpolation
method is adopted to construct the intermediate samples
(Liu et al., 2022; Albergo & Vanden-Eijnden, 2023; Tong
et al., 2024). According to the OT and SB problems intro-
duced in Sec. 2, we define the following time-differentiable
interpolant:

I; :T'xI' > T suchthat [y = Xgand IT = X7, (11)

where T' € R? is the support of the marginals po(X,) and
pr(Xr), as well as the conditional p(X;| Xo, X1, 1).

To implement Eq. (11), we first independently sample some
random noise X ~ N (0, 03) at the initial time ¢t = 0 and
the data samples X7 ~ p(z'?") at the terminal time ¢t = T,
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respectively. Afterwards, the interpolation method is used to
construct the intermediate samples X; ~ p(X;|Xo, X7, 1),
where ¢ ~ Uniform(0,T"). More specifically, we design the
following sampling approach:

t t
X = T(XT +7e) + (1 - T)Xo

HT — 1)

+ a(t) T

e, te€][0,T], (12)
where v, ~ N(0,02) is some random noise with vari-
ance o, injected to the target data samples to improve
the coupling’s generalization property, «(t) > 0 is a time-
dependent scalar, and € ~ A(0,T).

Note that Eq. (12) can only allow us to generate time-
dependent intermediate samples in the Euclidean space but
not the Wasserstein space, which can lead to slow conver-
gence as the sampling paths are not straightened. Hence, to
address this issue, we can project the samples X7 and X
in the Wasserstein space before interpolating to strengthen
the probability flow. To this end, we leverage the method
adopted in (Tong et al., 2023; 2024; Pooladian et al., 2023)
to sample the optimal mini-batch OT maps between X
and X first, and perform the interpolations according to
Eq. (12) afterwards. Finally, we have the joint variable
ot = (z¢°d 1) as the input for computing the velocity
of the Wasserstein flow.

3.3. Velocity Estimation via Flow Matching

To estimate the velocity of the Wasserstein flow i (X¢, t)
in Eq. (1), the previous methods that require trajectory sim-
ulation for training can result in long convergence time and
large computational costs (Chen et al., 2018; Onken et al.,
2021). To circumvent the above issue, in this work we adopt
a simulation-free learnning strategy based on the OT theory
introduce in Sec. 2.2 (Liu et al., 2022; Tong et al., 2023;
Albergo & Vanden-Eijnden, 2023), which turns out to be
faster and more scalable to large time series datasets.

By drawing mini-batch interpolated samples of the source
distribution and target distribution in the Wasserstein space
using Eq. (12), we can now model the variational velocity
function via a neural network parameterized by 6. Then,
according to Eq. (1), the target velocity can be computed
as the difference between the source distribution and target
distribution. Therefore, the variational velocity function
(i, t) can be learned trough

dx 2
arg mln/ / =t — ul(zy,t)|| da,dt (13)
2
xtar — T . 2
~argminE Hto — (2™, 1) ] . (14)
0 T 9

Since Eq. (14) can be solved by drawing mini-batch samples

in the Wasserstein space and performing stochastic gradi-
ent descent accordingly, the learning process operates in a
simulation-free manner.

Moreover, note that Eq. (13) also obeys the principle of least
action introduced in Sec. 2.4 as it minimizes the kinetic
energy described in Eq. (7). Therefore, this also indicates
that the geodesic that drives the particles from the source
distribution to the target distribution in the OT problem
described in Sec. 2 is identified, which, as a result, allows
us to generate new samples with fewer simulation steps
compared to standard diffusion models.

3.4. Gradient of Potential Function

So far, we have demonstrated how to leverage the kinetic
energy to estimate the velocity in the Lagrangian described
by Eq. (6). Apart from this, we can also incorporate the prior
knowledge within the task-specific potential energy into the
dynamics, which enables us to further improve the data
generation performance. To this end, we let U;(X;) : R% x
[0, T] — R be the task-specific potential function depending
on the generalized coordinates X; (Yang & Karniadakis,
2020; Onken et al., 2021; Neklyudov et al., 2023b), and the
dynamics (here, we assume that the particle is solely driven
by the drift) of the system v, (X, t) yields

% = Ut (X ty t) =
Moreover, since the data generation problem in our case can
also be interpreted as a stochastic optimal control (SOC)
problem (Bellman, 1966; Fleming & Rishel, 2012; Niisken
& Richter, 2021; Zhang & Chen, 2022; Holdijk et al., 2023;
Berner et al., 2024), the existence of such U;(X}) is guar-
anteed by Pontryagin’s Maximum Principle (PMP) (Evans,
2024). Please refer to Appendix B for further details.

VU (Xy). (15)

To estimate vy (X¢,t), according to the Lagrangian in
Eq. (6), we assume that the potential function takes the form
Uy(Xy) ~ —logN(X(| Xy, 0 07), where X, the estimated
mean and a is the pre-defined variance. As a result, the

X

corresponding derivative is V, Uy (X;) = 7Xt . In terms
P

of practical implementation, we parameterize V, U (X;) via
a time-dependent denoising autoencoder (TDAE). More
specifically, we either pre-train or jointly train the TDAE
on the intermediate time series data samples X; generated
by Eq. (12). The input is perturbed with noise, while the
reconstruction target remains clean, to achieve the denois-
ing effect. Afterwards, the reconstruction discrepancies of
the TDAE are used to approximate the variational vf’ (X3, t)
parametrized by ¢ depending on the predicted X;:

o/ (Xi,) = == (X; = TDAE(X,),  (16)
p

where TDAE(X,) represents the reconstruction of the
TAVE model with input X3, s := sot(T — t)/T with s
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Figure 1: The overall training process of Conditional Lagrangian Wasserstein Flow.

being a positive scalar, and 0127 is treated as a positive con-
stant for simplicity.

In this manner, we can incorporate the prior knowledge
learned from the accessible training data into the sampling
procedure established via Eq. (14) to enhance the data gen-
eration performance.

3.5. Resampling Trick

Note that during inference, the model will generate the new
data whose region encompasses both z!{*" and x§°"9, as
the new input for next function evaluation iteration. How-
ever, from the problem defined in Sec. 3.1, :cfond can be
computed accurately by interpolating the condition and the
initial noise via Eq. (12). Therefore, we propose the follow-
ing resampling trick to update the generated intermediate
samples Z; at time ¢ by stitching the observed data region

with the generated data region:

t t
Gy = (7mobs + (1 _ 7)x0) @Mcond +x%en @Mtar,
T T
(a7

gen

where 7 denotes the generated intermediate data samples.

The visualization of the proposed resampling trick can be
found in Appendix D.

3.6. The Algorithms

We now present the proposed training and inference algo-
rithms. In the training procedure, we minimize the flowing
matching loss to learn the variational velocity function y¢
using the interpolation method. To estimate the variational
drift function vf , we can calculate the gradient of poten-
tial function using the TDVE model. The overall training
process of our method is shown in Fig. 1.

In the inference procedure, we use the ODE sampler con-
structed by 1Y to perform the path integral. Moreover, if

Algorithm 1 Training procedure

Require: Terminal time: 7', max epoch, observed data
Xobs parameters: 6 and ¢.
while epoch < max epoch do
sample ¢, (xo, 1)
if OT then
sample the mini-batch OT maps;
end if
sample z; according to Eq. (12);
minimize the loss function Eq. (14);
end while
if Rao-Blackwellization then
train a TDAE model using X°" and X,.
end if

we want to further reduce the sampling variances, we can
use the drift function vf) to formulate a new sampler. In
addition, we can also choose to use the resampling trick to
enhance the data generation performance.

Finally, the detailed training and inference procedures are
summarized in Algorithms 1 and 2, respectively.

3.7. Discussion

Here, we shed some light on the proposed method’s con-
nection to stochastic optimal control, path measures, and
Rao-Blackwellization.

Stochastic optimal control. We first following the prin-
ciple of least action in Lagrangian mechanics and optimal
transport theory to compute the velocity function pu; by
minimizing the corresponding kinetic energy. To further
improve the data generation performance, we leverage the
marginal log density-based potential function to construct
the drift function v,. According to the stochastic optimal
control theory, it suggests that v, in fact can act as the opti-
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Algorithm 2 Sampling procedure

Require: Step number: N, step size: hy,
sample initial noise zo ~ N (0, 02), conditional informa-
tion z<ond,
while t < N do
2 = Concatenate(z
Frpr = e+ pf (2", 8)
if Rao-Blackwellization then

cond’ i‘t)

R R Cas s

end if

if Resampling then
i‘t—&-l — ((t-‘r]\})Txcond + (T _ (H‘]\})T)x()) ®
Mcond + i’tJrl ® Mtar

end if

t=t+1

end while

mal control signal if we consider the data generation process
as a controlled SDE. Moreover, the optimal control signal
can be attained by solving the corresponding HIB equation
using the Hopf-Cole transformation (Evans, 2022) and the
FB-SDE theory Anderson (1982); Song et al. (2020). Please
refer to Appendix B for the detailed discussion.

Path measures. We can now establish the path integral sam-
pler by leveraging the Random-Nikon derivative between
the uncontrolled and controlled path measures obtained by
the Girsanov theorem (Liptser & Shiryaev, 2013), and ob-
tain the corresponding KL divergence as well. Moreover,
we can also derive the ELBO for the marginal density p(t)
by solving the associated Fokker-Planck equation using the
Feynman-Kac formula (Karatzas & Shreve, 2014). Further
details can be found in Appendices B.4 and B.5, respec-
tively.

Rao-Blackwellization. If we let the sampler constructed by
1+ be the based sampler and the sampler constructed by v,
the sufficient statistic, it can be seen that the new sampler
can, according to the Rao-Blackwell theorem (Casella &
Robert, 1996), improve the data generation performance by
reducing the sampling variances. The relevant theoretical
details can be found in Appendix C.

4. Experiments

In the section, we present the numerical results to demon-
strate the effectiveness of our approach.

4.1. Datasets

We use one synthetic dataset and three public multivariate
time series datasets for validation.

1) Synthetic dataset was generated by the function: z =

tsin(10t + 2me), where € ~ N(0,I) and ¢ € [0,1] with
step size of 0.01. The batch size is 200, the total number
of data points is 20, 000, the missing rate of the raw data
is 80%. 40%, 60%, and 80% of the datapoints are masked
randomly as the imputation targets, denoted as Synthetic
0.4, Synthetic 0.6 and Synthetic 0.8, respectively.

2) PM 2.5 dataset (Zheng et al., 2013) was collected from
the air quality monitoring sites for 12 months. The missing
rate of the raw data is 13%. The feature number K is 36 and
the sequence length L is 36. In our experiments, only the
observed datapoints are masked randomly as the imputation
targets.

3) PhysioNet dataset (Silva et al., 2012) was collected from
the intensive care unit for 48 hours. The feature number
K is 35 and the sequence length L is 48. The missing rate
of the raw data is 80%. 10% and 50% of the datapoints
are masked randomly as the imputation targets, denoted as
PhysioNet 0.1 and PhysioNet 0.5, respectively.

4) ETTh1 dataset (Zhou et al., 2021) was collected from the
electric power indicators for 2 years. The feature number K
is 24 and the sequence length L is 96. 25%, 37.5%, and 50%
of the datapoints are masked randomly as the imputation
targets, denoted as ETTh1 0.25, ETTh1 0.375 and ETThl
0.5, respectively.

4.2. Baselines

For comparison, we select the following state-of-the-art
timer series imputation methods as the baselines: 1) GP-
VAE (Fortuin et al., 2020), which incorporates the Gaussian
Process prior into a VAE model; 2) CSDI (Tashiro et al.,
2021), which is based on the conditional diffusion model; 3)
CSBI (Chen et al., 2023), which adopts the Schrodinger
Bridge diffusion framework; 4) DSPD-GP (Bilos et al.,
2023), which combines the diffusion model with the Gaus-
sian Process prior; 5) DLinear (Zeng et al., 2023), which
utilizes the moving average kernel for decomposition; 6)
LightTS (Zhang et al., 2022), which captures the temporal
patterns by continuous and interval sampling; 7) Etsformer
(Woo et al., 2022), which proposes to use the exponential
smoothing attention and the frequency attention; 8) Times-
Net (Wu et al., 2023), which extracts the complex temporal
information from the transformed 2D tensors.

4.3. Experimental Settings

In terms of architecture choice, both the flow model and the
TDAE model are built upon Transformers (Tashiro et al.,
2021). We use the ODE sampler for inference and sam-
ple the exact optimal transport maps for interpolations to
achieve the optimal performance. The optimizer is Adam
and the learning rate: 0.001 with linear scheduler. The
maximum training epochs is 200. The mini batch size for
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Figure 2: Visualization of the test imputation results on the synthetic data, green dots are the conditions, blue dots are the

imputation results, and red dots are the ground truth.

training is 64. The total step number of the Euler method
used in CLWF is 15, while the total step numbers for other
diffusion models. i.e., CSDI, CSBI, and DSPD-GP are 50,
as suggested in their papers. The number of the Monte Carlo
samples for inference is 20. The standard deviation o for
the initial noise Xg is 0.1, and the standard deviation o
for the injected noise 7, is 0.001. The coefficient 012, in the
gradient of the potential function is 0.01.

4.4. Overall Imputation Results

Tables 1 and 2 show the overall test imputation results on
PM 2.5, PhysioNet, and Etthl, respectively. And the re-
sults demonstrate that CLWF achieves competitive perfor-
mance compared with the state-of-the-art methods in terms
of RMSE and MAE.

Note that CLWF requires less simulation steps (15) and sam-
pled paths (20) to obtain high-quality data samples, which
suggests that CLWF is faster and less computational expen-
sive, compared to other existing diffusion-based time series
imputation models, such as CSDI, CSBI, and DSPD.

Table 1: Test imputation results on PM 2.5, PhysioNet 0.1,
and PhysioNet 0.5 (5-trial averages). The best are in bold
and the second best are underlined.

Table 2: Test imputation results on ETT-h1(5-trial averages).
The best are in bold and the second best are underlined.

Method PM 2.5 PhysioNet 0.1 ~ PhysioNet 0.5

RMSE MAE \ RMSE MAE \ RMSE MAE
GP-VAE 43.1 26.4 0.73 0.42 0.76 0.47
CSDI 19.3 9.86 0.57 0.24 0.65 0.32
CSBI 19.0 9.80 0.55 0.23 | 0.63 0.31
DSPD-GP | 18.3  9.70 0.54 0.22 0.68 0.30
CLWF 18.1 9.70 | 047 0.22 0.64 0.29

4.5. Ablation Study

To further demonstrate the effectiveness of our proposed
method, we conduct the following ablation study experi-
ments.

Method ETT-h10.25  ETT-h10375  ETT-h10.5
RMSE MAE | RMSE MAE | RMSE MAE
DLinear | 0.541 0.402 | 0.577 0.404 | 0.506 0.347
LightTS | 0.469 0.347 | 0.544 0.382 | 0.463 0.318
Etsformer | 0.411  0.304 | 0.514 0.364 | 0.424  0.292
TimesNet | 0.262 0.178 | 0.289  0.196 | 0.319  0.215
CLWF 0.197 0.128 | 0.263 0.171 | 0.323 0.205

1) Single-path-sample Results. We compare the test impu-
tation results of CLWF and CSDI by only using one path
samples. From the results shown in Table 3, it can be seen
that CLWF can achieve relatively good imputation results
by only using one single Monte Carlo path integral sample,
which indicates that CLWF has smaller sampling variances.

Table 3: Single-sample test imputation results on PM 2.5,
PhysioNet 0.1, and PhysioNet 0.5 (5-trial averages).

Method PM 2.5 PhysioNet 0.1 PhysioNet 0.5

1% | RMSE MAE | RMSE MAE | RMSE MAE
CSDI 222 117 | 074 030 | 0.83 040
CLWF 184 100 | 048 022 | 0.64 0.30

2) Numbers of Diffusion Steps. We compare the test impu-
tation results of CLWF and CSDI using varying numbers of
diffusion steps From the results shown in Table 4, we can
see that CLWF has better imputation performance using less
simulation steps for inference compared with CSDI, which
implies that CLWF has faster convergence during inference.

3) Effect of Rao-Blackwellization. We compare the test
imputation results of CLWF with and without using the
Rao-Blackwellzation, referred to as Base and RB, respec-
tively. From the results shown in Table 5, it can be seen
that the new sampler can further improve the time series
imputation performance of the base sampler by reducing
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Table 4: Test imputation results on PhysioNet 0.1 with
different simulation steps (5 trials).

Method 5 steps 10 steps 15 steps 20 steps
9% |RMSE MAE|RMSE MAE|RMSE MAE|RMSE MAE
CSDI 0.60 0.22 | 0.58 0.22| 0.57 0.22| 0.56 0.22
CLWF 0.48 0.22 | 047 0.22 | 047 0.22 | 048 0.22
Table 5: Ablation study imputation results on Rao-

Blackwellization (5-trial averages).

Method PM 25 PhysioNet 0.1 PhysioNet 0.5
etho RMSE MAE | RMSE MAE | RMSE MAE
Base 1827  9.76 | 0.4802 0.2221 | 0.6476 0.2991
RB 18.08 9.71 | 0.4785 0.2250 | 0.6466 0.3003
Method ETT-h1 0.25 ETThl 0375 ETTh1 0.5
1% | RMSE MAE | RMSE MAE | RMSE MAE
Base 0.1999 0.1317 | 0.2191 0.1422 | 0.2006 0.1882
RB 0.1970 0.1266 | 0.2185 0.1424 | 0.2891 0.1845

the variances/RMSEs, which is also supported by the Rao-
Blackwell theorem.

Finally, please refer to Appendix E for details on the hard-
ware and software environments used in the experiments,
and to Appendix F for additional experimental results.

5. Related Work
5.1. Diffusion Models

Diffusion models, such as DDPMs (Ho et al., 2020) and
SBGM (Song et al., 2020), are considered as the new
contenders to GANs on data generation tasks. But they
generally take relatively long time to produce high quality
samples. To mitigate this problem, the flowing matching
methods have been proposed from an OT perspective. For
example, ENOT uses the saddle point reformulation of the
OT problem to develop a new diffusion model (Gushchin
et al., 2024) The flowing matching methods have also been
proposed based on the OT theory (Lipman et al., 2022; Liu,
2022; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023;
Albergo et al., 2023). In particular, mini-batch couplings
are proposed to straighten probability flows for fast infer-
ence (Pooladian et al., 2023; Tong et al., 2024; 2023).

The Schrédinger Bridge framework have also been applied
to diffusion models for improving the data generation perfor-
mance of diffusion models. Diffusion Schrodinger Bridge
utilizes the Iterative Proportional Fitting (IPF) method to
solve the SB problem (De Bortoli et al., 2021). SB-FBSDE
proposes to use forward-backward (FB) SDE theory to solve
the SB problem through likelihood training (Chen et al.,
2022). GSBM formulates a generalized Schrodinger Bridge
matching framework by including the task-specific state

costs for various data generation tasks (Liu et al., 2024)
NLSB chooses to model the potential function rather than
the velocity function to solve the Lagrangian SB prob-
lem (Koshizuka & Sato, 2023). Action Matching (Neklyu-
dov et al., 2023a;b) leverages the principle of least action in
Lagrangian mechanics to implicitly model the velocity func-
tion for trajectory inference. Another classes of diffusion
models have also been proposed from an stochastic optimal
control perspective by solving the HIB-PDEs (Niisken &
Richter, 2021; Zhang & Chen, 2022; Berner et al., 2024,
Liu et al., 2024; Park et al., 2024).

5.2. Time Series Imputation

Many diffusion-based models have been recently proposed
for time series imputation (Lin et al., 2023; Meijer & Chen,
2024). For instance, CSDI (Tashiro et al., 2021) combines
a conditional DDPM with a Transformer model to impute
time series data. CSBI (Chen et al., 2023) adopts the FB-
SDE theory to train the conditional Schrodinger Bridge
model to for probabilistic time series imputation. To model
the dynamics of time series from irregular sampled data,
DSPD-GP (Bilos et al., 2023) uses a Gaussian process as
the noise generator. TDdiff (Kollovieh et al., 2024) utilizes
self guidance and learned implicit probability density to
improve the time series imputation performance of the diffu-
sion models. However, the time series imputation methods
mentioned above exhibit common issues, such as slow con-
vergence, similar to many diffusion models. Therefore, in
this work, we proposed CLWF to tackle thess challenges.

6. Conclusion

In this work, we proposed CLWF, a novel time series im-
putation method based on the optimal transport theory and
Lagrangian mechanics. To generate the missing time series
data, following the principle of least action, CLWF learns
a velocity field by minimizing the kinetic energy to move
the initial random noise to the target distribution. Moreover,
we can also estimate the derivative of a potential function
via a TDAE model trained on the observed training data to
further improve the performance of the base sampler by Rao-
Blackwellization. In contrast with previous diffusion-based
models, the proposed requires less simulation steps and
Monet Carlo samples to produce high-quality data, which
leads to fast inference. For validation, CWLF is assessed on
two public datasets and achieves competitive results com-
pared with existing methods.

Impact Statement

This paper presents work whose goal is to advance the field
of time series imputation and deep learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.



Conditional Lagrangian Wasserstein Flow

References

Albergo, M. S. and Vanden-Eijnden, E. Building normaliz-
ing flows with stochastic interpolants. In The Eleventh
International Conference on Learning Representations,
2023.

Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E.
Stochastic interpolants: A unifying framework for flows
and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Anderson, B. D. Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 12(3):313—
326, 1982.

Arnol’d, V. 1. Mathematical methods of classical mechanics,
volume 60. Springer Science & Business Media, 2013.

Bellman, R. Dynamic programming. science, 153(3731):
34-37, 1966.

Berner, J., Richter, L., and Ullrich, K. An optimal con-
trol perspective on diffusion-based generative model-
ing. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856.
net/forum?id=0YIjw37pTP.

Bertsekas, D. Dynamic programming and optimal control:
Volume I, volume 4. Athena scientific, 2012.

Bilo§, M., Rasul, K., Schneider, A., Nevmyvaka, Y., and
Giinnemann, S. Modeling temporal data as continuous
functions with stochastic process diffusion. In Interna-
tional Conference on Machine Learning, pp. 2452-2470.
PMLR, 2023.

Caluya, K. F. and Halder, A. Wasserstein proximal algo-
rithms for the schrodinger bridge problem: Density con-
trol with nonlinear drift. IEEE Transactions on Automatic
Control, 67(3):1163-1178, 2021.

Casella, G. and Robert, C. P. Rao-blackwellisation of sam-
pling schemes. Biometrika, 83(1):81-94, 1996.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Chen, T., Liu, G.-H., and Theodorou, E. Likelihood train-
ing of schrodinger bridge using forward-backward sdes
theory. In International Conference on Learning Repre-
sentations, 2022, 2022.

Chen, Y., Georgiou, T. T., and Pavon, M. Stochastic control
liaisons: Richard sinkhorn meets gaspard monge on a
schrodinger bridge. Siam Review, 63(2):249-313, 2021.

URL https://openreview.

Chen, Y., Deng, W., Fang, S., Li, F.,, Yang, N. T., Zhang,
Y., Rasul, K., Zhe, S., Schneider, A., and Nevmyvaka,
Y. Provably convergent schrodinger bridge with applica-
tions to probabilistic time series imputation. In Interna-
tional Conference on Machine Learning, pp. 4485-4513.
PMLR, 2023.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information
processing systems, 26, 2013.

De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. Diffu-
sion schrodinger bridge with applications to score-based
generative modeling. Advances in Neural Information
Processing Systems, 34:17695-17709, 2021.

Domingo-Enrich, C., Han, J., Amos, B., Bruna, J., and
Chen, R. T. Stochastic optimal control matching. arXiv
preprint arXiv:2312.02027, 2023.

Evans, L. C. Partial differential equations, volume 19.
American Mathematical Society, 2022.

Evans, L. C. An introduction to mathematical optimal con-
trol theory spring, 2024 version. Lecture notes available
at https://math.berkeley.edu/ evans/control.course.pdyf,
2024.

Feynman, R. P. The principle of least action in quantum
mechanics. In Feynman’s thesis—a new approach to
quantum theory, pp. 1-69. World Scientific, 2005.

Fleming, W. H. and Rishel, R. W. Deterministic and stochas-
tic optimal control, volume 1. Springer Science & Busi-
ness Media, 2012.

Fortuin, V., Baranchuk, D., Rétsch, G., and Mandt, S. Gp-
vae: Deep probabilistic time series imputation. In Interna-
tional conference on artificial intelligence and statistics,

pp. 1651-1661. PMLR, 2020.

Gozzi, F. and Russo, F. Verification theorems for stochastic
optimal control problems via a time dependent fukushima—
dirichlet decomposition. Stochastic Processes and their
Applications, 116(11):1530-1562, 2006.

Gushchin, N., Kolesov, A., Korotin, A., Vetrov, D. P., and
Burnaev, E. Entropic neural optimal transport via diffu-
sion processes. Advances in Neural Information Process-
ing Systems, 36, 2024.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840-6851, 2020.

Holdijk, L., Du, Y., Hooft, F., Jaini, P., Ensing, B., and
Welling, M. Stochastic optimal control for collective
variable free sampling of molecular transition paths. Ad-

vances in Neural Information Processing Systems, 36,
2023.


https://openreview.net/forum?id=oYIjw37pTP
https://openreview.net/forum?id=oYIjw37pTP

Conditional Lagrangian Wasserstein Flow

Karatzas, 1. and Shreve, S. Brownian motion and stochastic
calculus, volume 113. springer, 2014.

Kollovieh, M., Ansari, A. F., Bohlke-Schneider, M.,
Zschiegner, J., Wang, H., and Wang, Y. B. Predict, refine,
synthesize: Self-guiding diffusion models for probabilis-
tic time series forecasting. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Koshizuka, T. and Sato, I. Neural lagrangian schrodinger
bridge: Diffusion modeling for population dynamics. In
The Eleventh International Conference on Learning Rep-
resentations, 2023.

Lehmann, E. L. and Casella, G. Theory of point estimation.
Springer Science & Business Media, 2006.

Léonard, C. From the schrodinger problem to the monge—
kantorovich problem. Journal of Functional Analysis,
262(4):1879-1920, 2012.

Lin, L., Li, Z., Li, R., Li, X., and Gao, J. Diffusion models
for time-series applications: a survey. Frontiers of Infor-
mation Technology & Electronic Engineering, pp. 1-23,
2023.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The
Eleventh International Conference on Learning Repre-
sentations, 2022.

Liptser, R. S. and Shiryaev, A. N. Statistics of random
processes: 1. General theory, volume 5. Springer Science
& Business Media, 2013.

Liu, G.-H., Lipman, Y., Nickel, M., Karrer, B., Theodorou,
E., and Chen, R. T. Generalized schrodinger bridge
matching. In The Twelfth International Conference on
Learning Representations, 2024.

Liu, Q. Rectified flow: A marginal preserving approach
to optimal transport. arXiv preprint arXiv:2209.14577,
2022.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
In The Eleventh International Conference on Learning
Representations, 2022.

Liu, X., Wu, L., Ye, M., and Liu, Q. Learning diffusion
bridges on constrained domains. In international confer-
ence on learning representations (ICLR), 2023.

Meijer, C. and Chen, L. Y. The rise of diffusion models in
time-series forecasting. arXiv preprint arXiv:2401.03006,
2024.

Neklyudov, K., Brekelmans, R., Severo, D., and Makhzani,
A. Action matching: Learning stochastic dynamics from
samples. In International Conference on Machine Learn-
ing, pp. 25858-25889. PMLR, 2023a.

Neklyudov, K., Brekelmans, R., Tong, A., Atanackovic, L.,
Liu, Q., and Makhzani, A. A computational framework
for solving wasserstein lagrangian flows. arXiv preprint
arXiv:2310.10649, 2023b.

Niisken, N. and Richter, L. Solving high-dimensional
hamilton—jacobi-bellman pdes using neural networks:
perspectives from the theory of controlled diffusions and
measures on path space. Partial differential equations
and applications, 2(4):48, 2021.

Oksendal, B. Stochastic differential equations: an intro-
duction with applications. Springer Science & Business
Media, 2013.

Onken, D., Fung, S. W,, Li, X., and Ruthotto, L. Ot-flow:
Fast and accurate continuous normalizing flows via opti-
mal transport. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(10):9223-9232, 2021.

Park, B., Choi, J., Lim, S., and Lee, J. Stochastic optimal
control for diffusion bridges in function spaces. arXiv
preprint arXiv:2405.20630, 2024.

Peyré, G., Cuturi, M., et al. Computational optimal trans-
port: With applications to data science. Foundations and
Trends® in Machine Learning, 11(5-6):355-607, 2019.

Pooladian, A.-A., Ben-Hamu, H., Domingo-Enrich, C.,
Amos, B., Lipman, Y., and Chen, R. T. Multisample
flow matching: Straightening flows with minibatch cou-
plings. In International Conference on Machine Learning,
pp- 28100-28127. PMLR, 2023.

Risken, H. and Frank, T. The Fokker-Planck Equa-
tion: Methods of Solution and Applications, volume 18.
Springer Science & Business Media, 2012.

Santambrogio, F. Optimal transport for applied mathemati-
cians. Birkduser, NY, 55(58-63):94, 2015.

Silva, 1., Moody, G., Scott, D. J., Celi, L. A., and Mark,
R. G. Predicting in-hospital mortality of icu patients:
The physionet/computing in cardiology challenge 2012.
In 2012 Computing in Cardiology, pp. 245-248. 1EEE,
2012.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
Conference on Learning Representations, 2020.



Conditional Lagrangian Wasserstein Flow

Tashiro, Y., Song, J., Song, Y., and Ermon, S. Csdi: Con-
ditional score-based diffusion models for probabilistic
time series imputation. Advances in Neural Information
Processing Systems, 34:24804-24816, 2021.

Tong, A., Malkin, N., Fatras, K., Atanackovic, L., Zhang,
Y., Huguet, G., Wolf, G., and Bengio, Y. Simulation-free
schrodinger bridges via score and flow matching. arXiv
preprint arXiv:2307.03672, 2023.

Tong, A., FATRAS, K., Malkin, N., Huguet, G., Zhang, Y.,
Rector-Brooks, J., Wolf, G., and Bengio, Y. Improving
and generalizing flow-based generative models with mini-
batch optimal transport. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://
openreview.net/forum?id=CD9Snc73AW. Ex-
pert Certification.

Villani, C. et al. Optimal transport: old and new, volume
338. Springer, 2009.

Woo, G., Liu, C., Sahoo, D., Kumar, A., and Hoi, S. Ets-
former: Exponential smoothing transformers for time-
series forecasting. arXiv preprint arXiv:2202.01381,
2022.

Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long, M.
Timesnet: Temporal 2d-variation modeling for general
time series analysis. In The Eleventh International Con-

ference on Learning Representations. OpenReview.net,
2023.

Yang, L. and Karniadakis, G. E. Potential flow generator
with 1 2 optimal transport regularity for generative models.
IEEE Transactions on Neural Networks and Learning
Systems, 33(2):528-538, 2020.

Yong, J. and Zhou, X. Y. Stochastic controls: Hamiltonian
systems and HJB equations, volume 43. Springer Science
& Business Media, 2012.

Zeng, A., Chen, M., Zhang, L., and Xu, Q. Are transformers
effective for time series forecasting? In Proceedings of
the AAAI conference on artificial intelligence, volume 37,
pp- 11121-11128, 2023.

Zhang, Q. and Chen, Y. Path integral sampler: A stochastic
control approach for sampling. In The Tenth Interna-
tional Conference on Learning Representations. OpenRe-
view.net, 2022. URL https://openreview.net/
forum?id=_uCb2ynRu7Y.

Zhang, T., Zhang, Y., Cao, W., Bian, J., Yi, X., Zheng, S.,
and Li, J. Less is more: Fast multivariate time series
forecasting with light sampling-oriented mlp structures.
arXiv preprint arXiv:2207.01186, 2022.

11

Zheng, Y., Liu, F,, and Hsieh, H.-P. U-air: When urban
air quality inference meets big data. In Proceedings
of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1436—-1444,
2013.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer for
long sequence time-series forecasting. In Proceedings of

the AAAI conference on artificial intelligence, volume 35,
pp- 11106-11115, 2021.

Zhou, X. Y., Yong, J., and Li, X. Stochastic verification
theorems within the framework of viscosity solutions.
SIAM Journal on Control and Optimization, 35(1):243—
253, 1997.


https://openreview.net/forum?id=CD9Snc73AW
https://openreview.net/forum?id=CD9Snc73AW
https://openreview.net/forum?id=_uCb2ynRu7Y
https://openreview.net/forum?id=_uCb2ynRu7Y

Conditional Lagrangian Wasserstein Flow

A. Notations

Below are some mathematical notations used throughout the paper:

* V denotes the Jacobian operator;
e V. denotes the divergence operator;
V2 denotes the Hessian operator;

e (-,-) :=trace(-T,-) denotes the Frobenius inner product.

B. Stochastic Optimal Control

In this section, we show how the stochastic optimal control theory is related to our data generation task.

B.1. Cost Function

An SDE controlled by the deterministic control function u € U C C(R% x [0, T]; R), where U is a set of admissible controls,
reads

dX; = (a+ou) (X}, t)dt + o (X[, t)dWy, (18)

where a € C(R? x [0, T]; R?) is the drift/advection function, o (t) € C*(R? x [0, T]); R¥*? is the diffusion function, and

W is the standard Brownian motion.

Therefore, the data generation task can also be interpreted as a stochastic optimal control (SOC) problem (Bellman, 1966;
Fleming & Rishel, 2012; Niisken & Richter, 2021; Zhang & Chen, 2022; Holdijk et al., 2023; Koshizuka & Sato, 2023;
Domingo-Enrich et al., 2023; Berner et al., 2024) whose cost functional 7 is defined as:

T
T (U; Tin, t) = E / h( XY, u,s)ds + g(X3)
t

X! = xinil] ) (19)

where h(X¥,u,s) == f(XY,s) + Lu(X2,s) g where f € CY(R? x [t,T];[0,00)), is the instantaneous/running cost,
and g € C'(R%; R) denotes the terminal cost. The above SOC problem can be solved via dynamic programming (Bellman,
1966; Bertsekas, 2012).

B.2. Pontryagin’s Maximum Principle

Consider the following optimization problem derived from Eq. 19:

ueU

T
arg mi{{lj(u; xo,t) = arg min{ / h(z,u,t)dt + g(XT)} (20)
ue 0

z(t) = v(z,u,t), 0<t<T,

21
z(0) = xo, @D

subject to {

where z(t) := dﬁ(tt)

defined as

and v(z, u,t) denotes the system dynamics. Accordingly, the associated Lagrangian functional is

T
Lz, A u,t) ::/O { (@, u,t) + MO — v(w,u,0) bt + g(Xr), 22)

where A(t) is the Lagrangian multiplier.

Now, let’s consider a dynamic system defined by the following Hamiltonian

H(z, A\ u) =K+U
=\ (t)v(z,u,t) — hz,u,t) (23)

12
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where K is the kinetic energy, U is the potential energy, and A(¢) serves as the momentum/costate here. Then, the Lagrangian
functional in Eq. 22 becomes

T
Ll A u,t) = /0 [ M) + M0)E(0) bt + g(Xr), 24)

We now apply variations of calculus to Eq. (24) by assuming (z*(¢), A(¢), u*(¢)) is its minimizer and adding perturbation
dx, du, 6\ with d2(0) = 0. Now we perform the first-order Taylor expansion:

0L := L(z" + 0z, A+ I\, u™ + du) — L(z", N\, u™)
T
~ / { — Hyox — HAON — Hydu + )\%637 + 6Ai:*}dt + g:6(X7). (25)
0
Using integration by parts, we obtain

T
. d
5L~ / {(77{1 — A0z — HAGA + (—Hy + 3%)6A + a(Aax)}dt + gu0(X7). (26)
0

Let 6L = 0, we see that (z*(t), A\(t), u*(t)) satisfies the following necessary optimality conditions for the Hamiltonian
system with optimal control:

x*(0) = xo, Initial value 27
TH(t) = Halz* (), A(t), u™ (1)), System dynamics (28)
N (t) = —Ho(z*(t), M(t), u*(t)), Adjoint/costate equation (29)
MT) = —g. (" (T)), Adjoint terminal value (30)
Ho (2" (t), A(t),u"(t)) =0, Extremal (31)

where Eq. (28) and Eq. (29) are also known as Hamilton’s canonical equations.
Theorem B.1. Pontryagin’s Maximum Principle (PMP) (Evans, 2024). If the u* is the optimal solution to the optimal
control problem Eq. (19), then there exists a function A solution of the costate/adjoint equation for which

ut = argmab){("r'-[(a:, Au), 0<t<T. (32)
ue

This result implies that the Hamiltonian  is maximized with respect to the optimal control u* at each time ¢.

B.3. Hamilton-Jacobi-Bellman Equation

Here, we show how to derive the expression for the optimal control. Let p; € C%1(R? x [0, T],R) be the density, then the
controlled forward Fokker-Planck Kolmogorov (FPK) equation of the controlled SDE in Eq. (18) reads

Bt V- (o) = (D), V(1) -

where v(z,t) := (a + ou)(z,t) represents the controlled system dynamics and D(t) := 1o 7 (t)o(t).

Considering the optimization objective Eq. (20) with respect to the new constraint Eq. (33), we define formulate the
following Lagrangian

T
L) = [ [ w0t — v LoD+ (o) - (D). Vp) ) fade
0 Re tHaz(l_)/ term (2) term (3)
+ [ staprads, G4)

where ¢ (z, t) serves as the Lagrangian multiplier.

13
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We now apply integration by parts to term (1) with respect to ¢ and integration by parts to term (2) with respect to z,
respectively. Then, the two-fold integration by parts are performed in term (3), and we have

0092 wds = [ (D), 7 0)pds, G3)

Rd

where we assume the functions have compact support such that their respective products terms vanish at both ends. Then
Eq. (34) becomes

T
ca) = [ [ @) {hGout) + 5+ (ool + (D). V() o

- [ v Dpr@de+ [ oo (36)

Let the density p; be fixed, then according to the verification theorem (Zhou et al., 1997; Gozzi & Russo, 2006), we can
easily attain the optimal control that minimizes Eq. 36 with respect to u:

ut = —0 " (t)Vaih(z,t). (37)
Plug Eq. (37) into Eq. (36) and let the new integral equal 0, we have

T
cpa) = [ [ pa{ Gy + 3lloT OV + (T6.00m,) + (D). V3 (w) faod

- [ v Dpr@s+ [ oG 0po(e)de. (38)
Rd R4
And the associated minimizer (z*(¢), A\(¢), u*(t)) satisfies the following optimality conditions:

3}
—L =0 39
ap (p, 2, %) (39)
78 L(p,z,) =0 (40)
apT p7 ) *

As a result, we obtain the following partial differential equation (PDE) whose solution is the potential function 1):

0 1
0 s Sl T @V + (o, ol 1)) = ~(D(), VW), @
with the terminal condition: ¢ (z, T) = g(z), 42)

where 3|0 " (t)Vi/JHi + (Vi,v(x,t)) is the Hamiltonian with V1) being the momentum. And Eq. (41) is the cerebrated
Hamilton-Jacobi-Bellman (HJB) equation with the value function v = inf 7 being the unique viscosity solution (Zhou et al.,

1997; Gozzi & Russo, 2006; Yong & Zhou, 2012; Evans, 2022).

Further, Eq. (41) can be linearized by using the Hopf-Cole transformation (Evans, 2022). To this end, we let ¢ (z,t) =
log p(x) to have:

p=exp(v) (43)
Vp = exp(y)) Vi (44)
We also have
d 5
(D). V(@) = 3 (D(0): 55— exp(v)
J=1 ) ’ i
- exp(zm{ > (D), ( . ?”?”)}
ij=1 Yz x; Y
= exp(w){w(t% V() + ;Hﬂt)wl@}. (45)
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Combining Eq. (41), Eq. (44), and Eq. (45), we have

9 _ 2%
ot ot

— —exp(?ﬁ){;HUT(t)waHz + (Vb v(z, 1)) + (D(t),VQ(z/)»}

exp(v)

= _<D(t)a v2(ﬁ)> - <V§,U((E,t)>, (46)

which in fact is the backward Fokker-Planck Kolmogorov equation, which suggests that p, is a reverse-time density. Then,
the optimal control signal amounts to

u* = —o' (t)Vlogp(z). 47)
Consequently, according to Eq. 18, we have the following controlled reverse-time SDE:
dXy = [f(X¢,t) = 0 (1) VIog (X, )]t + o ()W ;. (48)

Recall the coupled forward-backward SDE system (Anderson, 1982; Song et al., 2020), then the above reverse-time SDE
has the following forward-time counterpart:

dX; = f(Xy,t)dt + o (t)dW;. (49)

Further, we consider an overdamped Langevin dynamics system by letting f(X;,t) := —V, log p(x), where p; is the
forward-time density. Consequently, this enables us to control the sampling process in the forward (noise-to-data) sampling
process.

B.4. Path Sampling via Stochastic Optimal Control

LetP € C*(R? x [0, T]; R?) be the base path measure and P* € C*(R? x [0, T]; R?) the associated path measure rendered
by the optimal control v € C*(R? x [0, T]; R?). We have the following Radon-Nikodym derivative attained by Girsanov
theorem (Liptser & Shiryaev, 2013):

dp T T 9
= exp uw (z,t)dWy — [ Sllu(z,t)][5dt (50)

aF _ —/T T( t>dW—/T1|| ()| 2at 1)
qpu = P ; u' (z, f ; 5 llulz, 1)l ,

where w satisfies the Novikov’s condition: [£ [ exp(% fOT uzdt)} < o0.

Noting that dX; = vdt + oy dW;, dX}* = vdt + o (dW; + udt), and E [ fOT ul (x, t)th] = 0, then the KL divergence
between the two path measures amounts to

u dpu T 9
Dict(B*[P) = ~Ex | log ‘g ()| =B | [ Sllu(X, ) 3] Xo = o] (52)
0

This result suggests that finding the optimal control enables us sample the target distribution. Furthermore, to reduce to the
sampling variances, recalling the cost functional defined in Eq. 19, one can adopt the importance sampling scheme through
sampling IV paths from the path measure P“ and compute the average given by

N

1 . .

N > TXW(X), (53)
i=1

where the importance weights W(X %) given by Eq. (51) are
' T T4
W(X') = expd — / o (2, ) AW, — / St o)at ¢ (54)

0 0
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B.S. Feynman-Kac Formula

The Feynman-Kac Formula is very powerful tool to solve parabolic PDEs.

Theorem B.2. (Feynman-Kac formula (Karatzas & Shreve, 2014)). Let x € R? be the spatial variable and t € [0, T) the
temporal variable.

2

0 _ 0 1, 0
ap(x7t)+u(mut)aixp(xat)+§a (x,t)@p(;v,t) —A(m,t)p(xﬁ)—&—c(w,t} _07 (55)
subject to the terminal condition: p(x,T) = ¥(z), (56)

where p € C*1(R? x [0,T);R), i € CL(R? x [0,T];R?), & € CLR? x [0,T);R¥*?), ¢ € CHR? x [0, T]; RY),
A€ CLRY x [0,T);RY), and ¢ € CH(R4; R?) are known functions. Let W is a Brownian motion under path measure P
and X solves the following SDE:

dX: = (X, t) + o(X, t)dW,. (57)

Then p(x,t) can be represented by the Feynman-Kac formula as follow:
T T T
p(x,t) =Ep| expq — / A(Xs, s)ds pp(X7) + / exp{ / A(Xs, s)ds}c(XT, T)dT‘Xt =z (58)
t t t

Now we use the Feynman-Kac formula to compute the marginal distribution. To this end, we first rewrite the forward
Fokker-Planck equation as follows:

z,t) = =V - (up) — (D(t), V*(p))
= —(V - u)p—uVp— (D(t), V*(p)), (59)

and let its coefficients match their counterparts in Eq. (55) and Eq. (56) as follows:

&p(

D—p (60a)
w— i (60b)
o—7C (60c)
1 2
D 2 -2 Y
(D(t), Vi(p)) — 5075 5p (60d)
0—c (60f)
9(x) — (x). (60g)
Therefore, according to Eq. (58), we obtain the following expressions for the marginal distribution:
T
p(z,t) = Ep [exp{/ V- u(Xs, s)ds}g(XT)‘Xt = x] (61)
t
t
p(z,t) = Ep exp{—/ V. ,u(Xs,s)ds}g(Xo)’Xo =uzx|. (62)
0
Combining Eq. (61) with Eq. 52, we use Jensen’s inequality to obtain the following ELBO:
! dp
logp(x,t) > Ep| — / {V - w(Xs, s)ds + logg(XO)’Xo =z| —Ep| log ﬁ(X)
0
t 1 )
>Ee| — [ {Vu(Xes) + S u(X,9)]3 pds + log g(Xo) | Xo = (63)
0
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B.6. Connection to Flow Matching

Since we have the intermediate sample X; = %X 4+ (1— %)X 0, we can directly computed the predicted terminal samples
at time 7" using the predicted X at time ¢ without iterative function evaluations:

. A t t
Xr~ (X —(1-=2)X —). 64
T ( t— ( T) o) /( T) (64)
Assume the log-densities of X, X;, and X7 can be represented by the same function, then the terminal cost in the value
function Eq. (20) is defined as g(X7) := —log p(X7). As a result, it suggests that minimizing the running cost at time ¢

also means minimizing the terminal cost at time 7T'.

First, following the principle of least action in Lagrangian dynamics, the uncontrolled system dynamics v(xy, t) is learned
by minimizing the associated kinetic energy.

The uncontrolled sampling process can be described as follow:
dry = v(xy, t)dt (65)

Since we formulate the potential energy function U(xzy,t) = log p(w¢,t) = log N (z4; %, 5¢), where &; = TDAE(zy,t)
attained by the reconstruction process of the TDAE model. Accordingly, the controlled sampling process can be cast as:

day = u(zy, t)dt = —o " (t)V, log p(a, t)dt = o ;xt (66)
0
The corresponding sampling scheme is
Ti41 = Tt + v(xt, t)dt (67)
$g+1 = T¢+41 + U($t+1, t+ ].)d£ (68)

C. Rao-Blackwellization

Here we prove that the proposed sampler is, in fact, a Rao-Blackwellized trajectory sampler (Casella & Robert, 1996). We
first start with the following definition:

Definition C.1 (Sufficient statistic). A sufficient statistic T for a parameter © captures all the necessary information
contained in the data sample X to estimate ©. Once T is known, X does not provide additional information to estimate ©.

To determine whether a statistic is sufficient, we can apply the following theorem.

Theorem C.2. (Fisher-Neyma theorem (Lehmann & Casella, 2006)). Let probability density function of X be p(x|p),
then the statistics T are sufficient for X iff p(x|p) are be written in the following form:

p(zlp) = F(2)G(T (2); @), (69)
where F(x) is a distribution independent of 0 and g(-,0) captures all the dependence on 0 via sufficient statistics T (x).

Following the above theorem, in our context, we assume that the marginal distribution of X} is the Gaussian with unknown
mean and known variance: N'(Xy;my,(X;—1),02(t)). Then the joint distribution of N samples can be written and
decomposed as follows:

p(XEXE XD ) = (2m) N0t exp (o DO (X - my)?)

N N 2
- -1 i m i
= (2m)"M?52 exp (ﬁ E Xt) exp (T; E X —7;7) . (70)

G(T (z)5)
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The above result suggests that the trajectory sampler can be formulated as a sufficient statistic for ¢. Consequently, for
our task, we have: 1) the parameter to estimate O := X, where X, is the intermediate sample predicted (or its mean) at
time ¢; 2) the data sample X' := X, where X is the initial noise (as well as the observation); 3) the base unbiased sampler
representing the system dynamics estimated according to the principle of least action, S(Xo; u, t) := Xo+ fot w(Xs, s)ds =
Xi1+ tt_l w(Xs, s)ds = X, where 0 < t < T'; 4) the sufficient statistic representing the optimal control signal according
to Pontryagin’s Maximum Principle, T (Xo; u,t) := Xo + fotfl u*(Xs,s)ds = Xy_1, where 0 < ¢t < T. As aresult, we
have the new sampler S* := E[S|T] = E[T (Xo;u,t) + ftil 1(T (Xo;u,s), s)ds|. Then, according to the Rao-Blackwell
theorem:

Theorem C.3. (Rao-Blackwell theorem (Casella & Robert, 1996)). Let S be an unbiased estimator of some parameter ©,
and T (X) the sufficient statistic for ©, then: 1) S* = E[S|T (X)), is an unbiased estimator for ©, and 2) V[S] > V[S*].
The inequality is strict unless S is a function of T.

Proof: In the ODE/SDE sampling process, we have p(X;|X;_1, Xo) = p(X¢|X¢—1), i.e., p(©|T, X) = p(O|T). Since T
is a statistic of X and S is an estimator of ©, we have E[S|T] = E[S|T, ©]. We now apply the law of total expectation (Z
and Y are two random variables):

B(Z|Y] = [ 2p(ely)dz — BEZY]] = [ sntelndzntiy

_ / / 2p(=|y)p(y)dzdy

= // zp(z, y)dady = /zp(Z)dZ =E[Z], (71)
to attain the following relationships:

E[S*|0] = E[E[S|T]|©] = E[E[S|T,0]|0] =E[S|6]. (72)

Then we apply the law of total variance to attain the following relationships:

V[S|e] =E[V[S|T.0]e] + V[E[S|T,0](0]
=E[V[S|T.8]|8] + V[s*|e], (73)

where E[V[S|T,0]|0] > 0, therefore V[S|O] > V[5*|0].

The results in Eq. (72) and Eq. (73) suggest that the new sampler has the same expectation as the base sampler but with
smaller variance (mean squared error), which is also verified by the experimental results.

C.1. Overall Theoretical Framework

Fig. 3 visualizes the overall theoretical framework of the proposed method in this paper.
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Figure 3: The overall theoretical framework.

D. Resampling Trick

The proposed resampling process introduced in Sec. 3.5 is illustrated in Fig. 4.

Observed data
Ground truth

X intermediate samples
Interpolate %

t+1

Resample Xer1
Initial noise New generated samples X
X X
0 N Generate t+1 R
Xt Xt +1
Generated
samples Repeat

Figure 4: The proposed resampling process for inference.

E. Experimental Environment

For the hardware environment of the experiments, we use a single NVIDIA A100-PCIE-40GB GPU and an Intel(R) Xeon(R)
Gold-6248R-3.00GHz CPU. For the software environment, the Python version is 3.9.7, the CUDA version 11.7, and the

Pytorch version is 2.0.1.
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F. Additional Experimental Results

F.1. Ablation study on simulation steps.

Table 6: Test imputation results on PM 2.5 with different simulation steps (5 trials).

5 steps 20 steps

10 steps
RMSE MAE ‘ RMSE MAE ‘ RMSE MAE ‘ RMSE MAE

Method ‘ 15 steps

CSDI 34.21+0.16 14.85+£0.01|29.43£0.46 12.48+0.08| 22.40+0.16 10.78 £0.04| 19.22£0.13 9.91+0.02
CLWF |18.29 £0.002 9.78 & 0.004 [18.28 & 0.003 9.77 £ 0.005 |18.26 & 0.006 9.76 + 0.004 |18.21 £ 0.002 9.72 £ 0.004

F.2. Ablation study on Rao-Blackwellization.

Table 7: Test imputation results on PM 2.5, PhysioNet 0.1, and PhysioNet 0.5 (5 trials).

Method PM 2.5 PhysioNet 0.1 PhysioNet 0.5
RMSE MAE RMSE MAE RMSE MAE
CLWF (no RB) 18.274+0.01 9.76 £0.01 | 0.4802 £+ le-4 0.2221 £+ 0e-4 | 0.6476 & Oe-4  0.2991 + Oe-4
CLWF (with RB) | 18.08 £0.02 9.71+0.00 | 0.4785 + 1e-4 0.2250 & le-4 | 0.6466 = 0e-4 0.3003 £ Oe-4
Table 8: Test imputation results on synthetic data (5-trials, values are multiplied by 102).
Method Synthetic 0.4 Synthetic 0.6 Synthetic 0.8
RMSE MAE RMSE MAE RMSE MAE
CLWEF (no RB) 2291+£049 15.284+0.21 | 25.65+0.31 15.54+0.22 | 27.41£0.27 15.91+£0.23
CLWF (withRB) | 22.72+0.48 13.23+0.42 | 25.44+0.30 15.28+0.17 | 27.32+0.27 15.79 £0.23

F.3. Ablation study on Resampling.

Table 9: Test imputation results on ETT-h1(5-trial averages). The best are in bold and the second best are underlined.

Method ETT-h1 0.25 ETT-h1 0.375 ETT-h1 0.5
RMSE MAE | RMSE MAE | RMSE MAE
Base 0.1999 +8e-4 0.1317 £ 3e-4 | 0.2191 + 2e-4 0.1422 +4e-4 | 0.2906 £ 1le-3 0.1882 + 2e-4
RB 0.1970 & 6e-4  0.1266 £ 2e-4 | 0.2185 +4e-4 0.1424 4+ 2e-4 | 0.2891 + 2e-4 0.1845 + 2e-4
Resampling 0.1976 £ 8e-4  0.1257 £ 3e-4 | 0.2165 £ 1e-3  0.1366 £ le-4 | 0.2964 £ 1e-3  0.1988 £ 4e-4
Resampling + RB | 0.1968 + 8e-4 0.1253 + 3e-4 | 0.2157 £ 6e-4 0.1363 + 3e-4 | 0.2921 +9e-4  0.1926 £ 3e-4
F.4. Time Efficiency
We report the statistics regarding the time efficiency of our method here.
Table 10: Inference time costs on ETT-h1 0.5.
‘ Base ‘ RB ‘ Resampling ‘ Resampling + RB
s/iteration \ 3.26 \ 6.36 \ 3.28 \ 6.38
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