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ABSTRACT

As a practical pre-training strategy for natural language processing (NLP), ELEC-
TRA first masks parts of input texts and trains a generator and discriminator to
reconstruct the texts and identify which parts are original or replaced. In this
work, we propose Vision ELECTRA, namely VE , which migrates ELECTRA to
the vision domain with a non-trivial extension. Like ELECTRA, VE first leverages
MAE or SimMIM to reconstruct images from masked image patches by genera-
tion. Particularly, random Gaussian noise is induced into the latent space of the
generator to enhance the diversity of generated patches, in an adversarial autoen-
coding manner. Later, given original images and the reconstructed ones, VE trains
an image encoder (usually ViT or Swin) via a hierarchical discrimination loss,
where the discriminator is expected to (1) differentiate between original images
and the reconstructed ones and (2) differentiate between original patches and gen-
erated ones. It gives VE a unique advantage that learns contextual representations
characterizing images in both macro- and micro-levels (i.e., the entire image and
individual patches). Extensive experiments have been carried out to evaluate VE
with baselines under fair comparisons. The findings demonstrate that VE based on
the ViT-B attains a top-1 acc of 83.43% on the ImageNet-1K image classification
task with a 1.17% improvement over baselines under continual pre-training. When
transferring VE pre-trained models to other CV tasks, including segmentation and
detection, our method surpasses other methods, demonstrating its applicability on
various tasks.

1 INTRODUCTION

Self-supervised pre-training strategies surge nowadays, resulting in powerful pre-trained models,
such as BERT (Kenton & Toutanova, 2019), GPT (Radford et al., 2018), and MAE (He et al., 2022),
for various tasks. Among these strategies, masked autoencoding strategies have been widely adopted
by numerous solutions, including the masked language model (MLM) (Salazar et al., 2020) for natu-
ral language processing (NLP) (Strubell et al., 2019) and the masked image model (MIM) (Xie et al.,
2022) for computer vision (CV). In general, these strategies first mask part of input images/texts,
then learn to generate the masked ones in the context of masking and reconstruct the images/texts.
To further improve masked autoencoding for NLP, ELECTRA (Clark et al., 2020) has been proposed
to follow up the MLM with a discriminator, where the MLM and discriminator are jointly trained
to reconstruct the texts and identify which parts of texts are original or replaced. In contrast to the
vanilla MLM, ELECTRA outputs the text encoder of discriminator as the outcome of self-supervised
pre-training. Earlier studies (Clark et al., 2020) show that such text encoder of discriminator could
outperform BERT in learning contextual representation of texts.

Encouraged by the success of ELECTRA, efforts have been done to enhance masked image models
for CV. For example, He et al. (2022) proposed Masked Autoencoder (MAE) that trains vision trans-
formers to reconstruct images using part of image patches, where the encoder of network is adopted
as a scalable vision learner by self-supervision. Further, to lower the training cost of MIM, Xie
et al. (2022) introduces SimMIM that incorporates random masking on image patches and raw pixel
regression loss with light-weight prediction heads. More recently, Fei et al. (2023) studies to in-
corporate MAE within the training framework of generative adversarial networks (GANs), where
a discriminator is introduced to replace the loss of pixel-wise regression for the image reconstruc-
tion task. Though these works have gathered the necessary ingredients, such as masking strategies,
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autoencoders, reconstruction losses, and even discriminators to identify original/reconstructed im-
ages, they all fail to capture the key concept of ELECTRA for computer vision tasks-leveraging
the encoder of discriminator rather than that of autoencoders as the outcome of pre-training. The
non-trivial design of ELECTRA’s discriminative task for computer vision is that the model learns
from all input tokens, rather than just a small masked-out subset, granting an appreciable depth to
image comprehension (Clark et al., 2020). It is thus reasonable to replicate ELECTRA for potential
performance enhancement in self-supervised pre-training of images.

In this work, we aspire to extend the ELECTRA model to the field of computer vision through sub-
stantial enhancements, culminating in the proposal of Vision ELECTRA, colloquially referred to as
VE . Mirroring the operational framework of ELECTRA, VE initiates its process by employing ei-
ther MAE or SimMIM to regenerate images from masked image patches via generation. Specifically,
random Gaussian noise is injected into the latent space of the generator to diversify the assortment
of created patches while adhering to the principles of adversarial autoencoding. Subsequently, VE
implements an image encoder, typically ViT or Swin, as the image discriminator employing a hier-
archical discrimination loss. Within the joint training procedure of generator and discriminator for
VE , the discriminator juggles two key responsibilities. Firstly, it distinguishes between the original
images and their reconstructed counterparts. Secondly, it discerns between the original patches and
those that have been generated. The use of hierarchical discrimination loss accords VE a distinct ad-
vantage by imparting the ability to learn contextual representations that characterize images at both
macro- and micro-levels. In other words, it can understand both the overall image and its individual
patches, granting an appreciable depth to image comprehension.

The main contributions are as follows: (1) We propose a novel MIM framework VE , following core
concepts of ELECTRA that adopt the generator-discriminator paradigm for CV and leverage the
encoder of discriminator as the pre-training outcome. (2) The proposed VE incorporates three inno-
vative designs: i) adversarial pre-training of the generator to enhance “image authenticity”, ii) incor-
poration of Gaussian noise to perturb the latent space and thus diversify the reconstructed images,
iii) introduction of the hierarchical discriminator to capture contextual representations of images
at both macro- and micro-levels. (3) We perform extensive experiments demonstrating remarkable
performance superiority compared to mainstream MIM methods in downstream tasks.

2 RELATED WORK

Mask Image Modeling Self-supervised learning, widely used in NLP tasks (Brown et al., 2020;
Kenton & Toutanova, 2019), has found success with the adoption of pixel sequences for prediction
(iGPT) (Chen et al., 2020) and masked token prediction for self-supervised pre-training (ViT) (Doso-
vitskiy et al., 2020). Following these advancements, Transformer-based architectures have emerged
in Masked Image Modeling (MIM) (Bao et al., 2021; Feichtenhofer et al., 2022; He et al., 2022; Xie
et al., 2022; Wang et al., 2022; Wei et al., 2022). MIM models predict masked content within visible
regions, enriching visual interpretations. BEiT (Bao et al., 2021) has enhanced this area by learning
via discrete token prediction. MAE (He et al., 2022) and SimMIM (Xie et al., 2022), meanwhile,
favor pixel-wise masking and reconstruction, eliminating the need for discrete token representations.

Generative Adversarial Networks (Goodfellow et al., 2014) have proven effective in generating
high-quality artificial data. The practice of using the discriminator of GAN in subsequent operations
is akin to our approach and was introduced by Radford et al. (2015). Similarly, MaskGAN (Fe-
dus et al., 2018) trains its generator to fill in removed tokens, a concept paralleling MIM. More
recently, Fei et al. (2023) proposed to incorporate GANs in the MAE framework to replace the loss
of pixel-wise regression for the enhanced image reconstruction task.

ELECTRA (Clark et al., 2020) is a two-part model with a generator and a discriminator, both
based on BERT (Kenton & Toutanova, 2019). The generator uses MLM to find replacements for
a MASK token and the discriminator detects these replacements in the text. After pre-training, the
generator is discarded, making the discriminator a pre-trained language model. ELECTRA either
outperforms BERT with the same computing power or performs similarly.

Discussion Our work presents several unique contributions compared to previous studies. In terms
of novelty, this work is the first to migrate ELECTRA (Clark et al., 2020) into CV. Non-trivial exten-
sions, such as adversarial pre-training of generator with Gaussian noises in the latent space, along-
side a hierarchical discrimination loss for representation learning at both macro- and micro-levels,
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Figure 1: The overall design of VE . Note that the discriminator takes both the reconstructed
patches/image and the original patches/image as inputs, while they have different labels. ‘*’ means
the non-trivial components, which are never used before.

allow VE to outstrip a straight re-implementation of ELECTRA for CV. Unlike Fei et al. (2023),
who also trains an MAE generator model with a discriminator via the GAN-like loss, VE employs
the encoder of the discriminator rather than the MAE as the outcome of pre-training, following the
core design of ELECTRA, where the discriminative task can allow the model learns from all input
tokens, rather than just a small masked-out subset, making it grant an appreciable depth to image
comprehension. Further, VE improves upon simple GAN Loss with hierarchical discrimination, en-
hancing the generator/discriminator’s ability to reconstruct and identify patches/images. All these
innovative designs make VE a novel and effective framework for pre-training on top MIM.

3 METHODOLOGY
In this section, we first present the overall design of VE , then introduce the key algorithm designs
for training the generator and discriminator within VE .

3.1 OVERALL DESIGN OF VISION ELECTRA

As shown in Figure 1, VE is built upon a generator-discriminator paradigm, where the image
encoder of the discriminator is the outcome of pre-training. In our study, the generator G is a
masked image modeling (MIM) model (e.g. MAE (He et al., 2022), SimMIM (Xie et al., 2022)),
which masks a portion of input images and predicts the masked patches. In the meanwhile, the
discriminator D is a vision transformer (e.g. ViT (Dosovitskiy et al., 2020), Swin-Transformer (Liu
et al., 2021)), which classifies each image patch or the entire image is original or reconstructed.

For the G, it takes the visible image patches as input, obtaining the latent codes and then reconstruct
the masked patches from the latent codes by a small network. Different from MAE, G introduces a
Gaussian noise vector to perturb the latent space, mildly inhibiting the capabilities while enhancing
feature diversity (Tian et al., 2020), thus strengthening the D in an adversarial autoencoding manner.

For the D, it serves a dual role: distinguishing between original and reconstructed patches / images.
These tasks share the backbone weights, with different task-specific heads. In alignment with estab-
lished strategies (He et al., 2022; Xie et al., 2022), D similarly process the patch tokens through a
sequence of Transformer blocks. Patch discrimination is facilitated by a CNN-based head, discern-
ing tokens in the data from those replaced by G. For image discrimination, a linear projection layer
is utilized as the image head, determining whether the image is original or reconstructed.

Given an image I , we first split it into non-overlapping patches and add a CLS token x0, i.e., I =
{x0, x1, · · · , xN}, then we randomly mask some patches with a probability, for example 0.75 in
MAE. After that, we use G to reconstruct the masked patches, and finally, we feed the reconstructed
and the original images to D for discrimination (see Figure 1).

3.2 GENERATOR VIA ADVERSARIAL MASKED IMAGE MODELING

G reconstructs images from masked image patches using a MIM framework.

Patch Generation by Pixel-wise Regression The output of G is reshaped to form the recon-
structed image. Similar to the previous MIM framework (He et al., 2022; Xie et al., 2022), the loss
function used in our approach computes the MSE between the reconstructed and original images
in the pixel space. To calculate the loss, we only consider the masked patches, following a similar
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Figure 2: An Illustration of Hierarchical Discrimination. At the micro-level, the adversarial training
will progressively make the reconstructed patches indistinguishable from patch head. At the macro-
level, the image head introduces another discriminative constraint for the pipeline.

approach as MAE. The definition of our loss function (patch loss) is as follows.

LImg(θG) = MSE(xr, xm) =
1

M

M∑
i=1

(xm
i − xr

i )
2
, (1)

where xr represents the patches recovered by G’s decoder using the latent code z, i.e., xr = f(z+z̃),
z̃ represents the random Gaussian noise vector, xm represents the masked patches of original image
x and M represents the number of patches.

Image Reconstruction in Adversarial Manner It is easy to discriminate the reconstructed image
from the original one for the discriminator, if the reconstructed patches solely rely on the patch
loss, since the reconstructed patches are normally blurry. Therefore, the simple task cannot benefit
the discriminator to capture useful information for downstream tasks. To address this issue, we
introduce an adversarial loss (Goodfellow et al., 2014) to enhance the authenticity of the generated
images. The reconstructed images fool the discriminator in two levels – macro level and micro level,
i.e, the discriminator should treat the entire reconstructed image and each reconstructed patch as real
ones, resulting in an adversarial loss as follows:

LGAN (θG) = − 1

M

M∑
i=1

log (D(xr
i ))− log (D(xr

0)) (2)

where xr
i denotes the ith reconstructed patch and xr

0 denotes the CLS token, the representation
of which denotes the entire reconstructed image, and the input entire image is composed of the
reconstructed and original unmasked patches. D(xr

i ) denotes the predicted label of the ith patch by
the discriminator D, likewise, D(xr

0) is the prediction of the entire reconstructed image. M denotes
the number of reconstructed patches in an image.

3.3 DISCRIMINATOR VIA HIERARCHICAL DISCRIMINATION LOSS

D is responsible for distinguishing between original and reconstructed inputs. It achieves this task
by employing a weight-shared backbone and two sub-task heads.

Micro-Level Discrimination We consider the patch head as the micro-level discrimination, which
classifies whether a patch is original or reconstructed. Therefore, we use a binary cross-entropy loss,
i.e.,

LPatch (θD) = − 1

N

N∑
i=1

[yi log(D(xi)) + (1− yi) log(1−D(xi))] (3)

where xi is an image patch and yi is the corresponding label. For the original patch in an image,
yi = 1, and yi = 0 for a reconstructed patch. N represents the number of patches in image I . Note
that I can be the reconstructed or original image.

Macro-Level Discrimination The macro-level discrimination is to classify whether the entire im-
age is original or not. Similar to micro-level discrimination, we also use the binary cross-entropy
loss. The difference is that we use the representation of CLS token to compute the loss function, i.e.,

LCLS (θD) = −y log(D(x0))− (1− y) log(1−D(x0)) (4)
where y = 0 for a reconstructed image and y = 1 for the original image.
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Figure 3: Illustration of Reconstructed Images with Two Pre-training Schemes.

Method Pre-training strategies Input size Mask ratio Top-1 acc (%)
SimMIM 100ep from Scratch 2242 60% 81.39
MAE 100ep from Scratch 2242 75% 81.68
VE 100ep from Scratch 2242 75% 80.73
SimMIM Official 2242 60% 82.16
MAE Official 2242 60% 82.89
SimMIM Official + 50ep 2242 60% 82.26
MAE Official +50ep 2242 75% 83.06
VE Official +50ep 2242 75% 83.43

Table 1: Performance Comparisons: ’100ep’ means pre-training from scratch for 100 epochs, ’Of-
ficial’ refers to fine-tuning based on the official release of pre-trained models, ’+50ep’ refers to an
additional 50 epochs pre-training based on the official releases (He et al., 2022; Xie et al., 2022).

3.4 JOINT PRE-TRAINING OF GENERATOR AND DISCRIMINATOR

We use the following loss to jointly train the generator and discriminator,

L = min
θG,θD

LImg(θG) + λLGAN (θG) + LPatch(θD) + LCLS(θD) (5)

To stabilize the training process, we use a small λ in our experiments, i.e, λ = 0.2.

Note that all tokens are visible to the discriminator, which is the same as downstream tasks, narrow-
ing the gap between pre-training and fine-tuning.

4 EXPERIMENT

We employ the MAE (He et al., 2022) as the G within the VE . For the D component of VE , we utilize
the ViT-B/16 (Dosovitskiy et al., 2020). Our experimental configuration entails self-supervised
pre-training using the ImageNet-1K (Deng et al., 2009). Subsequently, we also have fine-tuned
downstream tasks such as classification (Lu & Weng, 2007), segmentation (Guo et al., 2018), and
detection (Zou et al., 2023). More experimental settings are provided in the supplementary material.

4.1 COMPARISONS WITH PREVIOUS RESULTS ON IMAGE CLASSIFICATION

For fair comparison, following previous works (He et al., 2022; Xie et al., 2022), we conduct ex-
periments using ViT-B. The quantitative results are shown in Table 1 and the qualitative results are
exhibited in Figure 3. Specifically, two sets of comparisons are as follows.

Pre-training from Scratch We train VE using 100 epochs from its random scratch. For SimMIM
(Xie et al., 2022) and MAE (He et al., 2022), we also perform the same 100 epochs pre-training
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Figure 4: Examples of Reconstructed Images. (a) Sharing Weight: reconstructed images at varying
training steps, (b) Smaller Generator: reconstructed images with a smaller generator.

Settings Pre-training strategies Input size Top-1 acc (%)
VE (Sharing Weight) Official+50ep 2242 82.37
VE (Smaller Generator) Official+50ep 2242 81.93
VE Official+50ep 2242 83.43

Table 2: Experiment Results on Model Exploration.

from scratch with the official configuration. We then finetune these models using additional 100
epochs and compare their performance. As shown in Table 1, our method obtains competitive results
compared to the mainstream MIM methods (VE : 80.73 vs. SimMIM: 81.39 vs. MAE: 81.68).

We believe the VE performs marginally worse than baselines due to the following two reasons.
(1) VE leverages an adversarial loss derived from GAN to ensure the quality of image reconstruc-
tion while the GAN training sometimes is difficult to converge and frequently leads to model col-
lapse (Salimans et al., 2016). (2) The discriminator in VE could not learn good representations from
distinguishing between original images and low-quality generated ones (please refer to the examples
in Fig 3), while high-quality image generation usually needs more efforts to train (especially com-
pared to the cost of language generation tasks in vanilla ELECTRA). Note that we use 100 training
epochs here to follow the settings of vanilla ELECTRA (Clark et al., 2020).

Continual Pre-training In addition to training from scratch, we adopt pre-trained models from
their official releases and conduct experiments through continual-pre-training these models. Specif-
ically, here, we first build-up a VE model using ViT-B (as the discriminator D) pre-trained by Sim-
MIM, and continue to train VE using additional 50 epochs. We then compare the discriminator of
such VE model with SimMIM and MAE under the same continual pre-training settings, where both
SimMIM and MAE were firstly loaded from official release and further trained with additional 50
epochs. As shown in Table 1, while both SimMIM and MAE could be improved by continual pre-
training, our proposed method still outperforms these models and achieves a Top-1 acc of 83.43%.
Compared to MAE (Official+50ep), VE exhibits an improvement of 0.37 points. Compared to the
SimMIM (Official+50ep), VE demonstrates a superior performance, surpassing it by 1.17 points.
Note that, in this setting, the discriminator of VE was derived from ViT-B pre-trained by SiMIM. Our
method demonstrates absolute performance improvements with 50 additional epochs of continual-
pre-training, surpassing both SimMIM (Official) and SimMIM (Official+50ep). Furthermore, as
illustrated in Figure 3, it is evident that the presence of authentic reconstructed images obviously
enhances the performance of the hierarchical discrimination across both macro- and micro-levels.

4.2 EMPIRICAL STUDIES ON MODEL EXPLORATION

Inspired by the Model Extension section of ELECTRA (Section 3.2 of Clark et al. (2020)), we
discuss several options of VE . Particularly, we focus on two settings: (a) Sharing Weight and (b)
Smaller Generator, here.

Sharing Weight As was mentioned, both generator G and discriminator D in VE are derived from
the same model, i.e., ViT-B as their encoders. It is reasonable to assume sharing weights between
these two encoders might be able to improve the performance under the same training budget. As
shown in Table 2, the performance of VE under the sharing weight setting lags behind the vanilla
VE (82.37 vs. 83.43). We consider the degradation is due to the disparity between task domains
of generator and discriminator–sharing weights between these two would lead to instability during
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Figure 5: Examples of Recovered Images with and without GAN Loss within VE .

pre-training. Figure 4(a) shows that with increasing training steps, the generator under sharing
weight setting produces images of varying quality. Some are with high-quality, while others are
notably inferior. This variability underscores our previous assumption that weight sharing leads to
instability during pre-training. Hereby, we refrain from the sharing weight strategy in VE .

Smaller Generator As the pre-training outcome of VE is the encoder of discriminator, it is rea-
sonable to doubt the use of smaller generator (with fewer parameters) could still achieve good
performance. To be specific, compared to ViT-B used by the vanilla VE , we employ ViT-S as
the encoder for the generator to build up VE (Smaller Generator). Specifically, we first pre-train
ViT-S within MAE using 200 epochs and use such ViT-S model as the encoder of generator in
VE (Smaller Generator). We still adopt ViT-B pre-trained by SimMIM as the encoder of discrim-
inator in VE (Smaller Generator) and perform an additional 50 epochs of pre-training. In Table
2, it is evident that VE (Smaller Generator) performs worse than vanilla VE in terms of Top-1 acc
(81.93 vs. 83.43). The performance degradation is due to the low-quality of images generated by
the smaller generator (shown in Figure 4(b)), when employing ViT-S as the encoder of generator.

4.3 ABLATION STUDY

The ablation study is conducted to validate the effectiveness of individual components within our
VE . All experiments in this section are pre-trained on the ImageNet-1K dataset (Deng et al., 2009)
and subsequently fine-tuned on the Image-1K image classification task.

Patch Loss As presented in Table 3, it is evident that by excluding the patch loss, the Top-1 acc of
VE , fine-tuned for the ImageNet-1K image classification task, undergoes a marginal reduction from
83.43 to 83.26. This degradation is probably due to the ignorance to the patch-level discrimination,
as the discriminator without patch loss solely appraises the overall image authenticity (original or
reconstructed). As a result, VE w/o the patch loss would fail to train the encoder of discriminator
with ability of representation at micro-level.

GAN Loss As shown in Table 3, it shows that by excluding the GAN loss, the Top-1 acc of VE ,
fine-tuned for the ImageNet-1K image classification task, experiences a slight decrement, shifting
from 83.43 to 83.24. Additionally, the qualitative results, presented in Figure 5, demonstrate the
images reconstructed by VE and VE w/o GAN Loss. It is obvious that the GAN Loss can help VE
to generate images with higher authenticity. As a result, VE with the GAN Loss could train the
encoder of discriminator with better capacity of feature learning at macro-level.

Yet, ablation studies on the patch and GAN losses have already proved the effectiveness of our
proposed hierarchical discrimination in both image generation and contextual representation at both
micro/macro-levels. The joint training of generator and discriminator in adversarial settings could
be benefited from both losses.

CLS Loss As depicted in Table 3, it is evident that the inclusion of the CLS Loss yields a sub-
stantial performance enhancement, notably increasing the Top-1 acc from 83.01 to 83.43. This
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Figure 6: Visualization of Self-attention from Pre-trained Models. We have visualized self-attention
maps on the two heads separately. The figures of self-attention head-9 demonstrate micro-level
representation ability, while self-attention head-6 exhibits macro-level representation ability.

Methods Input size Pre-training strategies Patch
loss

GAN
loss

CLS
loss

Gaussian
noise

Top-1
acc (%)

SimMIM 2242 Official+50ep 82.26
VE 2242 Official+50ep ✓ ✓ ✓ 83.26
VE 2242 Official+50ep ✓ ✓ ✓ 83.24
VE 2242 Official+50ep ✓ ✓ ✓ 83.01
VE 2242 Official+50ep ✓ ✓ ✓ 83.33
VE 2242 Official+50ep ✓ ✓ ✓ ✓ 83.43

Table 3: Ablation Study. For fair comparison, we use the ViT-B pre-trained using above methods
under the same setting and finetuned on the downstream task for experiments.

improvement can be attributed to the integration of the CLS token, which serves as an image head
for pre-training the discrimination between original and reconstructed images. This feature proves
highly beneficial for the subsequent fine-tuning in image classification. The positive impact the CLS
token is also illustrated in the qualitative results presented in Figure 6. Additionally, drawing inspi-
ration from Dino (Caron et al., 2021), we also visualize the attention heat maps for the final layer of
ViT-B. Figure 6 clearly demonstrates that, following the incorporation of CLS Loss and CLS token,
VE exhibits a strengthen focus on the primary subject within the image.

Gaussian Noise In Figure 7, we highlight the differences among several kinds of images: the
original image, the diverse images generated by VE with and without Gaussian noise. We can see
that using Gaussian noise is able to generate an image that is more different but still real. To some
extent, adding Gaussian noise to the latent code improves the diversity of the generated images,
which plays the role of data augmentation for the discriminator, hence, it can benefit pre-training.
Looking at the quantitative results in Table 3, the Top-1 accuracy increases from 83.33 to 83.43 by
using additional Gaussian noise.

Discriminative Pre-training Strategy Figure 6 reveals that, in contrast to SimMIM, which pays
much attention to the entire image instead of objects, i.e., self-attention heads (head-6 and head-
9) exhibit similar macro-level attention, the VE is able to demonstrate both macro- and micro-
level attention, e.g, head-9 focuses on objects, while head-6 focuses on the whole image. This
qualitative observation demonstrates that, unlike prevalent MIM methods like MAE and SimMIM,
the pre-trained discriminator of VE obtains smaller task domain gap between the pre-trained tasks
and the downstream tasks Xie et al. (2023), facilitating more effective fine-tuning and improving the
performance (quantitative results as shown in Table 1).

4.4 CROSS-TASK TRANSFER LEARNING EXPERIMENTS

Semantic segmentation To maintain a fair comparison, we fine-tune the pre-trained models pro-
vided by MAE and SimMIM under the same configuration. Table 4(a) shows that our framework
significantly improves the performance of semantic segmentation compared to the mainstream meth-
ods, e.g., by 2.06 points for SimMIM and 1.02 points for MAE. The reasons are two-fold. First, the
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Image w/o Guassian Noise

Figure 7: Examples of Recovered Images with and w/o Gaussian Noise within the VE .

Method Pre-training strategies Input size mIoU
SimMIM Official+50ep 5122 46.76
MAE Official+50ep 5122 47.80
VE Official+50ep 5122 48.82

(a) ADE20K Semantic Segmentation

Method Pre-training strategies Input size APbox

SimMIM Official+50ep 7682 45.95
MAE Official+50ep 7682 46.10
VE Official+50ep 7682 46.60

(b) COCO Object Detection

Table 4: Cross-Task Transfer Learning Experiments: (a) ADE20K semantic segmentation using
UperNet. The reproduction code is from mae-segmentation (Li, 2022). (b) COCO object detection
using a ViT Mask R-CNN baseline. The reproduction code is from MIMDet (Fang et al., 2022).

discriminator treats all patches as visible ones in the pre-training phase, which is the same as the
fine-tuning phase. Second, during pre-training we use a patch-level classification task, to some
extent, which is similar to pixel-level classification, benefiting the task of semantic segmentation.

Object detection Also, we fine-tune the pre-trained models provided by MAE and SimMIM un-
der the same configurations for the task of object detection. As shown in Table 4(b), compared to
mainstream methods, our VE performs better under the same configuration. The metric score ob-
tained by our VE is 0.5 points higher than MAE (46.60 vs. 46.10, APbox). Additionally, our VE
also outperforms the another counterparts – SimMIM by 0.65 points (46.60 vs. 45.95). The reason
for the improvement is that our pre-trained model achieves a better ability to localize objects, i.e.,
VE can pay attention to both the primary object and the entire scene, while the ViT pre-trained by
SimMIM shows global attention (see Fig. 6).

4.5 REMARKS ON EXPERIMENT RESULTS

Here, we summarize above experiment results and make three conclusions as follows. (1) VE is
effective in representation learning, and it can outperform SimMIM and MAE in continual pre-
training settings with the same amount of training epochs (i.e., Official+50ep introduced in Section
4.1). (2) The joint training procedure employed VE trains both generator and discriminator simul-
taneously and adversarially – The higher the quality of images reconstructed by the generator, the
more effectively the encoders are trained in the discriminator. (3) VE works well on various CV
tasks, including classification, segmentation and detection, while every component proposed in VE
has a specific role contributing to the overall functionality.

5 CONCLUSION

In this work, we propose a novel MIM framework VE , following the core concepts of ELECTRA
that adopt the generator-discriminator paradigm for CV and leverage the encoder of discriminator
as the pre-training outcome. To achieve the goal, several non-trivial technical contributions have
been made, including adversarial pre-training of the generator to enhance image authenticity, in-
fusion of Gaussian noise in the latent space for image diversity, and a hierarchical discrimination
loss that enables representation at both macro/micro-levels. Extensive experiments have been car-
ried out the demonstrate the performance advancements of VE for downstream tasks. Our method,
VE, exhibits superiority in performance over mainstream Mask Image Modeling (MIM) methods,
including SimMIM and MAE, under fair comparisons. Empirical studies and ablation studies have
explored the dimensions of our framework design and prove the soundness of every component pro-
posed in our framework. Cross-task transfer learning experiments further confirm the applicability
of VE on various CV applications including segmentation and detection. Being a first-of-its-kind
initiative to leverage ELECTRA in CV, this work pioneers a unique blend of NLP techniques and
CV models. Future works aim to expand on practical applications of this method and enhance the
efficiency of pre-training further.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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