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ABSTRACT

We present GENREP, a unified image understanding and synthesis model that
jointly conducts discriminative learning and generative modeling in one training
session. By leveraging Monte Carlo approximation, GENREP distills distributional
knowledge embedded in diffusion models to guide the discriminative learning
for visual perception tasks. Simultaneously, a semantic-driven image generation
process is established, where high-level semantics learned from perception tasks
can be used to inform image synthesis, creating a positive feedback loop for mutual
boosts. Moreover, to reconcile the learning process for both tasks, a gradient
alignment strategy is proposed to symmetrically modify the optimization directions
of perception and generation losses. These designs empower GENREP to be a
versatile and powerful model that achieves top-leading performance on both image
understanding and generation benchmarks. Code will be released after acceptance.

1 INTRODUCTION

Broadly, there are two fundamental goals in the field of computer vision: visual understanding
which extracts meaningful cues from scenes, and image generation which aims to create new visual
contents. The former is typically solved through visual representation learning, i.e., transforming
raw pixel data into features or embeddings that can capture high-level semantics(Bengio et al., 2013)
in a discriminative manner. This leads to strong performance in downstream tasks such as visual
recognition and semantic segmentation. On the other hand, image generation relies on generative
modeling and emphasizes the learning of underlying patterns and distributions within data(Croitoru
et al., 2023), thereby enabling the synthesis of new samples that faithfully resemble the original one.

Since visual understanding and synthesis have long been addressed with different paradigms, most
existing work excels in either synthesizing realistic outputs or interpreting input data, but seldom do
both on a unified basis. This brings several drawbacks: ① Representations learned in a discriminative
manner for visual perception tasks often generalize poorly to unseen patterns (Pourpanah et al.,
2022) and overlook fine-grained details(Huynh & Elhamifar, 2020). This stems from their narrow
focus on decision boundary between classes (Jebara, 2012), rather than capturing the underlying
data distribution like generative models. ② Modern generative models such as GANs(Goodfellow
et al., 2014) or diffusion models(Sohl-Dickstein et al.; Rombach et al., 2022) exhibit a lower-level
understanding of semantics due to the reliance on low-level reconstruction loss(Zhang et al., 2023a).
As a result, they tend to underperform discriminative approaches in scene understanding tasks. ③ The
divergence in technological protocols for image understanding and synthesis diffuses the research
endeavors, and hinders innovations and insights achieved in one paradigm to enhance the other.

This stimulates us to rethink the perceived incompleteness in discriminate-based representation
learning and generative modeling, and seek to bridge this gap by preserving both synthesis and
understanding abilities within the same model. Our idea is motivated by the observations that: i)
diffusion models facilitate downstream visual perception tasks (Zhao et al., 2023; Yang & Wang,
2023); ii) high-quality discriminative representations accelerate the generative learning of diffusion
models(Yu et al., 2024). This reveals the potential commonality of representations learned via two
paradigms, and forms the basis for devising a unified visual understanding and generation framework.

Building on this premise, we introduce GENREP, which reconciles the learning processes of down-
stream visual perception tasks and image generation in diffusion models while enabling the mutual
benefits. First, to enhance visual understanding, GENREP leverages the distributional knowledge
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Figure 1: Unified image Understanding and synthesis within diffusion models: a) semantic driven image
generation; b) distributional knowledge transfer from diffusion models for visual perception.

captured by generative modeling (Fig.1(a)). Assuming the diffusion-based image generation can
capture object distributions p(x|y) with class labels as conditional inputs, we approximate it through
Markov Chain Monte Carlo where intermediate outputs during reverse diffusion are utilized as repre-
sentative samples. As such, the class-wise posterior probabilities p(y|x) can be retrieved via Bayes’
theorem, which serves as a supplementary guidance for the discriminative learning of downstream
perception tasks. Second, to enable image generation informed by visual understanding, we propose
a semantic-driven generation learning strategy to guide image synthesis with high-level semantics
derived from perception tasks (Fig.1(b)). It refines the reverse diffusion process by conditioning
the noise distribution on semantic embeddings delivered by the perception branch, encouraging the
generated images to faithfully reflect the desired content. Finally, GENREP fosters the iteratively
mutual enhancement between visual perception and image generation through a joint optimization
strategy, which aligns the gradient of the generation loss with the direction of the perception loss at
each training step. This aims to harmonize the learned representations for both tasks, so as to deliver
a single and cohesive model capable of effectively tackling both visual perception and generation.

By exploring the interplay between visual perception and generation, GENREP offers several com-
pelling advantages over disjointed paradigms: First, unlike prior diffusion-based work(Zhu et al.,
2024a; Xu et al., 2023; 2024) that often compromises the generation ability for visual understanding,
our approach holds superior performance for both tasks. Second, it moves from purely deterministic
modeling to joint discriminative and generative learning, thereby demonstrating notably low expected
calibration errors and benefits perception under open-vocabulary scenarios. Third, through joint
optimization and gradient alignment, a feedback loop is established, where the unique strengths of
two learning paradigms can be leveraged to enhance each other. Fourth, the construction of a shared
feature space for both perception and generation tasks facilitates the emergence of more robust and
transferable representations, which improves the generalization across a variety of downstream tasks.

For thorough examination, we experiment GENREP on both visual perception and generation tasks.
It consistently demonstrates remarkable performance across benchmarks, including 57.8 for out-of-
the-distribution generalization on ObjectNet(Barbu et al., 2019), 92.9 for fine-grained classification
on CUB-200(Wah et al., 2011), 0.057 AbsRel for monocular depth estimation on NYUv2(Silber-
man et al., 2012), 34.7/54.6 mIoU for open/close-set semantic segmentation on ADE-20K(Zhou
et al., 2017), and 56.5/36.0 AP for open-vocabulary object detection on MS COCO (Lin et al.,
2014)/LViS v1.0(Gupta et al., 2019), in leverage of advanced diffusion architectures such as CNN-
based Latent Diffusion Models (LDM)(Rombach et al., 2022) and ViT-based Diffusion Transformers
(DiT)(Peebles & Xie, 2023). Furthermore, GENREP improves the image generation quality, achieving
top-leading performance on CelebA-HQ(Karras et al., 2017), LSUN-Churches(Yu et al., 2015), and
ImageNet(Deng et al., 2009) under the class-conditioned setup.

2 RELATED WORK

Diffusion Models for Visual Perception. Work applying diffusion models for downstream perception
tasks can be broadly classified into two categories. The first treats the prediction process as a denoising
task, where noisy inputs are refined to recover clean ground truth. This paradigm contains noise-to-
box for object/action detection (Chen et al., 2023b; Ho et al., 2023; Nag et al., 2023); noise-to-point
for object tracking (Xie et al., 2024b) and pose estimation (Shan et al., 2023; Feng et al., 2023);
and noise-to-map which directly synthesizes colorful masks for depth estimation (Ke et al., 2024),
segmentation (Li et al., 2023b; Ji et al., 2023), and anomaly detection (Zhang et al., 2023b). On
the other hand, recent research highlights that diffusion models undergoing large-scale pre-training
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exhibit certain representation abilities, enabling them to extract meaningful features for downstream
visual perception tasks (Zhao et al., 2023; Yang & Wang, 2023; Kondapaneni et al., 2024). On this
basis, a significant trend has emerged, where the diffusion models are utilized as backbones for
image classification(Clark & Jaini, 2023), image segmentation(Zhu et al., 2024a; Xu et al., 2023),
3D Object Detection (Xu et al., 2024), human-object interaction detection (Li et al., 2024b), and
referring video object segmentation(Zhu et al., 2024b). This also facilitates correspondence matching
by calculating cosine similarity between diffusion features(Tang et al., 2023; Zhang et al., 2023a).
Though demonstrating promising performance, these work often sacrifices the image generation
capabilities of models. In contrast, our work seeks to enable both image generation and understanding
within the same model, while the distribution knowledge is explicitly transferred from diffusion
models to inform and guide the discriminative learning process.

Joint Discriminative and Generative Learning. Substantial research has emerged to combine the
strengths of both discriminative and generative learning even before the deep learning era. To address
the data-intensive and limited generalization inherent in purely discriminative methods, researchers
incorporated generative techniques to manage noisy inputs (Jaakkola & Haussler, 1999) and unlabeled
samples (Bernardo et al., 2007). Similarly, there are interests in the ‘discriminative training’ of
generative models to mitigate mismatches between real and model-specified data distributions (Tu;
Holub & Perona, 2005; Yakhnenko et al., 2005). More recently, complementary learning methods
simultaneously learn data distributions leveraging advanced generative models, such as Generative
Adversarial Networks (GANs)(Xu et al., 2020), Variational Autoencoders (VAEs)(Chen et al., 2023a;
Kolesnikov et al., 2022), and Gaussian Mixture Models (GMMs)(Liang et al., 2022), resulting in
generative classifiers for discriminative tasks. Additionally, generative models are trained to capture
the distribution of known classes in open-vocabulary recognition which facilitates the recognition
of novel classes (Perera et al., 2020), and tuning diffusion models with a discriminative adapter
has proven effective in improving the alignment between text prompts and generated images (Qu
et al., 2024). However, most existing work merely focuses on the one-direction enhancement,
e.g., discriminative learning to improve image generation or generative learning to enhance visual
perception. In contrast, GENREP builds a feedback loop to enable mutual boosts between generative
and discriminative learning, while within a unified model.

Unified Image Understanding and Synthesis. In recent years, there has been a notable surge in
integrating image comprehension and generation within the same model. The first research direction
is built upon LLMs, and distinguishes itself by implementing image generation in an auto-regressive
manner(Dong et al., 2024), delivering a Tokenizer-Detokenizer framework that enables token-by-
token generation of multimodal outputs for synthesis and understanding tasks(Zhu et al., 2023; Ge
et al., 2024; Fang et al., 2024; Li et al., 2024a; Wu et al., 2025). Another line of work utilizes diffusion
models, which frames perception tasks as the generation of colorful maps (Qi et al., 2024; Wang et al.,
2024; Yang et al., 2025) or text embeddings (Huang et al., 2023). Though retaining the generative
capability, this kind of solution still falls in low-level reconstruction, lacking high-level modeling on
semantics. A notable exception performs discriminative learning using features from diffusion models,
and update the generative component in a mean teacher manner (Zheng et al., 2024). However, the
image generation capability in this approach is primarily optimized for augmenting perception tasks,
leaving its potential for general-purpose image synthesis largely unexplored. To overcome these
limitations, GENREP respects and harnesses the unique characteristics of both paradigms. Specifically,
it enhances representation learning for perception tasks with generative modeling to consummate the
decision boundary, and uses high-level semantics obtained from discriminative learning to instruct
the sampling stage (i.e., reverse diffusion) of image synthesis.

3 METHODOLOGY

3.1 PRELIMINARY: DIFFUSION MODELS FOR VISUAL PERCEPTION

Empirical studies(Zhao et al., 2023; Yu et al., 2024) have demonstrated that features processed by
latent diffusion models contain certain visual cues, which can be used to tackle complex perception
tasks. Specifically, given an input sample x and its corresponding textual class label y, x is first
encoded into the latent space using the encoder E of a pre-trained generator (i.e., VQGAN), yielding
x = E(x). After a single noise-free forward pass through the denoising network ϵθ with the encoded
label cθ(y) as the condition, we obtain x̂ = ϵθ(x, 0, cθ(y)) which extracts features distinctive for
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the given class y. Following (Zhao et al., 2023), the extracted features are enhanced by aggregating
intermediate outputs of four decoder blocks in ϵθ at different own-sampling factors with FPN(Lin et al.,
2017), so as to deliver the final input representations for task-specific decoders. GENREP follows this
pipeline to enable downstream visual perception, and further seeks to bridge the historically parallel
image generation and understanding tasks, yielding a single model capable of addressing both tasks.

3.2 GENREP: RECONCILE VISUAL PERCEPTION AND IMAGE GENERATION

In this section, we first detail how to distill knowledge of visual distributions from diffusion models to
enhance discriminative visual perception, and then outline the perception-inspired image generation
learning, emphasizing how gained insights from visual perception are utilized to improve generative
capabilities. Finally, we address the reconciliation of these dual learning objectives, illustrating how
GENREP yields a balanced and unified model proficient in both tasks.

Generative Visual Perception Learning. Assuming the diffusion models can capture visual distribu-
tions via generative modeling, the conditional distribution for sample x (i.e., p(x|y)) can be derived
with class label y as the conditional input. Since the exact computation of p(x|y) is intractable,
we approximate it following the principle of Markov Chain Monte Carlo (MCMC)(Geyer, 1992).
Specifically, we observe that during the reverse diffusion process, a sequence of intermediate states
xT → xT−1 → · · · → x0 naturally constitutes a non-stationary Markov chain(Norris, 1998). The
transition kernel pθ(xt−1|xt) at each step can be parameterized as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)), (1)

where N is a Gaussian distribution, and µθ, σθ are networks parameterized by θ to predict the mean
µt and variance σt for N at time t. This structure is analogous to MCMC methods where samples
are drawn from a sequence of transitions rather than independent draws from a static distribution.

However, leveraging the chain directly for approximation introduces two challenges: i) the initial
states of the reverse chain correspond to nearly pure noise, which would degrade the approximation
quality; and ii) samples drawn sequentially from a Markov chain are temporally correlated, which
conflicts the independent assumption that strengthens Monte Carlo methods. To mitigate these issues,
we adopt two techniques, known as burn-in and thinning, commonly used in MCMC(Link & Eaton,
2012). For the burn-in period, we discard the first m uninformative steps of the chain. For thinning,
we reduce the correlation by selecting samples at a fixed interval of k-th step. Empirical evaluations
show that k = 2 provide a good trade-off between sample quality and quantity. Following the practice
of MCMC, we then leverage the trajectory of a single reverse diffusion process to estimate p(x|y):

p(x|y) ≈ 1
T

∑T
t=1N (x;µt,y, σt,y), (2)

where T represents the total number of reverse diffusion steps after burn-in and thinning. This allows
for a highly efficient estimation by avoiding the need to generate a large set of fully-denoised samples
x0 (i.e., massive full reverse diffusion runs) for each condition y, as required by standard Monte Carlo
methods. The posterior distribution p(y|x) is then computed substitute into the Bayes’ theorem:

p(y|x) = p(y)p(x|y)∑
y′∈Y p(y′)p(x|y′)

, (3)

where p(y) = 1/|Y| is assumed to be uniformly distributed. This is a standard choice(Kingma et al.,
2014; Tran et al., 2019) which creates a non-informative prior that allows the posterior distribution
to be shaped primarily by the learned likelihood p(x|y), which contains the rich distributional
knowledge we aim to distill. While (Li et al., 2023a) also uses diffusion models to estimate conditional
distributions with Monte Carlo methods, it approximates log p(x|y) by averaging the noise prediction
error derived from the forward diffusion process. In contrast, this work directly approximates p(x|y)
by averaging Gaussian PDF values predicted during the reverse generative process (i.e., Eq. 1).
The motivation (i.e., correct conditioning enjoying accurate noise prediction vs patterns of samples
generated with the same conditions being consist), computational basis (i.e., noise prediction error
vs Gaussian probability densities), and diffusion process (i.e., forward noising-adding vs reverse
generation) are all different. Our approach requires significantly fewer diffusion steps (i.e., 1000 vs
200), and thus excels in computational efficiency.

To inform the discriminative perception process with distributional knowledge, we minimize the
Kullback-Leibler (KL) divergence between p(y|x) computed by generative modeling and q(y|x)
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Figure 2: The overall pipeline of GenRep (§3.2). First, our proposed generative visual perception learning (i.e.,
region on ) transfers distribution knowledge from diffusion models, in leverage of intermediate denoised
images as samples to approximate the conditional distribution (i.e., p(x|y)). Second, semantic-driven generation
learning (i.e., region on ) utilizes the semantic embeddings (i.e., ) learned from visual perception tasks
to guide the image generation process. Finally, gradients generated by these two type of losses are aligned via
Eq.16, to deliver a unified model that excels in both image generation and synthesis tasks.

obtained by applying the softmax operation to the output logits z of task-specific decoders:

Lgen distil = DKL(p||q) =
∑

y∈Y p(y|x) log p(y|x)
q(y|x) . (4)

The final objective combines Lgen distil with the conventional discriminative loss Ldisc for each percep-
tion task (e.g., Cross Entropy loss for classification, Smooth ℓ1 loss for bounding box regression):

Lpercept = Ldisc + Lgen distil. (5)

Eq.5 bridges the gap between generative and discriminative frameworks with Lgen distil as a regularizer.
Unlike standard discriminative loss that encourages overconfident predictions, Lgen distil leverages the
generative likelihood to create a soft posterior that faithfully reflects ambiguity for similar classes.

Semantic-Driven Generation Learning. To enhance image generation, we propose a semantic-aware
noise adjustment strategy which leverages high-level semantics learned through visual perception.
Assuming there is a well-trained denoising network optimized for visual perception (i.e., Lpercept in
Eq.5), the intermediate output representation which contains rich semantic cues is denoted as xsem.
During the reverse diffusion process, the noise parameters (i.e., mean µθ and variance σθ in Eq.1) are
dynamically modulated according to xsem. Specifically, the prediction for µθ is augmented as:

µθ(xt, t,xsem) = µbase
θ (xt, t) + fµ

sem(xt,xsem), (6)

where µbase
θ (xt, t) is the baseline mean value predicted by the underlying diffusion model at time step

t and fµ
sem is a semantic correction function implemented as:

fµ
sem(xt,xsem) = W µ

t · concat(xt,xsem), (7)

with W µ
t being a learned weight matrix. Conceptually, µθ determines the primary denoising direction,

and adjusts it by steering the denoising trajectory towards the desired semantic target encoded in
xsem. On the other hand, the variance σθ controls the uncertainty of reverse diffusion. Dynamically
modulating σθ allows the model to adaptively control the influence of semantic guidance. The
variance prediction network is correspondingly augmented as:

σθ(xt, t,xsem) = σbase
θ (xt, t) · (1 + fσ

sem(xsem)), (8)

where σbase
θ (xt, t) is the baseline variance predicted following the pipeline of improved DDPM(Nichol

& Dhariwal, 2021), and fσ
sem(xsem) is a semantic scaling factor computed as:

fσ
sem(xsem) = MLP(xsem), (9)

where MLP maps the semantic embedding to a scalar. Intuitively, a positive fσ
sem(xsem) increases

variance, encouraging broader exploration towards the semantic target when the current sample is far.
Conversely, a negative value reduces variance, promoting finer refinement near the target semantics.
The overall training objective combines the standard reconstruction loss for latent diffusion models
(i.e., LLDM) and the representation alignment loss (i.e., Lrep align):

Lgenera = LLDM + Lrep align, (10)
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where Lrep align minimizes the cosine similarity between x and xsem as in (Yu et al., 2024). During
inference, the explicit semantic representation xsem in Eq.6 and Eq.8 can be directly replaced with the
current noisy sample xt, as the enhanced denoising network has already learned to capture necessary
semantic cues with the knowledge preserved in model weights.

Gradient Alignment for Weight Merge. To reconcile the optimization of visual perception loss
(i.e., Lpercept in Eq. 5) and image generation loss (i.e., Lgenera in Eq. 10) within a single model, a
gradient alignment mechanism is introduced to address potential conflicts between the two training
objectives by symmetrically modifying their respective gradients according to the severity of the
conflict. Let∇Lpercept and∇Lgenera denote the gradients derived from Lpercept and Lgenera, respectively.
We decompose each gradient into components parallel and orthogonal to the other gradient:

∇L∥
genera =

∇Lpercept · ∇Lgenera

∥∇Lpercept∥2
∇Lpercept, ∇L⊥

genera = ∇Lgenera −∇L∥
genera, (11)

∇L∥
percept =

∇Lpercept · ∇Lgenera

∥∇Lgenera∥2
∇Lgenera, ∇L⊥

percept = ∇Lpercept −∇L∥
percept. (12)

Here the parallel components capture movements in the same or opposite gradient directions of two
tasks, while the orthogonal components are gradient directions that do not affect the objective of the
other task(Farajtabar et al., 2020). The aligned gradients for both tasks are then reconstructed as:

∇aligned
genera = ∇L⊥

genera + α∇L∥
genera, (13)

∇aligned
percept = ∇L⊥

percept + α∇L∥
percept. (14)

This approach selectively dampens gradient components parallel to the other, while fully preserving
the orthogonal ones. Consequently, non-conflicting information is retained, and interference is
smoothly reduced based on the conflict level. Here α is a adaptive retention factor governing the
damping and defined according to the cosine similarity between two original gradients:

cos sim =
∇Lpercept · ∇Lgenera

∥∇Lpercept∥∥∇Lgenera∥
. (15)

We want α = 1 when cos sim = 1 (no damping needed) and α to decrease towards 0 as cos sim→
−1 (maximum damping). A simple and effective formulation is the scaled and shifted power function:
α = ((cos sim + 1)/2)k. Here, k = 2 is a hyperparameter controlling the sharpness of the damping.
The final gradients used for the model update are a weighted sum of aligned gradients:

∇aligned
symmetric = wp∇aligned

percept + wg∇aligned
genera , (16)

where wp = 0.7 and wg = 0.3 scale task weights. As such, GENREP effectively manages gradient
conflicts during joint learning, and encourages balanced optimization across two objectives.

3.3 IMPLEMENTATION DETAILS

Network Architecture. GENREP is built upon LDM-8(Rombach et al., 2022)/DiT-XL(Peebles &
Xie, 2023) with 200/250 DDPM steps during inference. To ensure fair comparisons with existing
work, the diffusion model is initialized with weights pretrained on ImageNet (Deng et al., 2009)
and the LAION dataset (Schuhmann et al., 2022; 2021), respectively. This facilitates comparison
against conventional discriminative-based perception models pretrained on ImageNet-1K, and other
diffusion-based perception approaches pretrained on large-scale image-text pairs. Task-specific
decoders are designed following representative work with details provided in Appendix.

Training Strategy. GENREP is first optimized with solely task-specific perception loss (Lpercept, Eq.5),
yielding in denoising network ϵsem

θ which encodes high-level semantic cues into the intermediate
output xt (resulting in xsem). Subsequently, the images generation loss (Lgenera, Eq.10) steps in. A
new denoising network ϵunified

θ copied from ϵsem
θ is optimized where at each training step:

• Gradients for both Lpercept and Lgenera are computed using the same input image;
• Gradients are aligned according to Eq.16 to update weights of attention blocks in ϵunified

θ ;
• Parameters of ϵsem

θ are updated in a momentum manner: θsem ← mθsem + (1 − m)θunified with
m = 0.999. This maintains stable semantic features xsem for image generation learning.
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Table 1: Quantitative results for fine-grained bird classi-
fication on CUB-200(Wah et al., 2011) test and OOD
generalization on ObjectNet(Barbu et al., 2019) test.

Model Pre-Training CUB-200 ObjectNet
ResNet-50 (He et al., 2016) ImageNet 84.5 37.2

Swin-S (Liu et al., 2021) ImageNet 88.2 38.9
ConvNeXt-S (Liu et al., 2022) ImageNet 88.5 39.5

HorNet-S (Rao et al., 2022) ImageNet 89.1 39.3
GENREPLDM ImageNet 90.5 51.1

Swin-B (Liu et al., 2021) ImageNet 90.6 40.3
ConvNeXt-B (Liu et al., 2022) ImageNet 90.9 40.9

HorNet-B (Rao et al., 2022) ImageNet 91.2 40.6
GENREPDiT ImageNet 92.1 54.7

Clark et al. (Clark & Jaini, 2023) LAION-5B 91.5 49.4
Li et al. (Li et al., 2023a) LAION-5B 91.8 52.5

GENREPLDM LAION-5B 92.9 57.8

Table 2: Quantitative results for monocular depth esti-
mation on NYUv2(Silberman et al., 2012) val.

Model Pre-Training δ1 ↑ δ3 ↑ AbsRel ↓
BTS(Lee et al., 2019) ImageNet 0.8820.996 0.108

P3Depth(Patil et al., 2022) ImageNet 0.8980.996 0.104
TransDepth(Zhao et al., 2021) ImageNet 0.9000.996 0.106

AdaBins(Bhat et al., 2021) ImageNet 0.9030.997 0.103
DPT(Ranftl et al., 2021) ImageNet 0.9040.998 0.110

BinsFormer(Li et al., 2024c) ImageNet 0.9250.997 0.094
ZoeDepth(Bhat et al., 2023) ImageNet 0.9510.999 0.077

GENREPLDM ImageNet 0.9640.999 0.070
GENREPDiT ImageNet 0.9680.999 0.064

VPD(Zhao et al., 2023) LAION-5B 0.9640.999 0.069
ECoDepth(Patni et al., 2024) LAION-5B 0.9780.997 0.059

DepthAnything(Yang et al., 2024) 62M Depth 0.9841.000 0.056
GENREPLDM LAION-5B 0.9821.000 0.057

4 EXPERIMENT

Datasets. The experiments are conducted on nine datasets. Concretely, CUB-200 (Wah et al.,
2011) for fine-grained bird classification, ObjectNet(Barbu et al., 2019) for out-of-the-distribution
generation, NYUv2(Silberman et al., 2012) for depth estimation, ADE20K(Zhou et al., 2017) for
open/close set semantic segmentation, MS COCO(Lin et al., 2014) and LViS v1.0(Gupta et al., 2019)
for open-vocabulary object detection, ImageNet(Deng et al., 2009), CelebA-HQ(Karras et al., 2017),
and LSUN-Churches(Yu et al., 2015) for image generation. Details are provided in Appendix.

Evaluation Metrics. For fine-grained classification on CUB-200 and out-of-the-distribution general-
ization on ObjectNet, we report the top-1 accuracy. For depth estimation, following (Li et al., 2024c),
we report the accuracy under the threshold (δi < 1.25i, i = 1, 3) and mean absolute relative error
(AbsRel). For close-set and open-vocabulary semantic segmentation, following (Xu et al., 2022a;
Cho et al., 2024), GENREP is trained on the training set of ADE20K and COCO Stuff, respectively.
The evaluation is conducted on the validation set of ADE20K with the mIoU score reported. For
open-vocabulary object detection, consistent with prior work (Zang et al., 2022; Wu et al., 2023a), we
report the AP50 score for base, novel, and all classes, denoted as APb

50, APn
50, AP50 on MS COCO,

APr, APc, APf , and AP for rare (novel), common, frequent, and all categories on LVIS. For image
generation, following (Rombach et al., 2022), we report the FID, IS, precision, and recall scores.

Training. For visual classification, we use standard data augmentation techniques, including random
cropping and horizontal flipping during training to enhance generalization. The AdamW optimizer
with a learning rate of 1e−3 and a weight decay of 0.05 is adopted. The batch size is set to 256
with 50 epochs training. For depth estimation, following (Li et al., 2024c), we train the model for
40K steps with a batch size of 16, and use the Adam optimizer with a learning rate of 1e−4 and a
weight decay of 5e−2. For semantic segmentation, following (Cheng et al., 2022; Xie et al., 2024a),
the model is optimized with AdamW using a learning rate of 2e−4 and a weight decay of 1e−4 for
80K iterations on COCO Stuff for open-vocabulary, and 160K iterations on ADE20K for close-set.
Input images are cropped to the 768×768 pixels. For open-vocabulary object detection, following
(Zhao et al., 2024; Zhang et al., 2024), we train GENREP for 40K steps on MS COCO and 80K steps
on LViS v1.0 with a batch size of 16, and adopt the Adam optimizer with a learning rate of 2e−3

and a weight decay of 1e−4. Given the simultaneous training of both perception and generation in
GENREP, the training procedure for image synthesis is aligned with perception tasks.

4.1 COMPARISON WITH STATE-OF-THE-ARTS

Visual Recognition. As shown in Table 1, benefited from the low-level modeling ability of diffusion
models, GENREP yields remarkable performance on the bird classification task which prioritizes
fine-grained cues. Furthermore, the knowledge transfer from diffusion models allows GENREP
to achieve a top-1 accuracy of 54.7%/57.8% for out-of-distribution generalization on ObjectNet,
surpassing prior diffusion-based methods(Clark & Jaini, 2023; Li et al., 2023a) by 8.4%/5.3%.

Depth Estimation. For depth estimation, as shown in Table 2, GENREP achieves an impressive score
of 0.064 in term of AbsRel. This verifies our core design to conduct both generative and discriminative
learning. Moreover, after initializing weights from Stable Diffusion pretraining on LAION-5B(Schuh-
mann et al., 2022), GENREP achieves comparable performance to DepthAnything(Yang et al., 2024)
which is pretrained on 1.5M labeled and 62M unlabeled depth samples.
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Table 3: Quantitative results for closed-set semantic
segmentation on ADE20K(Zhou et al., 2017) val.

Model Pre-Training Backbone mIoU ↑
DeepLabV3+ (Chen et al., 2018) ImageNet ResNet-101 45.5

OCRNet (Yuan et al., 2020) ImageNet HRNet-W48 45.7
UperNet (Xiao et al., 2018) ImageNet Swin-S 47.7

SegMentor (Strudel et al., 2021) ImageNet DeiT-B 47.1
K-Net (Zhang et al., 2021) ImageNet Swin-S 49.7

SegFormer (Xie et al., 2021) ImageNet MiT-B5 50.0
Mask2Former (Cheng et al., 2022) ImageNet Swin-S 51.3

GENREP ImageNet LDM 52.2
GENREP ImageNet DiT 52.8

SDN (Tan et al., 2022) LAION-5B LDM 51.1
VPD (Zhao et al., 2023) LAION-5B LDM 53.7

GENREP LAION-5B LDM 54.6

Table 4: Quantitative results for open-vocabulary seman-
tic segmentation on ADE20K(Zhou et al., 2017) val.

Model Pre-Training Backbone mIoU ↑
GroupViT (Xu et al., 2022a) ImageNet ViT-S 10.6

ZegFormer (Ding et al., 2022) ImageNet ViT-B 18.0
SimBaseline (Xu et al., 2022b) ImageNet ViT-B 20.5

PACL (Mukhoti et al., 2023) ImageNet ViT-B 31.4
OVSeg (Liang et al., 2023) ImageNet ViT-B 24.8
CAT-Seg (Cho et al., 2024) ImageNet ViT-B 27.2

SED (Xie et al., 2024a) ImageNet ConvNeXt-B 31.6
GENREP ImageNet LDM 32.5
GENREP ImageNet DiT 34.1

OVDiff (Karazija et al., 2024) LAION-5B LDM 14.1
ODISE (Xu et al., 2023) LAION-5B LDM 28.7

GENREP LAION-5B LDM 34.7

Table 5: Open-vocabulary detection on MS COCO(Lin et al., 2014) and LViS v1.0(Gupta et al., 2019) val.

Model Visual-Linguistic MS COCO LViS v1.0
Models APn

50 ↑ APb
50 ↑ AP50 ↑ APr ↑ APc ↑ APf ↑ AP ↑

ViLD(Gu et al., 2022) CLIP 27.6 59.9 51.2 16.1 20.0 28.3 22.5
OV-DETR(Zang et al., 2022) CLIP 29.4 61.0 52.7 17.4 25.0 32.5 26.6

OADP(Wang et al., 2023) CLIP 35.6 55.8 50.5 19.9 26.0 28.7 26.0
BARON(Wu et al., 2023a) CLIP 34.0 60.4 53.5 23.2 29.3 32.5 29.5

CORA(Wu et al., 2023b) CLIP 35.1 35.5 35.4 28.1 - - -
BIND(Zhang et al., 2024) CLIP 36.3 54.7 50.2 29.4 30.6 33.5 31.4

SAS-Det(Zhao et al., 2024) CLIP 37.4 58.5 53.0 29.1 32.4 36.8 33.5
GENREP LDM 41.8 60.8 55.1 30.5 33.3 35.8 34.8
GENREP DiT 43.4 61.5 56.5 31.6 33.7 37.3 36.0

Table 6: Quantitative results for class-conditional image
generation on ImageNet(Deng et al., 2009) 256×256.

Model FID↓ IS↑ Precision ↑ Recall↑
BigGAN(Brock et al., 2018) 6.95 171.4 0.87 0.28

StyleGAN(Karras et al., 2021) 2.30 265.1 0.78 0.53
ADM(Dhariwal & Nichol, 2021) 4.59 186.7 0.82 0.52

CDM(Ho et al., 2022) 4.88 158.7 - -
RIN(Jabri et al., 2023) 3.42 182.0 - -

VDM++(Kingma & Gao, 2023) 2.12 267.7 - -
LDM-8(Rombach et al., 2022) 7.77 201.6 0.84 0.35

+GENREP 6.92 213.7 0.89 0.44
DiT-XL(Peebles & Xie, 2023) 2.27 278.2 0.83 0.57

+GENREP 2.09 283.8 0.88 0.58

Table 7: Quantitative results for image generation on
CelebA-HQ and LSUN-Churches 256×256.

Model FID↓ Precision ↑ Recall↑
CelebA-HQ

PGGAN(Karras et al., 2017) 8.0 - -
UDM(Meng et al., 2022) 7.16 - -

LDM-4(Rombach et al., 2022) 5.11 0.72 0.49
+GENREP 3.84 0.78 0.54

LSUN-Churches
PGGAN(Karras et al., 2017) 6.42 - -

StyleGAN(Karras et al., 2019) 4.21 - -
LDM-8(Rombach et al., 2022) 4.02 0.64 0.52

+GENREP 3.12 0.69 0.58

Semantic Segmentation. A detailed comparison of GENREP against top-leading approaches for
semantic segmentation is provided in Tables 3-4. Built upon LDM(Rombach et al., 2022), GEN-
REP achieves a 52.2%/54.6% mIoU for close-set semantic segmentation on ADE20K, beating all
competitors. Moreover, for open-vocabulary semantic segmentation, our method delivers a 6.0%
gain over ODISE (Xu et al., 2023). Leveraging DiT(Peebles & Xie, 2023) as the backbone observes
similar trends, and builds new SOTA on two setups.

Object Detection. As shown in Table 5, GENREP demonstrates remarkable accuracy over existing
work for open-vocabulary object detection on MS COCO (e.g., 41.8% v.s. 37.4% in terms of APn

50),
and LViS v1.0 (e.g., 30.5% v.s. 29.1% in terms of APr). When using the Transformer-based diffusion
models (i.e., DiT(Peebles & Xie, 2023)), the performance boosts to 43.4% APn

50 and 31.6% APr.

Image Generation. Image generation results on ImageNet(Deng et al., 2009), CelebA-HQ(Karras
et al., 2017), and LSUN-Churches(Yu et al., 2015) are presented in Tables 6-7. As seen, GENREP
boosts the performance to new SOTAs across metrics, proving the effectiveness of the overall design.

4.2 QUALITATIVE RESULTS

Fig.3 presents visualization results for visual perception on ADE20K, NYUv2, MS COCO, and for
image generation on ImageNet, CelebA-HQ, LSUN-Churches. It can be observed that GENREP
could effectively handle challenging scenarios, while synthesizing high-quality images.

4.3 DIAGNOSTIC EXPERIMENTS

For in-depth analysis, we conduct ablative studies with LDM(Rombach et al., 2022) as the denoising
network. Unless otherwise specified, all experiments use GENREPLDM pretrained on ImageNet.
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Figure 3: Visualization results for image understanding on ADE20K(Zhou et al., 2017), NYUv2(Sil-
berman et al., 2012), MS COCO(Lin et al., 2014), and for image generation on ImageNet(Deng et al.,
2009), LSUN-Churches(Yu et al., 2015).

Table 8: Analysis of essential components in GENREP.

Generative Vis. Semantic-Dri. Gradient Top-1↑mIoU↑ FID↓Perception Generation Align.
45.4 27.8 13.27

✓ 47.8 30.9 12.96
✓ 44.1 25.6 7.45

✓ ✓ 49.4 31.5 7.23
✓ ✓ ✓ 51.1 32.5 6.92

Table 9: Analysis of the thinning interval k.

Interval k ObjectNet CUB-200 ADE20K MS COCO
1 50.3 89.2 30.7 53.5
2 51.1 90.5 32.5 55.1
3 51.3 90.7 31.8 54.6
4 50.5 90.3 31.5 53.5
5 48.9 90.0 30.9 52.2

Table 10: Analysis of burn-in sample number m.

m 25 50 75 100 125
ObjectNet 50.4 51.1 50.2 48.8 47.6
ADE20K 32.3 32.5 32.1 31.3 29.2

Table 11: Analysis of expected calibration error (ECE).

Lgen distil ObjectNet CUB-200 ADE20K MS COCO
0.237 0.095 0.484 0.382

✓ 0.208 0.076 0.425 0.343

Table 12: Strategies for semantic-driven generation.
Noise Adjust. Lrep align Top-1↑ mIoU↑ FID↓

✓ 49.6 30.9 7.16
✓ 50.3 31.5 7.38

✓ ✓ 51.1 32.5 6.92

Table 13: Analysis of directions for gradient alignment.
Gradient Align. Top-1↑ mIoU↑ FID↓
∇aligned

genera in Eq.13 48.7 30.3 6.79
∇aligned

symmetric in Eq.16 50.1 32.5 6.92

Table 14: Analysis of feature robustness on ObjectNet.

Model t=0 (Clean) t=10 t=20 t=50
Swin-Transformer 40.3 23.1 11.5 4.6

GENREP 51.1 48.7 44.5 37.2

Key Component Analysis. We investigate the essential designs of GENREP, i.e., generative visual
perception learning, semantic-driven generation learning, and gradient alignment for weight merge
in §3.2 in Table 8. First, our generative visual perception learning strategy proves to be broadly
effective across visual perception tasks, yielding notable performance improvements. Second, with
semantic-driven generation learning, GENREP delivers promising gains for the image generation
task. Third, after combining them (i.e., row #3), both image generation and understanding tasks enjoy
further boosts, which reveals a positive feedback loop is established. Finally, with gradient alignment
to unify the optimization direction, GENREP achieves the best performance on all three datasets.

Thinning Interval. We analyze the impact of varying thinning intervals k for MCMC approximation
in Table 9. As seen, setting k = 1, i.e., using all intermediate samples for approximation yields a
moderate improvement over the baseline (row #1 in Table 8). When k = 2, GENREP enjoys large
performance gain. However, further increasing k leads to a decline in performance. This is because a
larger k reduces the number of available samples and leads to a high-variance distributional estimate,
indicating the trade-off between inference efficiency with fewer samples and approximation accuracy.

Burn-in Phase. We examines the impact of dsicarding first m samples during reverse diffusion
that are heavily noised (i.e., the burn-in strategy in standard MCMC) in Table 10, with the thinning
interval k = 2. Empirically, we find that m = 50 provides a favorable balance, which removes
sufficiently noisy initial samples while retaining enough samples to support reliable estimation.

Confidence Calibration. We evaluate the expected calibration error (ECE) for predictions output by
discriminative visual perception heads. ECE quantifies the alignment between predicted probabilities
and the true likelihood of outcomes, serving as a crucial metric for assessing model reliability. As
shown in Table 11, the incorporation of generative distillation loss (i.e., Lgen distil in Eq.4) leads to a
substantial reduction in ECE. This also indicates distribution knowledge in diffusion models can be
effectively transferred with Lgen distil to improve the reliability of discriminative models.
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Table 15: Runtime comparison of closed-set semantic segmentation models on ADE20K val.

Method Backbone Trainable Training Time Inference mIoU
Params (M) (GPU Hours) Speed (FPS)

DeepLabV3+(Chen et al., 2018) ResNet-101 63 83 14.2 45.5
SETR(Zheng et al., 2021) ViT-L 308 623 9.7 46.2

UperNet(Xiao et al., 2018) Swin-S 81 104 15.2 47.7
MaskFormer(Cheng et al., 2021) Swin-S 63 53 19.6 49.8

GENREP (perception only) LDM 54 79 12.6 49.3
GENREP LDM 54 87 12.6 52.2

Semantic-Driven Generation. We examine the impact of semantic-aware noise adjustment and
representation alignment (i.e., Lrep align) in Table 12. The results demonstrate that both techniques
independently contribute to improved generation quality. After combining them together, the FID
score shows a significant improvement, highlighting the complementary nature of these two designs.

Gradient Alignment. We probe different gradient alignment strategies in Table 13. As seen, while
projecting perception loss in the direction of generation loss (i.e., ∇aligned

percept) obtains better image
generation performance, there is a significant drop in perception performance. After balancing the
trading off, we adopt a symmetric strategy which treats both tasks equally during conflict resolution
(i.e.,∇Laligned

symmetric) and performs better in perception tasks while maintaining good generation quality.

Representation Robustness. To probe whether GENREP preserves good representation capabilities
under noisy inputs, we provide it with latents corrupted by t = 10, t = 20, and t = 50 forward
diffusion steps. The results summarized in Table 14 offer empirical evidence for the robustness of
learned representations, which stems directly from our model design. The perception module uses the
denoising network as the backbone, which is trained to extract semantic structure from noisy input,
and remains effective when operating on corrupted latents. Furthermore, the conditional distribution
p(x|y) for knowledge distillation aggregates noised states throughout the reverse diffusion. This
encourages the model to learn noise-tolerant features that are predictive of the correct semantic labels.

4.4 RUNTIME ANALYSIS

We present a detailed runtime analysis in Table 15. It is important to emphasize that GENREP is
designed as a truly unified model that simultaneously masters visual perception and image generation
within a single training process. The competitors, in contrast, are optimized exclusively for segmenta-
tion. From this unified perspective, the efficiency of GENREP is remarkable. With a total training
cost of 87 GPU hours, it not only learns a strong image generator but also delivers a SOTA perception
model that achieves 52.2% mIoU, surpassing all listed specialist models. To further isolate the cost of
our proposed generative distillation, we compare the full GENREP to a perception-only variant that
removes the MCMC-based approximation. As seen, the full model incurs a modest 10.1% increase in
training time, yet elevates mIoU by a significant of 2.9 points.

5 CONCLUSION

In this work, we reconcile visual perception and image generation within a unified model, termed
GENREP. This leads to joint discriminative and generative learning, where the unique properties
of both paradigms are preserved and utilized to enhance each other. To achieve an optimal state
for both image understanding and synthesis tasks, a gradient alignment strategy is proposed to
pull close the weights optimized for two tasks. Empirical results suggest that GENREP achieves
superior performance on six perception benchmarks, and greatly improves the image generation
ability. Beyond the strong empirical results, our framework naturally inherits the flexible multimodal
conditioning capabilities from LDM. This positions GENREP as a promising foundation to reconcile
multimodal understanding and generation in one unified model, a key direction for future work.

Ethics Statement. This paper explores the reconciliation of visual perception and generation in
diffusion models. It does not introduce new ethical concerns beyond those well established in the
community. We do not identify any specific risks that warrant ethical review. For the potential misuse
in deepfake generation, we encourage responsible deployment and support discussions on policy and
regulatory frameworks to ensure the ethical application of generative models.
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Reproducibility. GENREP is implemented in PyTorch and trained on four Tesla A100 GPUs. Testing
is carried on the same machine. Our code shall be released after acceptance.
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A APPENDIX

A.1 DECLARATION OF LLM USAGE

The LLM was used solely for grammar checking and did not contribute to the core methodological
design or the originality of the research.

A.2 LIMITATIONS

One potential limitation of GENREP is its computational cost, which introduces a trade-off between
model performance and inference efficiency. Our reliance on a diffusion model backbone results in a
lower inference speed compared to highly specialized perception architectures. As detailed in Table
15, GENREP operates at 12.6 FPS for semantic segmentation, whereas models like MaskFormer
achieves 19.6 FPS and DeepLabV3+ achieves 14.2 FPS. This may constrain the usage of GENREP
in latency-sensitive applications, such as real-time analysis or autonomous systems. This trade-off
is motivated by the substantial benefits our unified approach provides, including a 2.3% mIoU
improvement over MaskFormer and, crucially, stronger generalization to out-of-distribution data. Our
work aligns with the growing trend of using large-scale generative models to unlock new capabilities
in visual understanding, which often involves an initial focus on performance over efficiency. We
consider the optimization of unified models a vital direction for future research. Promising avenues
include knowledge distillation to yield lightweight architectures, developing more efficient diffusion
sampling techniques tailored for perception, and model quantization. Bridging this efficiency gap will
benefit the deployment of powerful unified perception and generation models in practical scenarios.

Furthermore, in diffusion models, the mean of the data distribution is far more dominant than the
variance(Nichol & Dhariwal, 2021). Consequently, the learned variance can be less precise. Our
method mitigates this by considering p(x|y) as a regularizer for the discriminative task, rather than
to obtain an exact posterior. Therefore, even the approximate dominated by an accurate mean, it can
still offer a smoother and richer supervisory signal than relying solely on a one-hot label.

A.3 DATASET

• CUB-200 Wah et al. (2011) is a widely-used fine-grained dataset for bird species classification. It
comprises 200 bird species with 5,994/5,749 samples for training/testing.

• ObjectNet Barbu et al. (2019) is a challenging dataset designed to evaluate object recognition
robustness in real-world scenarios. It contains 50,000 images of 313 classes for out-of-the-
distribution evaluation.

• ADE20K Zhou et al. (2017) is a densely annotated scene parsing dataset for the semantic seg-
mentation task. It contains 20,210/2,000 images divided into 150 object and stuff categories for
training/validation.

• MS COCO Lin et al. (2014) is a large-scale dataset contains 80 object categories with pixel-
wise and bounding box annotations. It contains 118,287 and 5,000 images used for training and
validation. For open-vocabulary detection, following Gu et al. (2022), the object categories is split
into 48 base and 17 novel.

• LViS v1.0 Gupta et al. (2019) is a long-tail distribution benchmark containing
100,000/19,800/20,000 for train/val/test. Following prior work for open-vocabulary
object detection Gu et al. (2022), the model is trained on 461 common and 405 frequent classes.
The rest 337 rare classes are considered as novel and used for testing.

• NYUv2 Silberman et al. (2012) is a popular benchmark for indoor scene understanding. It contains
RGB-D images captured using a Microsoft Kinect sensor in 464 indoor environments. Following
existing work, 24,231/652 image-depth pairs are used for training/validation.

• ImageNet Deng et al. (2009) is a large-scale dataset commonly used for object recognition. It
contains 1.2M images for training and 50,000 for validation, covering a wide range of 1,000
categories.

• CelebA-HQ Karras et al. (2017) is a high-quality version of the CelebA dataset, comprising 30,000
images at a resolution of 1024×1024 pixels. It is widely used in computer vision research areas
like image generation, super-resolution, and face synthesis.

• LSUN-Church Yu et al. (2015) is a subset of the Large-scale Scene Understanding (LSUN) dataset
which focuses specifically on outdoor church scenes. It contains over 126,000 high-resolution
images, each resized such that the shorter side measures 256 pixels.
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A.4 IMPLEMENTATION DETAILS FOR TASK-SPECIFIC DECODERS

The task-specific decoders are designed following representative work. Specifically, the classification
head for visual recognition is a single-layer MLP. To enable generalization to out-of-the-distribution
classes, the model computes the similarity between pooled features and text embeddings of class labels.
For semantic segmentation, GENREP leverages Mask2FormerCheng et al. (2022), and calculates
cosine similarities between class queries and label embeddings for open-vocabulary prediction. In
open-vocabulary object detection, we follow Wu et al. (2023a) to adopt a region proposal network,
and map region features into pseudo words, which are then compared with class labels. The design
of the object decoder follows Zhang et al. (2024) which utilizes a DETR-style Transformer-decoder
with 6 layers each containing 8 attention heads and a hidden dimension of 256. For depth estimation,
we follow Li et al. (2024c) which employs a MaskFormer-like architecture, and predicts the depth
value as a linear combination of bin centers.

A.5 MONTE CARLO APPROXIMATION

We study the impact of varying sampling interval k while keeping the total number of samples used
for approximation constant in Table 16. As shown, when the number of samples is held constant,
performance consistently improves with a larger stride k. This validates that more independent
samples (larger k) yield a better distributional approximation. It also confirms that the performance
decline in Table 9 is caused by the diminishing sample size, not inherent flaw in the thinning strategy.

Table 16: Analysis of the thinning interval k with fixed number of sampled intermediate states.
k Nsample T ObjectNet (Top-1 Acc ↑) ADE20K (mIoU ↑)

2 75 75*2+50=200 51.1 32.5
3 75 75*3+50=275 51.6 33.0
4 75 75*4+50=350 51.9 33.2

Since intermediate outputs of reverse diffusion are noisy or partially denoised versions of the data, it
may cause mismatch to the target distribution p(x|y). We explore two strategies to mitigate this: i)
discarding the first m samples that noised heavily (i.e., burn-in); ii) importance re-weighting to assign
higher weights to later denoising steps in Equation 2. For importance re-weighting, we explore 3
re-weight approaches, which are:

Linear Scaling (LS): wt =
t∑T
i=1 i

=
t

T (T+1)
2

,

Exponential Scaling (ES): wt =
e(t−1)∑T
i=1 e

(i−1)
,

Power Scaling (PS): wt =
tp∑T
i=1 i

p
.

(17)

The experimental results are summarized below, with the thinning interval k = 2, power factor p = 2.
As observed, importance re-weighting leads to poor performance, possibly due to over emphasis on a
small number of samples.

Table 17: Analysis of different important re-weight approaches for sample aggregation.
re-weighting N/A LS PS ES

ObjectNet 51.1 49.2 49.8 48.7
ADE20K 32.5 29.3 30.0 29.1

A.6 ABLATION ON HYPERPARAMETER

The key hyperparameters of GENREP are the task weights (wp, wg in Eq. 17) and the alignment
damping factor (α in Eq. 14-15). We ablate these hyperparameters below. As shown, the performance
is relatively robust to minor variations. To obtain a balanced performance between perception and
generation, we set wp = 0.7, wg = 0.3, and use the squared formulation for α.
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Table 18: Analysis of task weights (wp, wg in Eq.16) and the damping factor (α in Eq.13-14).

wp wg α ObjectNet (Top-1 Acc↑) ImageNet 256 (FID↓)
0.7 0.3 (*)2 51.1 6.92
0.6 0.4 (*)2 50.8 6.84
0.8 0.2 (*)2 51.5 7.12
0.7 0.3 (*)1 50.7 6.98
0.7 0.3 (*)3 51.3 7.04

A.7 PSEUDO CODE

For easier understanding, we provide the pseudo code for generative visual perception learning with
knowledge distillation in Algorithm 1.
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Algorithm 1 Generative Visual Perception Learning via Knowledge Distillation.

1: Hyperparameters:
2: T ← total diffusion steps
3: k ← 2 {Thinning interval}
4: m← 50 {Burn-in steps}
5: Initialize models:
6: diffusion model← PretrainedDiffusionModel()
7: task decoder← TaskSpecificDecoder()
8: hot params← diffusion model.attention blocks[:]
9: Freeze all parameters except attention blocks:

10: freeze all parameters(diffusion model)
11: unfreeze parameters(hot params)
12: for each (x, ytrue) in training data do
13: Step 1: Reverse diffusion process
14: xT ← sample noise(x)
15: reverse samples← ∅
16: for t = T, T − 1, . . . , 1 do
17: xt ← diffusion model.reverse step(xt, t, ytrue)
18: if t < T −m and T mod k = 0 then
19: reverse samples.append(xt)
20: end if
21: end for
22: Step 2: Estimate p(x|y)
23: µlist ← {(s.mean) | s ∈ reverse samples}
24: σlist ← {(s.variance) | s ∈ reverse samples}
25: p(x|y)← 0
26: for µ, σ ∈ (µlist, σlist) do
27: p(x|y)← p(x|y) +N (µ, σ) (Add Gaussian component)
28: end for
29: p(x|y)← p(x|y)/(T//k)
30: Step 3: Compute generative posterior p(y|x)
31: prior← 1/num classes
32: logitsgen ← p(x | y).log prob(x) + log(prior)
33: p(y | x)← softmax(logitsgen)

34: Step 4: Compute discriminative probability q(y|x)
35: logitsdisc ← task decoder(x)
36: q(y | x)← softmax(logitsdisc)
37: Step 5: Loss computation
38: lossdisc ← cross entropy(q(y | x), ytrue)
39: lossgen distil ← KL divergence(p(y | x), q(y | x))
40: total loss← lossdisc + lossgen distil
41: Step 6: Backpropagation
42: optimizer.zero grad()
43: total loss.backward()
44: optimizer.step(hot params, task decoder)
45: end for
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