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Abstract

We study collaborative normal mean estimation, where m strategic agents collect
i.i.d samples from a normal distribution N (µ, σ2) at a cost. They all wish to
estimate the mean µ. By sharing data with each other, agents can obtain better
estimates while keeping the cost of data collection small. To facilitate this collabo-
ration, we wish to design mechanisms that encourage agents to collect a sufficient
amount of data and share it truthfully, so that they are all better off than working
alone. In naive mechanisms, such as simply pooling and sharing all the data, an in-
dividual agent might find it beneficial to under-collect and/or fabricate data, which
can lead to poor social outcomes. We design a novel mechanism that overcomes
these challenges via two key techniques: first, when sharing the others’ data with
an agent, the mechanism corrupts this dataset proportional to how much the data
reported by the agent differs from the others; second, we design minimax optimal
estimators for the corrupted dataset. Our mechanism, which is Nash incentive
compatible and individually rational, achieves a social penalty (sum of all agents’
estimation errors and data collection costs) that is at most a factor 2 of the global
minimum. When applied to high dimensional (non-Gaussian) distributions with
bounded variance, this mechanism retains these three properties, but with slightly
weaker results. Finally, in two special cases where we restrict the strategy space of
the agents, we design mechanisms that essentially achieve the global minimum.

1 Introduction

With the rise in popularity of machine learning, data is becoming an increasingly valuable resource
for businesses, scientific organizations, and government institutions. However, data collection is often
costly. For instance, to collect data, businesses may need to carry out market research, scientists
may need to conduct experiments, and government institutions may need to perform surveys on
public services. However, once data has been generated, it can be freely replicated and used by many
organizations [20]. Hence, instead of simply collecting and learning from their own data, by sharing
data with each other, organizations can mutually reduce their own data collection costs and improve
the utility they derive from data [21]. In fact, there are already several platforms to facilitate data
sharing among businesses [1, 40], scientific organizations [2, 3], and public institutions [16, 34].

However, simply pooling everyone’s data and sharing with each other can lead to free-riding [23, 35].
For instance, if an agent (e.g an organization) sees that other agents are already contributing a large
amount of data, then, the cost she incurs to collect her own dataset may not offset the marginal
improvement in her own learned model due to diminishing returns of increasing dataset sizes (we
describe this rigorously in §2). Hence, while she benefits from others’ data, she has no incentive to
collect and contribute data to the pool. A seemingly simple fix to this free-riding problem is to only
return the datasets of the others if an agent submits a large enough dataset herself. However, this
can be easily manipulated by a strategic agent who submits a large fabricated (fake) dataset without
incurring any cost, receives the others’ data, and then discards her fabricated dataset when learning.
While the agent has benefited by this bad behavior, other agents who may use this fabricated dataset
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are worse off. Moreover, a naive test by the mechanism to check if the agent has fabricated data can
be sidestepped by agents who collect only a small dataset and fabricate a larger dataset using this
small dataset (e.g by fitting a model to the small dataset and then sampling from this fitted model).

In this work, we study these challenges in data sharing in one of the most foundational statistical
problems, normal mean estimation, where the goal is to estimate the mean µ of a normal distribution
N (µ, σ2) with known variance σ2. We wish to design mechanisms for data sharing that satisfy the
three fundamental desiderata of mechanism design; Nash incentive compatibility (NIC): agents have
incentive to collect a sufficiently large amount of data and share it truthfully provided that all other
agents are doing so; individual rationality (IR): agents are better off participating in the mechanism
than working on their own; and efficiency: the mechanism leads to outcomes with small estimation
error and data collection costs for all agents.

Contributions: (i) In §2, we formalize collaborative normal mean estimation in the presence of
strategic agents. (ii) In §3, we design an NIC and IR mechanism for this problem to prevent free-riding
and data fabrication and show that its social penalty, i.e sum of all agents’ estimation errors and data
collection costs, is at most twice that of the global minimum. (iii) In Appendix E, we study the same
mechanism in high dimensional settings and relax the Gaussian assumption to distributions with
bounded variance. We show that the mechanism retains its properties, with only a slight weakening of
the NIC and efficiency guarantees. (iv) In §4, we consider two special cases where we impose natural
restrictions on the agents’ strategy space. We show that it is possible to design mechanisms which
essentially achieve the global minimum social penalty in both settings. Next, we will summarize our
primary mechanism and the associated theorem in §3.

1.1 Summary of main results

Formalism: We assume that all agents have a fixed cost for collecting one sample, and define an
agent’s penalty (negative utility) as the sum of her estimation error and the cost she incurred to collect
data. To make the problem well-defined, for the estimation error, we find it necessary to consider the
maximum risk, i.e maximum expected error over all µ ∈ R. A mechanism asks agents to collect data,
and then shares the data among the agents in an appropriate manner to achieve the three desiderata.
An agent’s strategy space consists of three components: how much data she wishes to collect, what
she chooses to submit after collecting the data, and how she estimates the mean µ using the dataset
she collected, the dataset she submitted, and the information she received from the mechanism.

Mechanism and theoretical result: In our mechanism, which we call C3D (Cross-Check and Corrupt
based on Difference), each agent i collects a dataset Xi and submits a possibly fabricated or altered
version Yi to the mechanism. The mechanism then determines agent i’s allocation in the following
manner. It pools the data from the other agents and splits them into two subsets Zi, Z ′i. Then, Zi is
returned as is, while Z ′i is corrupted by adding noise that is proportional to the difference between Yi
and Zi. If an agent collects less or fabricates, she risks looking different to the others, and will receive
a dataset Z ′i of poorer quality. We show that this mechanism has a Nash equilibrium where all agents
collect a sufficiently large amount of data, submit it truthfully, and use a carefully weighted average
of the three datasets Xi, Zi, and Z ′i as their estimate for µ. The weighting uses some additional side
information that the mechanism provides to each agent. Below, we state an informal version of the
main theoretical result of this paper, which summarizes the properties of our mechanism.

Theorem 1 (informal): The above mechanism is Nash incentive compatible, individually rational,
and achieves a social penalty that is at most twice the globally minimum social penalty.

Corruption is the first of two ingredients to achieving NIC. The second is the design of the weighted
average estimator which is (minimax) optimal after corruption. To illustrate why this is important, say
that the mechanism had assumed that the agents will use any other sub-optimal estimator (e.g a simple
average). Then it will need to lower the amount of corruption to ensure IR and efficiency. However, a
strategic agent will realize that she can achieve a lower maximum risk with a better estimator (instead
of collecting more data herself and/or receiving less corrupt data from the mechanism). She can
leverage this insight to collect less data and lower her overall penalty.

Proof techniques: The most challenging part of our analysis is to show NIC, First, to show minimax
optimality of our estimator, we construct a sequence of normal priors for µ and show that the
minimum Bayes’ risk converges to the maximum risk of the weighted average estimator. However,
when compared to typical minimax proofs, we face more significant challenges. The first of these
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is that the combined dataset Xi ∪ Zi ∪ Z ′i is neither independent nor identically distributed as the
corruption is data-dependent. The second is that the agent’s submission Yi also determines the degree
of corruption, so we cannot look at the estimator in isolation when computing the minimum Bayes’
risk; we should also consider the space of functions an agent may use to determine Yi from Xi. The
third is that the expressions for the minimum Bayes’ risk do not have closed form solutions and
require non-trivial algebraic manipulations. To complete the NIC proof, we show that due to the
carefully chosen amount of corruption, the agent should collect a sufficient amount of data to avoid
excessive corruption, but not too much so as to increase her data collection costs.

1.2 Related Work

Mechanism design is one of the core areas of research in game theory [13, 18, 36]. Our work here is
more related to mechanism design without payments, which has seen applications in fair division [31],
matching markets [32], and kidney exchange [33] to name a few. There is a long history of work in
the intersection of machine learning and mechanism design, although the overwhelming majority
apply learning techniques when there is incomplete information about the mechanism or agent
preferences, (e.g [6, 8, 22, 28, 30]). On the flip side, some work have designed data marketplaces,
where customers may purchase data from contributors [4, 5, 19, 38]. These differ from our focus
where we wish to incentivize agents to collaborate without payments.

Due to the popularity of shared data platforms [1, 2, 16, 34] and federated learning [21], there has
been a recent interest in designing mechanisms for data sharing. Sim et al. [35] and Xu et al. [39]
study fairness in collaborative data sharing, where the goal is to reward agents according to the
amount of data they contribute. However, their mechanisms do not apply when strategic agents may
try to manipulate a mechanism. Blum et al. [9] and Karimireddy et al. [23] study collaboration in
federated learning. However, the strategy space of an agent is restricted to how much data they collect
and their mechanism rewards each agent according to the quantity of the data she submitted. The
above four works recognize that free-riding can be detrimental to data sharing, but assume that agents
will not fabricate data. As discussed above, if this assumption is not true, agents can easily manipulate
such mechanisms. Fraboni et al. [17] and Lin et al. [25] study federated learning settings where
free-riders may send in fabricated gradients without incurring the computational cost of computing
the gradients. However, their focus is on designing gradient descent algorithms that are robust to
such attacks and not on incentivizing agents to perform the gradient computations. Some work have
designed mechanisms for federated learning so as to elicit private information (such as data collection
costs), but their focus is not on preventing free-riding or fabrication [15, 26]. Miller et al. [29] uses
scoring systems to develop mechanisms that prevent signal fabrication. However, the agents in their
settings can only choose to report either their true signal or something else but can not freely choose
how much data to collect. Cai et al. [11] study mechanism design where a learner incentivizes agents
to collect data via payments. Their mechanism, which also cross-checks the data submitted by the
agents, has connections to our setting in §4.2 where we consider a restricted strategy space for the
agents.

Our approach of using corruption to engender good behaviour draws inspiration from the robust
estimation literature, which design estimators that are robust to data from malicious agents [12, 14, 27].
However, to the best of our knowledge, the specific form of corruption and the subsequent design of
the minimax optimal estimator are new in this work, and require novel analysis techniques.

2 Problem Setup

We will now formally define our problem. We have m agents, who are each able to collect i.i.d
samples from a normal distribution N (µ, σ2), where σ2 is known. They wish to estimate the mean µ
of this distribution. To collect one sample, the agent has to incur a cost c. We will assume that σ2, c,
and m are public information. However, µ ∈ R is unknown, and no agent has auxiliary information,
such as a prior, about µ. An agent wishes to minimize her estimation error, while simultaneously
keeping the cost of data collection low. While an agent may collect data on her own to manage this
trade-off, by sharing data with other agents, she can reduce costs while simultaneously improving her
estimate. We wish to design mechanisms to facilitate such sharing of data.
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Mechanism: A mechanism receives a dataset from each agent, and in turn returns an allocation Ai
to each agent. An agent will use her allocation to estimate µ. This allocation could be, for instance, a
larger dataset obtained with other agents’ datasets. The mechanism designer is free to choose a space
of allocationsA to achieve the desired goals. Formally, we define a mechanism as a tuple M = (A, b)
where A denotes the space of allocations, and b is a procedure to map the datasets collected from the
m agents to m allocations. Denoting the universal set by U , we write the space of mechanismsM as

M =
{
M = (A, b) : A ⊂ U , b : (

⋃
n≥0 Rn)m → Am

}
. (1)

As is customary, we will assume that the mechanism designer will publish the space of allocations A
and the mapping b (the procedure used to obtain the allocations) ahead of time, so that agents can
determine their strategies. However, specific values computed/realized during the execution of the
mechanism are not revealed, unless the mechanism chooses to do so via the allocation Ai.

Agents’ strategy space: Once the mechanism is published, the agent will choose a strategy. In our
setting, this will be the tuple (ni, fi, hi), which determines how much data she wishes to collect, what
she chooses to submit, and how she wishes to estimate the mean µ. First, the agent samples ni points
to collect her initial dataset Xi = {xi,j}nij=1, where xi,j ∼ N (µ, σ2), incurring cni cost. She then
submits Yi = {yi,j}j = fi(Xi) to the mechanism. Here fi is a function which maps the collected
dataset to a possibly fabricated or falsified dataset of a potentially different size. In particular, this
fabrication can depend on the data she has collected. For instance, the agent could collect only a
small dataset, fit a Gaussian, and then sample from it.

Finally, the mechanism returns the agent’s allocation Ai, and the agent computes an estimate
hi(Xi, Yi, Ai) for µ using her initial dataset Xi, the dataset she submitted Yi, and the allocation
she received Ai. We include Yi as part of the estimate since an agent’s submission may affect the
allocation she receives. Consequently, agents could try to elicit additional information about µ via a
carefully chosen Yi. We can write the strategy space of an agent as S = N×F ×H, where F is the
space of functions mapping the dataset collected to the dataset submitted, andH is the space of all
estimators using all the information she has. We have:
F =

{
f :
⋃
n≥0 Rn →

⋃
n≥0 Rn

}
, H =

{
h :
⋃
n≥0 Rn ×

⋃
n≥0 Rn × A → R

}
. (2)

One element of interest in F is the identity I which maps a dataset to itself. A mechanism designer
would like an agent to use fi = I, i.e to submit the data that she collected as is, so that other agents
can benefit from her data.

Going forward, when s = {si}i ∈ Sm denotes the strategies of all agents, we will use s−i = {sj}j 6=i
to denote the strategies of all agents except i. Without loss of generality, we will assume that agent
strategies are deterministic. If they are stochastic, our results will carry through for every realization
of any external source of randomness that the agent uses to determine (ni, fi, hi).

Agent penalty: The agent’s penalty pi (i.e negative utility) is the sum of her squared estimation error
and the cost cni incurred to collect her dataset Xi of ni points. The agent’s penalty depends on the
mechanism M and the strategies s = {sj}j of all the agents. Making this explicit, pi is defined as:

pi(M, s) = sup
µ∈R

E
[
(hi(Xi, Yi, Ai)− µ)2

∣∣∣µ
]

+ cni (3)

The term inside the expectation is the squared difference between the agent’s estimate and the true
mean (conditioned on the true mean µ). The expectation is with respect to the randomness of all
agents’ data and possibly any randomness in the mechanism. We consider the maximum risk, i.e
supremum over µ ∈ R, since the true mean µ is unknown to the agent a priori, and their strategy
should yield good estimates, and hence small penalty, over all possible values µ. To illustrate this
further, note that when the value of true mean µ is µ′, the optimal strategy for an agent will always be
to not collect any data and choose the estimator hi(·, ·, ·) = µ′ leading to 0 penalty. However, this
strategy can be meaningfully realized by an agent only if she knew that µ = µ′ a priori which renders
the problem meaningless1. Considering the maximum risk accounts for the fact that µ is unknown
and makes the problem well-defined.

1This is akin to the reason why it is customary to study the maximum risk in frequentist statistics [24,
37]. An alternative approach is to take a Bayesian view, considering a prior on µ and using the Bayes’ risk
Eµ[E[(hi(Xi, Yi, Ai) − µ)2|µ]] instead of the maximum risk in pi. While we have adopted a frequentist
formalism here, our main proof ideas can be ported over to the Bayesian setting as well (See Appendix F for
more details)
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Recommended strategies: In addition to publishing the mechanism, the mechanism designer will
recommend strategies s? = {s?i }i ∈ Sm for the agents so as to incentivize collaboration and induce
optimal social outcomes.

Desiderata: We can now define the three desiderata for a mechanism:
1. Nash Incentive compatibility (NIC): A mechanism M = (A, b) is said to be NIC at the recom-

mended strategy profile s? if, for each agent i, and for every other alternative strategy si ∈ S for
that agent, we have pi(M, s?) ≤ pi(M, (si, s

?
−i)). That is, s? is a Nash equilibrium so no agent

has incentive to deviate if all other agents are following s?.
2. Individual rationality (IR): We say that a mechanism M is IR at s? if no agent suffers from

a higher penalty by participating in the mechanism than the lowest possible penalty she could
achieve on her own when all other agents are following s?. If an agent does not participate, she
does not submit nor receive any data from the mechanism; she will simply choose how much data
to collect and design the best possible estimator. Formally, we say that a mechanism M is IR if
the following is true for each agent i:

pi(M, s?) ≤ inf
ni∈N, hi∈H

{
sup
µ∈R

E
[
(hi(Xi,∅,∅)− µ)2 |µ

]
+ cni

}
. (4)

3. Efficiency: The social penalty P (M, s) of a mechanism M when agents follow strategies s, is the
sum of agent penalties (defined below). We define PR(M, s?) to be the ratio between the social
penalty of a mechanism at the recommended strategies s?, and the lowest possible social penalty
among all possible mechanisms and strategies (without NIC or IR constraints). We have:

P (M, s) =
∑

i∈[m]

pi(M, s), PR(M, s?) =
P (M, s?)

inf
M ′∈M, s∈Sm

P (M ′, s)
(5)

Note that PR ≥ 1. We say that a mechanism is efficient if PR(M, s?) = 1 and that it is
approximately efficient if PR(M, s?) is bounded by some constant that does not depend on m.
If s? is a Nash equilibrium, then PR(M, s?) can be viewed as an upper bound on the price of
stability [7].

For what follows, we will discuss optimal strategies for agents working on her own and present a
simple mechanism which minimizes the social penalty, but has a poor Nash equilibrium.

Optimal strategies for an agent working on her own: Recall that, given n samples {xi}ni=1 from
N (µ, σ2), the sample mean is a minimax optimal estimator [24]; i.e among all possible estimators h,
the sample mean minimizes the maximum risk supµ∈R E[(µ− h({xi}ni=1,∅,∅))2 |µ] (note that the
agent only has the dataset she collected). Moreover, its mean squared error is σ2/n for all µ ∈ R.
Hence, an agent acting on her own will choose the sample mean and collect ni = σ/

√
c samples so

as to minimize their penalty; as long as the amount of data is less than σ/
√
c, an agent has incentive

to collect more data since the cost of collecting one more point is offset by the marginal decrease in
estimation error. This can be seen via the following simple calculation:

inf
ni∈R
hi∈H

(
sup
µ

E
[
(hi(Xi,∅,∅)− µ)2

∣∣∣µ
]

+ cni

)
= min
ni∈R

(σ2

ni
+ cni

)
= 2σ

√
c

∆
= pIR

min . (6)

Let pIR
min = 2σ

√
c denote the lowest achievable penalty by an agent working on her own. If all m

agents work independently, then the total social penalty is mpIR
min = 2σm

√
c. Next, we will look at a

simple mechanism and an associated set of strategies which achieve the global minimum penalty. This
will show that it is possible for all agents to achieve a significantly lower penalty via collaboration.

A globally optimal mechanism without strategic considerations: The following simple mecha-
nism Mpool, pools all the data from the other agents and gives it back to an agent. Precisely, it chooses
the space of allocation A =

⋃
n≥0 Rn to be datasets of arbitrary length, and sets agent i’s allocation

to be Ai =
⋃
j 6=i Yi. The recommended strategies spool = {(npool

i , f pool
i , hpool

i )}i asks each agent
to collect npool

i = σ/
√
cm points2, submit it as is f pool

i = I, and use the sample mean of all points

2To avoid rounding effects, henceforth we will treat σ/
√
cm, and σ/

√
c as integers.
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Algorithm 1 MC3D

1: Mechanism designer publishes:
2: The allocation space A =

⋃
n≥0 Rn ×

⋃
n≥0 Rn × R+, and the procedure in lines 6–15.

3: Each agent i:
4: Choose strategy si = (ni, fi, hi). # See (8) for recommended strategies.
5: Sample ni points Xi = {xi,j}nij=1 and submit Yi = fi(Xi) to the mechanism.
6: Mechanism:
7: For each agent i ∈ [m]: # can be done simultaneously for all agents
8: Y−i ←

⋃
j 6=i Yj .

9: If m ≤ 4: # Simply pool and return all of the other agents’ data to agent i.
10: Ai ← (Y−i,∅, 0). Return Ai to agent i.
11: Else:
12: Zi ← sample min{|Y−i|, σ/

√
cm} points in Y−i without replacement.

13: η2
i ← α2

(
1
|Yi|
∑
y∈Yi y −

1
|Zi|

∑
z∈Zi z

)2

# See (7) for α.

14: Z ′i ← {z + εz,i, for all z ∈ Y−i\Zi where εz,i ∼ N (0, η2
i )}

15: Ai ← (Zi, Z
′
i, η

2
i ). Return Ai to agent i.

16: Each agent i:
17: Compute estimate hi(Xi, Yi, Ai). # See (8) for recommended estimator.

as her estimate hpool
i (Xi, Xi, Ai) = 1

|Xi∪Ai|
∑
z∈Xi∪Ai z. It is straightforward to show that this

minimizes the social penalty if all agents follow spool. After each agent has collected their datasets
{Xi}i, the social penalty is minimized if all agents have access to each other’s datasets and they all
use a minimax optimal estimator: this justifies using Mpool with f pool

i = I and setting hpool
i to be the

sample mean. The following simple calculation justifies the choice of
∑
i n

pool
i :

inf
s∈Sm

m∑

i=1

(
sup
µ

E
[
(hi(Xi, fi, Ai)− µ)2

∣∣∣µ
]

+ cni

)
= min
{ni}i

(
mσ2

∑
i ni

+ c
∑

i

ni

)
= 2σ

√
mc.

However, spool is not a Nash equilibrium of this mechanism, as an agent will find it beneficial to
free-ride. If all other agents are submitting σ/

√
cm points, by collecting no points, an agent’s penalty

is σ
√
mc/(m − 1), as she does not incur any data collection cost. This is strictly smaller than

2σ
√
c/m when m ≥ 3. In fact, it is not hard to show that Mpool is at a Nash equilibrium only when

the total amount of data is σ/
√
c; for additional points, the marginal reduction in the estimation error

for an individual agent does not offset her data collection costs. The social penalty at these equilibria
is σ
√
c(m+ 1) which is significantly larger than the global minimum when there are many agents.

A seemingly simple way to fix this mechanism is to only return the datasets of the other agents if
an agent submits at least σ/

√
cm points. However, as we will see in §4.1, such a mechanism can

also be manipulated by an agent who submits a fabricated dataset of σ/
√
cm points without actually

collecting any data and incurring any cost and then discarding the fabricated dataset when estimating.
Any naive test to check for the quality of the data can also be sidestepped by agents who sample only
a few points, and use that to fabricate a larger dataset (e.g by sampling a large number of points from
a Gaussian fitted to the small sample). Next, we will present our mechanism for this problem which
satisfies all three desiderata.

3 Method and Results
We have outlined our mechanism MC3D, and its interaction with the agents in Algorithm 1 in the
natural order of events. We will first describe it procedurally, and then motivate our design choices.
Our mechanism uses the following allocation space,A =

⋃
n≥0 Rn×

⋃
n≥0 Rn×R+. An allocation

Ai = (Zi, Z
′
i, η

2
i ) ∈ A consists of an uncorrupted dataset Zi, a corrupted dataset Z ′i, and the

variance η2
i of the noise added to Z ′i for corruption. Once the mechanism and the allocation space

are published, agent i chooses her strategy s = (ni, fi, hi). She collects a dataset Xi = {xi,j}nij=1,
where xi,j ∼ N (µ, σ2), and submits Yi = fi(Xi) to the mechanism.

Our mechanism determines agent i’s allocation as follows. Let Y−i be the union of all datasets
submitted by the other agents. If there are at most four agents, we simply return all of the other
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agents’ data without corruption by setting Ai ← (Y−i,∅, 0). If there are more agents, the mechanism
first chooses a random subset of size min{|Y−i|, σ/

√
cm} from Y−i; denote this Zi. In line 13, the

mechanism individually adds Gaussian noise to the remaining points Y−i\Zi to obtain Z ′i (line 14).
The variance η2

i of the noise depends on the difference between the sample means of the subset Zi
and the agent’s submission Yi. It is modulated by a value α, which is a function of c, m, and σ2.
Precisely, α is the smallest number larger than

√
σ(cm)−1/4 which satisfies G(α) = 0, where:

G(α) :=

(
m− 4

m− 2

4α2

σ/
√
cm
− 1

)
4α

√
σ(m/c)1/4

−
(
4(m + 1)

α2

σ
√
m/c

− 1

)
√
2π exp

(
σ
√
m/c

8α2

)
Erfc

(√
σ(m/c)1/4

2
√
2α

)
(7)

Finally, the mechanism returns the allocation Ai = (Zi, Z
′
i, η

2
i ) to agent i and the agent estimates µ.

Recommended strategies: The recommended strategy s?i = (n?i , f
?
i , h

?
i ) for agent i is given in (8).

The agent should collect n?i = σ/(m
√
c) samples if there are at most four agents, and n?i = σ/

√
cm

samples otherwise. She should submit it without fabrication or alteration fi = I, and then use a
weighted average of the datasets (Xi, Zi, Z

′
i) to estimate µ. The weighting is proportional to the

inverse variance of the data. For Xi and Zi this is simply σ2, but for Z ′i, the variance is σ2 + η2
i since

the mechanism adds Gaussian noise with variance η2
i . We have:

n?i =

{
σ

m
√
c

if m ≤ 4
σ√
cm

if m > 4
, f?i = I,

h?i (Xi, Yi, (Zi, Z
′
i, η

2
i )) =

1
σ2

∑
u∈Xi∪Zi u+ 1

σ2+η2i

∑
u∈Z′i u

1
σ2 |Xi ∪ Z ′i|+ 1

σ2+η2i
|Z ′i|

(8)

Design choices: Next, we will describe our design choices and highlight some key challenges. When
m ≤ 4, it is straightforward to show that the mechanism satisfies all our desired properties (see
beginning of §3.1), so we will focus on the case m > 4. First, recall that the mechanism needs to
incentivize agents to collect a sufficient amount of samples. However, simply counting the number
of samples can be easily manipulated by an agent who simply submits a fabricated dataset of a
large number of points. Instead, Algorithm 1 attempts to infer the quality of the data submitted
by the agents using how well an agent’s submission Yi approximates µ. Ideally, we would set the
variance η2

i of this corruption to be proportional to the difference ( 1
|Yi|
∑
y∈Yi y − µ)2, so that the

more data she submits, the less the variance of Z ′i, which in turn yields a more accurate estimate for
µ. However, since µ is unknown, we use a subset Zi obtained from other agents’ data as a proxy
for µ, and set η2

i proportional to
(

1
|Yi|
∑
y∈Yi y −

1
|Zi|

∑
z∈Zi z

)2
. If all agents are following s?,

then |Yi| = |Zi| = σ/
√
cm = n?i ; it is sufficient to use only n?i points for validating Yi since both

1
|Yi|
∑
y∈Yi y and 1

|Zi|
∑
z∈Zi z will have the same order of error in approximating µ.

The second main challenge is the design of the recommended estimator h?i . In §3.1 we show how
splitting Y−i into a clean and corrupted parts Zi, Z ′i allows us to design a minimax optimal estimator.
A minimax optimal estimator is crucial to achieving NIC. To explain this, say that the mechanism
assumes that agents will use a sub-optimal estimator, e.g sample mean of Xi ∪ Zi ∪ Z ′i. Then,
to account for the larger estimation error, it will need to choose a lower level of corruption η2

i
to minimize the social penalty. However, a smart agent will realize that she can achieve a lower
maximum risk by using a better estimator, such as the weighted average, instead of collecting more
data in order to reduce the amount of corruption used by the mechanism. She can leverage this insight
to collect less data and reduce her overall penalty.

This concludes the description of our mechanism. The following theorem, which is the main
theoretical result of this paper, states that MC3D achieves the three desiderata outlined in §2.
Theorem 1. Let m > 1, α be as defined in (7), and s?i be as defined in (8). Then, the following
statements are true about the mechanism MC3D in Algorithm 1. (i) The strategy profile s? is a Nash
equilibrium. (ii) The mechanism is individually rational at s?. (iii) The mechanism is approximately
efficient, with PR(MC3D, s

?) ≤ 2.

The mechanism is NIC as, provided that others are following s?i , there is no reason for any one
agent to deviate. Moreover, we achieve low social penalty at s?i . Other than s?, there is also a set
of similar Nash equilibria with the same social penalty: the agents can each add a same constant to
the data points they collect and subtract the same value from the final estimate. Before we proceed,
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the expression for α in (7) warrants explanation. If we treat α is a variable, we find that different
choices of α can lead to other Nash equilibria with corresponding bounds on PR. This specific choice
of α leads to a Nash equilibrium where agents collect σ/

√
cm points, and a small bound on PR.

Throughout this manuscript, we will treat α as the specific value obtained by solving (7), and not as a
variable.

High dimensional non-Gaussian distributions: In Appendix E, we study MC3D when applied to
d–dimensional distributions. In Theorem 7, we show that under bounded variance assumptions, s? is
an εm-approximate Nash equilibrium and that PR(MC3D, s

?) ≤ 2 + εm where εm ∈ O(1/m).

3.1 Proof sketch of Theorem 1

When m ≤ 4: First, consider the (easy) case m ≤ 4. At s?i , the total amount of data collected is
σ/
√
c (see n?i in (8)), and as there is no corrupted dataset, h?i simply reduces to the sample mean of

Xi∪Y−i. The mechanism is IR since an agent’s penalty will be σ
√
c(1+ 1/m) which is smaller than

pIR
min (6). It is approximately efficient since the social penalty is σ

√
c(m+ 1) which is at most twice

the global minimum 2σ
√
mc when m ≤ 4. Finally, NIC is guaranteed by the same argument used

in (6); as long as the total amount of data is less than σ/
√
c, the cost of collecting one more point

is offset by the marginal decrease in the estimation error; hence, the agent is incentivized to collect
more data. Moreover, as Ai does not depend on fi under these conditions, there is no incentive to
fabricate or falsify data.

When m > 4: We will divide this proof into four parts. We first show that G(α) = 0 in line (6) has a
solution α larger than

√
n?i =

√
σ(cm)−1/4. This will also be useful when analyzing the efficiency.

1. Equation (7) has a solution. We derive an asymptotic expansion of Erfc(·) using integration by
parts to analyze the solution to (7). When m ≥ 5, we show that G

(√
n?i
)
×G

(√
n?i (1 + 8/

√
m)
)
<

0. By continuity of G, there exists αm ∈
(√

n?i ,
√
n?i (1 + 8/

√
m)
)

s.t. G(αm) = 0. For m
large enough such that the residual in the asymptotic expansion is negligible, we show αm ∈(√

n?i ,
√
n?i (1 + logm/m)

)
via an identical technique.

2. The strategies s? in (8) is a Nash equilibrium: We show this via the following two steps. First
(2.1), We show that fixing any ni, the maximum risk and thus the penalty pi is minimized when agent
i submits the raw data and uses the weighted average as specified in (8), i.e for all ni,

pi(MC3D, ((ni, f
?
i , h

?
i ), s

?
−i)) ≤ pi(MC3D, ((ni, fi, hi), s

?
−i)), ∀(ni, fi, hi) ∈ N×F ×H. (9)

Second (2.2), we show that pi is minimized when agent i collects n?i samples under (f?i , h
?
i ), i.e.

pi(MC3D, ((n
?
i , f

?
i , h

?
i ), s

?
−i)) ≤ pi(MC3D, ((ni, f

?
i , h

?
i ), s

?
−i)), ∀ni ∈ N. (10)

2.1: Proof of (9). As the data collection cost does not change for fixed ni, it is sufficient to show that
(f?i , h

?
i ) minimizes the maximum risk. Our proof is inspired by the following well-known recipe for

proving minimax optimality of an estimator [24]: design a sequence of priors {Λ`}`, compute the
minimum Bayes’ risk {R`}` for any estimator, and then show that R` converges to the maximum
risk of the proposed estimator as `→∞.

To apply this recipe, we use a sequence of normal priors Λ` = N (0, `2) for µ. Howeiver, before
we proceed, we need to handle two issues. The first of these concerns the posterior for µ when
conditioned on (Xi, Zi, Z

′
i). Since the corruption terms εz,i added to Z ′i depend on Xi and Zi, this

dataset is not independent. Moreover, as the variance η2
i is the difference between two normal random

variables, Z ′i is not normal. Despite these, we are able to show that the posterior µ|(Xi, Zi, Z
′
i)

is normal. The second challenge is that the submission fi also affects the estimation error as it
determines the amount of noise η2

i . We handle this by viewing F ×H as a rich class of estimators
and derive the optimal Bayes’ estimator (fB

i,`, h
B
i,`) ∈ F ×H under the prior Λ`. We then show that

the minimum Bayes’ risk converges to the maximum risk when using (f?i , h
?
i ).
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Next, under the prior Λ` = N (0, `2), we can minimize the Bayes’ risk with respect to hi ∈ H by
setting hB

i,` to be the posterior mean. Then, the minimum Bayes’ risk R` can be written as,

R` = inf
fi∈F

E

∣∣Z′i∣∣(σ2 + α2

(
1

|Yi|
∑
y∈Yi

y − 1

|Zi|
∑
z∈Zi

z

)2)−1

+
|Xi|+ |Zi|

σ2
+

1

`2

−1
Note that Yi = fi(Xi) depends on fi. Via the Hardy-Littlewood inequality [10], we can show that
the above quantity is minimized when fB

i,` is chosen to be a shrunk version of the agent’s initial

dataset Xi, i.e fB
i,`(Xi) =

{(
1 + σ2/(|X|`2)

)−1
x, ∀x ∈ Xi

}
. This gives us an expression for

the minimum Bayes’ risk R` under prior Λ`. To conclude the proof, we note that the minimum
Bayes’ risk under any prior is a lower bound on the maximum risk, and show that R` approaches the
maximum risk of (f?i , h

?
i ) from below. Hence, (f?i , h

?
i ) is minimax optimal for any ni. (Above, it is

worth noting that fB
i,` → f?i = I as `→∞. In the Appendix, we also find that hB

i,` → h?i . )

2.2: Proof of (10). We can now write pi(MC3D, ((ni, f
?
i , h

?
i ), s

?
−i)) = R∞ + cni, where R∞ is the

maximum risk of (f?i , h
?
i ) (and equivalently, the limit of the minimum Bayes’ risk):

R∞ := Ex∼N (0,1)

[(
(m− 2)n?i

(
σ2 + α2

(
σ2/ni + σ2/n?i

)
x2
)−1

+ (ni + n?i )σ
−2
)−1

]

The term inside the expectation is convex in ni for each fixed x. As expectation preserves convexity,
we can conclude that pi is a convex function of ni. The choice of α in (7) ensures that the derivative
is 0 at n? which implies that n? is a minimum of this function.

3. MC3D is individually rational at s?: This is a direct consequence of step 2 as we can show that an
agent ‘working on her own’ is a valid strategy in MC3D.

4. MC3D is approximately efficient at s?: By observing that the global minimum penalty
is 2σ

√
cm, we use a series of nontrivial algebraic manipulations to show PR(MC3D, s

?) =
1
2

(
10α2/n?i−1

4(m+1)α2/(mn?i )−1 + 1
)
. As α >

√
n?i , some simple algebra leads to PR(MC3D, s

?) < 2.

4 Special Cases: Restricting the Agents’ Strategy Space

In this section, we study two special cases motivated by some natural use cases, where we restrict the
agents’ strategy space. In addition to providing better guarantees on the efficiency, this will also help
us better illustrate the challenges in our original setting.

4.1 Agents cannot fabricate or falsify data
First, we study a setting where agents are not allowed to fabricate data or falsify data. Specifically,
in (2), F is restricted to functions which map a dataset to any subset. This is applicable when there
are regulations preventing such behavior (e.g government institutions, hospitals)

Mechanism: The discussion at the end of §2 motivates the following modification to the pooling
mechanism. We set the allocation space to be A =

⋃
n≥0 Rn, i.e the space of all datasets. If an

agent i submits at least σ/
√
cm points, then give her all the other agents’ datasets, i.e Ai = ∪j 6=iYj ;

otherwise, set Ai = ∅. The recommended strategy s?i = (n?i , f
?
i , h

?
i ) of each agent is to collect

σ/
√
cm points, submit it as is f?i = I, and then use the sample mean of Zi ∪Ai to estimate µ. The

theorem below, whose proof is straightforward, states the main properties of this mechanism.

Theorem 2. The following statements about the mechanism and strategy profile s? in the paragraph
above are true when F is restricted to functions which map a dataset to any subset: (i) s? is a Nash
equilibrium. (ii) The mechanism is individually rational at s?. (iii) At s?, the mechanism is efficient.

It is not hard to see that this mechanism can be easily manipulated by the agent if there are no
restrictions on F . As the mechanism only checks for the amount of data submitted, the agent can
submit a fabricated dataset of σ/

√
cm points, and then discard this dataset when computing the

estimate, which results in detrimental free-riding.
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4.2 Agents accept an estimated value from the mechanism
Our next setting is motivated by use cases where the mechanism may directly deploy the estimated
value for µ in some downstream application for the agent, i.e the agents are forced to use this value.
This is motivated by federated learning, where agents collect and send data to a server (mechanism),
which deploys a model (estimate) directly on the agent’s device [9, 23]. This requires modifying the
agent’s strategy space to S = N× F . Now, an agent can only choose (ni, fi), how much data she
wishes to collect, and how to fabricate or falsify the dataset. A mechanism is defined as a procedure
b :
(⋃

n≥0 Rn
)m → Rm, which maps m datasets to m estimated mean values.

Algorithm 3 (see Appendix D) outlines a family of mechanisms parametrized by ε > 0 for this setting.
As we will see shortly, with parameter ε, the mechanism can achieve a PR of (1+ε). This mechanism
computes agent i’s estimate for µ as follows. First, let Y−i be the union of all datasets submitted by
the other agents. Similar to Algorithm 1, the algorithm individually adds Gaussian to each Y−i to
obtain Zi (line 10). Unlike before, this noise is added to the entire dataset and the variance η2

i of this
noise depends on the difference between the sample means of the agent’s submission Yi and all of
the other agents’ submissions Y−i. It also depends on two ε-dependent parameters defined in line 6.
Finally, the mechanism deploys the sample mean of Yi ∪ Zi as the estimate for µ. The recommended
strategies s?i = (n?i , f

?
i ) for the agents is to simply collect n?i = σ/

√
cm points and submit it as is

f?i = I. The following theorem states the main properties of the mechanism.
Theorem 3. Let ε > 0. The following statements about Algorithm 3 and the strategy profile s? given
in the paragraph above are true: (i) s? is a Nash equilibrium. (ii) The mechanism is individually
rational at s?. (iii) At s?, the mechanism is approximately efficient with PR(M, s?) ≤ 1 + ε.

The above theorem states that it is possible to obtain a social penalty that is arbitrarily close to the
global minimum under the given restriction of the strategy space. However, this mechanism is not
NIC if agents are allowed to design their own estimator. For instance, if the mechanism returns
Ai = Zi (line 10), then using a weighted average of the data in Xi and Zi yields a lower estimation
error than simple average used by the mechanism (see Appendix D). An agent can leverage this
insight to collect and submit less data and obtain a lower overall penalty at the expense of other
agents. Cai et al. [11] study a setting where agents are incentivized to collect data and submit it
truthfully via payments. Interestingly, their corruption method can be viewed as a special case of
Algorithm 3 with kε = 1 and only achieves a 1.5× factor of the global minimum social penalty.
Moreover, when applied to the more general strategy space, it shares the same shortcomings as the
mechanism in Theorem 3.

5 Conclusion

We studied collaborative normal mean estimation in the presence of strategic agents. Naive mecha-
nisms which only look at the quantity of the dataset submitted, can be manipulated by agents who
under-collect and/or fabricate data, leaving all agents worse off. To address this issue, when sharing
the others’ data with an agent, our mechanism MC3D corrupts this dataset proportional to how much
the data reported by the agent differs from the other agents. We design minimax optimal estimators
for this corrupted dataset to achieve a socially desirable Nash equilibrium.

Future directions: We believe that designing mechanisms for other collaborative learning settings
may require relaxing the exact NIC guarantees to make the analysis tractable. For many learning
problems, it is difficult to design exactly optimal estimators, and it is common to settle for rate-
optimal (i.e up to constants) estimators [24]. For instance, even simply relaxing to high dimensional
distributions with bounded variance, MC3D can only provide an approximate NIC guarantee.
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A Proof of Theorem 1

In this section, we prove Theorem 1. This section is organized as follows. First, in §A.1, we consider
the case where m ≤ 4. In the remainder of this section, we will assume m ≥ 5. First, in §A.2, we
will show that (7) can be solved for α and state some properties about the solution. Then, in §A.3, we
will prove the Nash incentive compatibility result, in §A.4 we will prove individual rationality, and
in §A.5, we will prove the result on efficiency.

A.1 When m ≤ 4

First, consider the (easy) case m ≤ 4. At s?i , the total amount of data collected is σ/
√
c as each agent

will be collecting n?i = σ
m
√
c

(see (8)). As there is no corrupted dataset, h?i simply reduces to the
sample mean of Xi ∪ Y−i. The individual rationality property follows from the following simple
calculation:

pi(MC3D, s
?) =

(
1 +

1

m

)√
cσ < 2

√
cσ = pIR

min.

Similarly, the bound on the ratio between the penalties can also be obtained via the following
calculation:

PR =
m
(
1 + 1

m

)√
cσ

2σ
√
cm

<
√
m ≤ 2.

Finally, to show NIC, consider agent i and assume that all other agents have followed the rec-
ommended strategies, i.e collected σ/(m

√
c). Then, the agent will have an uncorrupted dataset

Y−i =
⋃
j 6=iXj of n?−i = (m − 1)σ/(m

√
c) points with no corruption. Regardless of what she

chooses to submit, the best estimator she could use with the union of this dataset Y−i and the data
she collects Xi and will be the sample mean as it is minimax optimal. The number of points that
minimizes her penalty is,

argmin
ni

(
sup
µ

E
[
(hi(Xi, Yi, Y−i)− µ)2

∣∣∣µ
]

+ cni

)
= argmin

ni∈R

( σ2

ni + n?−i
+ cni

)
=

σ

m
√
c

Finally, as Ai does not depend on fi under these conditions, there is no incentive to fabricate or
falsify data, i.e choosing anything other than f? = I does not lower her utility.

In the remainder of this section, will study the harder case, m ≥ 4.

A.2 Existence of a solution to (7) and some of its properties

In this section, we show that G
(

σ1/2

(cm)1/4

)
< 0 and G

((
1 + Cm

m

)
σ1/2

(cm)1/4

)
> 0, where Cm = 20

when m ≤ 20 and Cm = 5 when m > 20. This means equation G(α) = 0 has solution in(
σ1/2

(cm)1/4
,
(
1 + Cm

m

)
σ1/2

(cm)1/4

)
.

First, in Lemma 12, we derive an asymptotic expansion of the Gaussian complementary error function,
and construct lower and upper bounds for G(α) that are easier to work with. We have restated these
lower (ErfcLB) and upper (ErfcUB) bounds below.

ErfcUB(x) :=
1√
π

(
exp(−x2)

x
− exp(−x2)

2x3
+

3 exp(−x2)

4x5

)
(11)

ErfcLB(x) :=
1√
π

(
exp(−x2)

x
− exp(−x2)

2x3

)
(12)

We can now use this to derive the following lower (GLB) and upper (GUB) bounds on G. Here, we
have used the fact that 4(m+ 1) α2

σ
√
m/c
− 1 > 0 when α ≥ (σ/

√
cm)1/2. We have:

GLB(α) :=

(
m− 4

m− 2

4α2

σ/
√
cm
− 1

)
4α√

σ(m/c)1/4

−
(

4(m+ 1)
α2

σ
√
m/c

− 1

)
√

2π exp

(
σ
√
m/c

8α2

)
ErfcUB

(√
σ(m/c)1/4

2
√

2α

)
,
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Figure 1: Plot for G
((

1 + Cm
m

)
σ1/2

(cm)1/4

)
. See G_em_plot.py. The discontinuity at m = 20 is due

to the different values for Cm when m ≤ 20 and when m > 20.

GUB(α) :=

(
m− 4

m− 2

4α2

σ/
√
cm
− 1

)
4α√

σ(m/c)1/4

−
(

4(m+ 1)
α2

σ
√
m/c

− 1

)
√

2π exp

(
σ
√
m/c

8α2

)
ErfcLB

(√
σ(m/c)1/4

2
√

2α

)
.

By first, substituting σ/
√
cm for α in the expressions for GUB and ErfcUB, and then via a sequence

of algebraic manipulations, we can verify that

G

(
σ1/2

(cm)1/4

)
≤ GUB

(
σ1/2

(cm)1/4

)

=
4
(

4(m−4)
m−2 − 1

)(
σ√
cm

)1/2

√
σ
(
m
c

)1/4 −
√

2

(
4(m+ 1)√
m
c

√
cm
− 1

)


2
√

2
(

σ√
cm

)1/2

√
σ
(
m
c

)1/4 −
8
√

2
(

σ√
cm

)3/2

σ3/2
(
m
c

)3/4




=− 128

(m− 2)m5/2
< 0.

Next, we will show that G
((

1 + Cm
m

)
σ1/2

(cm)1/4

)
> 0 by studying the lower bound GLB. For m ∈

[5, 500], we can verify individually that G
((

1 + Cm
m

)
σ1/2

(cm)1/4

)
> 0 (See Figure 1). For m > 500,

we have:

G

((
1 +

Cm
m

)
σ1/2

(cm)1/4

)
= G

((
1 +

5

m

)
σ1/2

(cm)1/4

)
≥ GLB

((
1 +

5

m

)
σ1/2

(cm)1/4

)

=

4

(
4( 5
m+1)

2
(m−4)

m−2 − 1

)(
5
m + 1

) (
σ√
cm

)1/2

√
σ
(
m
c

)1/4

−
√

2

(
4
(

5
m + 1

)2
(m+ 1)√

m
c

√
cm

− 1

)(
2
√

2
(

5
m + 1

) (
σ√
cm

)1/2

√
σ
(
m
c

)1/4 −
8
√

2
(

5
m + 1

)3 ( σ√
cm

)3/2

σ3/2
(
m
c

)3/4

+
96
√

2
(

5
m + 1

)5 ( σ√
cm

)5/2

σ5/2
(
m
c

)5/4

)

=
64(m+ 5)3

(
m6 − 191m5 − 1566m4 − 3920m3 + 2100m2 + 19500m+ 15000

)

(m− 2)m21/2
.

When m > 500,

m6 − 191m5 − 1566m4 − 3920m3 = m3(m3 − 191m2 − 1566m− 3920)
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>m3((200 + 200 + 100)m2 − 191m2 − 1566m− 3920)

>m3(200m2 + 105m+ 2.5× 107 − 191m2 − 1566m− 3920) > 0.

Combining the results from the two previous displays, we have, G
((

1 + Cm
m

)
σ1/2

(cm)1/4

)
> 0 which

completes the proof for this section.

A.3 Algorithm 1 is Nash incentive compatible

In this section, we will prove the following lemma which states that s?i , as defined in (8) is a Nash
equilibrium in MC3D.

Lemma 4 (NIC). The recommended strategies s? = {(n?i , f?i , h?i )}i as defined in (8) in mechanism
MC3D (Algorithm 1) satisfies:

pi(MC3D, s
?) ≤ pi(MC3D, (si, s

?
−i))

for all i ∈ [m] and si ∈ N×F ×H.

The Proof of Lemma 4 relies on the following two lemmas:

Lemma 5 (Optimal Estimation and Submission). For all i ∈ [m] and (ni, fi, hi) ∈ N×F ×H.

pi(MC3D, ((ni, f
?
i , h

?
i ), s

?
−i)) ≤ pi(MC3D, ((ni, fi, hi), s

?
−i)).

See the Proof of Lemma 5 in §A.3.1

Lemma 6 (Optimal Sample Size). For all i ∈ [m] and ni ∈ N.

pi(MC3D, ((n
?
i , f

?
i , h

?
i ), s

?
−i)) ≤ pi(MC3D, ((ni, f

?
i , h

?
i ), s

?
−i)).

See the Proof of Lemma 6 in §A.3.2

Proof of Lemma 4. By Lemma 5 and 6, we have, for all i ∈ [m] and s′i = (ni, fi, hi) ∈ N×F ×H,
pi(MC3D, s

?) = pi(MC3D, ((n
?
i , f

?
i , h

?
i ), s

?
−i)) ≤ pi(MC3D, ((ni, f

?
i , h

?
i ), s

?
−i))

≤ pi(MC3D, ((ni, fi, hi), s
?
−i)) = pi(MC3D, (s

′
i, s

?
−i))

A.3.1 Proof of Lemma 5

In this section, we will prove Lemma 5, which, intuitively states that, regardless of the amount
of data collected, agent i should submit the data as is (f?i = I) and use the weighted average
estimator in (8) to estimate µ. We will do so via the following three step procedure, inspired by
well–known techniques for proving minimax optimality of estimators (e.g see Theorem 1.12, Chapter
5 of Lehmann and Casella [24]).

1. First, we construct a sequence of prior distributions {Λ`}`≥1 for µ and calculate the sequence
of Bayesian risks under the prior distributions:

R` := inf
fi∈A,hi∈H

Eµ∼Λ`

[
E
[
(hi(Xi, fi(Xi), Ai)− µ)

2∣∣µ
]]
, ` ≥ 1.

2. Then, we will show that lim`→∞R` = supµ E
[
(h?i (Xi, f

?
i (Xi), Ai)− µ)2

∣∣µ
]
.

3. Finally, as the Bayesian risk is a lower bound on maximum risk, we will conclude that
(f?i , h

?
i ) is minimax optimal.

Without loss of generality, we focus only on the deterministic fi and hi. If either of them are
stochastic, we can condition on the external source of randomness and treat them as deterministic
functions. Our proof holds for any realization of this external source of randomness, and hence it will
hold in expectation as well. Similarly, Zi is randomly chosen in Algorithm 1. In the following, we
condition on this randomness and the entire proof will carry through.

Note that Yi = fi(Xi). We will use both of them interchangeably in the subsequent proof.
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Step 1 (Bounding the Bayes’ risk under the sequence of priors): We will use a sequence of
normal priors Λ` := N (0, `2) for all ` ≥ 1. To bound the Bayes’ risk under these priors, we will first
note that for a fixed fi ∈ F ,

x|µ ∼ N (µ, σ2) ∀x ∈ Xi ∪ Zi; (13)

x|µ, η2
i ∼ N (µ, σ2 + η2

i ) ∀x ∈ Z ′i. (14)

Here, recall that η2
i is a function of Yi and Zi. Because both Yi = fi(Xi) and η2

i are deterministic
functions of Xi, Zi when fi is fixed, the posterior distribution for µ conditioned on (Xi, Yi, Ai) can
be calculated as follows:
p(µ|Xi, Yi, Ai) = p

(
µ|Xi, Yi, Zi, Z

′
i, η

2
i

)
= p(µ|Xi, Zi, Z

′
i)

∝ p(µ,Xi, Zi, Z
′
i) = p(Z ′i|Xi, Zi, µ)p(Xi, Zi|µ)p(µ) = p(Z ′i|Xi, Zi, µ)p(Xi|µ)p(Zi|µ)p(µ)

∝ exp


− 1

2(σ2 + η2
i )

∑

x∈Z′i

(x− µ)2


 exp

(
− 1

2σ2

∑

x∈Xi∪Zi
(x− µ)2

)
exp

(
− µ

2

2`2

)

∝ exp

(
−1

2

( |Z ′i|
σ2 + η2

i

+
|Xi|+ |Zi|

σ2
+

1

`2

)
µ2

)
exp

(
1

2
2

(∑
x∈Z′i x

σ2 + η2
i

+

∑
x∈Xi∪Zi x

σ2

)
µ

)

= exp

(
−1

2

(
1

σ2
`

µ2 − 2
µ`
σ2
`

µ

))
∝ exp

(
− 1

2σ2
`

(µ− µ`)2

)
,

where

µ` =

∑
x∈Z′

i
x

σ2+η2i
+
∑
x∈Xi∪Zi

x

σ2

|Z′i|
σ2+η2i

+ |Xi|+|Zi|
σ2 + 1

`2

, and σ2
` =

1

|Z′i|
σ2+η2i

+ |Xi|+|Zi|
σ2 + 1

`2

. (15)

We can therefore conclude that (despite the non i.i.d nature of the data), the posterior for µ is Gaussian
with mean and variance as shown above. We have:

µ|Xi, Yi, Ai ∼ N (µ`, σ
2
` ).

Next, following standard steps (See Corollary 1.2 in Chapter 4 of [24]), we know that
Eµ
[
(hi(Xi, Yi, Ai)− µ)

2|Xi, Yi, Ai

]
is minimized when hi(Xi, Yi, Ai) = Eµ[µ|Xi, Yi, Ai] = µ`.

This shows that for any fi ∈ hi, the optimal hi is simply the posterior mean of µ under the prior Λ`
conditioned on (Xi, fi(Xi), Ai). We can rewrite the minimum averaged risk overH by switching
the order of expectation:

inf
hi∈H

Eµ∼Λ`

[
E
[
(hi(Xi, Yi, Ai)− µ)

2|µ
]]

= inf
hi∈H

EXi,Zi,Z′i
[
Eµ
[
(hi(Xi, Yi, Ai)− µ)

2|Xi, Zi, Z
′
i

]]

= EXi,Zi,Z′i
[
Eµ
[
(µ` − µ)

2|Xi, Zi, Z
′
i

]]
= EXi,Zi,Z′i

[
σ2
`

]

= EXi,Zi


 1

|Z′i|
σ2+η2i

+ |Xi|+|Zi|
σ2 + 1

`2


, (16)

the expectation in the last step involves only Xi, Zi because σ2
` depends only on Xi, Zi and |Z ′i|, but

not the instantiation of Z ′i.

Next, we will show that (16) is minimized for the following choice of fi which shrinks each points in
Xi by an amount that depends on the prior Λ`’s variance `2:

fi(Xi) =

{ |Xi| /σ2

|Xi| /σ2 + 1/`2
x , for each x ∈ Xi

}
. (17)

Remark 1. An interesting observation (albeit not critical to the proof) here is that fi in (17) converges
pointwise to f?i , i.e. I, as `→∞. This shows that the optimal submission function under the prior
converges to f?i . We can make a similar observation about the posterior mean in (15), where µ`
converges to h?i as `→∞.
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To prove (17), we first define the following quantities.

µ̂(Xi) :=
1

|Xi|
∑

x∈Xi
x, µ̂(Yi) :=

1

|Yi|
∑

x∈Yi
x, µ̂(Zi) :=

1

|Zi|
∑

s∈Zi
x.

We will also find it useful to express η2
i as follows. Here α is as defined in (7). We have:

η2
i = α2(µ̂(Yi)− µ̂(Zi))

2

The following calculations show that, conditioned on Xi, µ̂(Zi)− µ and µ− |Xi|/σ2

|Xi|/σ2+1/`2 µ̂(Xi) are
independent Gaussian random variables3:

p(µ̂(Zi)− µ, µ|Xi) ∝ p(µ̂(Zi)− µ, µ,Xi)

=p(µ̂(Zi)− µ,Xi|µ)p(µ) = p(µ̂(Zi)− µ|µ)p(Xi|µ)p(µ)

∝ exp

(
−1

2

|Zi|
σ2

(µ̂(Zi)− µ)
2

)
exp

(
− 1

2σ2

∑

x∈Xi
(x− µ)2

)
exp

(
− 1

2`2
µ2

)

∝ exp

(
−1

2

|Zi|
σ2

(µ̂(Zi)− µ)
2

)

︸ ︷︷ ︸
∝p(µ̂(Zi)−µ|Xi)

exp

(
−1

2

( |Xi|
σ2

+
1

`2

)(
µ− |Xi| /σ2

|Xi| /σ2 + 1/`2
µ̂(Xi)

)2
)

︸ ︷︷ ︸
∝p
(
µ− |Xi|/σ2
|Xi|/σ2+1/`2

µ̂(Xi)|Xi
)

Thus conditioning on Xi, we can write
(

µ̂(Zi)− µ
µ− |Xi|/σ2

|Xi|/σ2+1/`2 µ̂(Xi)

)
∼ N

((
0
0

)
,

(
σ2

|Zi| 0

0 1
|Xi|/σ2+1/`2

))
.

which leads us to

µ̂(Zi)−
|Xi| /σ2

|Xi| /σ2 + 1/`2
µ̂(Xi)

∣∣∣∣Xi ∼ N


 0,

σ2

|Zi|
+

1

|Xi| /σ2 + 1/`2︸ ︷︷ ︸
=:σ̃2

`


 (18)

Next, we will rewrite the squared difference in η2
i as follows:

η2
i

α2
=(µ̂(Yi)− µ̂(Zi))

2

=


µ̂(Zi)−

|Xi| /σ2

|Xi| /σ2 + 1/`2
µ̂(Xi)

︸ ︷︷ ︸
=σ̃`e

+




|Xi| /σ2

|Xi| /σ2 + 1/`2
µ̂(Xi)− µ̂(Yi)

︸ ︷︷ ︸
=:φ(Xi,fi)







2

.

Here, we observe that the first part of the RHS above is equal to σ̃`, where e is a normal noise
e|Xi ∼ N (0, 1) and σ̃` is as defined in (18). For brevity, we will denote the second part of the
RHS as φ(Xi, fi), which intuitively characterizes the difference between Xi and Yi. Importantly,
φ(Xi, fi) = 0 when fi is chosen to be (17).

Using e and φ, we can rewrite (16) using conditional expectation:

EXi,Zi


 1

|Z′i|
σ2+η2i

+ |Xi|+|Zi|
σ2 + 1

`2


 = EXi


EZi|Xi


 1

|Z′i|
σ2+η2i

+ |Xi|+|Zi|
σ2 + 1

`2







= EXi


Ee|Xi


 1

|Z′i|
σ2+α2(σ̃`e+φ(Xi,fi))

2 + |Xi|+|Zi|
σ2 + 1

`2







3This is akin to the observation that given u, v ∼ N (0, 1), then u− v and u+ v are independent.
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= EXi




∫ ∞

−∞

1

|Z′i|
σ2+α2σ̃2

` (e+φ(Xi,fi)/σ̃`)
2 + |Xi|+|Zi|

σ2 + 1
`2︸ ︷︷ ︸

=:F1(e+φ(Xi,fi)/σ̃`)

1√
2π

exp

(
−e

2

2

)

︸ ︷︷ ︸
=:F2(e)

de



, (19)

where we use the fact that e|Xi ∼ N (0, 1) in the last step. To proceed, we will consider the inner
expectation in the RHS above. For any fixed Xi, F1(·) (as marked on the RHS) is an even function
that monotonically increases on [0,∞) bounded by σ

|Xi|+|Zi| and F2(·) (as marked on the RHS) is
an even function that monotonically decreases on [0,∞). That means, for any a ∈ R,

∫ ∞

−∞
F1(e− a)F2(e)de ≤

∫ ∞

−∞

σ

|Xi|+ |Zi|
F2(e)de =

σ

|Xi|+ |Zi|
<∞.

By a corollary of the Hardy-Littlewood inequality in Lemma 9, we have
∫ ∞

−∞
F1(e+ φ(Xi, fi)/σ̃`)F2(e)de ≥

∫ ∞

−∞
F1(e)F2(e)de, (20)

the equality is achieved when φ(Xi, fi)/σ̃` = 0. In particular, the equality holds when fi is chosen
as specified in (17).

Now, to complete Step 1, we combine (16), (19) and (20) to obtain

inf
hi∈H

Eµ∼Λ`

[
E
[
(hi(Xi, Yi, Ai)− µ)

2|µ
]]

= EXi
[∫ ∞

−∞
F1(e+ φ(Xi, fi)/σ̃`)F2(e)de

]

≥ EXi
[∫ ∞

−∞
F1(e)F2(e)de

]
=

∫ ∞

−∞
F1(e)F2(e)de, (21)

where the last step is because conditioning on each realization of Xi, the term inside the expectation
is a constant. Using (21), we can write the Bayes risk R` under any prior Λ` as:

R` := inf
fi∈A,hi∈H

Eµ∼Λ`

[
E
[
(hi(Xi, Yi, Ai)− µ)

2∣∣µ
]]

=

∫ ∞

−∞
F1(e)F2(e)de

=Ee∼N (0,1)


 1

|Z′i|
σ2+α2σ̃2

` e
2 + |Xi|+|Zi|

σ2 + 1
`2




Because the term inside the expectation is bounded by σ2

|Xi|+|Zi| and lim`→∞ σ̃2
` = σ2

|Zi| + σ2

|Xi| , we
can use dominated convergence theorem to show that:

R∞ := lim
`→∞

R` = Ee∼N (0,1)




1

|Z′i|
σ2+α2

(
σ2

|Zi|+
σ2

|Xi|

)
e2

+ |Xi|+|Zi|
σ2


 (22)

Step 2: Maximum risk of (f?i , h
?
i ): Next, we will compute the maximum risk of the (f?i , h

?
i )

(see (8)) and show that it is equal to the RHS of (22). First note that we can write,
(
µ̂(Xi)− µ
µ̂(Zi)− µ

)
∼ N

((
0
0

)
,

(
σ2

|Xi| 0

0 σ2

|Zi|

))
.

By a linear transformation of this Gaussian vector, we obtain
( |Xi|

σ2 (µ̂(Xi)− µ) + |Zi|
σ2 (µ̂(Zi)− µ)

µ̂(Xi)− µ̂(Zi)

)
=

( |Xi|
σ2

|Zi|
σ2

1 −1

)(
µ̂(Xi)− µ
µ̂(Zi)− µ

)

∼N
((

0
0

)
,

( |Xi|+|Zi|
σ2 0

0 σ2

|Xi| + σ2

|Zi|

))
,
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which means |Xi|σ2 (µ̂(Xi)− µ)+ |Zi|σ2 (µ̂(Zi)− µ) and ηi
α = µ̂(Xi)−µ̂(Zi) are independent Gaussian

random variables. Therefore, the the maximum risk of (f?i , h
?
i ) is:

sup
µ

E
[
(h?i (Xi, Yi, Ai)− µ)2|µ

]
= sup

µ
Eηi


E







∑
x∈Z′

i
x

σ2+η2i
+ |Xi|

σ2 µ̂(Xi) + |Zi|
σ2 µ̂(Zi)

|Z′i|
σ2+η2i

+ |Xi|+|Zi|
σ2

− µ




2∣∣∣∣∣∣∣
ηi







= sup
µ

Eηi


E







∑
x∈Z′

i
(x−µ)

σ2+η2i
+ |Xi|

σ2 (µ̂(Xi)− µ) + |Zi|
σ2 (µ̂(Zi)− µ)

|Z′i|
σ2+η2i

+ |Xi|+|Zi|
σ2




2∣∣∣∣∣∣∣
ηi







= sup
µ

Eηi




E

[(∑
x∈Z′

i
(x−µ)

σ2+η2i
+ |Xi|

σ2 (µ̂(Xi)− µ) + |Zi|
σ2 (µ̂(Zi)− µ)

)2
∣∣∣∣∣ ηi
]

(
|Z′i|
σ2+η2i

+ |Xi|+|Zi|
σ2

)2




= sup
µ

Eηi




1
(
|Z′i|
σ2+η2i

+ |Xi|+|Zi|
σ2

)2

( |Z ′i| (σ2 + η2
i )

(σ2 + η2
i )2

+
|Xi|+ |Zi|

σ2

)



=Eηi


 1

|Z′i|
σ2+η2i

+ |Xi|+|Zi|
σ2


 = E


 1

|Z′i|
σ2+α2(µ̂(Zi)−µ̂(Xi))

2 + |Xi|+|Zi|
σ2




Because µ̂(Zi)− µ̂(Xi) ∼ N
(

0, σ2

|Xi| + σ2

|Zi|

)
, we can further write the maximum risk as:

sup
µ

E
[
(h?i (Xi, Yi, Ai)− µ)2|µ

]
= Ee∼N (0,1)




1

|Z′i|
σ2+α2

(
σ2

|Zi|+
σ2

|Xi|

)
e2

+ |Xi|+|Zi|
σ2


 = R∞

Here, we have observed that the final expression in the above equation is exactly the same as the
Bayes’ risk in the limit in (22) from Step 1.

Step 3: Minimax optimality of (f?i , h
?
i ): As the maximum is larger than the average, we can

write, for any prior Λ`, and any (fi, hi) ∈ F ×H,

sup
µ

E
[
(hi(Xi, fi(Xi), Ai)− µ)2|µ

]
≥ EΛ`

[
E
[
(hi(Xi, fi(Xi), Ai)− µ)2|µ

]]
≥ R`.

As this is true for all `, by taking the limit we have, for all (fi, hi) ∈ F ×H,

sup
µ

E
[
(hi(Xi, fi(Xi), Ai)− µ)2|µ

]
≥ R∞ = sup

µ
E
[
(h?i (Xi, f

?
i (Xi), Ai)− µ)2|µ

]
.

That is, the recommended (f?i , h
?
i ) has a smaller maximum risk than all other (fi, hi) ∈ F ×H. This

establishes that for any ni,

pi(MC3D, ((ni, f
?
i , h

?
i ), s

?
−i)) = inf

fi∈A
inf
hi∈H

pi(MC3D, ((ni, fi, hi), s
?
−i)).

A.3.2 Proof of Lemma 6

In the previous section, we showed that for any ni, the optimal (fi, hi) were (f?i , h
?
i ) as given in (8).

Now, we show that for the given (f?i , h
?
i ), the optimal number of samples is n?i = σ/

√
cm. For this,

we will show that pi is a convex function of ni and then show that its gradient is 0 at n?i .

First, noting that

µ̂(Zi)− µ̂(Xi) ∼ N
(

0,
σ2

|Xi|
+

σ2

|Zi|

)
,
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we can rewrite the penalty term as:

p(ni) :=pi
(
MC3D, ((ni, f

?
i , h

?
i ), s

?
−i)
)

= E


 1

|Z′i|
σ2+α2(µ̂(Zi)−µ̂(Xi))

2 + |Xi|+|Zi|
σ2


+ cni

=Ex∼N (0,1)




1

|Z′i|
σ2+α2

(
σ2

|Xi|+
σ2

|Zi|

)
x2

+ |Xi|+|Zi|
σ2


+ cni

=Ex∼N (0,1)




1
(m−2)n?i

σ2+α2

(
σ2

ni
+ σ2

n?
i

)
x2

+
ni+n?i
σ2

︸ ︷︷ ︸
=:l(ni,x;α)




+ cni (23)

Convexity of penalty function: To show that p(ni) is convex in ni, let us consider l(ni, x;α). Fixing
α and x, we have

∂

∂ni
l(ni, x;α) = −σ2

1 +
(m−2)n?i(

1+α2

(
1
ni

+ 1
n?
i

)
x2

)2
α2x2

n2
i


 (m−2)n?i

1+α2

(
1
ni

+ 1
n?
i

)
x2

+ ni + n?i




2 = −σ2

1 +
(m−2)n?iα

2x2(
ni+α2

(
1+

ni
n?
i

)
x2

)2


 (m−2)n?i

1+α2

(
1
ni

+ 1
n?
i

)
x2

+ ni + n?i




2

(24)

As ∂
∂ni

l(ni, x;α) is an increasing function of ni, we have that l(ni, x;α) is a convex function in ni.
As expectation preserves convexity (see Lemma 10), p(ni) is a convex function.

Penalty is minimized when ni = n?i . Lemma 13 provides an expression for the derivative of p(ni)
(obtained purely via algebraic manipulations). Using this, we have

p′(n?i ) =− σ2

64 α2

m−2
α√
mn?i

mn?i

(
4α√
mn?i

(
4α2m

(m− 2)n?i
− 1

)

− exp

(
mn?i
8α2

)(
4α2

mn?i
(m+ 1)− 1

)√
2πErfc


 1

2
√

2
√

α2

mn?i



)

+ c (By Lemma 13)

=− σ2

64 α2

m−2
α√
mn?i

mn?i

(
4α√
mn?i

(
4α2(m− 4)

(m− 2)n?i
− 1

)

− exp

(
mn?i
8α2

)(
4α2

mn?i
(m+ 1)− 1

)√
2πErfc


 1

2
√

2
√

α2

mn?i



)

=G(α) = 0.

Here, the second step uses the fact that n?i = σ√
cm

. Finally, we have observed that the expression is
equal to G(α) as defined in (7) which is 0 by our choice of α. Since p′(n?i ) = 0 and p(·) is convex,
we can conclude that p(ni) is minimized when ni = n?i . Therefore,

pi(MC3D, ((n
?
i , f

?
i , h

?
i ), s

?
−i)) ≤ pi(MC3D, ((ni, f

?
i , h

?
i ), s

?
−i)).
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A.4 Algorithm 1 is individually rational

As outlined in the main text, the NIC property implies IR since ‘working on her own’ is a valid strategy
in the mechanism. Precisely, if an agent collects any number of points ni, chooses not to submit
anything fi(·) = ∅, and then uses the sample average of the points she collected hi(Xi,∅, Ai) =
|Xi|−1

∑
x∈Xi x, then (ni, fi, hi) ∈ S.

Below, we will prove this more formally and also show that the agent’s penalty is strictly smaller
when participating. For any fixed ni, without participating in the mechanism, the smallest penalty the
agent can achieve is by using empirical mean estimation and the penalty is:

σ2

ni
+ cni

When participating, the agent gets an additional n?i number of clean data along with some noisy data,
provided that all other agents are following s?−i. By using the empirical mean over the clean data, the
penalty is:

σ2

ni + n?i
+ cni <

σ2

ni
+ cni

Now, since the weighted average estimator in s?i is minimax optimal, the agent gets even smaller
maximum risk and hence smaller penalty. In other words, for any ni,

pi(MC3D, s
?) ≤ pi(MC3D, ((ni, f

?
i , h

?
i ), s

?
−i)) ≤

σ2

ni + n?i
+ cni <

σ2

ni
+ cni

By minimizing the RHS with respect to ni, we get pi(MC3D, s
?) < pIR

min. Thus Algorithm 1 is IR.

A.5 Algorithm 1 is approximately efficient

In this section, we will bound the penalty ratio PR for MC3D at the strategy profiles s?i .

First, noting that G(α) = 0 (see (7)), we can rearrange the terms in the equation to obtain:

exp

(
mn?i
8α2

)
Erfc


 1

2
√

2
√

α2

mn?i


 =

1√
2π

4α√
mn?i

(
4α2(m−4)
(m−2)n?i

− 1
)

4α2

mn?i
(m+ 1)− 1

(25)

Next, we will use the expression for p(ni) = pi(MC3D, (s
?
−i, (ni, f

?
i , h

?
i ))) in Lemma 13 and the

equation in (25) to simplify p(n?i ) as follows:

p(n?i ) =

√
α2

mn?i
σ2


2m

√
2π
√

α2

mn?i
− exp

(
mn?i
8α2

)
(m− 2)πErfc


 1

2
√

2

√
α2

mn?
i






4
√

2πα2
+ cn?i

(By Lemma 13)

=

√
α2

mn?i
σ2


2m

√
2π
√

α2

mn?i
− (m− 2)π 1√

2π

4α√
mn?

i

(
4α2(m−4)

(m−2)n?
i
−1

)
4α2

mn?
i

(m+1)−1




4
√

2πα2
+ cn?i (By (25))

=

σ2

(
m− (m− 2)

4α2(m−4)

(m−2)n?
i
−1

4α2

mn?
i

(m+1)−1

)

2mn?i
+ cn?i

=
σ2

2mn?i

4α2

n?i
(m+ 1)−m− 4α2

n?i
(m− 4) + (m− 2)

4α2

n?i

m+1
m − 1

+ cn?i

=
σ2

2mn?i

20α2

n?i
− 2

4α2

n?i

m+1
m − 1

+ cn?i =
σ2

mn?i

10α2

n?i
− 1

4α2

n?i

m+1
m − 1

+ cn?i

22



Algorithm 2 MPCS

1: Mechanism designer publishes:
2: The allocation space A =

⋃
n≥0 Rn, and the procedure in lines 6 –11.

3: Each agent i:
4: Choose strategy si = (ni, fi, hi).
5: Sample ni points Xi = {xi,j}nij=1 and submit Yi = fi(Xi) to the mechanism.
6: Mechanism:
7: For each agent i ∈ [m]: # can be done simultaneously for all agents
8: Ai ←

⋃
j 6=i Yj if |Yi| ≥ σ/

√
cm, Ai ← ∅ otherwise.

9: Return Ai to each agent.
10: Each agent i:
11: Compute estimate hi(Xi, Yi, Ai).

=σ

√
c

m




10α2

n?i
− 1

4α2

n?i

m+1
m − 1

+ 1




From our conclusion in §A.2, we have α2 > σ√
cm

= n?i , i.e. α
2

n?i
> 1. Therefore, we have:

PR(MC3D, s
?) =

mp(n?i )

2σ
√
cm

=
1

2




10α2

n?i
− 1

4α2

n?i

m+1
m − 1

+ 1




<
1

2




10α2

n?i
− 1 + 10α2

n?i

1
m +

(
2α2

n?i

m+1
m − 2

)

4α2

n?i

m+1
m − 1

+ 1


 = 2.

B Proof of Theorem 2

We will use MPCS to denote the mechanism in §4.1, as it pools the datsets, but checks for the size of
the dataset submitted by each agent. For clarity, we have stated MPCS algorithmically in Algorithm 2.
We will also re-state the recommended strategies s?i = {(n?i , f?i , h?i )}i below:

n?i =
σ√
cm

, f?i = I, h?i (Xi, Yi, Ai) =
1

|Xi ∪Ai|
∑

u∈Xi∪Ai
u (26)

Throughout this section, s?i will refer to (26) (and not (8)).

We will first prove that s?i is a Nash equilibrium. Because the sample mean achieves minimax error
for Normal mean estimation [24], we immediately have, for all (ni, fi, hi) ∈ S.

pi(MPCS, ((ni, fi, h
?
i ), s

?
−i)) ≤ pi(MPCS, ((ni, fi, hi), s

?
−i)).

Because the agent can only submit the raw dataset or a subset, and the agent’s allocation only depends
on the size of the dataset, the size of the dataset she receives can always be maximized by submittng
the whole data set she collects, i.e. chooses fi = I. Therefore, we have for all (ni, fi, hi) ∈ S,

pi(MPCS, ((ni, f
?
i , h

?
i ), s

?
−i)) ≤ pi(MPCS, ((ni, fi, h

?
i ), s

?
−i)) ≤ pi(MPCS, ((ni, fi, hi), s

?
−i)).

Finally, we can use the fact that the maximum risk of the sample mean estimator using n points is
σ2/n to show that the penalty is minimized when ni = n?i = σ/

√
cm. In particular, we have that if

ni < σ/
√
cm,

pi(MPCS, ((ni, f
?
i , h

?
i ), s

?
−i)) =

σ2

ni
+ cni > 2σ

√
c.

And if ni ≥ σ/
√
cm,

pi(MPCS, ((ni, f
?
i , h

?
i ), s

?
−i)) =

σ2

ni + (m− 1)σ/
√
cm

+ cni ≥ 2σ

√
c

m
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Because 2σ
√
c ≥ 2σ

√
c/m, pi(MPCS, ((ni, f

?
i , h

?
i ), s

?
−i)) is minimized when ni = σ/

√
cm. We

thus conclude that s? is a Nash equilibrium. That is, for all (ni, fi, hi) ∈ N×F ×H
pi(MPCS, s

?) ≤ pi(MPCS, ((ni, fi, hi), s
?
−i)).

Next, the IR and efficiency properties follow trivially from the fact that pi(MPCS, s
?) = 2σ

√
c/m for

each agent i. In particular, pi(MPCS, s
?) < pIR

min and P (MPCS, s
?) = 2σ

√
cm.

C Proof of Theorem 3

We will use MCDED to denote our mechanism in §4.2, as it corrupts the deployed estimate based on
the difference. We have stated this mechanism formally in Algorithm 3. We will also re-state the
recommended strategies s?i = {(n?i , f?i )}i below:

n?i =
σ√
cm

, f?i = I. (27)

Throughout this section, s?i will refer to (27) (and not (8) or (26)).

We will now present the proof of Theorem 3. First, in §C.1, we show that s? is a Nash equilibrium of
MCDED as the Nash incentive compatibility result. Then, in §C.2, we show individual rationality at
s?i . In §C.3, we conclude by showing that MCDED is approximately efficient by showing that its social
penalty at most a (1 + ε) factor of the global minimum.

C.1 Algorithm 3 is Nash incentive compatible

Step 1. We will first show that fixing any ni, the best strategy is to submit the raw data, i.e. for all
(ni, fi) ∈ N×F .

pi(MCDED, ((ni, f
?
i ), s?−i)) ≤ pi(MCDED, ((ni, fi), s

?
−i)). (28)

Let ez,i = εz,i/ηi, where ηi, and εz,i are as given in lines 9 and 10 respectively. We have that ez,i’s
are i.i.d. standard Normal samples. Because the cost term cni is fixed when ni is fixed, we only need
to consider the risk term. We will first define,

µ̂(Xi) :=
1

|Xi|
∑

x∈Xi
x, µ̂(Yi) :=

1

|Yi|
∑

x∈Yi
x, µ̂(Y−i) :=

1

|Y−i|
∑

x∈Y−i
x. (29)

Via some algebraic manipulations, we can express the maximum risk as:

sup
µ

E





 1

|Yi|+ (m− 1)n?i


∑

y∈Yi
(y − µ) +

∑

z∈Y−i
(z + ez,iηi − µ)






2
∣∣∣∣∣∣∣
µ




=
1

(|Yi|+ (m− 1)n?i )
2 sup

µ
E





∑

y∈Yi
(y − µ)




2

+


 ∑

z∈Y−i
(z + ez,iηi − µ)




2
∣∣∣∣∣∣∣
µ




=
1

(|Yi|+ (m− 1)n?i )
2 sup

µ
E


 (|Yi| (µ̂(Yi)− µ))

2
+


 ∑

z∈Y−i
(z − µ)




2

+


 ∑

z∈Y−i
ez,iηi




2
∣∣∣∣∣∣∣
µ




=
1

(|Yi|+ (m− 1)n?i )
2 sup

µ
E
[

(|Yi| (µ̂(Yi)− µ))
2

+ (m− 1)n?i β
2
ε (µ̂(Yi)− µ̂(Y−i))

2kε
∣∣∣µ
]

+
(m− 1)n?i σ

2

(|Yi|+ (m− 1)n?i )
2

Recall that βε also involves |Yi|. Note that as we have fixed ni and s−i = s?−i, the maximum risk
depends only on |Yi| and µ̂(Yi), that is, the agent’s maximum risk and hence penalty only depends on
the number of points she submitted, and their average value. Hence, to find the optimal submission
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Algorithm 3 MCDED

Require: Approximation parameter ε > 0 # to obtain a 1 + ε bound on PR.
1: Mechanism designer publishes: The procedure in lines 5 –11.
2: Each agent i:
3: Choose strategy si = (ni, fi).
4: Sample ni points Xi = {xi,j}nij=1 and submit Yi = fi(Xi) to the mechanism.
5: Mechanism:

6: kε ← d 1
2εe, βε ←

√
(
∑m
i=1|Yi|)

2
(m−1)kε−1

kε(2kε−1)!!σkεc
kε−2

2 m3kε/2

7: For each agent i ∈ [m]: # can be done simultaneously for all agents
8: Y−i ←

⋃
j 6=i Yj .

9: η2
i ← β2

ε

(
1
|Yi|
∑
y∈Yi y −

1
|Y−i|

∑
y∈Y−i y

)2kε
.

10: Zi ← {z + εz,i, for all z ∈ Y−i where εz,i ∼ N (0, η2
i )}

11: Deploy estimate
(

1
|Yi∪Zi|

∑
u∈Yi∪Zi u

)
for agent i.

Yi, we will first fix the size of the agent’s submission |Yi| and optimize for the sample mean µ̂(Yi)
(step 1.1), and then we will optimize for |Yi| (step 1.2).

Step 1.1. Since the other agents have each collected σ/
√
cm = n?i points and submitted it truthfully,

we have µ̂(Y−i) ∼ N
(
µ, σ2

(m−1)n?i

)
. Via a binomial expansion , we can write,

E
[
(µ̂(Yi)− µ̂(Y−i))

2kε
]

=E
[
((µ̂(Yi)− µ)− (µ̂(Y−i)− µ))

2kε
]

=

2kε∑

j=0

(−1)j
(

2kε
j

)
E
[
(µ̂(Yi)− µ)

j
]
E
[
(µ̂(Y−i)− µ)

2kε−j
]

=

kε∑

j=0

(
2kε
2j

)
E
[
(µ̂(Yi)− µ)

2j
]
E
[
(µ̂(Y−i)− µ)

2kε−2j
]

Thus the maximum risk can be written as:

sup
µ

E




kε∑

j=0

Aj(µ̂(Yi)− µ)2j

∣∣∣∣∣∣
µ


 (30)

where A0, . . . , Akε is a sequence of positive coefficients.

Similar to the proof of Theorem 1, we construct a lower bound on the maximum risk using a sequence
of Bayesian risks. Let Λ` := N (0, `2), ` = 1, 2, . . . be a sequence of prior for µ. For fixed `, the
posterior distribution is:

p(µ|Xi) ∝p(Xi|µ)p(µ) ∝ exp

(
− 1

2σ2

∑

x∈Xi
(x− µ)2

)
exp

(
− 1

2`2
µ2

)

∝ exp

(
−1

2

(
ni
σ2

+
1

`2

)
µ2 +

1

2
2

∑
x∈Xi x

σ2
µ

)
.

This means the posterior of µ given Xi is Gaussian with:

µ|Xi ∼ N
(
niµ̂(Xi)/σ

2

ni/σ2 + 1/`2
,

1

ni/σ2 + 1/`2

)
=: N

(
µ`, σ

2
`

)
.

Therefore, the posterior risk is:

E




kε∑

j=0

Aj(µ̂(Yi)− µ)2j

∣∣∣∣∣∣
Xi


 =E




kε∑

j=0

Aj((µ̂(Yi)− µ`)− (µ− µ`))2j

∣∣∣∣∣∣
Xi



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=

∫ ∞

−∞

kε∑

j=0

Aj(e− (µ̂(Yi)− µ`))2j

︸ ︷︷ ︸
=:F1(e−(µ̂(Yi)−µ`))

1

σ`
√

2π
exp

(
− e2

2σ2
`

)

︸ ︷︷ ︸
=:F2(e)

de

Because:

• F1(·) is even function and increases on [0,∞);
• F2(·) is even function and decreases on [0,∞, and

∫
R F2(e)de <∞

• For any a ∈ R,
∫
R F1(e− a)F2(e)de <∞,

By the corollary of Hardy-Littlewood inequality in Lemma 9,
∫

R
F1(e− a)F2(e)de ≥

∫

R
F1(e)F2(e)de,

which means the posterior risk is minimized when µ̂(Yi) = µ`. In Lemma 11, we have stated
expressions for the expected value of the power of a normal random variable. Using this, we can
write the Bayes risk as:

R` := E



kε∑

j=0

AjE
[

(µ− µ`)2j
∣∣∣Xi

]

 =

kε∑

j=0

Aj(2j − 1)!!σ2j
`

and the limit of Bayesian risk as `→∞ is

R∞ := lim
`→∞

kε∑

j=0

Aj(2j − 1)!!
σ2j

nji

When µ̂(Yi) = µ̂(Xi), the maximum risk is:

sup
µ

E




kε∑

j=0

Aj(µ̂(Yi)− µ)2j

∣∣∣∣∣∣
µ


 = sup

µ
E




kε∑

j=0

Aj(µ̂(Xi)− µ)2j

∣∣∣∣∣∣
µ




=

kε∑

j=0

Aj(2j − 1)!!σ2jn−ji = R∞.

This means, fixing ni and |Yi|, agent i achieves minimax risk when choosing µ̂(Yi) = µ̂(Xi); as the
maximum is larger than the average, this follows using a similar argument to Step 3 in §A.3.

Step 1.2. Next, we will show that the best size of the submission is |Yi| = |Xi| = ni, assuming
µ̂(Yi) = µ̂(Xi). For this, we will first use n?i to rewrite β2

ε as

β2
ε =

n?i
kε−2(m− 1)kε−1(|Yi|+ (m− 1)n?i )

2

kε(2kε − 1)!!mkε+1σ2kε−2
.

Because

µ̂(Xi)− µ̂(Y−i) ∼ N
(

0,

(
1

ni
+

1

(m− 1)n?i

)
σ2

)
,

the risk term in the penalty can be rewritten and lower bounded as follows:

1

(|Yi|+ (m− 1)n?i )
2

(
|Yi|2 σ2/ni + (m− 1)n?i β

2
ε (2kε − 1)!!

(
1

ni
+

1

(m− 1)n?i

)kε
σ2kε

)

+
(m− 1)n?i σ

2

(|Yi|+ (m− 1)n?i )
2

=
|Yi|2 σ2

ni
+ (m− 1)n?i σ

2

(|Yi|+ (m− 1)n?i )
2 +

n?i
kε−1(m− 1)kε

kεmkε+1

(
1

ni
+

1

(m− 1)n?i

)kε
σ2
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≥ σ2

ni + (m− 1)n?i
+
n?i

kε−1(m− 1)kε

kεmkε+1

(
1

ni
+

1

(m− 1)n?i

)kε
σ2.

Here, the last step follows from the fact that

|Yi|2 σ2

ni
+ (m− 1)n?i σ

2

(|Yi|+ (m− 1)n?i )
2 =

|Yi|2 σ2

ni
+ (m− 1)n?i σ

2

ni
|Yi|2
ni

+ 2 |Yi| (m− 1)n?i + (m− 1)2n?i
2

≥
|Yi|2 σ2

ni
+ (m− 1)n?i σ

2

ni
|Yi|2
ni

+
(
ni + |Yi|2

ni

)
(m− 1)n?i + (m− 1)2n?i

2
=

|Yi|2 σ2

ni
+ (m− 1)n?i σ

2

(ni + (m− 1)n?i )
(
|Yi|2
ni

+ (m− 1)n?i

)

=
σ2

ni + (m− 1)n?i
.

Equality holds in this inequality if and only if |Yi| = ni.

In conclusion, fixing ni, the agent can minimize her penalty by submitting ni points with the same
sample mean as the dataset Xi she collected. One way to achieve this is set fi = I. This completes
the proof of (28).

Step 2: Our next step is to show that the agent’s best strategy is to collect n?i data points. That is, we
will show for all ni ∈ N.

pi(MCDED, ((n
?
i , f

?
i ), s?−i)) ≤ pi(MCDED, ((ni, f

?
i ), s?−i)). (31)

In the following, we will use p(ni) as a shorthand for pi(MCDED, ((ni, f
?
i ), s?−i)). The penalty can be

rewritten as:

p(ni) =
σ2

ni + (m− 1)n?i
+
n?i

kε−1(m− 1)kε

kεmkε+1

(
1

ni
+

1

(m− 1)n?i

)kε
σ2 + cni

We need to show that pi(ni) achieves minimum at ni = n?i . The derivative of pi(·) is:

p′(ni) =− σ2

(ni + (m− 1)n?i )
2

+
n?i

kε−1(m− 1)kε

mkε+1

(
1

ni
+

1

(m− 1)n?i

)kε−1

σ2

(
− 1

n2
i

)
+ c

Because p′(ni) increase in ni, p(ni) is convex. Moreover, because

p′(n?i ) =− σ2

m2n?i
2 +

n?i
kε−1(m− 1)kε

mkε+1

(
1

n?i
+

1

(m− 1)n?i

)kε−1

σ2

(
− 1

n?i
2

)
+ c

=− σ2

m2n?i
2 −

(m− 1)σ2

m2n?i
2 + c = − σ2

mn?i
2 + c = 0,

we know p(ni) reaches minimum at ni = n?i . This concludes the proof for (31).

C.2 Algorithm 3 is individually rational

The penalty of an agent at the recommended strategies can be expressed as:

pi(MCDED, s
?
i ) = p(n?i ) =

σ2

mn?i
+
n?i

kε−1(m− 1)kε

kεmkε+1

(
1

n?i
+

1

(m− 1)n?i

)kε
σ2 + cn?i

=
σ2

mn?i
+
n?i

kε−1(m− 1)kε

kεmkε+1

mkε

n?i
kε(m− 1)kε

σ2 + cn?i

=
σ2

mn?i
+

1

kε

σ2

mn?i
+ cn?i =

(
2 +

1

kε

)
σ
√
c√
m
. (32)

We have that MCDED is IR when m ≥ 2, via the following simple calculation:
(

2 +
1

kε

)
σ
√
c√
m
≤
(

2 +
1

2

)
σ
√
c√

2
< 2σ

√
c = pIR

min
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C.3 Algorithm 3 is approximately efficient

Using the expression for pi(MCDED, s
?
i ) in (32), the penalty ratio can be bounded by:

PR(MCDED, s
?) =

(
2 + 1

kε

)
σ
√
cm

2σ
√
cm

= 1 +
1

2kε
≤ 1 + ε.

D Additional Materials for Section 4.2

D.1 Mechanism detail

See Algorithm 3.

D.2 Using a weighted average under the original strategy space from §2

In this section, we will consider a variation of MCDED when applied to our original strategy space
N×F ×H. For this, we will assume that MCDED will return Ai = Zi as the agent’s allocation, and
then an agent can use Xi, Yi, Zi to estimate µ. In this situation, below we show that the agent can
achieve a smaller penalty using a weighted average over Xi ∪ Zi instead of the sample mean used
by the mechanism. Here, the weights are proportional to the inverse of the variance of each data
point. (Our mechanism purposefully uses the sub-optimal sample mean in the restricted strategy
space N×F as a way to shape the agent’s penalty and incentivize good behavior.)

This shows that MCDED (with the above modification) is not NIC in this more general strategy space.
The agent can obtain a lower penalty using a better estimator (such as the weighted average we show
over here) and achieve a lower penalty. More importantly, as the agent knows that she can achieve a
lower estimation error via a better estimator instead of more data, she can leverage this insight to
collect less data and reduce her penalty even further.

We should emphasize that it is unclear if this weighted average is minimax optimal. It is also unclear
if there exists a Nash equilibrium for MCDED (or any straightforward modification of MCDED) in the
expanded strategy space.

The weighted average estimator: We will now present the weighted average estimator that
achieves a lower maximum risk. To show this, first note that for all x ∈ Xi, V[x] = σ2; when
(ni, fi) = (n?i , f

?
i ), for all x ∈ Zi,

V[x] =E
[
(z + εz,i − µ)

2
]

= σ2 + β2
εE
[
(µ̂(Xi)− µ̂(Y−i))

2kε
]

=σ2 +
n?i

kε−2(m− 1)kε−1(mn?i )
2

kε(2kε − 1)!!mkε+1σ2kε−2
(2kε − 1)!!

(
1

n?i
+

1

(m− 1)n?i

)kε
σ2kε

=σ2 +
n?i

kε(m− 1)kε−1

kεmkε−1

mkε

(m− 1)kεn?i
kε
σ2

=σ2 +
1

kε

m

m− 1
σ2

Consider the following weighted-average estimator:

hi(Xi, Yi, (Zi, η
2
i )) =

1
σ2

∑
x∈Xi x+ 1

σ2+ 1
kε

m
m−1σ

2

∑
x∈Zi x

n?i
σ2 +

(m−1)n?i
σ2+ 1

kε
m
m−1σ

2

The maximum risk of hi is

E
[(
hi(Xi, Yi, (Zi, η

2
i ))− µ

)2]
=

1
n?i
σ2 +

(m−1)n?i
σ2+ 1

kε
m
m−1σ

2

=
1

1 + m−1
1+ 1

kε
m
m−1

σ2

n?i
=

1 + 1
kε

m
m−1

m+ 1
kε

m
m−1

σ2

n?i

<

(
1 + 1

kε

)(
1 + 1

kε
1

m−1

)

m+ 1
kε

m
m−1

σ2

n?i
=

(
1 +

1

kε

)
σ2

mn?i
(33)
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Note that the RHS of (33) is the risk of the sample average deployed by MCDED. This means, suppose
all other agents choose s?, then agent i can choose a weighted average to reduce her penalty without
collecting more data.

E High dimensional mean estimation with bounded variance

In this section, we will study estimating a d–dimensional mean µ(θ) ∈ Rd for distributions θ with
bounded variance. We will focus on our original setting in §2, but will outline the modifications to
the formalism to accommodate the generality. For x ∈ Rd, let x(i) denote the ith dimension.

Modifications to the setting in §2: First, we should change the definitions of F ,H and M in
equations 1 and (2) to account for the fact that the data is d dimensional. For instance, the space
of functions mapping the dataset collected to the dataset submitted should be defined as F = {f :⋃
n≥0 Rd×n →

⋃
n≥0 Rd×n}. Next, let Θ = {θ; supp (θ) ⊂ Rd, Ex∼θ

[
(x(i) − µ(θ)(i))2

]
≤

σ2, ∀ i ∈ [d]} be the class of all d–dimensional distributions where the variance along each dimension
is bounded by σ2. Here, the maximum variance σ2 is known and is public information. Note that
we do not assume that the individual dimensions are independent. An agent’s penalty pi is defined
similar to (3) but considers the maximum risk over Θ, i.e

pi(M, s) = sup
θ∈Θ

E
[
‖hi(Xi, Yi, Ai)− µ(θ)‖22

∣∣ θ
]

+ cni. (34)

Finally, the social penalty and ratio PR are as defined in (5), but with the above definition for pi.

Mechanism: Our mechanism for this problem is the same as the one outlined in Algorithm 1, with
the following cosmetic modifications. First, the allocation space should now be A =

⋃
n≥0 Rd×n ×⋃

n≥0 Rd×n × Rd+. The noise modulating parameter α is determined by a similar equation as in (7),
but with c replaced with c/d. In line 12 of Algorithm 1, we should set the size of the dataset Zi to
be min{|Y−i|, σ

√
d/(cm)}. Finally, the operations in lines 13 and 14 should be interpreted as d–

dimensional operations that are performed elementwise. The recommended strategy s?i = (n?i , f
?
i , h

?
i )

for agent i is as follows:

n?i =





σ
m

√
d
c if m ≤ 4,

σ
√

d
cm if m ≥ 5

, f?i = I, (35)

h?i (Xi, Yi, (Zi, Z
′
i, η

2
i )) =

1
σ2

∑
u∈Xi∪Zi u+ 1

σ2+τ2
i

∑
u∈Z′i u

1
σ2 |Xi ∪ Z ′i|+ 1

σ2+τ2
i
|Z ′i|

, where, τ2
i =

2α2σ2

n?i
∈ R+.

Above, one difference worth highlighting is the change in the recommended estimator h?i . Previously,
the weighting used the η2

i term returned by the mechanism, which is a function of Yi and Zi. This
data-dependent weighting was necessary to obtain an exactly (i.e including constants) minimax
optimal estimator for the corrupted dataset, which in turn was necessary to achieve an exact Nash
equilibrium. However, bounding the risk when using a data-dependent weighting is challenging
when the Gaussian assumption does not hold. Instead, here we use a deterministic weighting via the
quantity τ2

i . While this is not exactly minimax optimal, we can show that its maximum risk is very
close to a lower bound, which helps us obtain an approximate Nash equilibrium. It is worth pointing
out that designing exactly minimax optimal estimators, even under i.i.d assumptions, is challenging
for general classes of distributions [24].

The following theorem states the main properties of this mechanism.
Theorem 7. The following statements are true about the mechanism MC3D in Algorithm 1 with the
above modifications. (i) The strategy profile s? as defined in (35) is an approximate Nash equilibrium,
i.e if all agents except i are following s?, then for any alternative strategy si for agent i, we have
pi(MC3D, s

?) ≤ pi(MC3D, (s
?
−i, si))(1 + 5/m) (ii) The mechanism is individually rational at s?. (iii)

The mechanism is approximately efficient at s?i , with PR(MC3D, s
?) < 2 + 10/m.

We see that even under this more general setting, our mechanism retains its main properties with
only a slight weakening of the results. We now have approximate, instead of exact, NIC, with the
benefit of deviation diminishing as there are more agents. Similarly, the bound on the efficiency is
only slightly weaker than the one in Theorem 1.
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E.1 Proof of Theorem 7

When m ≤ 4, the claims follow using the exact steps in §A.1. Therefore, we focus on the case m ≥ 5.
Moreover, some of the key steps of this proof follows along similar lines to Theorem 1, so we will
provide an outline and focus on the differences.

Approximate Nash incentive compatibility. We will first prove the statement (i) of Theorem 7,
which states that s?i , as defined in (35), is an approximate Nash equilibrium for MC3D. That is, we will
show that the maximum possible reduction in penalty for an agent i when deviating from s?i is small,
provided that all other agents are following s?−i.

For this, we will first lower bound the penalty pi (34) using the family of independent Gaussian distri-
butions. Let ΘN =

{
N (µ, σ2Id) : µ ∈ Rd

}
denote the space of d–dimensional normal distributions

with identity covariance matrix. For any mechanism M and strategy profile s ∈ Sm, we define the
penalty of agent i restricted to ΘN as:

pNi (M, s) = sup
θ∈ΘN

E
[
‖hi(Xi, Yi, Ai)− µ(θ)‖22

∣∣ θ
]

+ cni.

Since ΘN ⊂ Θ, it is straightforward to see that for all M ∈M and s ∈ Sm,

pNi (M, s) ≤ pi(M, s). (36)

We will now use this result to lower bound the penalty of an agent for any other alternative strategy.
First note that, by independence, the mean estimation problem on ΘN can be viewed as d independent
copies of the univariate normal mean estimation problem considered in Theorem 1 but with c replaced
with c/d. Let h̃?i be the weighted average that applies the estimator in (8) along each dimension.
And let s̃?i = (n?i , f

?
i , h̃

?
i ). We can now lower bound the penalty of agent i when following any

(alternative) strategy si ∈ S, provided that other agents are following s?−i. We have:

pi(MC3D, (si, s
?
−i)) = pi

(
MC3D,

(
si,
(
n?−i, f

?
−i, h

?
−i
)))

≥ pNi
(
MC3D,

(
si,
(
n?−i, f

?
−i, h

?
−i
)))

(By (36))

= pNi
(
MC3D,

(
si,
(
n?−i, f

?
−i, h̃

?
−i
)))

(As agent i’s penalty will not be affected by other agents’ estimators)

≥ pNi
(
MC3D,

((
n?i , f

?
i , h̃

?
i

)
,
(
n?−i, f

?
−i, h̃

?
−i
)))

( By adapting the analysis in §A.3. )

= pNi (MC3D, s̃
?) (37)

Above, the second step uses (36) and the third step uses the fact that other agent’s estimator will
not affect agent i’s penalty. The fourth step uses the fact that for estimation problems in ΘN , the
strategy profile s̃? = {(n?i , f?i , h̃?i )}i is a Nash equilibrium; in §A.3, we showed this for the one
dimensional case, but this proof can be easily adapted to d dimensions since we are assuming an
identity covariance matrix in ΘN . Finally, by adapting the analysis in §A.5, we can obtain the
following expression for agent i’s penalty pNi (MC3D, s̃

?) in ΘN :

pNi (MC3D, s̃
?) = dσ

√
c/d

m




10α2

n?i
− 1

4α2

n?i

m+1
m − 1

+ 1


 (38)

To state the approximate NIC result, we will now upper bound the penalty of the agent when following
s?i . Using the bounded variance assumption, we have:

pi(M, s?) = sup
θ∈Θ

E



∥∥∥∥∥

1
σ2

∑
u∈Xi∪Zi u+ 1

σ2+τ2
i

∑
u∈Z′i u

1
σ2 |Xi ∪ Z ′i|+ 1

σ2+τ2
i
|Z ′i|

− µ(θ)

∥∥∥∥∥

2

2

∣∣∣∣∣∣
θ


+ cn?i

= sup
θ∈Θ

d∑

k=1

E



( 1
σ2

∑
u∈Xi∪Zi

(
u(k) − µ(θ)(k)

)
+ 1

σ2+τ2
i

∑
u∈Z′i

(
u(k) − µ(θ)(k)

)

1
σ2 |Xi ∪ Z ′i|+ 1

σ2+τ2
i
|Z ′i|

)2
∣∣∣∣∣∣
θ


+ cn?i
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Figure 2: E(m) plot. See G_em_plot.py.

= sup
θ∈Θ

d∑

k=1

1
σ2

∑
u∈Xi∪Zi E

[(
u(k) − µ(θ)(k)

)]
+ 1

σ2+τ2
i

∑
u∈Z′i E

[(
u(k) − µ(θ)(k)

)]

1
σ2 |Xi ∪ Z ′i|+ 1

σ2+τ2
i
|Z ′i|

+ cn?i (39)

≤ d
2n?i
σ2 +

(m−2)n?i
σ2+ 2α2σ2

n?
i

+ cn?i =
σ2

n?i

d

2 + m−2

1+ 2α2

n?
i

+ cn?i = σ

√
cd

m


 m

2 + m−2

1+ 2α2

n?
i

+ 1


, (40)

where (39) is because: for all k ∈ [d], ∀x(k)
1 , x

(k)
2 ∈ Xi ∪ Zi, ∀z(k)

1 , z
(k)
2 ∈ Z ′i, x

(k)
1 − µ(k), x

(k)
2 −

µ(k), z
(k)
1 − µ(k), z

(k)
2 − µ(k) are uncorrelated pairwise. The final inequality is due to the bounded

variance assumption.

Next, for brevity, let us write Am := α√
n?i

where α is as defined in (7). By adapting the analysis in

§A.2, we can show that

Am :=
α√
n?i
∈
(

1, 1 +
Cm
m

)
, where, Cm =

{
20, if m ≤ 20

5, if m > 20
. (41)

By combining the results in (37), (40), and (41), we obtain the following bound:

pi(MC3D, s
?)

infsi pi(MC3D, (si, s?−i))
− 1 ≤ pi(MC3D, s

?)

pNi (MC3D, s̃?)
− 1

≤
σ
√

cd
m

(
m

2+ m−2

1+2A2
m

+ 1

)

dσ
√

c/d
m

(
10A2

m−1

4A2
m
m+1
m −1

+ 1
) − 1 =

m
2+ m−2

1+ 2α2

n?
i

+ 1

10α2

n?
i
−1

4α2

n?
i

m+1
m −1

+ 1

− 1

=
4A2

m

(
(A2

m − 1)m+ 1− 4A2
m

)
m

(4A2
m +m)((7A2

m − 1)m+ 2A2
m)

=: E(m). (42)

Let E(m) denote the final upper bound obtained above. Next, we will prove E(m) < 5/m. When
m ∈ [5, 500], this can be individually verified for each value ofE(m) (see Figure 2). Whenm ≥ 500,
we have Am ≤ 1.01 (see (41)). From this we can conclude,

E(m) ≤4× 1.012 × (2.01× 5
mm− 3)m

6m2
<

5

m
. (43)

Combining the results in (42) and (43), we obtain the following approximate NIC result:

∀ i ∈ [m], si ∈ S, pi(MC3D, s
?) ≤ pi(MC3D, (si, s

?
−i))

(
1 +

5

m

)
.

Individual rationality: This proof is very similar to the proof in §A.4. In particular, using calcula-
tions similar to (40), we can show that regardless of the choice of ni, the agent’s penalty is strictly
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smaller when using the uncorrupted (Zi) and corrupted (Z ′i) datasets along with the weighted average
in (35).

Approximate efficiency: To bound the penalty ratio, first note that by (38) and using the same
reasoning as §A.5, we have that

∑
i p
N
i (MC3D, s̃

?)

infM∈M,s∈Sm
∑
i p
N
i (M, s)

=
mpNi (MC3D, s̃

?)

infM∈M,s∈Sm
∑
i p
N
i (M, s)

=
mpNi (MC3D, s̃

?)

2σ
√
cmd

≤ 2. (44)

Next, as ΘN ⊂ Θ, and noting that P (M, s) =
∑
i pi(M, s) for all M, s, we can also write,

inf
M∈M,s∈Sm

∑

i

pNi (M, s) ≤ inf
M∈M,s∈Sm

P (M, s). (45)

We can combine the above results to obtain the following upper bound on PR:

PR(MC3D, s
?) =

P (MC3D, s
?)

infM∈M,s∈Sm P (M, s)
≤ mpi(MC3D, s

?)

infM∈M,s∈Sm
∑
i p
N
i (M, s)

(By (45))

=
mpNi (MC3D, s̃

?)

infM∈M,s∈Sm
∑
i p
N
i (M, s)

pi(MC3D, s
?)

pNi (MC3D, s̃?)

≤ 2
pi(MC3D, s

?)

pNi (MC3D, s̃?)
(By (44))

= 2(1 + E(m))) (By definition of E(m), see (42))

< 2 +
10

m
. (By (43))

This establishes approximate efficiency for MC3D for the high dimensional setting.

F Application to Bayesian Settings

While our results study the Normal mean estimation in frequentist statistics, the main ideas can
also be applied to the Bayesian setting. When the Normal mean admits a zero-mean normal prior,
the major proof steps remain the same. Specifically, our current analysis constructs a sequence of
Gaussian priors and takes the limit to prove the minimax optimality. In the Bayesian setting, one can
simply skip the step in (22), which takes the limit w.r.t. the prior sequence. The other steps remain
the same.

G Useful Results

In this section, we will state some useful results that we have used throughout this proof.
Lemma 8 (Hardy-Littlewood inequality, Lemma 1.6 in Burchard [10]). Let f and g be non-negative
measurable functions that vanish at infinity. Let f∗ and g∗ to denote the symmetric decreasing
rearrangement of f and g. If

∫
f∗g∗ <∞, then,

∫
fg ≤

∫
f∗g∗.

Next, we will use the above result to derive a corollary that will be useful in our proofs.
Lemma 9 (A corollary of Hardy-Littlewood). Let f , g be nonnegative even functions such that,

• f is monotonically increasing on [0,∞).

• g is monotonically decreasing on [0,∞), and has a finite integral
∫
R g(x)dx <∞.

• ∀a,
∫
R f(x− a)g(x)dx <∞.

Then for all a, ∫

R
f(x)g(x)dx ≤

∫

R
f(x− a)g(x)dx
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Proof. We will break this proof into two cases. The first is when sup f <∞ and the second is when
sup f =∞. First consider the case sup f <∞. Let

M := lim
x→∞

f(x).

By using Lemma 8, ∀a,∫

R
(M − f(x))g(x)dx ≥

∫

R
(M − f(x− a))g(x)dx.

The result follows after rearrangement.

If sup f =∞, let fn(x) := min{f(x), n}. For all n and a, by Lemma 8,∫

R
(n− fn(x))g(x)dx ≥

∫

R
(n− fn(x− a))g(x)dx,

thus ∫

R
fn(x)g(x)dx ≤

∫

R
fn(x− a)g(x)dx.

Note that |fn(x)g(x)| ≤ f(x)g(x), the result follows by letting n → ∞ on both sides and using
dominated convergence theorem.

Below, we provide a brief example on using Lemma 9 to calculate the Bayes risk in a normal mean
estimation problem with i.i.d data. While it is not necessary to use Hardy-Littlewood for this problem,
this example will illustrate how we have used it in our proofs.
Example 1. Consider the Normal mean estimation problem given samples X[n] ∼ N (µ, σ2), where
µ admits a prior distribution N (0, `2). The goal is to minimize the average risk:

Eµ∼N (0,`2)

[
EX[n]∼N (µ,σ2)[L(µ̂− µ)|µ]

]
,

where the loss function, L(·), is an even function that increases on [0,∞). By a standard argument,
one can show that the posterior distribution of µ conditioned onX[n] is Gaussian with data-dependent
parameters µ̄, σ̄2:

µ|X[n] ∼ N (µ, σ2).

The posterior risk is:

Eµ|X[n]
[L(µ̂− µ)] = Eµ|X[n]

[L((µ− µ) + (µ− µ̂))] =

∫

R
L(x+ (µ− µ̂))︸ ︷︷ ︸

=:f(x+(µ−µ̂))

exp
(
− x2

2σ2

)

σ
√

2π︸ ︷︷ ︸
=:g(x)

dx

By applying Lemma 9 with f and g, the posterior risk above is minimized when µ̂ = µ. So is the
average risk.

The next Lemma shows that convexity is preserved under expectation under certain conditions.
Lemma 10. Let y be a random variable and f(x, y) be a function s.t.

• f(x, y) is convex in x;

• Ey[|f(x, y)|] <∞ for all x.

Then Ey[f(x, y)] is also convex in x.

Proof. For any x1, x2, we have
Ey[f(x1, y)] + Ey[f(x2, y)]

2
=Ey

[
f(x1, y) + f(x2, y)

2

]
≥ Ey

[
f

(
x1 + x2

2
, y

)]

Lemma 11 (Centered moments of normal random variable). LetX ∼ N (µ, σ2) be a normal random
variable and p ∈ Z+, then

E[(X − µ)p] =

{
0 if p is odd
σp(p− 1)!! if p is even

.
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G.1 Some technical results

Next, we will state some technical results that were obtained purely using algebraic manipulations
and are not central to the main proof ideas. The first result states upper and lower bounds on the
Gaussian complementary error function using an asymptotic expansion.
Lemma 12 (Erfc bound). For all x > 0,

Erfc(x) ≤ 1√
π

(
exp(−x2)

x
− exp(−x2)

2x3
+

3 exp(−x2)

4x5

)
(46)

Erfc(x) ≥ 1√
π

(
exp(−x2)

x
− exp(−x2)

2x3

)
(47)

Proof. By integration by parts:
√
π

2
Erfc(x) =

∫ ∞

x

exp
(
−t2

)
dt =

(
−exp

(
−t2

)

2t

)∣∣∣∣∣

∞

x

−
∫ ∞

x

exp(−t2)

2t2
dt

=
exp(−x2)

2x
−
((
−exp(−t2)

4t3

)∣∣∣∣
∞

x

−
∫ ∞

x

3 exp(−t2)

4t4
dt

)

=
exp(−x2)

2x
− exp(−x2)

4x3
+

∫ ∞

x

3 exp(−t2)

4t4
dt

︸ ︷︷ ︸
≥0

(48)

=
exp(−x2)

2x
− exp(−x2)

4x3
+

(
−3 exp(−t2)

8t5

)∣∣∣∣
∞

x

−
∫ ∞

x

15 exp(−t2)

8t6
dt

=
exp(−x2)

2x
− exp(−x2)

4x3
+

3 exp(−x2)

8x5
−
∫ ∞

x

15 exp(−t2)

8t6
dt

︸ ︷︷ ︸
≤0

(49)

The results follow by (48) and (49).

Our next result, states an expression for the function p(ni) and its derivative as defined in (23).
Lemma 13 (Value and derivative of penalty function at s?). Let p(ni) = pi(MC3D, ((ni, f

?
i , h

?
i ), s

?
−i))

(see (23)) and s?i , f
?
i , h

?
i be as specified in (8). The penalty of agent i in Algorithm 1 satisfies:

p(n?i ) =

√
α2

mn?i
σ2


2m

√
2π
√

α2

mn?i
− exp

(
mn?i
8α2

)
(m− 2)πErfc


 1

2
√

2

√
α2

mn?
i






4
√

2πα2
+ cn?i (50)

p′(n?i ) =− σ2

64 α2

m−2
α√
mn?i

mn?i

(
4α√
mn?i

(
4α2m

(m− 2)n?i
− 1

)

− exp

(
mn?i
8α2

)(
4α2

mn?i
(m+ 1)− 1

)√
2πErfc


 1

2
√

2
√

α2

mn?i



)

+ c. (51)

This proof involves several algebraic manipulations, so we will provide an outline of our proof
strategy. First, we will rearrange the denominator inside the expectation in (23), to write the LHS
of (50) as J +KE

[
1

L+x2

]
, and the LHS of (51) as J ′ +K ′E

[
1

L+x2

]
+K ′′E

[
1

(L+x2)2

]
, where the

expectation is with respect to a standard normal N (0, 1) variable, J,K,K ′,K ′′, L are quantities that
depend on ni,m, c, σ2, α2, and importantly, L is strictly larger than 0. Using properties of the normal
distribution, in Lemma 14, we prove the following result:

E
[

1

L+ x2

]
=

√
π

2L
exp

(
L

2

)
Erfc

(√
L

2

)
(52)
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E
[

1

(L+ x2)2

]
=

√
π

2
√

2L3/2
(1− L) exp

(
L

2

)
Erfc

(√
L

2

)
+

1

2L
(53)

By plugging in these expressions and then substituting ni = n?i , we obtain (50) and (51).

Proof of Lemma 13. We will rewrite p(n?i ) and p′(n?i ) as the Gaussian integral of rational functions
and use (52) to calculate their values. By (23),

p(n?i ) =Ex∼N (0,1)




1
(m−2)n?i

σ2+α2

(
σ2

n?
i

+ σ2

n?
i

)
x2

+
n?i+n?i
σ2


+ cn?i

=Ex∼N (0,1)


 1

(m−2)n?i
σ2+α2 2σ2

n?
i
x2

+
2n?i
σ2


+ cn?i =

σ2

n?i
Ex∼N (0,1)


 1

m−2

1+ 2α2

n?
i
x2

+ 2


+ cn?i

=
σ2

n?i
Ex∼N (0,1)

[
1

2
− m− 2

2

1
4α2

n?i
x2 +m

]
+ cn?i

=
σ2

2n?i
− σ2

n?i

m− 2

2

n?i
4α2

Ex∼N (0,1)

[
1

x2 +
mn?i
4α2

]
+ cn?i

=
σ2

2n?i
− σ2

4α2

m− 2

2
exp

(
mn?i
8α2

)
Erfc

(√
mn?i
8α2

)√
π
mn?i
2α2

+ cn?i

(
In (52), let L =

mn?i
4α2

)

=RHS of (50).

To prove the second statement of Lemma 13, by (24) and the dominated convergence theorem, we
have:

p′(n?i ) = Ex∼N (0,1)



−σ2

1 +
(m−2)n?i(

1+α2

(
1
n?
i

+ 1
n?
i

)
x2

)2
α2x2

n?i
2


 (m−2)n?i

1+α2

(
1
n?
i

+ 1
n?
i

)
x2

+ n?i + n?i




2




+ c

(By (24) and dominated convergence theorem)

=− σ2Ex∼N (0,1)




1 +
(m−2)n?i(
1+ 2α2

n?
i
x2

)2
α2x2

n?i
2

(
(m−2)n?i
1+ 2α2

n?
i
x2

+ 2n?i

)2




+ c

=− σ2

n?i
2Ex∼N (0,1)




1 +
(m−2)n?iα

2x2

(n?i+2α2x2)
2

(
(m−2)n?i
n?i+2α2x2 + 2

)2


+ c

=− σ2

4n?i
2Ex∼N (0,1)

[
4
(
n?i + 2α2x2

)2
+ 4(m− 2)n?iα

2x2

((m− 2)n?i + 2(n?i + 2α2x2))
2

]
+ c

=− σ2

4n?i
2Ex∼N (0,1)

[
1 +
−(m− 2)2n?i

2 − 4(m− 2)n?i
(
n?i + 2α2x2

)
+ 4(m− 2)n?iα

2x2

((m− 2)n?i + 2(n?i + 2α2x2))
2

]
+ c
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=− σ2

4n?i
2Ex∼N (0,1)

[
1 + (m− 2)n?i

−(m− 2)n?i − 4
(
n?i + 2α2x2

)
+ 4α2x2

(4α2x2 +mn?i )
2

]
+ c

=− σ2

4n?i
2Ex∼N (0,1)

[
1 + (m− 2)n?i

−(m+ 2)n?i − 4α2x2

(4α2x2 +mn?i )
2

]
+ c

=− σ2

4n?i
2 +

σ2

4n?i
2 (m− 2)n?iEx∼N (0,1)

[
(4α2x2 +mn?i ) + 2n?i

(4α2x2 +mn?i )
2

]
+ c

=− σ2

4n?i
2 +

σ2

4n?i
2 (m− 2)n?iEx∼N (0,1)

[
1

4α2x2 +mn?i
+

2n?i

(4α2x2 +mn?i )
2

]
+ c

=− σ2

4n?i
2 +

σ2

4n?i
2 (m− 2)n?iEx∼N (0,1)


 1

4α2

1

x2 +
mn?i
4α2

+
2n?i
16α4

1
(
x2 +

mn?i
4α2

)2


+ c

=c− σ2

4n?i
2 +

σ2

4n?i
2 (m− 2)n?i

(
1

4α2
+

2n?i
16α4

1− mn?i
4α2

mn?i
2α2

)
exp

(
mn?i
8α2

)
Erfc

(√
mn?i
8α2

)√
π
mn?i
2α2

+
σ2

4n?i
2 (m− 2)n?i

2n?i
16α4

1
mn?i
2α2(

In (52) and (53) and let L =
mn?i
4α2

)

=c− σ2

4n?i
2

(
1− (m− 2)n?i

4α2m

)

+
σ2

4n?i
2 (m− 2)n?i

(
1

4α2
+

1

4mα2
− n?i

16α4

)
exp

(
mn?i
8α2

)
Erfc

(√
mn?i
8α2

)√
π
mn?i
2α2

=c− σ2

4n?i
2

(
1− (m− 2)n?i

4α2m

)

+
σ2

4n?i
2 (m− 2)n?i

α
√

2π√
mn?i

n?i
16α4

(
4α2

mn?i
(m+ 1)− 1

)
exp

(
mn?i
8α2

)
Erfc

(√
mn?i
8α2

)

=RHS of (51)

We will now prove the statements in (52) and (53). Both statements follow from the Lemma below
by substituting t = 1/2.

Lemma 14. For all t ≥ 0 and some L > 0,

I(t) :=

∫ ∞

−∞

1

L+ x2

1√
2π

exp
(
−tx2

)
dx = exp(Lt) Erfc(

√
Lt)

√
π

2L

J(t) :=

∫ ∞

−∞

1

(L+ x2)2

1√
2π

exp
(
−tx2

)
dx =

√
π

2L

(
1

2L
− t
)

exp(Lt) Erfc(
√
Lt) +

√
t√

2L

Proof. We derive I(t) and J(t) as the solutions to two ODEs and solve the ODEs to obtain the
results. Firstly, by calculation:

−I ′(t) + LI(t) =

∫ ∞

−∞

x2 + L

L+ x2

1√
2π

exp
(
−tx2

)
dx =

1√
2t
.

and

I(0) =

∫ ∞

−∞

1

L+ x2

1√
2π
dx =

√
π

2L
.
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This means I(t) satisfies the following ODE:
{
−I ′(t) + LI(t) = 1√

2t

I(0) =
√

π
2L

. (54)

We solve (54) by multiplying integrating factor − exp(−Lt):

exp(−Lt)I ′(t)− L exp(−Lt)I(t) = − 1√
2t

exp(−Lt)

Note that the LHS is the derivative of exp(−Lt)I(t), the ODE becomes:

d

dt
(exp(−Lt)I(t)) = − 1√

2t
exp(−Lt)

Integrating both sides over t, we get:

exp(−Lt)I(t) = −
∫

1√
2t

exp(−Lt)dt = −
∫

2√
2L

exp(−Lt)d
√
Lt = Erfc(

√
Lt)

√
π

2L
+ C,

where we use integration by substitution for the last two equalities and C is some constant that does
not depend on t. This means I(t) satisfies the following form:

I(t) = exp(Lt)

(
Erfc(

√
Lt)

√
π

2L
+ C

)

Using the initial condition I(0) =
√

π
2L and the fact that Erfc(0) = 0, we conclude that C = 0.

Thus

I(t) = exp(Lt) Erfc(
√
Lt)

√
π

2L
.

We can similarly derive an ODE for J(t). By calculation:

−J ′(t) + LJ(t) =

∫ ∞

−∞

x2 + L

(L+ x2)2

1√
2π

exp
(
−tx2

)
dx = I(t)

J(0) =

∫ ∞

−∞

1

(L+ x2)2

1√
2π
dx =

1

2L3/2

√
π

2

Thus J(t) satisfies the following ODE:
{−J ′(t) + LJ(t) = I(t)

J(0) = 1
2L3/2

√
π
2

. (55)

We similarly multiply integrating factor − exp(−Lt) and integrate both sides:
∫ t

0

d exp(−Lx)J(x) = −
∫ t

0

I(x) exp(−Lx)dx = −
∫ t

0

Erfc(
√
Lx)

√
π

2L
dx

=−
(
xErfc(

√
Lx)

√
π

2L

∣∣∣∣
t

0

+

∫ t

0

x
exp(−Lx)√

2x
dx

)

(Integration by parts)

=− tErfc(
√
Lt)

√
π

2L
−
√

2

L3/2

∫ √Lt

0

y2 exp(−y2)dy

(
Change of variable: y =

√
Lx
)

=− tErfc(
√
Lt)

√
π

2L
+

√
2

L3/2

(
1

2
y exp(−y2)

∣∣∣∣

√
Lt

0

−
∫ √Lt

0

1

2
exp(−y2)dy

)

(Integration by parts)

=− tErfc(
√
Lt)

√
π

2L
+

√
2

L3/2

1

2

√
Lt exp(−Lt)−

√
2

L3/2

∫ √Lt

0

1

2
exp(−y2)dy
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=− tErfc(
√
Lt)

√
π

2L
+

√
t√

2L
exp(−Lt)−

√
π

2
√

2L3/2
Erf
(√

Lt
)

(By definition of Erf)

=− tErfc(
√
Lt)

√
π

2L
+

√
t√

2L
exp(−Lt)−

√
π

2
√

2L3/2

(
1− Erfc

(√
Lt
))

(By definition of Erfc)

=

(
1

2L
− t
)

Erfc(
√
Lt)

√
π

2L
+

√
t√

2L
exp(−Lt)− J(0)

(By (55))

This means:

J(t) = exp(Lt)

(∫ t

0

d exp(−Lx)J(x) + J(0)

)

= exp(Lt)

((
1

2L
− t
)

Erfc(
√
Lt)

√
π

2L
+

√
t√

2L
exp(−Lt)

)

=

√
π

2L

(
1

2L
− t
)

exp(Lt) Erfc(
√
Lt) +

√
t√

2L
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