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Abstract

Language understanding is a multi-faceted cog-
nitive capability, which the Natural Language
Processing (NLP) community has striven to
model computationally for decades. Tradition-
ally, facets of linguistic intelligence have been
compartmentalized into tasks with specialized
model architectures and corresponding evalu-
ation protocols. With the advent of large lan-
guage models (LLMs) the community has wit-
nessed a dramatic shift towards general pur-
pose, task-agnostic approaches powered by gen-
erative models. As a consequence, the tradi-
tional compartmentalized notion of language
tasks is breaking down, followed by an in-
creasing challenge for evaluation and analysis.
At the same time, LLMs are being deployed
in more real-world scenarios, including previ-
ously unforeseen zero-shot setups, increasing
the need for trustworthy and reliable systems.
Therefore, we argue that it is time to rethink
what constitutes tasks and model evaluation
in NLP, and pursue a more holistic view on
language, placing trustworthiness at the cen-
ter. Towards this goal, we review existing com-
partmentalized approaches for understanding
the origins of a model’s functional capacity,
and provide recommendations for more multi-
faceted evaluation protocols.

“Trust arises from knowledge of origin as well as
from knowledge of functional capacity.”

Trustworthiness - Working Definition
David G. Hays, 1979

1 Introduction

Understanding natural language requires a multi-
tude of cognitive capabilities which act holistically
to form meaning. Modeling this ability computa-
tionally is extremely difficult, thereby necessitating
a compartmentalization of the problem into iso-
lated tasks which are solvable with available meth-
ods and resources (Schlangen, 2021). Undoubtedly
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Figure 1: Contemporary NLP Paradigm with lan-
guage tasks formalized as datasets for which models pro-
duce predictions. Recent LLMs break down this com-
partmentalization (dashed lines), impacting all stages of
the cycle. We argue that establishing trust requires re-
thinking every facet of this framework, as formalization
and evaluation become increasingly difficult.

as of late 2022, we are witnessing a paradigm shift:
Powerful LLMs, in the form of instruction-tuned,
prompt-based generative models such as ChatGPT
and GPT-4 (Wei et al., 2022a; Touvron et al., 2023b;
Taori et al., 2023; OpenAI, 2023; Bubeck et al.,
2023, inter alia), have found widespread adoption
reaching far beyond the NLP community. Part of
this success story is the casting of heterogeneous
NLP tasks into sequence-to-sequence tasks (Raffel
et al., 2020; Sanh et al., 2022; Wang et al., 2022b);
which in turn enables extreme multi-task learning,
and cross-task transfer learning.

This is in stark contrast to the traditional com-
partmentalized NLP paradigm (visualized in Fig-
ure 1), wherein a human-motivated language task
with an input expression and an output expectation
is clearly formalized into a dataset with machine-
readable inputs and outputs. Both feature design
and model development are highly task-specific—
often manually curated. Paired with evaluation
protocols for comparing model predictions with



human expectations via formalized metrics or qual-
itative judgement, this general methodology has
been widely adopted and trusted.1 However, with
contemporary LLMs this compartmentalization
is breaking down—having severe impacts on all
stages of the cycle. Therefore, a persistent and crit-
ical question regains importance: How can trust be
established between the human and the model?

As early as 44 years ago, Hays (1979) offers an
attempt and provides a definition of trustworthiness
(cf. quote). Today, the topic of trustworthiness is
an ongoing discussion deserving special attention
(Baum et al., 2017; Eisenstein, 2022; Clarke et al.,
2023). We argue that to establish trust, it is time to
rethink how we deal with tasks and their evaluation.
Why now? It is getting increasingly hard to predict
a priori when we can expect models trained on
web-scale data to work well. Were we to live in a
hypothetical world with full knowledge of origin
and functional capacity, then each task instance
could be routed to the right model(s) to not only
tap into the LLMs’ full potential, but to also enable
trust in their predictions. Today, the absence of this
knowledge is directly linked to our lack of trust in
deploying models in real-world scenarios.

In this position paper, we synthesize contem-
porary work distributed throughout different sub-
fields of NLP and ML into a conceptual framework
for trust, guided by Hays (1979)’s definition and
centered around knowledge facets as a guiding prin-
ciple for all aspects of the model development and
evaluation cycle. We outline high-level desiderata
(§2), and suggest directions on how to gain trust,
by providing starting points of facets (§3) aimed to
stipulate uptake and discussion. In §4 we discuss
how trustworthiness relates to user trust.

2 Desiderata for Trustworthy LLMs

LLMs today pose a conundrum: They are seem-
ingly universally applicable, having high functional
capacity, however, the larger the model, the less we
appear to know about the origins of its capabilities.
How did we get here, which aspects contribute to
trustworthiness, and what did we lose on the way?
In the following, we aim to provide a brief his-
tory of central trust desiderata (D1-4), discussing
how our knowledge of functional capacity and its
origins has changed over time.

1While not without deficiencies, evaluation protocols were
arguably more heterogeneous and established than today w.r.t.
quantitative/qualitative evaluation, human judgements etc.

D1. Knowledge about Model Input. In the be-
ginnings of NLP, researchers followed strict, task-
specific formalizations and had precise control over
which “ingredients”2 go into model training and
inference (i.e., manual feature engineering). Neu-
ral models have caused a shift towards learning
representations, improving performance at the cost
of interpretability. While analogy tasks (Mikolov
et al., 2013) have enabled analyses of how each
word-level representation is grounded, contempo-
rary representations have moved to the subword
level, and are shared across words and different lan-
guages, obscuring our knowledge of the origin of
their contents, and requiring more complex lexical
semantic probing (Vulić et al., 2020, 2023). This
is amplified in today’s instruction-based paradigm
in which tasks are no longer formalized by NLP re-
searchers and expert annotators but are formulated
as natural language expressions by practitioners
and end users (Ouyang et al., 2022). The cognitive
process of formalizing raw model inputs into ML
features has been incrementally outsourced from
the human to the representation learning algorithm,
during which we lose knowledge over functional
capacity.

D2. Knowledge about Model Behaviour. In the
old compartmentalized view of NLP, higher-level
tasks are typically broken down into pipelines of
subtasks (Manning et al., 2014), where inspect-
ing intermediate outputs improves our knowledge
about model behaviour. Recently however, LLMs
are usually trained on complex tasks in an end-to-
end fashion (Glasmachers, 2017), which makes
it more difficult to expose intermediate outputs
and analyze error propagation. Over time we have
gained powerful black-box models, but have lost
the ability to interpret intermediate states and de-
cision boundaries, thus increasing uncertainty and
complexity. Because as of today, we cannot build
models that always provide factually correct, up-to-
date information, we cannot trust to employ these
models at a large scale, in real-world scenarios,
where reliability and transparency are key. In this
regard, pressing questions are e.g., how hallucina-
tion and memorization behaviour can be explained
(Dziri et al., 2022; Mallen et al., 2023), how models
behave when trained on many languages (Conneau
et al., 2020; Choenni et al., 2023), what internal
features are overwritten when trained on differ-

2We refer to ingredients as explicit inputs and LLM’s para-
metric knowledge (De Cao et al., 2021; Mallen et al., 2023).



ent tasks sequentially (catastrophic forgetting; e.g.,
McCloskey and Cohen, 1989; French, 1999), how
to improve models’ ability to know when they do
not know (model uncertainty; e.g., Li et al., 2022a),
or how do LLMs utilize skills and knowledge dis-
tributed in their model parameters.

D3. Knowledge of Evaluation Protocols. The
emergence of LLMs has raised the question of
how to evaluate general-purpose models. Many
recent efforts have followed the traditional NLP
evaluation paradigm and summarized LLM per-
formance into evaluation metrics across existing
benchmark datasets (Sanh et al., 2022; Wang et al.,
2022b; Scao et al., 2022; Wei et al., 2022a; Touvron
et al., 2023a). This estimates LLM performance
for tasks covered by the benchmark dataset and
thus establishes trust when applying the model to
the same task. However, the situation is different
when LLMs are used to solve tasks outside of the
benchmark, which is often the case for real-world
usage of LLMs (Ouyang et al., 2022). Then, the
expected performance becomes unclear and bench-
mark results become insufficient to establish trust.
One proposal to solve this issue is to evaluate on a
wide variety of task-agnostic user inputs and report
an aggregate metric (Ouyang et al., 2022; Chung
et al., 2022; Wang et al., 2023b; Dettmers et al.,
2023). This approach has the potential to cover a
wider range of use cases, however, it relies mostly
on manual preference annotations from human la-
belers or larger LLMs which is costly and has no
accepted protocol yet.

D4. Knowledge of Data Origin. So far, we
discussed trust desiderata from the viewpoint of
knowledge of functional capacity. Next to this, a
model’s behaviour is also largely influenced by its
training data. Knowledge about data provenance
helps us make informed decisions about whether
a given LLM is a good match for the intended use
case. Therefore, open access to data must be pri-
oritized. In compartmentalized NLP, models are
trained and evaluated on well-known, manually cu-
rated, task-specific datasets. Today’s models are
instead trained on task-heterogeneous corpora at
web scale, typically of unknown provenance. For
novel tasks, this means we do not know how well
relevant facets (e.g., language, domain) are repre-
sented in the training data. For existing tasks, it is
unclear if the model has seen test instances in their
large training corpora (i.e., test data leakage; Piktus
et al., 2023), blurring the lines between traditional

train-dev-test splits and overestimating the capa-
bilities of LLMs. To compound matters further,
models are not only trained on natural, but also on
generated data, and unknown data provenance is
also becoming an issue as annotators start to use
LLMs (Veselovsky et al., 2023). LLMs trained
on data generated by other LLMs can lead to a
“curse of recursion” where (im-)probable events are
over/underestimated (Shumailov et al., 2023).

3 What Can We Do to Gain Trust Now
and in Future?

In a world where generative LLMs seemingly dom-
inate every benchmark and are claimed to have
reached human-level performance on many tasks,3

we advocate that now is the time to treat trust as
a first-class citizen and place it at the center of
model development and evaluation. To operational-
ize the concept of trust, we denote with knowledge
facets (henceforth, facets) all factors that improve
our knowledge of functional capacity and knowl-
edge of origin. Facets can be local (instance) or
global (datasets, tasks). They refer to 1) descriptive
knowledge such as meta-data or data/task prove-
nance, and 2) inferred knowledge; for example
which skills are exploited. We next propose con-
crete suggestions on how facets can help us gain
trust in LLMs based on the desiderata in §2.

Explain Skills Required versus Skills Employed.
It is instructive to think of prompt-based genera-
tive LLMs as instance-level problem solvers and,
as such, we need to understand a-priori the nec-
essary skills for solving instances (local facets)
as well as knowing what skills are actually em-
ployed during inference. Most prior work aims to
improve our understanding of tasks and the skills
acquired to solve them by studying models trained
specifically for each task, and can be broadly clas-
sified into: (i) linguistically motivated approaches
and (ii) model-driven approaches (D1). Linguis-
tic approaches formalize skills as cognitive abili-
ties, which are studied, e.g., through probing tasks
(Adi et al., 2017; Conneau et al., 2018; Amini and
Ciaramita, 2023), checklists (Ribeiro et al., 2020)
and linguistic profiling (Miaschi et al., 2020, 2021;
Sarti et al., 2021). Model-driven approaches at-
tribute regions in the model parameter space to
skills (Ansell et al., 2022; Wang et al., 2022a; Ponti

3For example, GPT-4 reportedly passed the bar exam
and placed top at GRE exams, see https://openai.com/
research/gpt-4.

https://openai.com/research/gpt-4
https://openai.com/research/gpt-4


et al., 2023; Ilharco et al., 2023). The former can
be seen as describing global facets (i.e., the overall
functional capacity of black-box models), while
the latter identifies local facets (i.e., skill regions
in model parameters). To establish trust, we need
to know what skills are required to solve instances,
which is different from which skills are exercised
by a model at inference time, as described next.

Besides knowlege about skills needed to solve a
task, it is important to gain knowledge about what
skills are actually being applied by an LLM. This
is linked to explainability and transparency, corre-
sponding to (i) understanding the knowledge4 that
goes into the inference process (D1), and (ii) the
inference process itself in terms of applied skills
(D2), e.g., examinations of LLMs’ “thought pro-
cesses”. Regarding (i), existing work includes at-
tributing training instances to model predictions
(Pruthi et al., 2020; Weller et al., 2023) and ex-
plaining predictions through the lens of white-box
models (Frosst and Hinton, 2017; Aytekin, 2022;
Hedderich et al., 2022). They are, however, of-
ten grounded in downstream task data and thus do
not provide insights connected to the knowledge
memorized by LLMs during pre-training (global
facets). Regarding (ii), existing approaches include
guiding the generation process through intermedi-
ate steps (Wei et al., 2022c; Wang et al., 2023a; Li
et al., 2023) and pausing the generation process to
call external tools (Schick et al., 2023; Shen et al.,
2023; Paranjape et al., 2023; Mialon et al., 2023).
Their shortcoming is that they operate on the in-
put level, and similarly do not capture cases where
pre-existing, model-internal knowledge is applied.
Furthermore, prior work has shown that LLMs fol-
low the path of least resistance. That is, neural
networks are prone to predict the right thing for the
wrong reasons (McCoy et al., 2019; Schramowski
et al., 2020), which can be caused by spurious cor-
relations (Eisenstein, 2022).5 On the path to gain-
ing trust, we advocate for LLMs that are able to
attribute their output to internal knowledge and the
skills used to combine that knowledge. Alterna-
tively, LLMs could be accompanied by white-box
explanation models that (are at least a proxy) for
explaining the inference process.
Facilitate Representative and Comparable Qual-
itative Analysis. Today, the standard target for

4Including acquired knowledge such as common sense and
world knowledge (Li et al., 2022b; De Bruyn et al., 2022).

5 “The sentiment of a movie should be invariant to the
identity of the actors in the movie” (Eisenstein, 2022)

NLP papers proposing a new model is to beat
previous models on a certain quantitative bench-
mark. We argue that if datasets and metrics are
well-designed and well-grounded in skills/capabili-
ties, they can be used as an indicator of progress.6

On the other hand, findings from negative results
might be obscured without faceted quantitative
analysis: even when obtaining lower scores on
a benchmark, sub-parts of an NLP problem may
be better solved compared to the baseline, but go
unnoticed (D3). We therefore cannot trust reported
SOTA results as long as the facets that explain
how well sub-problems are solved remain hidden.
Complementary to holistic quantitative explana-
tions, as proposed by HELM (Liang et al., 2022),
we call for a holistic qualitative evaluation where
benchmarks come with standardized qualitative
evaluation protocols, which facilitates comparable
qualitative meta-analysis. This proposal is inspired
by the manually-curated GLUE diagnostics annota-
tions (Wang et al., 2018), which describe examples
by their linguistic phenomena.7 Recycling existing
tasks and augmenting them with diagnostic sam-
ples to study LLMs provides a very actionable di-
rection for applying existing compartmentalization
in a more targeted trustworthy way. Diagnostics
samples should ideally represent the full spectrum
of cognitive abilities required to solve a task. De-
signing these samples is however a complex task.
We hypothesize that the set of required skills varies
between tasks and should ideally be curated by
expert annotators.

Be Explicit about Data Provenance. In ML, it
is considered good practice to use stratified data
splits to avoid overestimation of performance on de-
v/test splits based on contamination. Traditionally,
this stratification was done based on, e.g., source,
time, author, language (cross-lingual), or domain
(cross-domain). Recent advances have hinted at
LLMs’ ability to solve new tasks, and even to ob-
tain new, i.e., emergent abilities (Wei et al., 2022b).
These are in fact similar cross-X settings, where
X is no longer a property at the level of dataset
sampling, but of the broader task setup. We call for
always employing a cross-X setup (D4); whether
it is based on data sampling, tasks, or capabilities—
urging practitioners to make this choice explicit.
Transparency about data provenance and test data

6Note that baseline comparisons can still be obscured by
unfair comparisons (Ruffinelli et al., 2020).

7https://gluebenchmark.com/diagnostics/

https://gluebenchmark.com/diagnostics/


leakage improve our trust in reported results. In
practice, these data provenance facets are also valu-
able for identifying inferred knowledge such as
estimated dataset/instance difficulty (Swayamdipta
et al., 2020; Rodriguez et al., 2021; Ethayarajh
et al., 2022), especially when used in conjunction
with the aforementioned diagnostic facets.

Data provenance is also important when draw-
ing conclusions from benchmark results (D3).
Tedeschi et al. (2023) question the notion of su-
perhuman performance and claims of tasks being
solved (i.e., overclaiming model capabilities), and
criticize how benchmark comparisons “do not in-
centivize a deeper understanding of the systems’
performance”. The authors discuss how external
factors can cause variation in human-level perfor-
mance (incl. annotation quality) and lead to unfair
comparisons. Similarly, underclaiming LLMs’ ca-
pabilities also obfuscates our knowledge of their
functional capacity (Bowman, 2022). Additionally,
in a recent study domain experts find the accuracy
of LLMs to be mixed (Peskoff and Stewart, 2023).
It is therefore important to be explicit about the
limitations of benchmarks (Raji et al., 2021) and
faithful in communicating model capabilities. At
the same time, it is an ongoing discussion whether
reviewers should require (i.e, disincentivize the ab-
sence of) closed-source baseline models such as
ChatGPT and GPT-4, which do not meet our trust
desiderata (Rogers et al., 2023). Closed-source
models that sit behind APIs typically evolve over
time and have unknown data provenance, thus lack-
ing both knowledge of origin (D4), and the consis-
tency of its functional capacity. Consequently, they
make untrustworthy baselines and should not be
used as an isolated measure of progress.

4 Trustworthiness and User Trust

So far we have discussed different avenues for im-
proving our knowledge about LLM’s functional
capacity and origin, paving the way for establish-
ing trustworthiness. From a user perspective it is
essential to not only understand knowledge facets
but also how they empirically impact user trust in
a collaborative environment. This is especially im-
portant in high-risk scenarios such as in the medical
and legal domain. One could argue, if LLMs such
as ChatGPT are already widely adopted, do we al-
ready trust LLMs (too much)? To better understand
user trust we need interdisciplinary research and
user experience studies on human-AI collaboration.

Specifically, we need to know what users do with
the model output across multiple interactions (e.g.,
verify, fact check, revise, accept). For example,
González et al. (2021) investigate the connection
between explanations (D2) and user trust in the con-
text of question answering systems. In their study
users are presented with explanations in different
modalities and either accept (trust) or reject (don’t
trust) candidate answers. Similarly, Smith-Renner
et al. (2020) discuss how generated explanations
can promote over-reliance or undermine user trust.
A closely related question is how the faithfulness
of explanations affect user trust (Atanasova et al.,
2023; Chiesurin et al., 2023). For a comprehensive
overview on user trust we refer to the recent survey
by Bach et al. (2022).

While such controlled studies using human feed-
back are cost and time intensive, the minimum
viable alternative for establishing trust may simply
be the publication of a model’s input-output history.
In contrast to standalone metrics and cherry-picked
qualitative examples, access to prior predictions en-
ables post-hoc knowledge of model behaviour (D2),
even without direct access to the model. This de-
mocratizes the ability to verify functional capacity
and helps end users seeking to understand how well
a model works for their task.

In summary, evaluating user trust is an integral
part of trustworthiness and goes hand in hand with
careful qualitative analyses and faceted quantitative
evaluation. Towards this goal, we believe LLM
development needs to be more human-centric.

5 Conclusions

In this position paper, we emphasize that the de-
mocratization of LLMs calls for the need to rethink
tasks and model evaluation, placing trustworthi-
ness at its center. We adopt a working definition of
trustworthiness and establish desiderata required to
improve our knowledge of LLMs (§2), followed by
suggestions on how trust can be gained by outlin-
ing directions guided by what we call knowledge
facets (§3). Finally, we draw a connection between
trustworthiness as knowledge facets and user trust
as means to evaluate their impact on human-AI
collaboration (§4).

Limitations

To limit the scope of this work, we did not discuss
the topics of social and demographic biases (Gira
et al., 2022), discrimination of minority groups



(Lauscher et al., 2022) and hate speech as factors
influencing our trust in LLMs. Within our proposed
desiderata, this facet would fall under ‘Knowledge
of Data Origin’ (§2), in terms of understanding
where model-internal knowledge and the associated
biases originate from (D4).

Our proposed multi-faceted evaluation protocols
rely strongly on human input—either via quali-
tative judgements and/or linguistically annotated
diagnostic benchmarks (§3). We acknowledge that
such analyses require more time and resources com-
pared to evaluation using contemporary, automatic
metrics, and may slow down the overall research
cycle. While we believe that slower, yet more delib-
erate analyses are almost exclusively beneficial to
establishing trust, our minimum effort alternative of
publishing all model predictions can also be used to
build user trust (§4). This simple step closely mir-
rors the scientific method, where hypotheses must
be falsifiable by anyone (Popper, 1934). Identify-
ing even a single incorrect prediction for a similar
task in a model’s prediction history, can already tell
us plenty about the model’s trustworthiness.
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