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Abstract

Slice discovery methods (SDMs) are prominent algorithms for finding systematic weaknesses
in DNNs. They identify top-k semantically coherent slices/subsets of data where a DNN-
under-test has low performance. For being directly useful, slices should be aligned with
human-understandable and relevant dimensions, which, for example, are defined by safety
and domain experts as part of the operational design domain (ODD). While SDMs can
be applied effectively on structured data, their application on image data is complicated
by the lack of semantic metadata. To address these issues, we present an algorithm that
combines foundation models for zero-shot image classification to generate semantic metadata
with methods for combinatorial search to find systematic weaknesses in images. In contrast
to existing approaches, ours identifies weak slices that are in line with predefined human-
understandable dimensions. As the algorithm includes foundation models, its intermediate
and final results may not always be exact. Therefore, we include an approach to address
the impact of noisy metadata. We validate our algorithm on both synthetic and real-world
datasets, demonstrating its ability to recover human-understandable systematic weaknesses.
Furthermore, using our approach, we identify systematic weaknesses of multiple pre-trained
and publicly available state-of-the-art computer vision DNNs.

1 Introduction

With recent advances in machine learning (ML), there has been a significant improvement in the modeling
of unstructured data, such as images. However, for safety-critical applications, ML models need to be
developed with a focus on trustworthiness by investigating and correcting potential failure modes. To that
end, systematic errors of DNNs need to be studied and rectified. Hidden stratification (Oakden-Rayner
et al., 2020) and fairness-related bias (Buolamwini & Gebru, 2018; Wang et al., 2020; Li et al., 2023) due to
spurious correlations (Xiao et al., 2021; Geirhos et al., 2020; Mahmood et al., 2021) and underrepresented
subpopulations (Sagawa* et al., 2020; Santurkar et al., 2021) are some examples of potential failure modes
where the error or weakness is systematic in nature. The existence of these modes implies that there are
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slices 1 of data where the performance of the DNN-under-test (DuT) is worse than the average performance
on the entire test dataset. Although identifying slices with weak performance would be trivial by simply
grouping samples on which models have high error, identifying slices that are both semantically coherent
and have high error is challenging. This is due to the lack of semantic metadata that describes the slices
for many data domains (e.g., images, text). Despite this challenge, identifying such slices provides a human-
understandable global explanation of the model behavior. Moreover, semantically coherent weak slices offer
actionable insights for debugging and auditing models.

From a safety and certification perspective, upcoming standards (e.g., ISO/PAS 8800 (ISO, 2024)), and
works with a focus on AI in automotive (Koopman & Fratrik, 2019; Burton et al., 2022), aerospace (Euro-
pean Union Aviation Safety Agency, 2024) and railway (Zeller et al., 2023) domains have highlighted the
importance of data completeness and quality using, in most cases, Operational Design Domains (ODDs).
In automotive, Herrmann et al. (2022) have proposed ontologies for different traffic participants that can
be used to build ODDs for automated driving. The goal of using such ODDs is to describe the scope of
AI applications in terms of human-understandable, safety-relevant dimensions where comprehensible safety
argumentations can be built w.r.t. robustness, explainability, and interpretability. To facilitate building
such safety augmentations, testing approaches for ML developers and safety experts that evaluate DNN
performance and identify systematic weaknesses are essential.

Although in recent years, several works (Chung et al., 2019; Sagadeeva & Boehm, 2021; d’Eon et al., 2022;
Eyuboglu et al., 2022; Metzen et al., 2023; Plumb et al., 2023; Jain et al., 2023; Gao et al., 2023; Chen et al.,
2023) have proposed methods for analyzing systematic weaknesses, there is a lack of focus on identifying weak-
nesses of models evaluated on real-world datasets, where the weaknesses align with human-understandable
semantic concepts defined, for example, by safety experts in ODDs. We argue that it is more beneficial from
a safety perspective if the approaches to identify systematic weaknesses are ODD-compliant for two main
reasons: (i) the slices are useful as the identified vulnerabilities are aligned with human-understandable
safety-relevant dimensions, and (ii) the slices are actionable as ML developers can gather more data to re-
train or reweight existing samples to improve performance along the safety-relevant dimensions. We address
the challenge of analyzing unstructured image data by designing an algorithm that leverages recent advances
in foundation models and systematic weakness analysis methods for structured data. Our contributions can
be summarized as follows:

• We introduce an algorithm that takes in an image dataset, ODD description, and performance values
of a DuT as inputs and outputs systematic weaknesses of the DuT (see section 3). Our implemen-
tation is available at https://github.com/sujan-sai-g/Systematic-Weakness-Detection.

• Concretely, as part of the metadata generation module, we make use of CLIP (Radford et al., 2021)
to leverage its rich joint image, text embedding space. As part of the slice discovery module, we
propose using SliceLine (Sagadeeva & Boehm, 2021) with modifications to identify weak slices that
align with the ODD (see section 3).

• In addition, we address the noisy nature of metadata generation and propose a way to recover
relevant weak slices even if CLIP labeling is suboptimal. We empirically evaluate the behavior of
our algorithm at various levels of label quality using synthetic data (see section 4).

• Furthermore, we evaluate multiple pre-trained and publicly available DuTs using our algorithm on
real-world datasets and provide insights into their systematic weaknesses (see section 5).

2 Related Work

In this section, we review the recent progress in analyzing systematic weaknesses using slice discovery methods
(SDMs) (Eyuboglu et al., 2022) for structured and unstructured data and highlight their connection to
interpretability and feature attribution methods.

1In the literature, slices are often also called subgroups or subsets of data. All three terms are used interchangeably in
relation to systematic weakness analysis.
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For structured data, methods such as SliceFinder (Chung et al., 2019) and SliceLine (Sagadeeva & Boehm,
2021) leverage the rich metadata available in the form of features to slice the data and exhaustively search
for top-k low-performing slices. The differences between these two approaches lie in the scoring of errors, the
pruning strategy, and how they handle slice sizes. Although these two approaches were explicitly developed to
identify systematic weaknesses, subgroup-discovery techniques (Atzmueller, 2015), a subset of data mining,
have a similar problem formulation and could also potentially be used for slice discovery of structured data.

For unstructured data such as images, where metadata is not directly available, SOTA approaches have taken
two lines of research. In the first line of prior work, referred to as slice-and-tag approaches by (Chen et al.,
2025), for a given test dataset, DNN embeddings are used as proxies for coherency. Weak-performing slices
of the data are obtained by clustering these embeddings along with model errors. Here, approaches such as
Spotlight (d’Eon et al., 2022) perform clustering on the embeddings of the final layers of the DuT itself. In
contrast, recent approaches leverage the joint embedding space of foundation models such as CLIP (Radford
et al., 2021) and apply Gaussian mixture models like in DOMINO (Eyuboglu et al., 2022) or SVMs like in
SVM-FD (Jain et al., 2023) to identify coherent clusters. In Spotlight, an additional step involving humans
is required to inspect and understand what uniquely constitutes a weak slice. DOMINO and SVM-FD
automate the slice description process to reduce human effort and bias using an additional DNN. In all these
approaches, as coherence is only loosely enforced based on DNN embeddings, it is not always clear what
specific human-understandable concept uniquely constitutes a slice. Without this knowledge, it would be
unclear to the ML developers what new data samples would need to be collected to retrain the model and fix
the systematic weakness. To mitigate this problem, some approaches (Gao et al., 2023; Slyman et al., 2023)
propose iterative human-in-the-loop testing to ensure that the identified slices are human-understandable.

In the second line of prior work, referred to as tag-and-slice approaches by (Chen et al., 2025), inspired by
counterfactuals and leveraging CLIP, several approaches (Wiles et al., 2022; Metzen et al., 2023) propose
synthetically generating new (counterfactual) images that would lead to erroneous predictions by controlling
the content and data shift in the image. Among these, PromptAttack (Metzen et al., 2023) also proposes to
identify weaknesses that are aligned with the ODDs. However, while PromptAttack generates new samples
using image-generation DNNs, which could potentially introduce biases due to domain shift, our approach
is more closely aligned with earlier methods that evaluate a DNN on a given test dataset. In this direction,
HiBug (Chen et al., 2023) utilizes a GPT-based model to assign attributes to a given dataset. Building on
this and appearing concurrently with our work, HiBug2 (Chen et al., 2025) extends HiBug with a search
algorithm to identify weak slices. While we also apply attributes to the data to perform a subsequent weak
slice search, we, instead, opt for the less compute-intensive CLIP (Radford et al., 2021) model to generate
attributes. Additionally, we develop a Bayesian framework to compensate for the label noise that occurs
from the attribution.

In contrast to SDMs, local interpretability and feature attribution methods (Ribeiro et al., 2016; Lundberg
& Lee, 2017), while linking achieved understandability to actionability (Guidotti et al., 2022), identify
local explanations and not the global systematic weaknesses. In addition, the feature attribution methods
themselves might not always be robust or consistent (Krishna et al., 2024).

3 Method

In this section, we present our algorithm for weakness detection on the basis of human-understandable se-
mantic dimensions. To this end, we introduce notation regarding metadata and slicing, discuss the generation
of metadata, formulate DNN weakness within a Bayesian framework to account for the impact of noise, and
lastly detail how such impact can be acknowledged within slice discovery algorithms.

Notation: Consider a DNN-under-test (DuT) M trained on some computer vision task. Let D be the (test)
dataset containing the inputs and the corresponding task-related ground truth. For each sample si ∈ D,
using some per-sample performance metric (e.g., intersection over union (IoU)) and, if applicable, applying
some threshold, we obtain binarized DuT errors, defined as ei ∈ {0, 1}. Each sample is either correctly
(ei = 0) or incorrectly (ei = 1) predicted by the DuT. Here, we slightly deviate from conventional notation
by considering individual samples rather than the DuT inputs. Although identical for image classification,
in the case of object detection, multiple samples (i.e., objects) may be present in a given input image, over

3



Published in Transactions on Machine Learning Research (07/2025)

Inputs

DuT (M)

Dataset
(D)

ODD (Z)
Dim. Attr.
Gender Male Female
Age Adult Young
. . . . . . . . .

Unstructured
to

Structured Data
Per-Object Performance

Samples Binarized
Errors

s1 e1
s2 e2
. . . . . .

Foundation
Models
(e.g., CLIP)

Sensors
(e.g., Depth
Sensors)

...

Noisy to Accurate

Metadata Generation Module

D Gender Age . . .

s1 Female Adult . . .
s2 Female Young . . .
. . . . . . . . . . . .

Weak Slice Discovery

Sample-based
Metadata
Quality Check

Systematic Weakness
Detector 1

SWD-1: SL + observed error
SWD-2: SL + corrected error
SWD-3: Combined

Results

Slice
Desc.

Slice
Statistics

Age = Adult |S1|, . . .
Gender = Female |S2|, . . .

Figure 1: Our algorithm for finding systematic weaknesses of CV models. Given a model, a test dataset,
and an ODD description for the objects we are interested in, we build a database of object-level performance
and metadata in a structured format. Weak slice discovery methods are then applied to this database to
identify top-k weak slices of the model.

which inference is performed. Using a set of samples with individual errors ei allows us to define slices S ⊆ D
of the data and their corresponding (average) error rate ē|S , defined as 1

|S|
∑

s∈S es. One of the goals of slice
discovery methods is to find slices where ē|S is significantly worse than the global average ē|D. However,
this constraint alone could be trivially satisfied by selecting all samples where ei = 1. But, this, in general,
would reveal no further information than the known data-points with bad performance.

As outlined in section 2, existing works in slice discovery can be broadly categorized into two areas of
research: (i) slice-and-tag and (ii) tag-and-slice, as introduced by (Chen et al., 2025). The first category
includes methods such as DOMINO (Eyuboglu et al., 2022), Spotlight (d’Eon et al., 2022), and SVM-
FD (Jain et al., 2023). These approaches begin by embedding each input s using some DNN E (e.g., CLIP
or the DuT itself). In the resulting embedding space, clustering or classification approaches (e.g., using
GMMs or SVMs) are applied to the joint space of DuT performance e and the embeddings E(s) across the
full test dataset. (Plumb et al., 2023) offers a helpful overview of the different embedding and clustering
approaches used in slice discovery. This constitutes the slicing step with the expectation that the obtained
slices S ⊆ D retain semantic coherency and also contain high DuT errors. Next, as part of the tagging
step, some approaches use language models to describe S. As the approaches do not explicitly enforce the
descriptions to follow a set of semantics within Z, the descriptions might be very general. Moreover, there
is no guarantee that a coherent region in the latent space corresponds to a single, human-understandable
concept. Instead, mixtures across broader categories may arise, and elements of an assumed semantic concept
for S may also be reflected in data points beyond the slice. In contrast, the tag-and-slice approaches like
ours and HiBug2 (Chen et al., 2025) focus on “tagging” each input s from a predefined set Z of semantic
dimensions and corresponding attributes. To enable this, some DNN G (e.g., CLIP or GPT) is used to both
embed and classify each input s based on the dimensions in Z. For instance, in pedestrian detection, such
dimensions can be fairness-related, such as “gender” or “age”, with attributes like “young” or “old”, but may
also include other safety-relevant aspects such as “occlusion” or “clothing-color”. This way, unstructured
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image data is transformed into structured metadata containing the relevant semantic dimensions. As part
of the slicing step, this metadata is combined with the DuT errors e and analysed using a search algorithm.
These approaches offer direct interpretability of the slices, and the choice of dimensions can be aligned, e.g.,
with existing safety considerations. More concretely, larger parts of Operational Design Domains can often
be formalized in terms of simple sets Z. For our work, the concrete set used is inspired by the ODD within
Herrmann et al. (2022) from the autonomous driving domain and we use Z and ODD synonymously in the
remainder.2 PromptAttack (Metzen et al., 2023) also falls within the tag-and-slice category. However, in
this method, instead of metadata generation for existing data, new data points s′ are generated that are
not within D using diffusion models based on semantics defined in Z. By using the generated s′ as a test
set, weaknesses of DuT are evaluated. Here, issues related to syn2real gap and systematic weaknesses of
diffusion models must be considered when evaluating the results.

In fig. 1, we present our algorithm, where, using inputs such as a dataset D, a predefined ODD Z, and a DuT
M , we transform the task of finding systematic weaknesses in the unstructured data domain into a problem
in the structured data domain. The algorithm is designed with modular components for adaptability. The
first module handles the generation of structured metadata, while the second module applies the weak slice
search algorithm to the generated structured metadata. With a structured description of the data, we
can formulate slices as rules over Z, e.g., gender = male ∧ occlusion = (0.9, 1.0]. This allows for a more
probabilistic notation p(e|S) of the true error given the slice. Slice discovery is then the task of finding
(coherent) conditions S such that the conditional expectation is maximized.

Metadata Generation: While there is great interest from safety experts and certification bodies in using
ODDs for safety argumentation, metadata that align with the ODD are scarcely available for most, particu-
larly image, domains. Human annotation of such metadata is often out of scope for large datasets due to cost
and time constraints. However, an automated metadata generation module that captures different semantic
dimensions of Z is feasible with existing technologies. For example, a multi-modal foundation model like
CLIP with its joint image and text embedding space could be a potential candidate for such automated
annotation out of the box or after fine-tuning. Inspired by Gannamaneni et al. (2023), we leverage CLIP
to generate metadata for each sample s in our dataset across all dimensions in Z using the embedding and
classification function G. Specifically, we first obtain the embedding of an input sample s using the CLIP
vision encoder. Simultaneously, we generate embeddings for attribute-specific prompts using the CLIP text
encoder, following the ensemble prompting strategy introduced by Gannamaneni et al. (2023), which builds
upon the ensemble prompting technique proposed in Radford et al. (2021). For example, in the case of the
gender dimension with attributes such as “male” and “female”, we manually construct ensemble prompts
for each attribute and encode them using the text encoder. Attribute classification for each dimension is
performed by computing similarity scores between the image and text embeddings; the attribute with the
highest score is assigned. For example, if sample s depicts a "male," the corresponding similarity score would
be highest, and "male" would be assigned as the metadata value for the gender dimension for that sample.
This procedure facilitates the extraction of structured metadata from unstructured image data.

Taking the ontology for pedestrians from the automotive domain as a baseline, a qualitative evaluation of
CLIP’s capability was performed by Gannamaneni et al. (2023). While CLIP achieved SOTA level zero-
shot performance on different dimensions such as gender, skin-color, and age for portrait shots of human
faces in the CelebA (Liu et al., 2015) dataset, they observed a drop in performance on real-world datasets
containing pedestrians like in the Cityscapes (Cordts et al., 2016) dataset. The drop in performance can be
attributed to more challenging conditions, such as complex poses, low illumination, and high occlusion. These
observations, along with our experiments, show that the function G is subject to varying degrees and types
of uncertainty, depending on the dimensions of Z: (i) the presence of data-based (aleatoric) uncertainties,
i.e., where the image resolution is low or the object in question is heavily occluded or distant, leading to
errors in the generated metadata. (ii) the presence of model-based (epistemic) uncertainties, i.e., where the
function G exhibits suboptimal performance. While (i) can occur in the case of both human and CLIP-based

2In practice, ODDs are often ontological in nature, and only sub-components of them might be captured by semantic sets
of the form Z. For example, “trucks” and “pedestrians” could be part of the same ODD for a DuT but would have different
semantic dimensions.
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annotation, (ii) occurs more prominently in non-human, automated labeling.3 Therefore, any method that
aims to consider metadata generated using such techniques should take into account the incurred noise in
downstream tasks.

Bayesian Framework to Account for the Impact of Noise: To address the uncertain nature of
classification, we extend the previous slice notation of the error to the joint probability p(e, C,S), where
C represents the outcome of automated labeling for some attribute of a dimension, while S denotes the
corresponding ground truth. For simplicity, we drop the indices and make the additional assumption that
S, C can be seen as binary, i.e. they may either be true (S, C) or not true (¬S, ¬C), respectively (for details
on the non-binary case, see appendix B.4). Using Bayes’ Theorem and marginalizing over C or S, we can
express

p(e|S) =p(e|C,S)rC + p(e|¬C,S) (1− rC) , (1)
p(e|C) =p(e|C,S)pC + p(e|C,¬S) (1− pC) . (2)

Here, p(e|S) represents the true slice error, while p(e|C) denotes the observed slice error. Furthermore,
pC = p(S|C) and rC = p(C|S) are shorthand for precision and recall of the labeling function G measured
towards the ground truth, and are used in our algorithm, fig. 1, for the quality check. A detailed derivation
of the equations is provided in appendix B.1. Making these relations explicit allows us to investigate the
hypothesis typically underlying Slice Discovery Methods in more detail. Specifically, based solely on the
observed slice performance/weakness p(e|C), one may conclude that a related data property S represents a
weakness of the DuT, i.e., we assume that p(e|S) also has a comparable performance/weakness. While in our
algorithm the relation between S and C is explicit as the latter is given by a classifier for the former, in other
approaches (d’Eon et al., 2022; Eyuboglu et al., 2022; Jain et al., 2023) the relation is implicit, as observed
sets C are interpreted to indicate a meaning of S (typically referred to as a slice label). Another assumption
typically made is the independence between the labeling function G and DuT. This independence would
imply that the errors of the DuT do not depend on the noise (errors) of G. Specifically, for a semantic
attribute, the error rates p(e|C,S) when G is correct and the error rate p(e|¬C,S) when it is not should be
(approximately) equal. However, our experiments indicate that this is not always the case; therefore, we
denote the difference by

δp(e|S) = p(e|¬C,S)− p(e|C,S) . (3)

Please note that δp describes intra-set variances of the error rate in the set S and is not a conditional
probability on its own. Taking into account this potential dependence, we can derive the true error from the
observed error exactly given the performance of the annotation process using

p(e|S) = p(e|C) p¬C + p(e|¬C) (pC − 1)
pC + p¬C − 1︸ ︷︷ ︸

independence assumption

+ δp(e|S)

κS︷ ︸︸ ︷(
pCp¬C

pC + p¬C − 1 − rC

)
+δp(e|¬S)

κ¬S︷ ︸︸ ︷
(pC − 1)p¬C

pC + p¬C − 1︸ ︷︷ ︸
correction terms

. (4)

As long as the independence assumption is (approximately) valid, implying δp(e|S) ≈ δp(e|¬S) ≈ 0, the slice
error given the semantic attribute S is obtained by separating the two types of observed error probabilities
p(e|C), which is possible as long as the denominator is non-zero.4 An analysis of properties of this equation
w.r.t. the denominator allows us to automatically create quality indicators on the validity or invalidity of
the obtained corrected slices for attribute S. The full derivation and further details on quality indicators
can be found in appendix B.2.

Weak Slice discovery on Structured ODD Data with SliceLine: We have now established methods
to generate metadata and correct for noise during the metadata generation. With this background, in al-
gorithm 1, we propose three stages for Systematic Weakness Detection (SWD-1,2,3). In SWD-1, using the
generated structured metadata and observed errors p(e|C), we employ SliceLine (Sagadeeva & Boehm, 2021)

3High-quality human labeling typically requires multiple measures to reduce inter-observer variability or epistemic uncer-
tainty in general (e.g. via labeling guides). However, in this work, we consider human labeling as high-quality compared to
DNN-based labeling.

4For the sake of numeric stability, also denominators which are only approximately zero should be discarded.
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to provide a ranked list of top-k worst performing slices based on a scoring function that takes into account
the errors and sizes of the slices (see eq. (5) in appendix A.4 for details on how SliceLine works). As we have
motivated, observed errors may not always provide a sufficient signal to identify the underlying error (see the
top row in fig. 2). Therefore, in SWD-2, using eq. (4) to compensate for noise in the metadata, we provide cor-
rected errors instead of observed errors to SliceLine to provide a second ranked list of top-k worst-performing
slices S. However, as it requires extensive human effort to identify certain parameters, i.e., δp(e|S), δp(e|¬S)
in eq. (4), in particular for combinations of semantics, we make a cheaper approximation only considering
the independence assumption part of the equation. This is implemented in computeCorrectedError() in
algorithm 1. To operationalize this part of the equation, we estimate precision values based on human
evaluation of metadata quality on only n = 60 samples per attribute (see appendix B.4). The subsequent
corrected errors from this independence assumption are used in the SliceLine scoring function. Based on
the slice quality indicators discussed above, we are also able to discard invalid slices due to denominator
values close to zero. In addition to SWD-1 and SWD-2, we also consider a merge of the resulting slices
from SWD-1 and SWD-2, as this might provide a complementary effect. We refer to this merged list as the
output of SWD-3. The merge step includes sorting based on the score of the slice from the scoring function,
removal of duplicate slices, and filtering of invalid slices. The SliceLine hyperparameters include the level
(maximal search depth), i.e. the maximal number of semantic dimensions considered simultaneously, as well
as a cut-off for the necessary slice error ē|S to consider S a valid slice.

Algorithm 1: Systematic Weakness Detector (SWD)
Input: Metadata {CZ1 , CZ2 , . . . }, errors e, Precision vectors {pC}, SliceLine hyper-parameters
Output: Top-K slices TS

1 SWD-1: SliceLine with observed errors p(e|Ci);
2 [TS1]← SliceLine({CZ1 , CZ2 , . . . }, e, hyperparameters);
3 SWD-2: SliceLine with corrected errors (approximations to p(e|Si));
4 [TS2, Quality Indicators]←

SliceLine({CZ1 , CZ2 , . . . }, computeCorrectedError(e, pC), hyperparameters);
5 SWD-3: Combined Slices;
6 [TS]← Merge(TS1 ∪ TS2);
7 return TS;

4 Proof of Concept with Synthetic Data

To demonstrate the efficacy of our algorithm fig. 1, we first present evaluations on a synthetic dataset. This
is done to evaluate the impact of noise on the labeling process and to determine the degree to which our
algorithm can compensate for it. The synthetic data is a tabular dataset containing columns for nine “real”
semantic dimensions for 200 000 samples each containing binary attributes. For each of the “real” dimensions
(GT), a “predicted” metadata column is included as a proxy for the metadata that would be generated by
CLIP in our algorithm (see fig. 1). In addition, one final column contains the binarized DuT errors (e).
The first four dimensions are generated to be imbalanced with only ∼ 5% of the samples belonging to the
attribute “1”. The other five dimensions are generated such that both attributes have equal distribution.
The error column is designed such that weak slices are induced for the specified ground-truth attributes.

We consider three regimes of noise, i.e., different quality of labeling of the simulated annotation process:
(i) a regime of “good” quality CLIP labeling, represented with pC above 80%, (ii) a regime of “medium”
quality CLIP labeling, represented with pC between 40% and 70%, and (iii) a regime of “bad” quality CLIP
labeling, represented with pC between 10% and 40%. For all three regimes, we considered 100 runs of the
experiments to account for statistical influence. Further details about the dataset generation can be found
in appendix A.2. In fig. 2, in the top row, the error distributions show how labeling quality impacts the
spread of error between attributes for each semantic dimension, i.e., the upper and lower ends of the bars
are given by the error rates for ē|S , ē|¬S and similarly using C or the corrected errors. In the good labeling
quality regime, as expected, observed errors and corrected errors both display the same spread as the GT
error. But when labeling quality is medium or bad (where the impact of eq. (4) is stronger), the spread
of the observed error is significantly lower than that of the corrected error. In contrast, the corrected error
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either has close estimates to the true error or overestimates the true error (GT). From a safety perspective,
we argue that overestimating the error within a DNN is better than underestimating it. In the bottom row,
we evaluate the results of SWD-1,2,3. This is shown by comparing how well SWD-1,2,3 recover the top-k
weak slices in comparison to top-k slices from Oracle, i.e., a situation where we have access to perfect “GT”
labeling quality annotation. Precision and recall are calculated for the three data quality regimes w.r.t.
the Oracle case by considering the overlap of identified weak slices at an increasing number of top-slices
k. Note that precision and recall in this figure refer to quality metrics on weak slice discovery and not
precision and recall of the CLIP labeling. While, at level 2, the maximum number of slices k is 162 for 9
binarized dimensions5, we consider only slices fulfilling the cut-off requirement as a weak slice. Of these 162
slices, only ∼ 30 are identified as weak slices. Although under good labeling quality, the slices identified
by SWD-1,2,3 basically have 100% overlap with the slices from the Oracle, under medium and strong label
noise, SWD-3 shows significantly more recall than SWD-1 and marginally over SWD-2. However, this comes
with a small loss in precision. In cases of strong noise, SWD-1 only recovers a few slices where the error
signal is dominant, which explains the high precision at the cost of low recall. SWD-3, on the other hand,
has a reduced precision, but recovers most of the weak slices identified by Oracle. For the rest of this work,
we focus primarily on the slices identified by SWD-3.

Good Quality

Dimensions

Medium Quality Bad Quality

Number of slices under consideration (k)

Er
ro

rs
Pr

ec
isi

on
R

ec
al

l

Figure 2: Based on labeling quality, we divide the generated datasets into (i) good quality (left), (ii) medium
quality (middle), and (iii) bad quality (right). In three cases, we look at the spread of error in GT (p(e|S)),
Observed (p(e|C)), and Corrected (p(e|S)). In the second row, corresponding performance in terms of
precision and recall of SWD-1,2,3 are shown. Precision and Recall in this figure are metrics to evaluate weak
slice recovery and are not related to labeling quality. The legend for both rows are presented on the figures
on left.

5 Evaluations of real-world DNNs

In this section, we first present our experimental setup. We then show the evaluation of our systematic
weaknesses detection method on a publicly available pre-trained model for the CelebA dataset. Here, the
dataset’s rich metadata annotation allows us to investigate the influence of noisy metadata annotation.
In addition, we compare against SOTA SDM methods to evaluate our claim that adherence to the ODD
descriptions is useful to end users (e.g., safety experts, ML developers). Subsequently, we present the insights
gained by using our approach on DNNs trained on autonomous driving datasets.

59 × 2 +
(9

2

)
× 22
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5.1 Experimental Setup

Datasets and Models: Five pre-trained models, ViT-B-16 (Dosovitskiy et al., 2021), Faster R-CNN (Ren
et al., 2015), SETR PUP (Zheng et al., 2021), PanopticFCN (Li et al., 2021), and YOLOv11m (Jocher &
Qiu, 2024) are evaluated using five public datasets (CelebA (Liu et al., 2015), BDD100k (Yu et al., 2020),
Cityscapes (Cordts et al., 2016), RailSem19 (Zendel et al., 2019)), and EuroCity Persons dataset (Braun
et al., 2019), respectively. We restrict the number of combinations (level) to 2 in this work. However, as
presented in appendix B.4, our approach allows correction of errors even at higher levels of combinations. We
used the cutoff for the slice error as 1.5 ē|D for all experiments except the PanopticFCN model evaluation.
In the PanopticFCN evaluation, we utilize the cutoff point for the slice error as 1.0 ē|D as the global average
error is already quite high. For a detailed experimental setup, see appendix A.1. To foster reproducibility,
code, ODDs, and the prompts used for metadata generation with CLIP are provided.

5.2 Evaluation of our Systematic Weaknesses Detection Method

Evaluating a ViT Model on CelebA dataset: As our first experiment, we evaluated the weaknesses of
the ViT-B-16 (Dosovitskiy et al., 2021) model (DuT) trained on ImageNet21k (Ridnik et al., 2021). We use
the model for the targeted task of identifying the class “person” in the CelebA dataset (Liu et al., 2015) as a
real-world proof of concept for our approach. Due to the extensive range of label categories in ImageNet (Deng
et al., 2009) and the significant noise in the labeling style, models trained on the full ImageNet dataset or its
standard subset ImageNet1k (Russakovsky et al., 2015) can suffer from systematic weaknesses. For example,
although the primary foreground object in an image might be a human, in some instances the image can be
labeled as belonging to the class “person”, while in other similar instances the label might be about more
granular classes like “bride” or “guitarist”. To fix this issue, Ridnik et al. (2021) proposed 11 hierarchies
based on WordNet (Miller, 1995) semantic trees such that classes at higher hierarchy levels are superclasses
that subsume classes at lower hierarchy levels. However, despite these efforts, considerable label noise in
terms of class overlap still persists. For example, humans holding specific objects might occur at the same
hierarchy level as the class “artifact” or “person”. Similar problems exist, for example, for hairstyles (see
“pompadour” existing at the same level as “person”). For a further analysis, also see the work of (Northcutt
et al., 2021).

Earlier works (Beyer et al., 2020; Shankar et al., 2020) have proposed using multi-label evaluation metrics
as a way to deal with label noise. However, we consider the simplified task of identifying a dedicated
class, “Person”, in a dataset with only human faces (CelebA) by focusing on the top-1 class predictions for
level-0 of the label hierarchy proposed in ImageNet21k. We obtain an accuracy of 94.48% on the 202 599
images in the CelebA dataset. The softmax of the top-1 prediction, see fig. 3, shows, besides the “person”
class, the presence of several other classes, most prominently “artifact” and “pompadour”. As this model
is commonly used as a pre-trained backbone for various applications, uncovering potential shortcomings
might also be beneficial for potential downstream use cases. Furthermore, the CelebA dataset serves as an
ideal testing ground for approaches identifying systematic weaknesses due to the availability of the ground-
truth metadata attributes. As an ODD for this test case, we propose a simplified subset of these available
metadata attributes in analogy to the work of Gannamaneni et al. (2023), for details see appendix A.3. As
proposed in our algorithm, we generate metadata using CLIP for the given ODD dimensions. In principle,
stronger and more recent models such as GPT-4o (Hurst et al., 2024) could also be used for this task at
greater computational (or financial) cost. However, such models might still produce error-prone metadata.
A performance comparison is given in appendix E. Subsequently, the generated metadata is combined with
the errors of the DuT.

Weak Slice Discovery Since the CelebA dataset contains annotated metadata for 40 attributes, we have
access to noiseless metadata which, when used with SliceLine, can be considered as the “Oracle” approach.
In table 1, we present the quantitative comparison of the top-7 slices identified by SWD-3 against corre-
sponding slices in SWD-1 and Oracle. Basically, we list the top-7 slices of SWD-3 and evaluate where these
slices would be ranked by SWD-1 and Oracle and what the corresponding statistics would be to highlight
the importance of error correction. From the slice descriptions, all the identified weak slices contain some
variation of the semantic concept “wearing hat”. The discovery of these slices can be seen within the context
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Histogram of pretrained ViT-B-16 predictions on CelebA dataset

Person
Not Person

Slice Description

wearing-hat: true
beard: false

Slice S1 Slice Statistics

Slice Size |S|: 7600
pcorr(e|S) of Slice: 0.6856

Performance degradation: -0.6304

Figure 3: Left: The hierarchy level-0 (Ridnik et al., 2021) predictions of the pre-trained ViT-B-16 model on
the full CelebA dataset converted into a binary classification problem. While a majority of the predictions
are correct, there is a non-trivial subset of images with systematic errors due to label overlap issues. Right:
Top-1 weak slice, identified by SWD-3, of a ViT-B-16 classification model trained on ImageNet21k and
evaluated on the full CelebA dataset. The statistics provide a quantitative evaluation of the entire slice. For
qualitative evaluation, we provide some sample images from the slice.

of the frequent misclassification of images as class “artifact” by the DuT (see fig. 3). In these cases, the
model likely focuses on the hats as the foreground object and predicts the class “artifact”. To evaluate the
quality of the identified slices, we utilize the errors of the slices, i.e., pcorr(e|S), p(e|C), and p(e|S) defined
in section 3. We observe, based on the rank column, that the top-6 Oracle slices are captured in top-7
SWD-3 slices. Notably, while the observed error p(e|C) of SWD-1 underestimates the true error p(e|S) of
Oracle, SWD-3 effectively corrects this in pcorr(e|S). For instance, in the third row, which corresponds to
the top-ranked weak slice identified by the Oracle, the difference between the Oracle slice error and the
SWD-1 slice error is 0.3, while between SWD-3 and Oracle it is only 0.07. A thorough evaluation of our
approach on the top-60 slices shown in fig. 5 in appendix C.1 reveals that SWD-3 obtains 100% recall of
weak slices at the cost of a reduction in precision. Note that precision and recall in this figure refer to quality
metrics on weak slice discovery and not precision and recall of the CLIP labeling. From a safety perspective,
given the noisy labeling, high recall (detection of all weak slices) at the cost of some reduction in precision
can be considered acceptable. Interestingly, the top-1 slice of SWD-1 (not shown in the table) refers to slice
description “wearing hat: true” and “pale-skin: true”. Gannamaneni et al. (2023) discussed the limitations of
CLIP in separating the latter dimension and corresponding low performance. This high level of noise in the
generated metadata leads to SWD-1 identifying “pale-skin” as a top-1 slice while SWD-3 effectively corrects
for this by discarding the wrongly detected slice as “invalid” using the quality indicators (see algorithm 1)
and hence does not identify this dimension in top-7. For a qualitative evaluation of SWD-3, the top-1 slice
with sample images from the slice are available in fig. 3 (see fig. 6 in appendix C.2 for a qualitative evaluation
of the top-5 slices).

Comparison to SOTA SDM Methods: In addition to the evaluation of SWD-3, we compare three SOTA
methods DOMINO (Eyuboglu et al., 2022), Spotlight (d’Eon et al., 2022), and SVM FD (Jain et al., 2023)
against Oracle. Similarly to our work, DOMINO and SVM FD use CLIP (ViT L/14) in their workflows.
However, they encode the images in the CLIP embedding space and then search for weak slices without
explicitly enforcing any semantic concepts. To describe the slices, both approaches perform an additional
step, where the identified slices are explained using text from large language models. In contrast, Spotlight
directly uses the embedding space of the DuT to cluster weak slices and provides no descriptions of the
identified slices. The former methods follow a broader trend (like us) of using foundation models like CLIP
in testing smaller models. However, they do not thoroughly address limitations in CLIP’s capabilities and
the limitations of their approaches w.r.t. actionability when the slice descriptions are not very meaningful.
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Slice Slice Description SWD-3 SWD-1 Oracle
rank(S) |S|corr pcorr(e|S) rank(S) |S| p(e|C) rank(S) |S| p(e|S)

S1
Wearing-Hat: True
Beard: False 1 7600 0.69 6 12152 0.33 2 6267 0.51

S2
Wearing-Hat: True
Smiling: False 2 5132 0.60 3 8573 0.36 9 6476 0.45

S3
Wearing-Hat: True
Gender: Female 3 4435 0.61 2 7393 0.38 1 2947 0.69

S4
Wearing-Hat: True
Age: Young 4 7974 0.54 4 12758 0.34 3 6937 0.50

S5
Wearing-Hat: True
Eyeglasses: False 5 8606 0.54 5 12594 0.33 6 8417 0.45

S6
Wearing-Hat: True
Goatee: False 6 8845 0.53 7 11453 0.33 4 8284 0.46

S7
Wearing-Hat: True
Bald: False 7 9676 0.51 8 15501 0.32 5 9795 0.44

Table 1: Evaluation of top-7 slices of SWD-3 (see algorithm 1) by comparing its statistics with corresponding
slice statistics of SWD-1 and Oracle. The rank column indicates the slice ranking in each approach. The
size of D for this experiment is 202 599 images.

Our approach tackles both these limitations as we address noise in CLIP labeling and also correctness of
descriptions. However, our approach also has a limitation as it can only identify weaknesses w.r.t. dimen-
sions in Z while the other methods could identify more novel weaknesses. However, this advantage of SOTA
methods, as will be shown below, can only be realized if the description or coherence of a slice is understand-
able and actionable to the end-user. To assess the actionability of the SOTA methods, we consider (i) slice
descriptions based on the methods themselves, (ii) slice coherence based on human inspection, and (iii) slice
coherence based on overlap with top-5 slices of Oracle.

Qualitative results and slice descriptions are provided for the three methods in appendix C.2. We identified
that DOMINO descriptions can be very generic and not helpful in identifying the unique attributes of a slice.
This problem was also discussed in other works (Jain et al., 2023; Gao et al., 2023). For Spotlight, descriptions
are not available as part of the method. In contrast, in SVM FD, the slice description is targeted and covers
one dimension of the weak slice identified by Oracle, namely, “wearing hat”. However, as shown earlier,
the weaknesses identified from Oracle stem from the combination of semantics. Therefore, slice descriptions
from the SOTA methods are not enough for actionability. Second, to further evaluate the coherence of the
slices, we manually inspect a sample of the images from a slice to identify the semantics. Such an approach
is necessary for all methods that do not provide slice descriptions. For such manual inspection to identify
the coherence of the slice, we consider samples from the slice and samples from the remaining data (last
column) as a form of control group. For top-1 slices of all three approaches, it is hard to determine what
uniquely constitutes the top-1 slice when considering the combination of semantics. Furthermore, such an
exercise is time intensive and might potentially uncover spurious patterns.

Finally, to evaluate the coherence of the slice based on overlap with Oracle slices, we present in table 2
the top-1 slice identified by each method, their corresponding statistics and the overlap (Jaccard Similarity
Coefficient) of the top-1 slice with the top-5 Oracle slices. From the slice statistics, it can be observed that
the methods recover slices with significant performance degradation and observed error p(e|C). However,
the overlap of the top-1 slices with top-5 of Oracle is quite low. This indicates that the methods might
be uncovering weaknesses w.r.t. dimensions not present in the ODD. However, without useful descriptions,
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Method Slice Statistics Slice Coherence with Attributes

Perf.
degr. Size

Overlap with
Oracle top-5

slices

Overlap
with
FNs

ē|D
-

p(e|C)
|S1| p(e|C) J(S1,SO

1 ) J(S1,SO
2 ) J(S1,SO

3 ) J(S1,SO
4 ) J(S1,SO

5 ) |S1∩SF N |
|SF N |

DOMINO -0.5629 11726 0.6181 0.13 0.19 0.20 0.21 0.24 0.64
Spotlight -0.8622 4050 0.9179 0.32 0.32 0.32 0.31 0.31 0.33
SVM FD -0.3844 2642 0.4295 0.11 0.15 0.16 0.16 0.16 0.24

Table 2: Comparison of three metadata-free SOTA methods with top-5 slices of Oracle. J(S1,SO
x ) indicates

the Jaccard similarity coefficient between the two slices. appendix C.2 contains samples from each slice of the
SOTA methods along with slice descriptions and statistics. For overlap with the oracle slice, higher values
are better. For the overlap with the FNs, low values indicate that a slice does not contain “significant”
weaknesses or is highly specific, while high values indicate that potentially all weaknesses of the DuT are
in one slice and it might, therefore, be too generic. This implies that in general one would expect or desire
medium overlap ranges.

the actionability of these slices is low. Furthermore, we evaluate the overlap of the top-1 slice with a slice
that is purely made up of FNs of the DuT. High values in this column might indicate that priority is given
to identifying FNs rather than semantic coherence, as it is unlikely that all weaknesses of a DNN can be
explained by one semantic concept. Therefore, grouping all FNs into one slice would be counterproductive.
As DOMINO captures 64% of all false negatives in its top-1 slice, it is unlikely that such a slice is actionable.
In contrast, Spotlight and SVM FD capture fewer FNs in the top-1 slice. Therefore, they might be capturing
some form of combination of semantics. Based on these evaluations, we conclude that the SOTA methods,
when integrated with improved slice description techniques, could complement our approach. However, in
their current form, our approach offers greater actionability due to its inherent slice descriptions.

5.3 Insights on SOTA Pedestrian Detection Models

Having shown the benefits of our proposed method, we evaluate a more safety-relevant task of pedestrian
detection using models trained in real-world autonomous driving (AD) datasets to identify their system-
atic weaknesses when predicting the class “pedestrian”. For this, we require pedestrian level performances
(intersection-over-union (IoU)) and metadata. To avoid noisy labeling in our metadata generation step, we
perform some additional steps which were not required for the previous experiment. First, we cropped all
pedestrians from the images and considered these crops as D. This is done to focus the CLIP model only on
pedestrians during metadata generation.6

Second, we calculate the pixel area of the pedestrians based on the ground truth bounding box area and use
this to filter D by removing pedestrians that occupy small pixel areas (“smaller” pedestrians). Such filtering
is necessary as: (i) Due to low resolution and high pixelation of “smaller” sized pedestrians, i.e., there is a high
aleatoric uncertainty regarding the correct labels affecting both CLIP and human labelers in understanding
the image content (e.g., to determine gender, age, etc.). (ii) “Smaller” pedestrians are more likely to be farther
from the ego-vehicle 7 and, therefore, might be considered less safety-relevant (in terms of vehicle braking
time). (iii) As the small size can be strongly correlated to performance (due to distance (Gannamaneni
et al., 2021; Lyssenko et al., 2021) or occlusion), this signal can strongly dominate the search for systematic
weaknesses by SliceLine, thus not providing any novel insights in terms of systematic weaknesses. For this
reason, we remove the low-resolution “smaller” pedestrians to improve the quality of metadata generation
and gain further novel insights about model failures w.r.t. more safety-relevant pedestrians.

6To avoid that the aspect ratio of pedestrians is changed by the CLIP pre-processing, we use padding to obtain square crops.
7Unless if small size is due to occlusion. For BDD100k dataset, where occlusion is available as annotation, we show impact

of occlusion as well
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The metadata generation using CLIP is performed using ODDs more suitable for automotive context (see ap-
pendix A.3). We also perform a manual evaluation of a subset of images (n = 60) for each attribute in each
dataset to evaluate the quality of the generated metadata by estimating the precision pC and recall rC (as
discussed in section 3) and show the results in table 3.

Sem.
dim. Attri. Estimated Precision pC Estimated Recall rC

BDD100k Cityscapes RailSem19 BDD100k Cityscapes RailSem19

Age Adult 0.95± 0.03 0.99± 0.02 0.97± 0.02 0.76± 0.03 0.70± 0.02 0.55± 0.02
Young 0.69± 0.06 0.56± 0.06 0.42± 0.06 0.93± 0.06 0.97± 0.06 0.94± 0.06

Gender Female 0.84± 0.05 0.97± 0.02 0.85± 0.04 0.90± 0.05 0.95± 0.02 0.87± 0.04
Male 0.94± 0.03 0.97± 0.02 0.94± 0.03 0.88± 0.03 0.97± 0.02 0.92± 0.03

Cloth.-
color

Bright-
color 0.81± 0.05 0.85± 0.04 0.79± 0.05 0.30± 0.05 0.23± 0.04 0.66± 0.05

Dark-
color 0.76± 0.05 0.65± 0.06 0.82± 0.05 0.96± 0.05 0.97± 0.06 0.89± 0.05

Skin-
color

Dark 0.82± 0.05 0.55± 0.06 0.56± 0.06 0.92± 0.05 0.71± 0.06 0.76± 0.06
White 0.99± 0.02 0.95± 0.03 0.89± 0.04 0.96± 0.02 0.91± 0.03 0.75± 0.04

Blurry True 0.71± 0.06 0.63± 0.06 0.87± 0.04 0.42± 0.06 0.87± 0.06 0.64± 0.04
False 0.48± 0.06 0.95± 0.03 0.84± 0.05 0.74± 0.06 0.82± 0.03 0.95± 0.05

Constru.-
Worker

False - - 0.97± 0.02 - - 0.98± 0.02
True - - 0.65± 0.06 - - 0.55± 0.06

Table 3: The estimated precision and recall using our proposed approach for evaluating the quality of the
generated metadata. Here, we provide the mean and σ/2, for n of 60, of the estimated precision and recall.
Certain dimensions like occlusion are available as part of the datasets themselves. We do not perform human-
evaluation for these dimensions but these are considered in the weak slice search.

In these experiments, using SWD-3, we evaluate the weaknesses of an object detection model (Faster R-CNN),
a segmentation model (SeTR PUP), and a panoptic segmentation model (Panoptic-FCN). The models are
evaluated on their respective datasets, i.e., BDD100k, Cityscapes, and RailSem19. Samples of image crops
of the identified top-1 weak slice for each experiment are shown in fig. 4 (see figs. 10 to 12 in appendix C.2
for top-5 weak slices). In table 4, we present the largest and worst performing slice of the top-5 to provide
insights about the three models. In all three experiments, the performance degradation of the identified
slices is significant. “Occlusion”, skin-color and clothing-color are reoccurring slice descriptions for the first
two models, which are tested on datasets that contain images with many nighttime scenes (BDD100k)
or relatively high gray-toned scenes (Cityscapes). In contrast, the third model, which contains relatively
brighter scenes, has a significant weakness for the dimension “age”. The estimated precision pC and recall rC
in table 3 were provided as input to algorithm 1 to obtain these slices and to determine the quality of the
identified weaknesses. Therefore, in contrast to SOTA SDMs, our approach identifies human-understandable
safety-relevant systematic weaknesses in DNNs used for real-world applications. To evaluate scalability, we
also investigate systematic weaknesses in the YOLOv11m (Jocher & Qiu, 2024) model by treating it as the
DuT and evaluating it on the comparatively larger EuroCity Persons (Braun et al., 2019) dataset. The
results are presented in appendix D.

6 Conclusion

In this work, we present an algorithm for our Systematic Weakness Detector (SWD) to analyze the sys-
tematic weaknesses of DNNs that perform classification, object detection, and semantic segmentation tasks
on image data. In the first step, we overcome the problem of missing metadata by generating metadata
with a foundation model. Subsequently, in the second step, we perform slice discovery using the structured
metadata, which includes the per-object performance of the DuT and the previously collected per-object
metadata. Using our algorithm, we transform the slice discovery of unstructured image data into an (ap-
proximate) slice discovery problem on structured data. In addition, we study the impact of noisy labeling in
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Slice S1

(a) Faster R-CNN

Slice S1

(b) SeTR

Slice S1

(c) Panoptic-FCN

Figure 4: Left: Samples from top-1 weak slice of a Faster R-CNN object detector trained and evaluated
on BDD100k dataset. Middle: Samples from top-1 weak slice of SeTR model trained and evaluated on
Cityscapes dataset. Right: Samples from top-1 weak slice of a Panoptic-FCN model trained and evaluated
on RailSem19 dataset.

a Bayesian framework and operationalize it by integrating error correction and slice validity based on quality
indicators into our approach.

Main Results: In the ablation experiments, we show that our SWD detects the same weak slices as would
be identified in hypothetical cases where we have access to perfect metadata. The primary advantage of
our algorithm, in comparison to SOTA methods, is that the identified weak slices are aligned with human-
understandable semantic concepts that can be derived from a description of the ODD. As upcoming safety
and trustworthy AI specifications increasingly mandate evidence to support safety argumentation with re-
spect to specific ODDs, the results of our approach can serve as a direct contribution to these requirements.
In addition, the identification of human-understandable weak slices enables ML developers to take mitiga-
tion actions, such as a targeted acquisition or generation of data, addressing the weaker slices and, thus,
facilitating effective re-training with a limited acquisition budget. Furthermore, we show that our approach
has clear advantages over several metadata-free SOTA methods by giving more actionable results, and we
demonstrate the applicability of our approach by identifying systematic weaknesses in multiple AD datasets.
For this, we also provide a quantitative evaluation of the quality of the generated metadata.

On metadata generation and incompleteness of ODDs: A minimum metadata labeling quality is
required for the discovered slices to be meaningful. In addition to our proposed metadata quality estima-
tion, future works could therefore focus on improving metadata quality by human correction of a subset
of generated metadata, fine-tuning of CLIP (Eyuboglu et al., 2022), and metadata acquisition from other
sources (e.g., depth sensor for distance). Secondly, all approaches based on ODD definitions, like ours or
PromptAttack (Metzen et al., 2023), would suffer from the lack of completeness of the semantic concepts

Model &
Dataset

Largest Slice
(in top-5)

Worst Performing Slice
(in top-5)

|S|
|D| % pcorr(e|S) Perf.

Degr.
|S|
|D| % pcorr(e|S) Perf.

Degr.
Faster R-CNN

BDD100k 34.44% 0.1263 -0.0693 14.22% 0.2206 -0.1636

SeTR
Cityscapes 13.34% 0.0594 -0.0446 9.24% 0.1046 -0.0897

Panoptic-FCN
RailSem19 25.49% 0.8663 -0.222 8.13% 1.0 -0.4602

Table 4: Quantitative analysis of three pre-trained autonomous driving models (results are only for SWD-3).
From the top-5 weak slices, we show the largest slice and the weakest performing slice. Please refer to
the appendix C.2 for the top-5 slices.
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in the ODD. A potential solution could be in the direction of Gannamaneni et al. (2024) by performing a
root-cause analysis of found weaknesses. Such approaches could address potential issues between correlation
and causation for found small slices.

On generation of ODDs: ODDs are a critical component in the functioning of our algorithm, necessi-
tating careful consideration of their availability. In safety-critical domains such as automotive, medical, and
aerospace applications, we posit that domain and safety experts possess the requisite expertise to develop
ODDs. In contrast, for use cases lacking predefined ODDs, the use of large language models (LLMs) to sup-
port ODD generation presents a promising direction, akin to the tag generation approach proposed in (Chen
et al., 2025). Nevertheless, we emphasize that human oversight remains essential, both in the final approval
of the generated ODDs and in their subsequent refinement and extension.

On considering foundation models as DuT: In this work, we evaluate state-of-the-art (SOTA) architec-
tures for classification, segmentation, and object detection tasks within the framework of DuT, leveraging
a more “powerful” foundation model (CLIP) as a metadata generation function. However, the proposed
algorithm can also be employed to identify systematic weaknesses and biases inherent in foundation models
themselves, by treating the foundation model as the DuT. For instance, if the foundation model is intended
for tumor detection in X-ray scans, then suitable choices of Z and D must be determined to enable the
application of the algorithm.

On false positives: This work focuses on false negatives for two main reasons: first, in safety-critical tasks,
mitigating false negatives is generally more crucial than addressing false positives; second, the ODDs we
develop, based on input from domain experts, are specifically centered around pedestrian-related semantics
and their attributes. Addressing false positives would require expanding the ODDs to encompass all non-
pedestrian classes that could potentially be misclassified. This challenge is both an open-set problem and
highly dependent on the specific DuT under consideration. If false positives are to be incorporated within
our algorithm, an initial exploratory analysis would be helpful to understand their distribution. For example,
in the RailSem19 experiment, we observed that a large portion of false positives involved railway signs being
misclassified as pedestrians. Based on such analyses, new ODDs (e.g., based on object type, visual features
like color, etc.) could be developed for these frequently misclassified objects, after which our algorithm could
be applied. The exploratory analysis could be based on concept-focused clustering approaches, compare,
e.g., Haedecke et al. (2024), or even use the outcome of slice-and-tag approaches. Nevertheless, even when
focusing only on false negatives, our approach provides meaningful insights into, often more critical, missed
detections in terms of human-understandable and, thereby, actionable weak slices. We believe that such
results can contribute to the development of trustworthy AI models.
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