

000
001
002
003

HOW TO TRAIN DATA-EFFICIENT LLMs

004
005
006
007
008
009**Anonymous authors**

Paper under double-blind review

ABSTRACT

The training of large language models (LLMs) is expensive. In this paper, we study data-efficient approaches for pre-training LLMs, *i.e.*, techniques that aim to optimize the Pareto frontier of model quality and training resource/data consumption. We seek to understand the tradeoffs associated with data selection routines based on (i) expensive-to-compute *data-quality* estimates, and (ii) maximization of *coverage* and diversity-based measures in the feature space. Our first technique, ASK-LLM, leverages the zero-shot reasoning capabilities of instruction-tuned LLMs to directly assess the quality of a training example. To target coverage, we propose DENSITY sampling, which models the data distribution to select a diverse sample. Testing the effect of 22 different data curation techniques on the pre-training of T5-style of models, involving hundreds of pre-training runs and post fine-tuning evaluation tasks, we find that ASK-LLM and DENSITY are the best methods in their respective categories. While coverage sampling techniques often *recover* the performance of training on the entire dataset, training on data curated via ASK-LLM consistently *outperforms* full-data training—even when we sample only 10% of the original dataset, while converging up to 70% faster.

1 INTRODUCTION

Large language model (LLM) pre-training is perhaps the most data- and compute-intensive task attempted by the machine learning community to date, with impressive capabilities primarily being accomplished by training massive transformer architectures on trillions of tokens of text (OpenAI, 2023; Gemini et al., 2023; Touvron et al., 2023b).

But even these incredibly capable LLMs are subject to empirical scaling laws, which predict sharply diminishing returns from a linear increase in model- or data-size (Hoffmann et al., 2022; Kaplan et al., 2020). Power-law scaling therefore acts as a soft limit on model quality, beyond which it is prohibitively expensive to drive performance by scaling up the data or model. At the same time, Sorscher et al. (2022)—in the context of vision pre-training—show that we can significantly improve the power law constants in the aforementioned scaling laws if we prioritize *important* training examples using some robust notion of data quality or impact.

A similar call for data-curation is also apparent in the context of training LLMs, where our largest models are quickly approaching their capacity and data thresholds. LIMA (Zhou et al., 2023) showed that LLaMA-65B (Touvron et al., 2023a) can be better aligned with human preferences when trained on a set of 1,000 carefully selected fine-tuning prompts, compared to training on as much as 52,000 unfiltered examples. Tirumala et al. (2023) recently conducted a large-scale data-efficient pre-training evaluation, showing that a 6.7B OPT model (Zhang et al., 2022) can converge up to 20% faster on data curated by a technique based on stratified cluster sampling. The Phi-2 experiments also suggest that when data curation is performed at a human-expert level (*e.g.*, by textbook editors), models can outperform baselines that are up to 25x larger (Jawaherip et al., 2023).

Data curation routines can be fundamentally characterized as selecting training samples for quality, coverage, or some mixture of both (Figure 2). In this work, we seek to understand how quality and coverage affect the data efficiency of LLM pre-training. Our core research question is:

“Are cheap-to-compute heuristics like maximum-coverage enough to pre-train a SoTA LLM, or are there real benefits from costly samplers that carefully evaluate the quality of each example?”

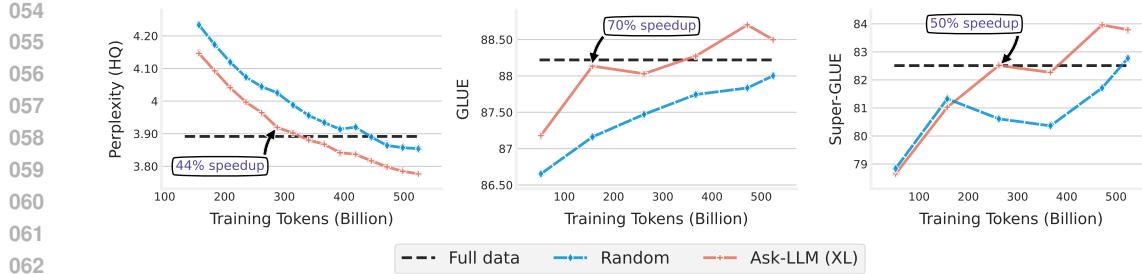


Figure 1: Data-efficient pre-training run of T5-Large (800M) using ASK-LLM with Flan-T5-XL as the data quality scorer. Training on 60% of the original dataset, ASK-LLM is able to train T5-Large both better and 70% faster, compared to training on 100% of the dataset.

This question is crucial to answer because data-curation algorithms can improve the Pareto frontier of the data-quantity↔model-quality tradeoff, directly addressing the bottleneck of power-law scaling by enabling higher-quality models to be trained using less data. Data curation also unlocks new tradeoffs between training time, inference cost, data collection effort, and downstream performance. For example, if we consider the compute-constrained (single-epoch) regime, a data-efficient LLM training routine may reach the desired performance using only X% of the data (corresponding to a $\leq X\%$ training speedup).

Despite considerable interest from the community for building data-efficient training methods (Sorscher et al., 2022; Paul et al., 2021; Coleman et al., 2020; Jiang et al., 2019; Katharopoulos & Fleuret, 2018), large-scale analyses of data pruning strategies are rare because of the extreme computational cost—especially in the context of LLM pre-training. To be more specific, an extensive comparative study necessarily entails pre-training (i) various sizes of LLMs, (ii) for a variety of data sampling rates, (iii) obtained through various pruning strategies. Further, downstream evaluations for LLMs also frequently involve fine-tuning, which is resource intensive in itself.

Contributions. We hypothesize that the roles of coverage and quality depend on the stage of training, size of the model, and the sampling rate. To understand the coverage/quality design choice better, we develop new data-efficiency routines that independently (and solely) target quality and coverage. Our ASK-LLM sampler prioritizes high-quality and informative training samples by asking a *proxy* LLM. Our DENSITY sampler seeks to maximize the coverage of latent topics in the input dataset through a diversified sampling procedure. To summarize, our contributions are as follows:

[leftmargin=*) **ASK-LLM sampling.** We develop ASK-LLM, a data curation technique that can train better models (vs. training on the *entire dataset*) even after removing up to 90% of training samples, while also consistently outperforming other well-established data curation routines. Furthermore, we find ASK-LLM also promotes data-efficiency during training (Figure 1). **Exhaustive benchmark.** We implement 22 different sampling strategies for pre-training T5-Large (800M) and T5-Small (60M) on 524B tokens and evaluate them on 111 downstream evaluation tasks. This leads to a total of 220 pre-training and 1,100 distinct fine-tuning runs. **New insights.** By analyzing the differences between ASK-LLM and DENSITY sampling, we study the role of coverage, quality, and sampling cost in LLM pre-training. We support our conclusions with additional studies of the convergence rate, correlations between sampler outputs, and impact of sampling cost on downstream performance. Our results show that while coverage sampling often *recovers* the performance of training on the full dataset, ASK-LLM (quality filtering) can often *exceed* it. These experiments suggest that LLM-based data quality raters are a worthwhile and effective way to drive performance in pre-training.

2 RELATED WORK

Data selection is a classical problem with well-established literature on coresets, sketching, importance sampling, filtering, denoising, and a host of other algorithms with similar goals. While we cannot possibly catalog the entire sampling literature, we hope to provide an overview of the principles

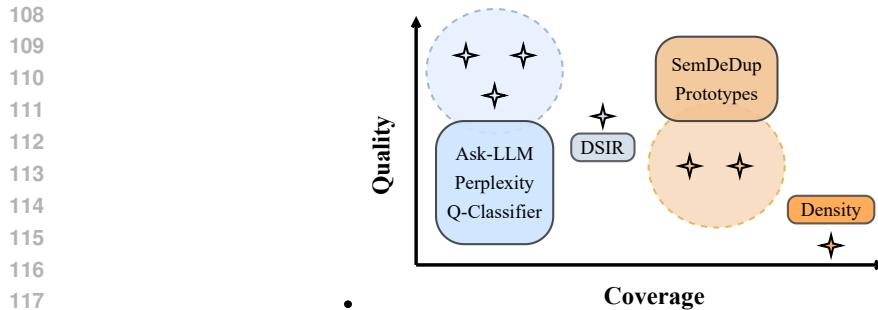


Figure 2: While there is no inherent tradeoff between coverage and quality, samplers target these metrics on a spectrum (up and to the left indicates a more aggressive prioritization). See Appendix D for a detailed description.

behind common data selection algorithms. We also describe how these algorithms have been applied to machine learning, focusing on language model training.

Coverage Sampling. The first class of methods maximize the *coverage* of the sample by selecting points that are evenly distributed across the entire input domain, e.g., an ϵ -net for a Lipschitz function (Phillips, 2017). Coverage sampling is motivated by the intuition that we ought to show a language model the full breadth of genres, topics, and languages (Longpre et al., 2023b).

Coverage sampling is typically accomplished by embedding examples into a metric space and selecting points which are mutually far from each other (Lee et al., 2023). A popular implementation of coverage sampling are cluster sampling algorithms, which groups inputs based on embedding similarity and selects representatives from each group. These algorithms are popular, scalable, interpretable, and enjoy strong theoretical support (Tukan et al., 2021; Feldman et al., 2020). However, there are also recent techniques based on submodular coverage optimization (Chen et al., 2012; Indyk et al., 2014; Borsos et al., 2020), models of the data distribution (Coleman et al., 2022), discrepancy minimization (Karnin & Liberty, 2019), and deduplication through token matching / similarity hashing (Lee et al., 2022).

Many variations of cluster sampling have been applied to vision and language model training. Sorscher et al. (2022) propose the “SSL prototypes” method for vision models, which removes points that fall too close to the nearest k -means centroid. SemDeDup (Abbas et al., 2023) also removes points based on this distance, but targets pairs of nearby examples, or “semantic duplicates,” and prefers points close to the centroid. The D4 sampler chains MinHash deduplication, SemDeDup, and SSL prototypes together to prune both high-variance, sparse regions and prototypical, dense regions of LLM pre-training datasets (Tirumala et al., 2023). Coleman et al. (2020) considers a k -centers submodular selection routine on the last-layer embeddings of ResNet vision models.

Quality-score Sampling. Another class of methods are based on *quality scores*, where a scoring algorithm rates every example and the sampler preferentially selects points with high scores. For example, the selection-via-proxy (SVP) algorithm determines the importance of an input using the validation loss and uncertainty scores of a pre-trained model on the input (Coleman et al., 2020; Sachdeva et al., 2021). Paul et al. (2021) sample according to an “EL2N score” formed by ensembling the losses of 10 lightly-trained models. Ensemble prediction variance has also been used as the scoring metric (Chitta et al., 2021), as have ensemble disagreement rates (Meding et al., 2021). Other scores measure whether an example is likely to be forgotten (Toneva et al., 2019), memorized (Feldman & Zhang, 2020), or un-learnable (Mindermann et al., 2022).

In the context of pre-training LLMs, perplexity-filtering is one of the arguably most used quality-scoring technique, which prioritizes samples with *low* perplexity or conversely filters out highly surprising examples (Wenzek et al., 2019; Marion et al., 2023; Muennighoff et al., 2023). Notably, recent advancements in cheaper to run model-based *training-run simulators* for LLMs can be used to *estimate* the perplexity of a training sample instead of running an LLM inference (Guu et al., 2023). Another group of methods selects training data that minimizes the *distance* between the distribution of selected data and a handcrafted high-quality data source (typically wikipedia and books). Typical

ways are to do this in a feature space (Xie et al., 2023b) or by training a contrastive-style classifier (Radford et al., 2019; Anil et al., 2023; Javaheripi et al., 2023). Similar ideas have also been explored for optimizing the data mixture weights for pre-training (Xie et al., 2023a).

3 METHODS

We propose two samplers, ASK-LLM and DENSITY. These samplers have significantly different costs—ASK-LLM requires an LLM inference call for each training sample, whereas DENSITY is based on a diversified sampling routine that is cheaper than even clustering the dataset. They also exhibit substantially different selection behavior: ASK-LLM conducts a highly *nuanced* and *contextual* quality evaluation for each sample, while DENSITY asks whether we have already sampled many similar examples. By studying samplers on extreme ends of this spectrum, we hope to better understand the salient factors for LLM data curation.

3.1 ASK-LLM SAMPLING

Intuition. Our intuition is that humans can easily identify commonly occurring failure modes in state-of-the-art data quality scorers. Hence, it should be possible to correct these mistakes using the reasoning capabilities of modern instruction-tuned LLMs. To do so, in ASK-LLM, we directly prompt an instruction-tuned *proxy* LLM with the prospective training example for the sampling decision (Figure 3). We take the softmax probability of the token “yes” as the estimated data-quality score. This procedure avoids the following common failure modes of perplexity filtering (*i.e.*, keeping the lowest perplexity examples). See Appendix H for a qualitative analysis.

Contextuality. Perplexity filters often select samples that lack context, *e.g.*, containing questions without answers (Examples 11, 12, 15). ASK-LLM correctly identifies that these examples do not provide new information.

Nonsense. Perplexity filters can select examples that repeat common words / phrases (Examples 14 and 15), likely because these common word combinations have high likelihood.

Niche examples. Perplexity filters can reject niche topics that are otherwise informative, well-written, and contain useful *tail knowledge* of the world. Example 17 contains detailed information about a Manchester art installation but is assigned a high perplexity, likely because it contains uncommon (but valid) word combinations. Examples 20-22 display similar behavior for other niche topics.

3.2 DENSITY SAMPLING

Intuition. Our intuition is that the data distribution provides a strong coverage signal. High-probability regions contain “prototypical” examples—ones with many near-duplicates and strong representation in the dataset. Low-probability regions will contain outliers, noise, and unique/rare inputs. If we wish to maximize topic coverage, we should boost the signal from under-represented portions of the input domain and downsample redundant, high-density information.

The key difficulty for our DENSITY sampler is to accurately estimate an example’s local density. Like Tirumala et al. (2023) (D4), we assume access to embeddings from a pre-trained LLM. However, we depart from the traditional approach of clustering and opt to sample based on kernel sums. Given a dataset D of embeddings and a kernel $k(x, y)$, we estimate the density using the following score.

$$\text{score}(y) = \sum_{x \in D} k_\lambda(x, y).$$

λ is a smoothing parameter called the *kernel bandwidth* that controls the scale of the points’ effects. To reduce the complexity from $O(N^2)$ to $O(N \log N)$, we use recent breakthroughs from the

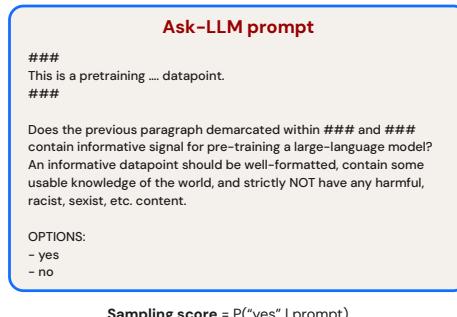


Figure 3: The ASK-LLM prompt to obtain each example’s sampling score.

216 algorithm community to approximate the sum (Siminelakis et al., 2019; Coleman & Shrivastava,
 217 2020). Our method resembles that of Coleman et al. (2022), except that (i) we adopt a two-pass
 218 sampling algorithm with stronger theoretical guarantees (Theorem C.2) and (ii) we perform the
 219 density estimation in the latent space of the model, rather than using Jaccard distances on n -grams.
 220

221 **3.3 SAMPLING TECHNIQUES**

223 DENSITY and ASK-LLM are both *scoring* methods that reduce an example to a floating point value
 224 that measures coverage or quality. Once we have these scores for a complete dataset of training
 225 samples, we consider two ways to select examples.

226 In our experiments, the DENSITY sampler uses IPS to maximize the coverage of the dataset.¹ For our
 227 ASK-LLM filter, we adopt top- k sampling because we expect the “yes” probability to be a reliable
 228 and strong measure of quality.

230 **3.4 RELATIONSHIPS BETWEEN METHODS**

232 **DENSITY, Perplexity, and Loss.** When a language model is trained to minimize perplexity, the LLM
 233 itself is a data distribution model. Therefore, the perplexity and loss filtering approaches of Marion
 234 et al. (2023), Muennighoff et al. (2023), and other authors can be viewed as model-based density
 235 sampling. However, our sampler measures the density of the training dataset in a latent geometric
 236 space, while perplexity measures the likelihood under the scoring model. The samplers also differ
 237 in terms of decision complexity. Thanks to the capacity of the LLM, a perplexity filter can make
 238 highly-nuanced decisions between two texts on the same topic. On the other hand, our DENSITY
 239 sampler is constructed from a simple nonparametric density model (Rosenblatt, 1956) that does not
 240 have the capacity to distinguish examples at such a granular level.

241 **ASK-LLM and Perplexity.** Perplexity filters exhibit a strong in-distribution bias, making decisions
 242 based on the data used to train the scoring model (not the dataset we wish to sample). By using
 243 the LLM for quality evaluation rather than likelihood estimation, our sampler can escape this bias
 244 because the additional context and alternative task change the sampling distribution. This occurs even
 245 when the ASK-LLM and perplexity models are the same size.

246 **DENSITY and Clustering.** The kernel sum procedure at the core of DENSITY operates on embedding-
 247 similarity relationships in a similar way to SemDeDup and SSL prototypes. Indeed, near-duplicate
 248 detection can be viewed as a discretized version of similarity-based density estimation (Kirsch &
 249 Mitzenmacher, 2006). Outlier rejection, which motivates the “nearest-to-centroid” heuristic of SSL
 250 prototypes, also has intimate connections with density estimation (Schubert et al., 2014).

251 **Intuition.** Perplexity should be viewed as a “difficulty” or “quality” score rather than as a coverage-
 252 maximizing score. Our ASK-LLM sampler should be viewed as a contextualized quality score that
 253 incorporates reasoning.² Our DENSITY sampler is a pure “coverage” score in the latent representation
 254 space, while SemDeDup, and SSL Prototypes all incorporate quality / outlier filtering to some extent
 255 (e.g., by preferring points near / far from a centroid).

256 **4 EMPIRICAL SETUP**

259 **Models.** We pre-train T5-style models (Raffel et al., 2020), which belong to the encoder-decoder
 260 family of Transformer models and offer competitive performance on many tasks (Shen et al., 2023).
 261 See Phuong & Hutter (2022) for a formal introduction to various Transformer model configurations.
 262 We train T5-Small (60M) and T5-Large (800M), reusing all of the training settings from the original
 263 T5 implementation except the batch size (2048 → 1024). We train on batches of 1024 sequences of
 264 length 512 for 1M steps. All our experiments are conducted on the TPUv5e architecture.

265 For perplexity filtering, we experiment with five different language models: T5-{Small, Base, Large,
 266 XL, XXL}. For ASK-LLM’s quality-scoring model, we consider the FLAN-T5 (Longpre et al.,

267 ¹We also implemented top- K and bottom- K sampling, but these samplers do not maintain coverage and
 268 perform poorly.

269 ²Note that ASK-LLM may also incidentally improve coverage because it does not suffer from in-distribution
 bias.

270 2023a) models of the same five sizes (Small to XXL), as well as the instruction-tuned Gemma-7B
 271 model (Team et al., 2024) (named G.7B for brevity).
 272

273 **Datasets.** We use the C4 dataset (Raffel et al., 2019) available under the ODC-By license, which
 274 was also used for pre-training the original T5 family of models. The C4 dataset is a version of the
 275 Common Crawl—a publicly available archive of web-text—that has been pre-processed using several
 276 heuristics (Raffel et al., 2020, Section 2.2). In its entirety, C4 contains 184B tokens. We use our
 277 algorithms (see Appendix D for a list) to sample $\{10, 20, 40, 60, 80\}\%$ of C4.
 278

279 Because a low sampling ratio yields exceedingly small datasets, we choose to train in the iso-compute
 280 setting, *i.e.*, training all models for exactly 524B tokens. This results in more epochs (repetitions) at
 281 smaller sampling rates. We believe this gives each data curation method an equal chance to maximize
 282 model performance, and not penalize methods that sample a small number of high-quality repeatable
 283 tokens *vs.* large number of non-repeatable tokens. See Appendix D, Figure 8 for a demonstration of
 284 this process.

285 **Evaluation.** We use 111 downstream evaluation tasks to assess diverse performance indicators for
 286 pre-trained LLMs. On a high-level, we conduct post-finetuning evaluation on GLUE and SuperGLUE
 287 for natural language understanding capabilities, as well as benchmark on various knowledge, reasoning,
 288 and Q/A evaluation sets after finetuning on the FLANv2 dataset. See Appendix F for a complete
 289 list and further details.
 290

291 In addition to these individual tasks, to compare a singular *normalized average performance improvement*
 292 over all downstream evaluations, we devise a metric called “*Effective Model Size*.” It
 293 is challenging to concisely summarize performance using a single measure, primarily because our
 294 evaluation consists of 111 individual tasks, all of which respond at different rates to data and model
 295 optimizations.
 296

297 Inspired by the LLM scaling-law literature (Hoffmann et al., 2022; Muennighoff et al., 2023), the
 298 “*Effective Model Size*” metric measures the effective model size by extrapolating on a parametric fit
 299 of the “number of parameters *vs.* downstream eval” trend, averaged over various downstream tasks.
 300 See Appendix E for a formal definition, as well as the fitted scaling laws for the original T5-models
 301 on the downstream tasks used in this paper. To summarize, this metric gives a principled answer
 302 to the question, “*If using a technique leads to x performance, what size LLM achieves the same x*
 303 *performance if the technique is not used?*”
 304

5 EXPERIMENTS

306 **Does reasoning improve efficiency?** Figure 4 shows that ASK-LLM trains 800M models to an
 307 equivalent performance, as if we were to train 1.5B models on the original C4 dataset. ASK-LLM
 308 consistently outperforms perplexity filtering (and coverage-maximizing baselines), despite having
 309 access to a scoring model of the same model capacity (XL). Similar findings hold for training
 310 efficiency (Figure 5). ASK-LLM converges faster than perplexity filters, both in average (expected
 311 final performance over all proxy model sizes) and pointwise for the best configuration (Small and XL
 312 for training T5-Small and T5-Large).
 313

314 Figure 7 further demonstrates that prompting adds critical information to the sampler not present
 315 in perplexity: ASK-LLM scores show *no correlation* with the perplexity scores. Based on this
 316 clear behavioral difference, we conclude that reasoning and context are crucial ingredients. We
 317 expect prompting techniques such as chain-of-thought reasoning (Wei et al., 2022) to further drive
 318 performance.

319 **When are expensive scores justified?** Observing the effective model size while training T5-Large,
 320 Figure 4 suggests that other samplers start performing well only at larger sample ratios ($\geq 60\%$),
 321 with performance very close to ASK-LLM. On the other hand, at smaller sampling ratios, ASK-LLM
 322 tends to significantly outperform both coverage-based samplers, as well as cheaper alternatives for
 323 data-quality scoring like Q-Classifier and DSIR (Appendix D). Hence, the higher costs of LLM-based
 324 filters are most justified in two scenarios: (i) improving full-data performance, where quality filtering
 325 by removing the lowest-quality data is the main way to push the upper limit of model performance;

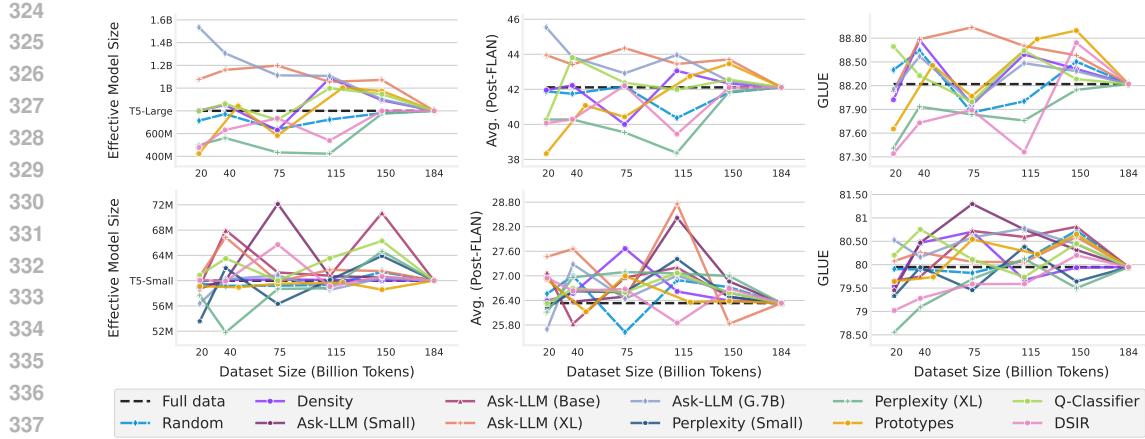


Figure 4: Tradeoff between data quantity (number of unique tokens in the sampled dataset) and model quality for (top) T5-Large and (bottom) T5-Small pre-training. Each point corresponds to a converged pre-training run over a sub-sample. To avoid clutter, not all sampling methods or evaluation metrics are shown in Figure 4 or Table 1; see Appendix G for the results of all 22 samplers and metrics.

Table 1: Comparison of sampling algorithms at a fixed sample size. For each sampling strategy, we sample the dataset to X% of the original size and pre-train T5-Large for 524B tokens. This table is a cross-section of Figure 4 but with more metrics.

LLM	Training config.		Effective Model Size	Downstream tasks				FLAN Instruction Tuning			
	Sampler	# Tokens		GLUE	Super GLUE	CNN/DM	SQuAD	MMLU	BBH	Reasoning	QA
T5-Large	—	184B	800M	88.2	82.5	20.8	86.7	40.7	33.6	21.6	73.0
T5-Large	Random	18B	713M	88.4	82.3	20.8	85.9	41.8	33.6	20.6	71.5
T5-Large	Density	18B	802M	88.0	80.5	20.9	86.9	42.6	35.5	19.1	70.6
T5-Large	Prototypes	18B	423M	87.7	80.5	20.4	86.6	36.7	33.0	17.6	66.0
T5-Large	Perplexity (Small)	18B	301M	87.6	80.2	20.5	85.2	36.8	33.8	17.7	60.9
T5-Large	DSIR	18B	476M	87.3	81.7	20.7	85.4	39.8	33.3	22.2	65.0
T5-Large	Q-Classifier	18B	797M	88.7	83.6	20.8	87.7	40.5	35.0	20.2	65.4
T5-Large	Ask-LLM (G.7B)	18B	1.5B	88.2	82.5	20.8	87.8	44.2	37.1	22.7	78.2

or (ii) in the low-data regime, where keeping only the highest-quality data drives the most model performance compared to other sampling strategies.

We also observe that random sampling is a strong baseline, aligning with recent observations in the literature. Guo et al. (2022a) found that only three methods outperformed random sampling in a computer vision benchmark of 15 algorithms, and Ayed & Hayou (2023a) prove the existence of adversarial problem instances random sampling is optimal. These results highlight the significance of ASK-LLM’s gains.

Effect of scoring model capacity: Figure 6 demonstrates a clear scaling trend for ASK-LLM’s quality-scoring model: larger scoring models are increasingly beneficial as the scale of the to-be-trained LLM increases. Perplexity filters do not seem to exhibit such trends. The strongly consistent trend suggests that ASK-LLM performance will improve with stronger quality-scoring models – whether obtained by fine-tuning, chain-of-thought prompting, or size. However, we still observe compelling performance even when training large models on data chosen by small ASK-LLM models. For example, ASK-LLM (Base) outperforms perplexity filtering with *any* scoring-model (including T5-XXL) for most sampling ratios (Appendix F).

Do samplers select different examples? We computed the Kendall Tau rank correlation between samplers on 500k examples (Figure 7), finding significant and interesting differences. For example, the “T5-Large” rows show that (i) T5-Large outputs perplexity scores similar to T5-Small early in

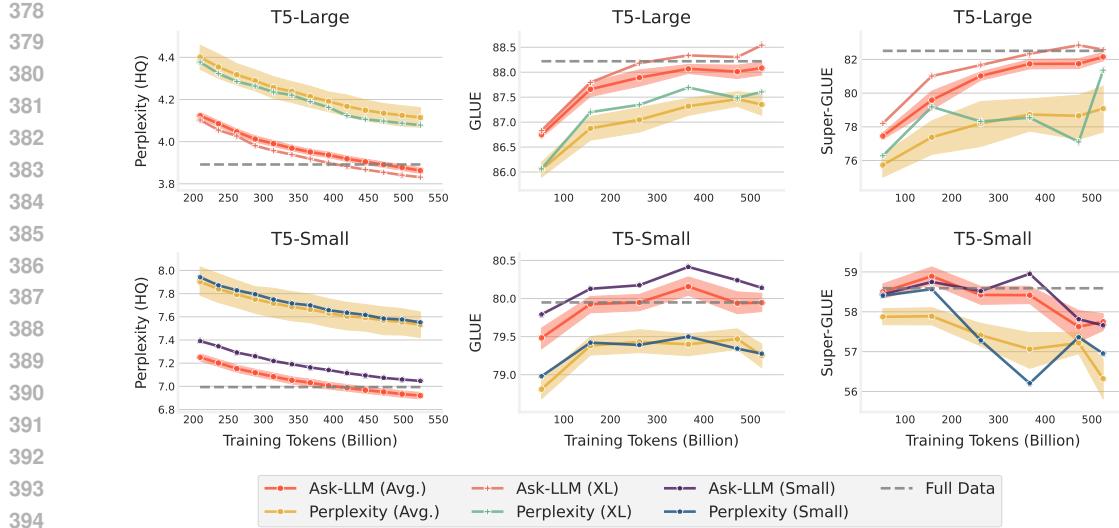


Figure 5: Training efficiency comparison between ASK-LLM and Perplexity filtering, shown by comparing performance of intermediate checkpoints. The (Avg) represents performance *averaged* across (i) scoring model sizes, *i.e.*, T5-{Small, Base, Large, XL, XXL}; and (ii) sampling ratios, *i.e.*, {10, 20, 40, 60, 80}%. The (Small) and (XL) series show the T5-{Small, XL} runs, averaged only over the sampling ratios.

training, but becomes progressively more nuanced on the path from 20k to 700k training steps, and (ii) perplexity, density, and ASK-LLM select for wildly different criteria, with almost no ranking correlation. This supports our hypothesis that DENSITY prioritizes coverage, representing the original training objective better than any other method besides uniform sampling (Appendix G); perplexity re-weights the training objective to up-weight data regions that are in-distribution for the proxy model; and ASK-LLM up-weights the regions that are identified as “high-quality” by the prompt.

6 DISCUSSION

Amortized scoring. The ASK-LLM and perplexity scorers require considerable computation—one LLM inference call for every training sample—which is concerning from both a carbon-emissions and cost perspective (Strubell et al., 2019). However, we argue that the scoring costs are *amortized over many pre-training runs*, which together cost significantly more than the ASK-LLM inference calls (Lucioni et al., 2023). In practical systems, cheaper samplers / scoring models can also pre-filter examples for our more expensive scorers. While LLM pre-training is often thought of as a one-time cost, this has historically not been the case. We therefore view quality scores as a long-term investment. See Appendix C.1 for a deeper discussion about the cost of ASK-LLM scoring.

LLM-Based Data Refinement. Recursively training on model-generated data causes degradation in both diffusion models and LLMs, inciting concerns about whether the internet will remain a viable source of training data (Shumailov et al., 2023; Alemohammad et al., 2023; Briesch et al., 2023). It is therefore somewhat surprising that LLMs are so effective at deciding which training data to consume. Our ASK-LLM results raise important questions about whether LLM-based filters can function as an intervention in the self-consumption loop, allowing LLMs to self-improve.

Decoder-Only Models. The experiments in this work address the data-efficiency of encoder-decoder models in the T5 family. The encoder-decoder structure is still the subject of research and industrial use, especially for applications that can employ asymmetric encoder and decoder components to exploit efficiency tradeoffs (Zhang et al., 2025). However, the vast majority of today’s research and practical applications focus on decoder-only models.

While we do not conduct experiments with decoder-only architectures in this paper, we would like to note that a variant of our ASK-LLM technique was used in the development of the Gemma 3 family of models. Specifically, the ASK-LLM framework was employed to re-weight the pretraining corpus to reduce occurrences of low-quality data (Kamath et al., 2025).

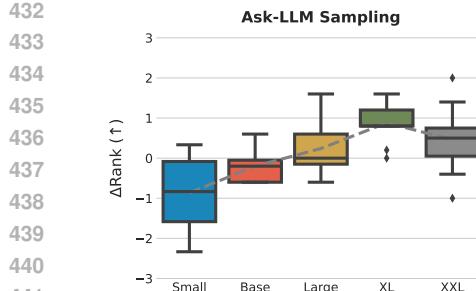


Figure 6: Change in *ranking* of scoring models. A positive Δ Rank indicates that the scorer’s task-averaged rank increased when training T5-large vs. T5-Small.

7 CONCLUSION

We studied the performance of sampling algorithms that select high-quality data through highly-capable proxies and maximize coverage through embedding similarity. Our experiments reveal that LLM-based quality filtering yields a Parteo optimal efficiency tradeoff between data quantity and model quality, with important implications for training cost, self-improvement, and LLM training data curation.

REFERENCES

Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S Morcos. Semdedup: Data-efficient learning at web-scale through semantic deduplication. *arXiv preprint arXiv:2303.09540*, 2023.

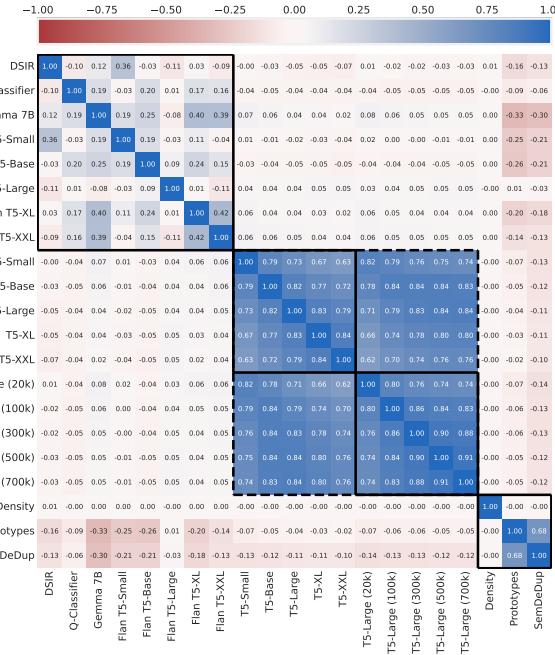
Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier Bachem. Gkd: Generalized knowledge distillation for auto-regressive sequence models. *arXiv preprint arXiv:2306.13649*, 2023.

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative models go mad. *arXiv preprint arXiv:2307.01850*, 2023.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, and Zhifeng Chen et al. Palm 2 technical report, 2023.

Fadhel Ayed and Soufiane Hayou. Data pruning and neural scaling laws: fundamental limitations of score-based algorithms. *arXiv preprint arXiv:2302.06960*, 2023a.

Figure 7: Kendall’s Tau correlation amongst the scores from quality filters (first 8), perplexity filters (next 10), and coverage-based samplers (last 3).



486 Fadhel Ayed and Soufiane Hayou. Data pruning and neural scaling laws: fundamental limitations of
 487 score-based algorithms. *Transactions on Machine Learning Research*, 2023b. ISSN 2835-8856.
 488 URL <https://openreview.net/forum?id=iRTL4pDavo>.

489

490 Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
 491 learning and streaming. *Advances in Neural Information Processing Systems*, 33:14879–14890,
 492 2020.

493 Martin Briesch, Dominik Sobania, and Franz Rothlauf. Large language models suffer from their own
 494 output: An analysis of the self-consuming training loop. *arXiv preprint arXiv:2311.16822*, 2023.

495

496 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 497 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 498 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

499

500 Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Philipp Koehn, and Tony
 501 Robinson. One billion word benchmark for measuring progress in statistical language modeling.
 501 *arXiv preprint arXiv:1312.3005*, 2013.

502

503 Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. *arXiv preprint*
 503 *arXiv:1203.3472*, 2012.

504

505 Kashyap Chitta, José M Álvarez, Elmar Haussmann, and Clément Farabet. Training data subset
 506 search with ensemble active learning. *IEEE Transactions on Intelligent Transportation Systems*,
 507 23(9):14741–14752, 2021.

508

509 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 510 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
 511 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113,
 511 2023.

512

513 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 514 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint*
 514 *arXiv:1905.10044*, 2019.

515

516 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 517 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 518 *arXiv preprint arXiv:1803.05457*, 2018.

519

520 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 521 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
 521 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

522

523 Benjamin Coleman and Anshumali Shrivastava. Sub-linear race sketches for approximate kernel
 524 density estimation on streaming data. In *Proceedings of The Web Conference 2020*, pp. 1739–1749,
 525 2020.

526

527 Benjamin Coleman, Benito Geordie, Li Chou, RA Leo Elworth, Todd Treangen, and Anshumali
 528 Shrivastava. One-pass diversified sampling with application to terabyte-scale genomic sequence
 528 streams. In *International Conference on Machine Learning*, pp. 4202–4218. PMLR, 2022.

529

530 Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
 531 Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
 531 learning. In *ICLR*, 2020.

532

533 Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
 534 scheme based on p-stable distributions. In *Proceedings of the twentieth annual symposium on*
 535 *Computational geometry*, pp. 253–262, 2004.

536

537 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
 537 multiplication for transformers at scale. *arXiv preprint arXiv:2208.07339*, 2022.

538

539 Luc Devroye. The equivalence of weak, strong and complete convergence in L^1 for kernel density
 539 estimates. *The Annals of Statistics*, pp. 896–904, 1983.

540 Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
 541 Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
 542 models with mixture-of-experts. In *International Conference on Machine Learning*, pp. 5547–5569.
 543 PMLR, 2022.

544 Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-size
 545 coresets for k-means, pca, and projective clustering. *SIAM Journal on Computing*, 49(3):601–657,
 546 2020.

547 Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long
 548 tail via influence estimation. *Advances in Neural Information Processing Systems*, 33:2881–2891,
 549 2020.

550 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
 551 Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
 552 language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

553 Team Gemini, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
 554 Soricu, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
 555 multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

556 Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
 557 use a laptop? a question answering benchmark with implicit reasoning strategies. *Transactions of
 558 the Association for Computational Linguistics*, 9:346–361, 2021.

559 Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
 560 Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are all
 561 you need. *arXiv preprint arXiv:2306.11644*, 2023.

562 Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coresnet selec-
 563 tion in deep learning. In *International Conference on Database and Expert Systems Applications*,
 564 pp. 181–195. Springer, 2022a.

565 Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coresnet selec-
 566 tion in deep learning. In *International Conference on Database and Expert Systems Applications*,
 567 pp. 181–195. Springer, 2022b.

568 Mandy Guo, Zihang Dai, Denny Vrandečić, and Rami Al-Rfou. Wiki-40b: Multilingual language
 569 model dataset. In *Proceedings of the Twelfth Language Resources and Evaluation Conference*, pp.
 570 2440–2452, 2020.

571 Kelvin Guu, Albert Webson, Ellie Pavlick, Lucas Dixon, Ian Tenney, and Tolga Bolukbasi. Simfluence:
 572 Modeling the influence of individual training examples by simulating training runs. *arXiv preprint
 573 arXiv:2303.08114*, 2023.

574 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 575 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
 576 arXiv:2009.03300*, 2020.

577 Karl Moritz Hermann, Tomas Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
 578 Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. *Advances in neural
 579 information processing systems*, 28, 2015.

580 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 581 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 582 An empirical analysis of compute-optimal large language model training. *Advances in Neural
 583 Information Processing Systems*, 35:30016–30030, 2022.

584 Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian, and Vahab S Mirrokni. Composable core-sets
 585 for diversity and coverage maximization. In *Proceedings of the 33rd ACM SIGMOD-SIGACT-
 586 SIGART symposium on Principles of database systems*, pp. 100–108, 2014.

594 Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sébastien Bubeck, Caio
 595 César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al.
 596 Phi-2: The surprising power of small language models, 2023.

597

598 Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R Ganger,
 599 Gauri Joshi, Michael Kaminsky, Michael Kozuch, Zachary C Lipton, et al. Accelerating deep
 600 learning by focusing on the biggest losers. *arXiv preprint arXiv:1910.00762*, 2019.

601 Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
 602 Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard,
 603 Geoffrey Cideron, Jean-Bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne
 604 Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton
 605 Tsitsulin, Róbert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao, Basil
 606 Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten Peter,
 607 Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin
 608 Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu
 609 Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alexander
 610 Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György, André Susano Pinto,
 611 Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson, Ashish Shenoy, Ayan
 612 Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le Lan,
 613 Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisenbud,
 614 Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathihalli, Doug Reid,
 615 Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick Liu, Gagik
 616 Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucinska, Harman Singh, Harsh
 617 Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne, Idan Szpektor, Ivan Nardini,
 618 Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan Lai, Jordi Orbay, Joseph
 619 Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy Yu, Kevin Hui, Kiran
 620 Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho, Marvin Ritter, Matt
 621 Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma, Nabila Babar,
 622 Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Oskar Bunyan, Pankil
 623 Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton, Philipp Schmid, Pier Giuseppe
 624 Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza
 625 Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Gir-
 626 gin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Pöder, Sijal Bhatnagar, Sindhu Raghuram
 627 Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra,
 628 Utku Evcı, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov, Woohyun Han,
 629 Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta,
 630 Minh Giang, Phoebe Kirk, Anand Rao, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar
 631 Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli
 632 Collins, Joelle K. Barra, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov,
 633 Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu,
 634 Clément Farabet, Elena Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry Dima Lepikhin,
 635 Sebastian Borgeaud, Olivier Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert
 636 Dadashi, and Léonard Hussenot. Gemma 3 technical report. *CoRR*, abs/2503.19786, March 2025.
 637 URL <https://doi.org/10.48550/arXiv.2503.19786>.

638 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 639 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 640 *arXiv preprint arXiv:2001.08361*, 2020.

641 Zohar Karnin and Edo Liberty. Discrepancy, coresets, and sketches in machine learning. In *Conference
 642 on Learning Theory*, pp. 1975–1993. PMLR, 2019.

643 Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
 644 importance sampling. In *International conference on machine learning*, pp. 2525–2534. PMLR,
 2018.

645 Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and
 646 Hannaneh Hajishirzi. Unifiedqa: Crossing format boundaries with a single qa system. *arXiv
 647 preprint arXiv:2005.00700*, 2020.

648 Adam Kirsch and Michael Mitzenmacher. Distance-sensitive bloom filters. In *2006 Proceedings of*
 649 *the Eighth Workshop on Algorithm Engineering and Experiments (ALENEX)*, pp. 41–50. SIAM,
 650 2006.

651

652 Alycia Lee, Brando Miranda, and Sanmi Koyejo. Beyond scale: the diversity coefficient as a
 653 data quality metric demonstrates llms are pre-trained on formally diverse data. *arXiv preprint*
 654 *arXiv:2306.13840*, 2023.

655

656 Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
 657 Burch, and Nicholas Carlini. Deduplicating training data makes language models better. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume*
 658 *1: Long Papers)*, pp. 8424–8445, 2022.

659

660 Zichang Liu, Zhaozhuo Xu, Benjamin Coleman, and Anshumali Shrivastava. One-pass distribution
 661 sketch for measuring data heterogeneity in federated learning. In *Thirty-seventh Conference on*
 662 *Neural Information Processing Systems*, 2023.

663

664 Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
 665 Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
 666 instruction tuning. *arXiv preprint arXiv:2301.13688*, 2023a.

667

668 Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
 669 Zhou, Jason Wei, Kevin Robinson, David Mimno, et al. A pretrainer’s guide to training
 670 data: Measuring the effects of data age, domain coverage, quality, & toxicity. *arXiv preprint*
arXiv:2305.13169, 2023b.

671

672 Alexandra Sasha Luccioni, Sylvain Viguer, and Anne-Laure Ligozat. Estimating the carbon footprint
 673 of bloom, a 176b parameter language model. *Journal of Machine Learning Research*, 24(253):
 1–15, 2023.

674

675 Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
 676 When less is more: Investigating data pruning for pretraining llms at scale. *arXiv preprint*
arXiv:2309.04564, 2023.

677

678 Kristof Meding, Luca M Schulze Buschoff, Robert Geirhos, and Felix A Wichmann. Trivial or
 679 impossible–dichotomous data difficulty masks model differences (on imagenet and beyond). *arXiv*
 680 *preprint arXiv:2110.05922*, 2021.

681

682 Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
 683 english math word problem solvers. *arXiv preprint arXiv:2106.15772*, 2021.

684

685 Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie
 686 Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized
 687 training on points that are learnable, worth learning, and not yet learnt. In *International Conference*
on Machine Learning, pp. 15630–15649. PMLR, 2022.

688

689 Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane
 690 Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models.
 691 *arXiv preprint arXiv:2305.16264*, 2023.

692

693 Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B Hall, Daniel Cer, and Yinfei
 694 Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. *arXiv preprint*
arXiv:2108.08877, 2021.

695

696 OpenAI. Gpt-4 technical report, 2023.

697

698 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are nlp models really able to solve simple math
 699 word problems? *arXiv preprint arXiv:2103.07191*, 2021.

700

701 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
 702 important examples early in training. *Advances in Neural Information Processing Systems*, 34:
 20596–20607, 2021.

702 Jeff M Phillips. Coresets and sketches. In *Handbook of discrete and computational geometry*, pp.
 703 1269–1288. Chapman and Hall/CRC, 2017.
 704

705 Mary Phuong and Marcus Hutter. Formal algorithms for transformers. *arXiv preprint*
 706 *arXiv:2207.09238*, 2022.

707 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 708 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

709

710 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 711 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 712 transformer. *arXiv e-prints*, 2019.

713 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 714 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 715 transformer. *The Journal of Machine Learning Research*, 21(1):5485–5551, 2020.

716

717 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
 718 machine comprehension of text. *arXiv preprint arXiv:1606.05250*, 2016.

719

720 Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. *The annals of*
 721 *mathematical statistics*, pp. 832–837, 1956.

722

723 Noveen Sachdeva and Julian McAuley. Data distillation: A survey. *Transactions on Machine*
 724 *Learning Research*, 2023. ISSN 2835-8856. Survey Certification.

725

726 Noveen Sachdeva, Carole-Jean Wu, and Julian McAuley. Svp-cf: Selection via proxy for collaborative
 727 filtering data. *arXiv preprint arXiv:2107.04984*, 2021.

728

729 Noveen Sachdeva, Zexue He, Wang-Cheng Kang, Jianmo Ni, Derek Zhiyuan Cheng, and Julian
 730 McAuley. Farzi data: Autoregressive data distillation. *arXiv preprint arXiv:2310.09983*, 2023.

731

732 Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. Generalized outlier detection with flexible
 733 kernel density estimates. In *Proceedings of the 2014 SIAM International Conference on Data*
 734 *Mining*, pp. 542–550. SIAM, 2014.

735

736 Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung, Barret
 737 Zoph, William Fedus, Xinyun Chen, et al. Mixture-of-experts meets instruction tuning: A winning
 738 combination for large language models. *arXiv preprint arXiv:2305.14705*, 2023.

739

740 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Anderson. The
 741 curse of recursion: Training on generated data makes models forget.(5 2023). URL: <https://arxiv.org/abs/2305.17493>, 2023.

742

743 Paris Siminelakis, Kexin Rong, Peter Bailis, Moses Charikar, and Philip Levis. Rehashing kernel
 744 evaluation in high dimensions. In *International Conference on Machine Learning*, pp. 5789–5798.
 745 PMLR, 2019.

746

747 Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
 748 scaling laws: beating power law scaling via data pruning. *Advances in Neural Information*
 749 *Processing Systems*, 35:19523–19536, 2022.

750

751 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 752 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
 753 imitation game: Quantifying and extrapolating the capabilities of language models. *arXiv preprint*
 754 *arXiv:2206.04615*, 2022.

755

756 Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
 757 learning in nlp. *arXiv preprint arXiv:1906.02243*, 2019.

758

759 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
 760 Laurent Sifre, Morgane Rivi  re, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
 761 based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

756 Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari S Morcos. D4: Improving llm
 757 pretraining via document de-duplication and diversification. *arXiv preprint arXiv:2308.12284*,
 758 2023.

759 M. Toneva, A. Sordoni, R. Combes, A. Trischler, Y. Bengio, and G. Gordon. An empirical study of
 760 example forgetting during deep neural network learning. In *ICLR*, 2019.

762 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 763 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 764 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

765 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 766 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 767 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

769 Murad Tukan, Cenk Baykal, Dan Feldman, and Daniela Rus. On coresets for support vector machines.
 770 *Theoretical Computer Science*, 890:171–191, 2021.

771 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
 772 A multi-task benchmark and analysis platform for natural language understanding. *arXiv preprint
 773 arXiv:1804.07461*, 2018.

775 Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
 776 Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
 777 understanding systems. *Advances in neural information processing systems*, 32, 2019.

778 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 779 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 780 Neural Information Processing Systems*, 35:24824–24837, 2022.

782 Lilian Weng. Large transformer model inference optimization. *Lil'Log*, Jan 2023. URL <https://lilianweng.github.io/posts/2023-01-10-inference-optimization/>.

784 Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán,
 785 Armand Joulin, and Edouard Grave. Ccnet: Extracting high quality monolingual datasets from
 786 web crawl data. *arXiv preprint arXiv:1911.00359*, 2019.

788 Dominik Wied and Rafael Weißbach. Consistency of the kernel density estimator: a survey. *Statistical
 789 Papers*, 53(1):1–21, 2012.

790 Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V
 791 Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model
 792 pretraining. *arXiv preprint arXiv:2305.10429*, 2023a.

794 Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language
 795 models via importance resampling. *arXiv preprint arXiv:2302.03169*, 2023b.

796 Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
 797 models via importance resampling. *Advances in Neural Information Processing Systems*, 36, 2024.

799 Biao Zhang, Fedor Moiseev, Joshua Ainslie, Paul Suganthan, Min Ma, Surya Bhupatiraju, Fede
 800 Lebron, Orhan Firat, Armand Joulin, and Zhe Dong. Encoder-decoder gemma: Improving the
 801 quality-efficiency trade-off via adaptation. *arXiv preprint arXiv:2504.06225*, 2025.

802 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
 803 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
 804 models. *arXiv preprint arXiv:2205.01068*, 2022.

805 Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
 806 Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. *arXiv preprint arXiv:2305.11206*, 2023.

808
 809

810 Appendices

813	section.1section*.2section.2section*.4section*.5section.3subsection.3.1subsection.3.2subsection.3.3subsection.3.4section.4se	
814	A Impact Statement	17
815		
816	B Limitations	17
817		
818	C Algorithms	17
819	C.1 ASK-LLM Sampling	17
820	C.2 DENSITY Sampling	18
821		
822		
823		
824	D Data-curation Techniques	19
825	D.1 Random Sampling	19
826	D.2 DENSITY Sampling	19
827	D.3 SemDeDup	20
828	D.4 SSL Prototypes	20
829	D.5 Perplexity Filtering	20
830	D.6 Text-quality Classifier (Q-Classifier)	20
831	D.7 Data Selection with Importance Resampling (DSIR)	21
832		
833	D.8 ASK-LLM Sampling	21
834		
835		
836		
837		
838	E Effective Model Size	21
839		
840	F Downstream Evaluation Tasks	21
841	F.1 Perplexity	21
842	F.2 HQ Perplexity	22
843	F.3 GLUE	22
844	F.4 SuperGLUE	22
845	F.5 CNN/DM	22
846	F.6 SQuAD	22
847		
848	F.7 FLAN Instruction Tuning	22
849		
850		
851		
852		
853	G Additional Results	22
854	G.1 (Figure 10) Quality-score Distribution for Different Samplers	22
855	G.2 (Figure 11) Analysis for Different Samplers' Affinity to Different Topics	23
856	G.3 (Figures 12 to 20) Data-quantity <i>vs.</i> Model-quality for Different Samplers	23
857	G.4 (Figures 21 to 29) Quality of Fresh <i>vs.</i> Repeated Tokens for Different Samplers	29
858		
859	G.5 (Figures 30 to 36) Data-efficiency of Different Samplers	34
860		
861		
862	H Qualitative Results	38
863	H.1 High-quality Samples Identified by ASK-LLM	38

864	H.2 Low-quality Samples Identified by ASK-LLM	42
865	H.3 Increasing-quality Samples Identified by ASK-LLM	45
866	H.4 Decreasing-quality Samples Identified by ASK-LLM	47
867		
868		

A IMPACT STATEMENT

While increased LLM accessibility has well-documented risks, we expect data-efficient pre-training to be a net social good that reduces (amortized) carbon emissions and pre-training cost while improving quality.

B LIMITATIONS

While the paper pushes the frontier of LLM-training from both quality and efficiency fronts by better curating pre-training datasets, we would also like to note the limitations of this paper that both better informs the reader and hopefully guides future work. First, due to the sheer cost of training LLMs even once, let alone doing data-efficiency research, we only train one kind of transformer models (encoder-decoder) and only on the C4 dataset. The transferability of our results to more popular, decoder-only models and larger datasets is still yet to be explored, and an interesting direction for future work. Next, due to T5-models' inability to code (primarily a tokenization issue), we don't include any coding evaluations in this paper. Curating high-quality coding data is an interesting and active direction of research ([Gunasekar et al., 2023](#)). Further, all of our evaluations are limited to post-finetuning (as is the prevalent setting with T5 models), hence the effect of our data-curation techniques on zero/few-shot prompting is also not clear.

C ALGORITHMS

C.1 ASK-LLM SAMPLING

Algorithm 1 ASK-LLM Sampling

Input: Dataset $\mathcal{D} = \{x_1, x_2, \dots, x_N\}$ s.t. $x_i \in \mathcal{X}$ is the training sample in plain-text, sample size k , scoring model $\mathcal{M} : \mathcal{X}; \mathcal{X} \mapsto \mathbb{R}$

Output: Sampled data

```

1: Initialize list of scores  $S = \emptyset$ .
2: for  $n = 1 \rightarrow N$  do
3:    $\text{prompt}_n \leftarrow \text{make\_prompt}(x_n)$             $\triangleright$  Make ASK-LLM prompts as in Figure 3
4:   Append  $\mathcal{M}(\text{"yes"} \mid \text{prompt}_n)$  to  $S$             $\triangleright$  Use  $\mathcal{M}$  to score  $x_n$ 
5: return  $k$  elements from  $\mathcal{D}$  with top- $k$  scores in  $S$ , without replacement.

```

Discussion on the cost of ASK-LLM scoring. Even though ASK-LLM sampling results in impressive performance and training efficiency improvements compared to training on the full-dataset (Appendix G), the data quality scoring cost might seem prohibitive. On the other hand, on top of the improved results, we argue the following to be compelling points in justifying ASK-LLM’s one-time-amortized data scoring cost:

[leftmargin=*) ASK-LLM only requires *forward passes* on the entire dataset. This is much cheaper than (i) training the model itself which requires both forward and backward passes on multiple repetitions of the entire dataset, (ii) gradient-based data-curation techniques ([Sachdeva & McAuley, 2023](#); [Sachdeva et al., 2023](#)) that also require backward passes, *etc.* An additional benefit of the ASK-LLM framework is the ability to leverage memory-efficient, quantized LLM inference setups ([Dettmers et al., 2022](#)). This is strictly not possible, *e.g.*, for pre-training LLMs. Notably, quantization isn't the only ASK-LLM-friendly technique. All the recent (and future) advances in efficient *inference* techniques for LLMs ([Weng, 2023](#)) directly reduce the amortization cost of the ASK-LLM framework. Another benefit of

918 ASK-LLM is the ability to naively parallelize quality scoring. To be more specific, we can
 919 simply scale-up the amount of *small & independent* inference resources, and run inference
 920 calls for various training samples parallelly. Note that inference hardware has much smaller
 921 requirements compared to, *e.g.*, pre-training or fine-tuning requirements. This is primarily
 922 true because of no batch size requirement for inference *vs.* large batch size requirement
 923 while training. This enables scaling-up hardware to happen via a large number of small-
 924 compute setups (*e.g.*, 4 interconnected GPUs per node) versus increasing the number of
 925 large-compute setups (*e.g.*, 1000s of interconnected GPUs per node). ASK-LLM also uses
 926 strictly less compute compared to teacher-student knowledge distillation based training
 927 setups (Agarwal et al., 2023). This is true simply because knowledge distillation require (i)
 928 bigger teacher model’s softmax predictions (ii) for each token in our training data. On the
 929 other hand, ASK-LLM requires just the score of the token “yes” given the prompt.

930 C.2 DENSITY SAMPLING

931 Our density sampler is adapted from that of Coleman et al. (2022), with a few critical departures:

- 934 • We use a two-pass procedure that allows for more rigorous theoretical guarantees (and
 935 different sampling behavior).
- 936 • We conduct the density estimation in the model’s latent space rather than using Jaccard
 937 similarity over n -grams.

938 **Improvements:** Jaccard similarities are sufficient to construct a reasonable sampling distribution
 939 for genomics applications, which are significantly more structured than natural language. However,
 940 this is not the case with text — we found that sampling based on Jaccard density is no better than
 941 random. For this reason, we must use different kernels (p -stable rather than MinHash) and different
 942 input representations (embedding rather than n -grams).

943 However, our more interesting departure from Coleman et al. (2022) is our two-pass sampling
 944 procedure, which changes the behavior of the algorithm and allows for more rigorous theoretical
 945 guarantees. The original method was only able to demonstrate convergence of cluster populations in
 946 the sampled dataset. While this leads to (weak) convergence for some measures of diversity, it also
 947 requires strong assumptions about the cluster structure.

948 **Theory:** We use a recent result that demonstrates consistent sketch-based estimation of the kernel
 949 sum (Theorem 3.3 of Liu et al. (2023)), which we paraphrase below.

950 **Lemma C.1.** *Let $P(x)$ denote a probability density function. Let $\mathcal{D} \sim_{\text{i.i.d.}} P(x)$ denote a dataset. Let
 951 $k(x, y)$ be a positive definite LSH kernel, and let S be the DENSITY score. Then $S(x)$ is a consistent
 952 estimator for the kernel sum.*

$$953 S(x) \xrightarrow{\text{i.p.}} \frac{1}{N} \sum_{x_i \in \mathcal{D}} k(x_i, q)$$

954 with convergence rate $O(\sqrt{\log R/R})$.

955 If we perform inverse propensity sampling using the score in Lemma C.1, we obtain a sampling
 956 procedure that outputs a uniformly-distributed sample.

957 **Theorem C.2.** *Let $Q(x)$ be the distribution formed by (i) drawing N samples i.i.d. from a distribution
 958 P , e.g. $\mathcal{D} = \{x_1, \dots, x_N\} \sim P$, and (ii) keeping x with probability proportional to $\frac{1}{S(x)}$. Under the
 959 conditions of Lemma C.1, $Q(x) \xrightarrow{\text{i.p.}} U(x)$, where $U(x)$ is the uniform distribution.*

960 *Proof.* Under the conditions of Wied & Weißbach (2012) (specifically, positive-definiteness and ℓ_1
 961 integrability / bounded domain), the kernel sum is a consistent estimator of the density. That is, the
 962 sum converges in probability to $P(x)$.

$$963 \frac{1}{N} \sum_{x_i \in \mathcal{D}} k(x_i, q) \xrightarrow{\text{i.p.}} P(x)$$

964 Lemma C.1 shows that $S(x)$ converges in probability to the sum (and thus to $P(x)$). By Slutsky’s
 965 Theorem, $\frac{1}{S(x)} \rightarrow \frac{1}{P(x)}$ for all x in the support of the distribution (i.e. $P(x) \neq 0$). The probability of

972 generating x as part of the sample is:
 973

$$974 Q(x) = \Pr[\text{Select}x \cap \text{Generate}x] = \Pr[\text{Select}x]\Pr[\text{Generate}x] = \frac{1}{S(x)}P(x)$$

$$975$$

$$976$$

977 Because $\frac{1}{S(x)} \rightarrow \frac{c}{P(x)}$ for some constant c , we have that $Q(x) \rightarrow c$. \square
 978

979 Theorem C.2 demonstrates that our DENSITY sampler outputs a uniformly-distributed collection of
 980 points over the input space (latent LLM representation space).
 981

982 **Algorithm 2** Inverse Propensity Sampling (IPS) via Kernel Density Estimation (KDE)

983 **Input:** Dataset $\mathcal{D} = \{x_1, x_2, \dots, x_N\}$ of embeddings, sample size k , kernel k with corresponding
 984 locality-sensitive hash family \mathcal{H} (see [Coleman & Shrivastava \(2020\)](#)), hash range B , rows R , random
 985 seed s

986 **Output:** Sampled data

987 1: **Initialize:** KDE sketch $\mathcal{S} \leftarrow 0^{R \times B}$
 988 2: Generate R independent hash functions h_1, \dots, h_R from \mathcal{H} with range B and random seed s .
 989 3: **for** $n = 1 \rightarrow N$ **do** \triangleright Construct KDE estimator for \mathcal{D} .
 990 4: **for** $r = 1 \rightarrow R$ **do** \triangleright Add x_n to the KDE estimator.
 991 5: $\mathcal{S}_{r, h_r(x_n)} += 1$
 992 6: Initialize list of scores $S = []$.
 993 7: **for** $n = 1 \rightarrow N$ **do** \triangleright Score each example x_n
 994 8: score = 0
 995 9: **for** $r = 1 \rightarrow R$ **do** \triangleright Compute approximate KDE using \mathcal{S}
 996 10: score += $\mathcal{S}[r, h_r(x_n)]$
 997 11: Append score/ R to S
 998 12: **return** k elements from \mathcal{D} with probability $p = \frac{\sum S}{S}$ without replacement.

1000
 1001 **Cost:** Like SemDeDup, D4, and SSL prototypes, our DENSITY sampler requires access to embeddings
 1002 for each example in the training corpus. However, by eliminating the expensive clustering step,
 1003 we eliminate a significant computational overhead. Our DENSITY sampling routine required just
 1004 80MB of memory and two linear passes through the dataset to score all 364M embeddings. This is
 1005 significantly less expensive than clustering.
 1006

1007 **Tuning:** We also eliminate a large number of hyperparameters, improving tuning. Cluster-based
 1008 samplers must choose the number of clusters, clustering optimizer and objective, and per-cluster
 1009 sampling rate or deduplication similarity. Kernel density estimation, on the other hand, has just
 1010 two hyperparameters: the choice of kernel and the bandwidth. We did not observe a significant
 1011 performance variation among different bandwidth and kernel choices (e.g., the L2 and cosine kernels
 1012 of [Coleman & Shrivastava \(2020\)](#) perform nearly identically). This is likely because all positive-
 1013 definite kernels enjoy strong guarantees on the distribution approximation error ([Devroye, 1983](#)).
 1014

1015 **D DATA-CURATION TECHNIQUES**

1016 **D.1 RANDOM SAMPLING**

1018 The de-facto standard for obtaining samples of large datasets where we sample training examples
 1019 uniformly at random. Notably, random sampling has also been accompanied with strong results in a
 1020 variety of applications in the data-curation literature primarily due to its unbiased sampling ([Ayed &](#)
 1021 [Hayou, 2023b; Guo et al., 2022b](#)).

1023 **D.2 DENSITY SAMPLING**

1024 See Section 3.2 for technical details about the DENSITY sampler. We use Sentence-T5-Base ([Ni](#)
 1025 et al., 2021) as our embedding model for training samples, primarily due to its contrastive training,

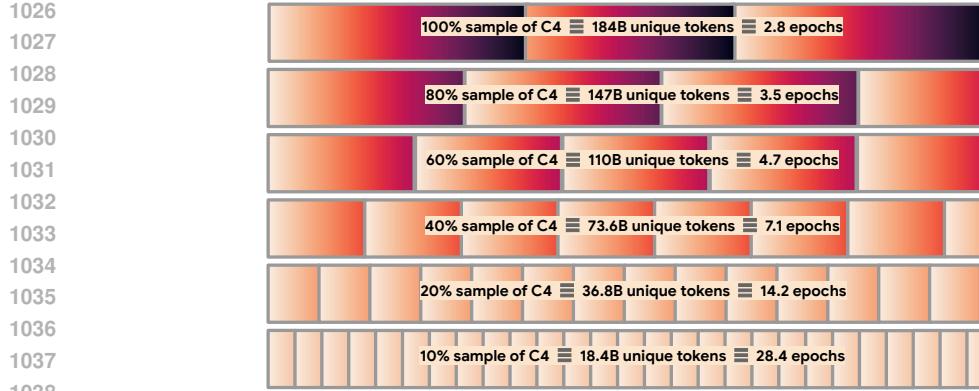


Figure 8: We consider a setup where all of our models are trained on exactly 524B tokens, causing us to repeat the same examples for more epochs when we downsample. We borrow the format of this graphic from [Muennighoff et al. \(2023\)](#), who consider a similar setting.

giving confidence for computing distances amongst its 768-dim embeddings. We use the PStable hash ([Datar et al., 2004](#)) to hash the embeddings, along with a $[1,000 \times 20,000]$ sketch matrix.

D.3 SEMDEDUP

The key idea is to perform (coverage maximizing) semantic deduplication inside clusters of the original dataset ([Abbas et al., 2023](#)). We re-use the Sentence-T5-Base embeddings of data-points (Appendix D.2), and perform k -means clustering to obtain 10,000 clusters of the entire dataset.

D.4 SSL PROTOTYPES

The key idea is to remove *prototypical* points in a dataset ([Sorscher et al., 2022](#)). As a meaningful proxy, this method removes the points closest to cluster centroids of a dataset. For brevity, we use the name “Prototypes” when reporting our results. We re-use the same embeddings and clustering for both SemDeDup and Prototypes.

D.5 PERPLEXITY FILTERING

A popular quality-filtering approach in the literature is to use the perplexity of proxy language models to filter data-points with a high-perplexity under that language model. While the literature historically used small language models for perplexity filtering ([Wenzek et al., 2019; Muennighoff et al., 2023](#)), recent work ([Marion et al., 2023](#)) suggests improved filtering performance when using LLMs for this task. To this end, we employ perplexity filtering with T5-{Small, Base, Large, XL, XXL} models; as well as intermediate checkpoints during the course of training T5-Large: {20k, 100k, 300k, 500k, 700k}.

D.6 TEXT-QUALITY CLASSIFIER (Q-CLASSIFIER)

First proposed by GPT-3 for curating its pretraining dataset ([Brown et al., 2020](#)), and later used by various state-of-the-art LLMs at their time ([Chowdhery et al., 2023; Anil et al., 2023; Gao et al., 2020; Du et al., 2022](#)) another popular quality filtering approach is to train a linear classifier for distinguishing web-scrape data *vs.* known reference high-quality data. Consistent with existing usage of this technique ([Gao et al., 2020; Xie et al., 2024; Brown et al., 2020; Chowdhery et al., 2023; Du et al., 2022](#)), we train a hashing-based linear classifier with a hash size of 262k trained to classify if a document is either from (negative) C4 or (positive) Wikipedia + BookCorpus. We train this classifier for a total of 218k steps (equivalent to 14 Trillion unigrams), and based on recent evidence ([Xie et al., 2024](#)) we sample the documents with the highest score according to this classifier.

1080
1081

D.7 DATA SELECTION WITH IMPORTANCE RESAMPLING (DSIR)

1082
1083
1084
1085
1086
1087

Proposed by Xie et al. (2024), DSIR performs importance sampling using a bag-of-words estimator (we use unigram and bigram features) over some “high-quality” target data-source. This approach is, in spirit, quite similar to the aforementioned text-quality classification approach but performs distribution-matching in a non-parametric way, and without the hassle of training a classifier on large piles of data. To be consistent, we use Wikipedia + BookCorpus as the target source for DSIR as well. We re-use the official public implementation for DSIR³.

1088
1089

D.8 ASK-LLM SAMPLING

1090
1091
1092
1093

See Section 3.1 for technical details about the ASK-LLM sampler. Since ASK-LLM relies on the reasoning capabilities of instruction-tuned models, we use the Flan-T5-{Small, Base, Large, XL, XXL} (Longpre et al., 2023a) and instruction tuned Gemma-7B (Team et al., 2024) models for obtaining the quality scores in ASK-LLM.

1094
1095
1096

E EFFECTIVE MODEL SIZE

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

It is challenging to concisely summarize performance using a single measure, primarily because our evaluation consists of 111 individual tasks, all of which respond at different rates to data and model optimizations. To provide a holistic view of performance, we fit a parametric model, *a.k.a* scaling law (Hoffmann et al., 2022; Muennighoff et al., 2023), of the “model-size \leftrightarrow quality” curve for the original T5 models (*i.e.*, trained on the full C4 dataset) over various downstream tasks.

1115
1116
1117

More specifically, we fit functions of the following form, for each downstream task separately:

$$\text{ModelSize} = A + \exp(B + \text{EvalPerformance} * C), \quad (1)$$

1118
1119
1120

and use `scipy.optimize.curve_fit` to estimate the A, B, C parameters based on the evaluations of T5-{Small, Base, Large, XL}. See Figure 9 for a visual interpretation of the parametric models we fit.

1121
1122
1123
1124
1125

Finally, given the performance of a model trained on downsampled data, the **effective model size** is defined as the predicted model size by plugging in the observed downstream performance into the parametric scaling law estimated via Equation (1), taking a median over various downstream evaluation tasks listed in Figure 9.

1126
1127
1128
1129

F DOWNSTREAM EVALUATION TASKS

1130
1131
1132
1133

Defined as the exponentiated average negative log-likelihood of an average sequence in the dataset; we report the perplexity computed over the target tokens in T5’s denoising objective (Raffel et al., 2020) over the default validation set provided by C4. Note that C4’s validation set is a random sample

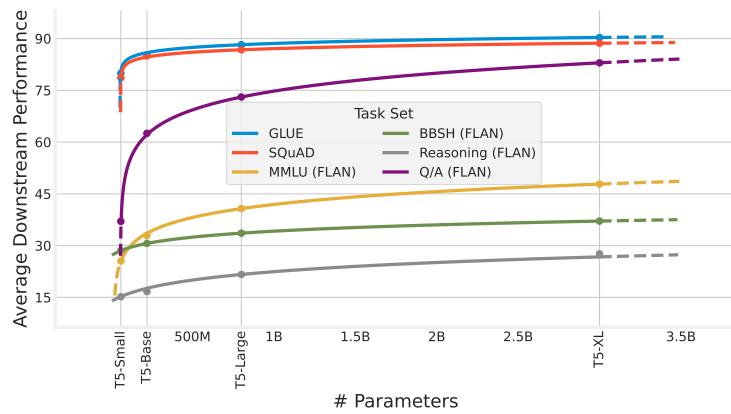


Figure 9: Empirical scaling laws for T5-models trained on the entire C4 dataset for various downstream tasks.

³<https://github.com/p-lambda/dsir>

1134 of the dataset, so it is prone to be of much lower quality than curated sources, and hence, a less
 1135 reliable indicator of true model quality.
 1136

1137 F.2 HQ PERPLEXITY 1138

1139 As our best effort to devise an inexpensive-to-compute metric that is better aligned with model quality
 1140 than perplexity on C4’s validation set, inspired by the evaluation conducted in [Tirumala et al. \(2023\)](#),
 1141 we construct a *high-quality* validation set from non web-scrape sources. We collate the validation
 1142 sets from (1) English portion of wiki40b ([Guo et al., 2020](#)), (2) realnews and webtext subsets of C4,
 1143 and (3) news commentary from the LM1B dataset ([Chelba et al., 2013](#)).
 1144

1145 F.3 GLUE 1146

1147 A popular natural language understanding meta-benchmark comprising of eleven different tasks
 1148 ([Wang et al., 2018](#)). Note that we report the average score for all individual tasks, after finetuning on
 1149 the concatenation of all individual tasks’ training sets, as is done in the original T5 implementation.
 1150

1151 F.4 SUPERGLUE 1152

1153 A harder meta-benchmark (vs. GLUE) built to further test the natural language understanding abilities
 1154 of language models ([Wang et al., 2019](#)). Similar to GLUE, we report the average score of all tasks,
 1155 and conduct fine-tuning on all tasks’ concatenated train-set.
 1156

1157 F.5 CNN/DM 1158

1159 We use the CNN/DM dataset ([Hermann et al., 2015](#)) for testing our models’ abstractive summarization
 1160 abilities. Like the T5 original setting, we finetune on the train-set, and report the ROUGE-2 scores.
 1161

1162 F.6 SQuAD 1163

1164 A popular dataset ([Rajpurkar et al., 2016](#)) used to evaluate question-answering capabilities of language
 1165 models, we compare the finetuned performance of our models using exact-match as the metric.
 1166

1167 F.7 FLAN INSTRUCTION TUNING 1168

1169 A popular application of LLMs has been instruction-following, and chatting capabilities. To test our
 1170 model’s quality on this front, we finetune our models on the FLANv2 dataset ([Longpre et al., 2023a](#)),
 1171 and test the instruction-tuned models’ performance from four fronts:
 1172

[leftmargin=5]5-shot MMLU ([Hendrycks et al., 2020](#)): a popular benchmark consisting of
 1173 exam questions from 57 tasks. 3-shot Big Bench Hard (BBH) ([Srivastava et al., 2022](#)): a pop-
 1174 ular set of 23 hardest tasks from big bench. Reasoning: macro-average 8-shot performance
 1175 on GSM8k ([Cobbe et al., 2021](#)), SVAMP ([Patel et al., 2021](#)), ASDIV ([Miao et al., 2021](#)),
 1176 and StrategyQA ([Geva et al., 2021](#)) benchmarks. QA: macro-average 0-shot performance on
 1177 UnifiedQA ([Khashabi et al., 2020](#)), BoolQ ([Clark et al., 2019](#)), Arc-Easy and Arc-Challenge
 1178 ([Clark et al., 2018](#)) benchmarks. Average: macro-average of all the four benchmarking
 1179 suites listed above: MMLU, BBH, Reasoning, and Q/A.
 1180

1181 Please note that all of our reported numbers are based on *single checkpoint* evaluations, *i.e.*, we first
 1182 select the best checkpoint during FLAN finetuning using the *average* performance on all tasks, and
 1183 report the individual task performance on that checkpoint.
 1184

1185 G ADDITIONAL RESULTS 1186

1187 G.1 (FIGURE 10) QUALITY-SCORE DISTRIBUTION FOR DIFFERENT SAMPLERS

1188 For different data curation techniques listed in Appendix D, we examine the distribution of estimated
 1189 *data-quality* scores normalized in a way that higher represents better data quality.
 1190

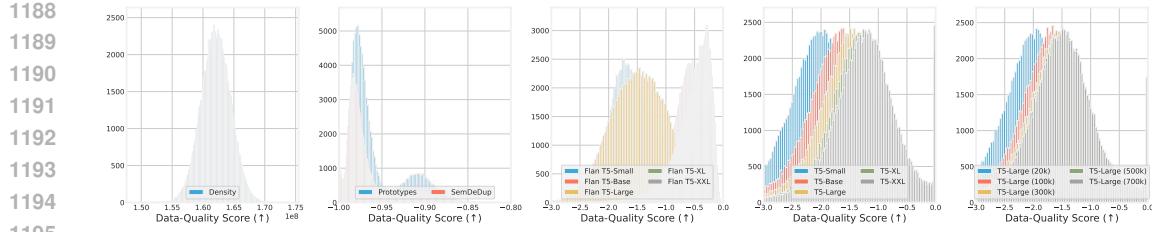


Figure 10: Score distribution of various data curation techniques. The plots for Flan-T5-* models are for ASK-LLM, whereas ones using T5-* models are for perplexity filtering.

[leftmargin=*)For the DENSITY sampler, the plotted score is proportional to the likelihood of the example under the kernel density estimate. For the Prototypes sampler, the plotted score represents the negated cosine similarity of data-point with its assigned cluster centroid. For the SemDeDup sampler, the plotted score represents the negated maximum cosine similarity of a datapoint to all other datapoints in its respective cluster. For the perplexity filtering sampler, the plotted score represents the negated perplexity of a training sample. For the ASK-LLM sampler, the plotted score represents the log probability of the token “yes” given the prompt in Figure 3.

G.2 (FIGURE 11) ANALYSIS FOR DIFFERENT SAMPLERS’ AFFINITY TO DIFFERENT TOPICS

Since the different sampling strategies explored in this paper operate with different implicit biases, we try to understand if certain samplers exhibit more affinity to certain topics in the data compared to others. To visualize this phenomenon, we conduct the following procedure:

[leftmargin=*)Load a random sample of 500k datapoints, along with their respective data-quality scores. Perform topic-modeling (via LDA) on the 500k datapoints with 9 topics. Manually inspect the most common word associations in each of the 9 topics, and label a “high-level description” for each topic. Assign each of the 500k datapoints to the LDA topic with the highest likelihood and analyze the differences between the distribution of scores within each topic and the global score distribution. We conducted a one-way ANOVA, one-vs-rest style, to determine whether the averages were statistically significant. Because $N = 500k$, all effects were significant at the $p < 0.01$ level. We measure the effect size using Cohen’s d and report results in Figure 11.

From the topic affinity analysis in Figure 11, we can observe a few interesting common trends:

[leftmargin=*)The perplexity filters have relatively low variance in their scores, indicating a much less biased sampling. This is expected, because perplexity filtering primarily biases toward “well-written text” which is relatively task/topic agnostic. The quality-based samplers (ASK-LLM, DSIR, Q-Classifier) exhibit a much stronger variance in their scores, with a common liking towards business, political, and religious content; and a common disliking towards tech, art, and entertainment content. Consistent with the score correlations in Figure 7, the prototypes and SemDeDup samplers exhibit inverse correlation with most other samplers when comparing topic affinity too. Density sampling, as expected, exhibits no special affinity to any particular topic because it’s objective is to only maximize coverage.

G.3 (FIGURES 12 TO 20) DATA-QUANTITY vs. MODEL-QUALITY FOR DIFFERENT SAMPLERS

For different data curation techniques listed in Appendix D, we investigate the tradeoff between the sampling rate and the respectively trained model’s quality on various downstream evaluations listed in Appendix F. We plot our results in the following figures:

[leftmargin=*)(Figure 12) **T5-Small, coverage:** Pre-training T5-Small on different amounts of data sampled by {Random sampling, DENSITY sampling, Self-supervised Prototypes sampling, SemDeDup}. (Figure 13) **T5-Large, coverage:** Pre-training T5-Large on different amounts of data sampled by {Random sampling, DENSITY sampling, Self-supervised Prototypes sampling, SemDeDup}. (Figure 14) **T5-Small, ASK-LLM:** Pre-training T5-Small on

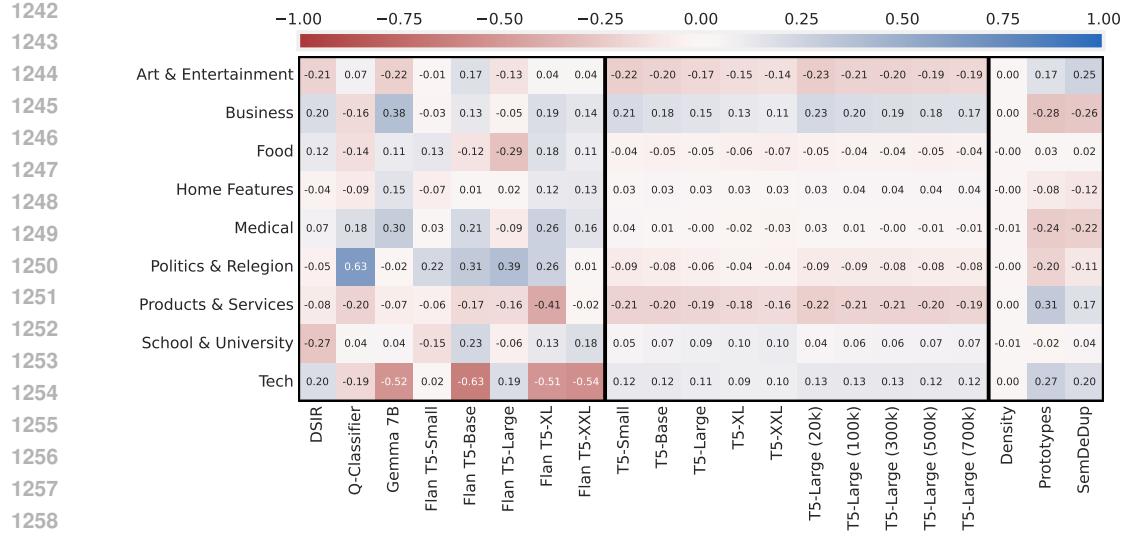


Figure 11: Estimated topic affinity for quality filters (first 8), perplexity filters (next 10), and coverage-based samplers (last 3) over 500k randomly selected training samples. A higher score represents more affinity. All effects significant at the $p < 0.01$ level.

different amounts of data sampled by ASK-LLM using the {Flan-T5-Small, Flan-T5-Base, Flan-T5-Large, Flan-T5-XL, Flan-T5-XXL} scoring models. (Figure 15) **T5-Large, ASK-LLM:** Pre-training T5-Large on different amounts of data sampled by ASK-LLM using the {Flan-T5-Small, Flan-T5-Base, Flan-T5-Large, Flan-T5-XL, Flan-T5-XXL} scoring models. (Figure 16) **T5-Small, Other quality-based Filters:** Pre-training T5-Small on different amounts of data sampled by {Random sampling, DSIR, Q-Classifier, ASK-LLM (G.7B), ASK-LLM (XL)} scoring models. (Figure 17) **T5-Large, Other quality-based Filters:** Pre-training T5-Large on different amounts of data sampled by {Random sampling, DSIR, Q-Classifier, ASK-LLM (G.7B), ASK-LLM (XL)} scoring models. (Figure 18) **T5-Small, Perplexity filtering:** Pre-training T5-Small on different amounts of data sampled by Perplexity filtering using the {T5-Small, T5-Base, T5-Large, T5-XL, T5-XXL} scoring models. (Figure 19) **T5-Large, Perplexity filtering:** Pre-training T5-Large on different amounts of data sampled by Perplexity filtering using the {T5-Small, T5-Base, T5-Large, T5-XL, T5-XXL} scoring models. (Figure 20) **T5-Large, Perplexity filtering:** Pre-training T5-Large on different amounts of data sampled by Perplexity filtering using the {20k, 100k, 300k, 500k, 700k} intermediate checkpoints of T5-Large as data quality scoring models.

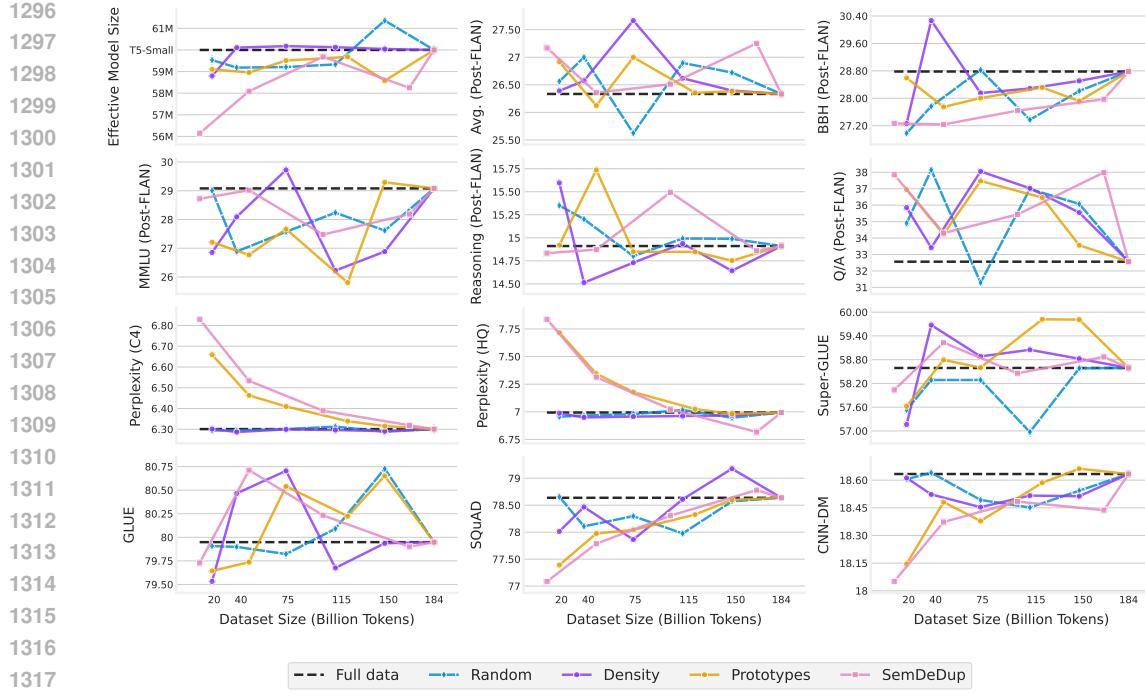


Figure 12: Tradeoff between data quantity and model quality while pre-training T5-Small. Each point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a description about the metrics used in this plot.

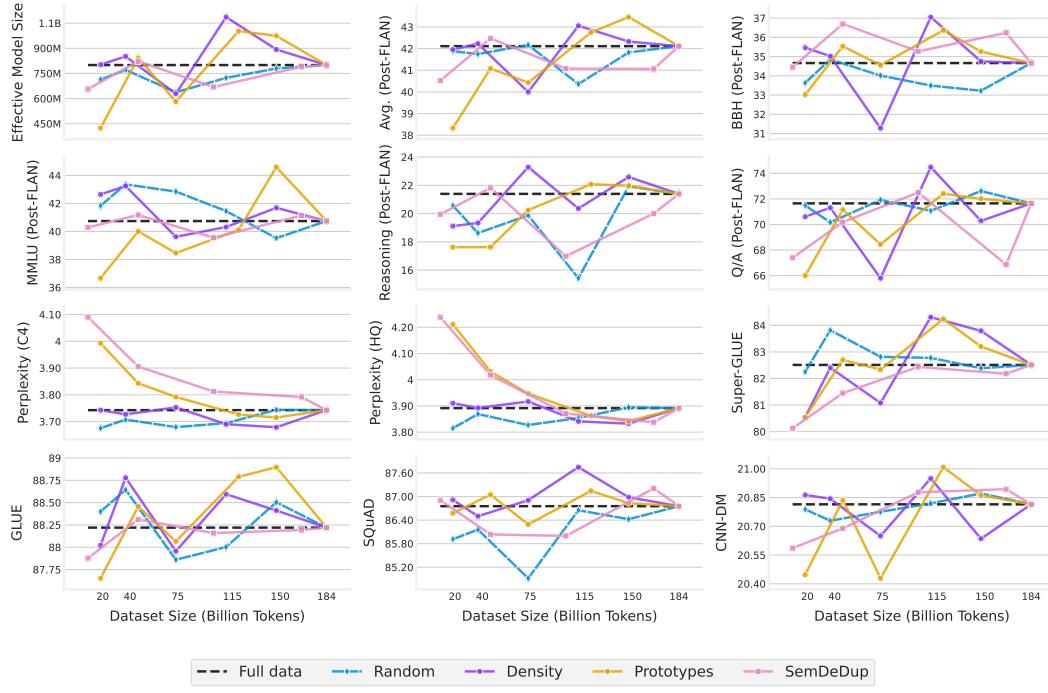


Figure 13: Tradeoff between data quantity and model quality while pre-training T5-Large. Each point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a description about the metrics used in this plot.

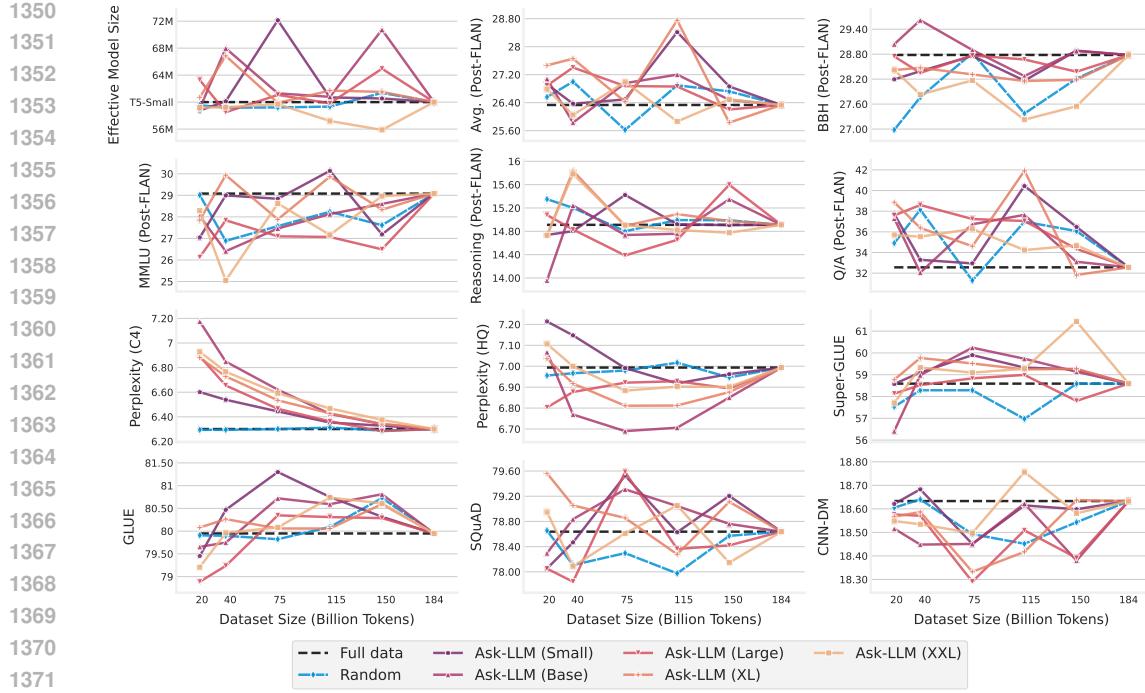


Figure 14: Tradeoff between data quantity and model quality while pre-training T5-Small. Each point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a description about the metrics used in this plot.

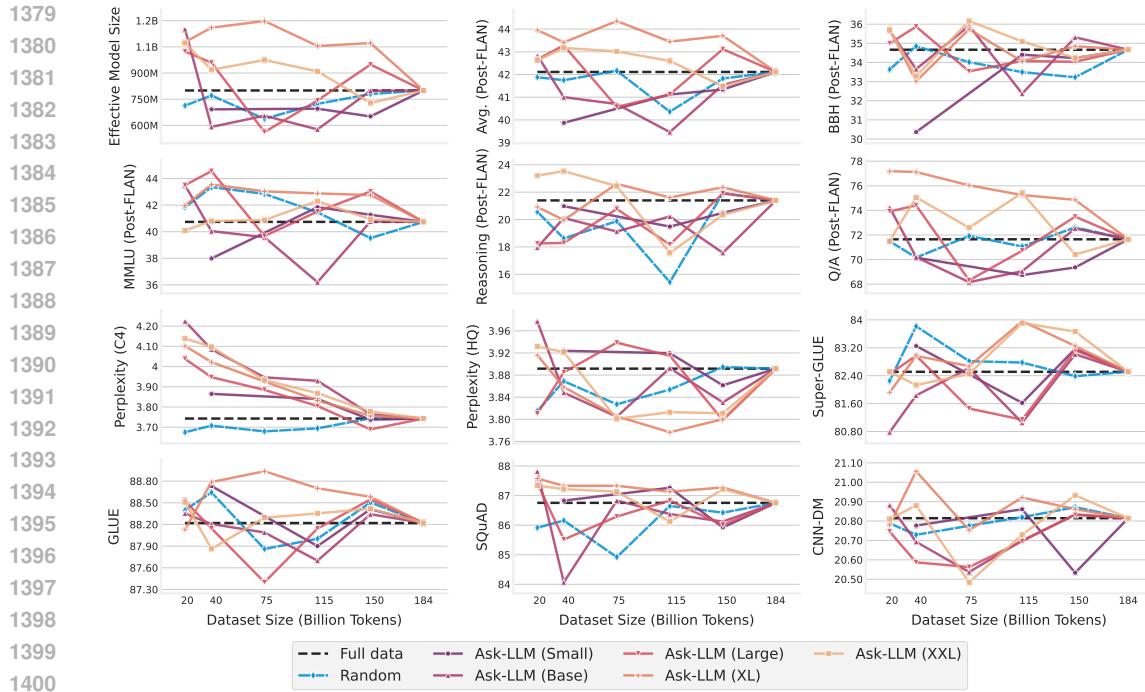


Figure 15: Tradeoff between data quantity and model quality while pre-training T5-Large. Each point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a description about the metrics used in this plot.

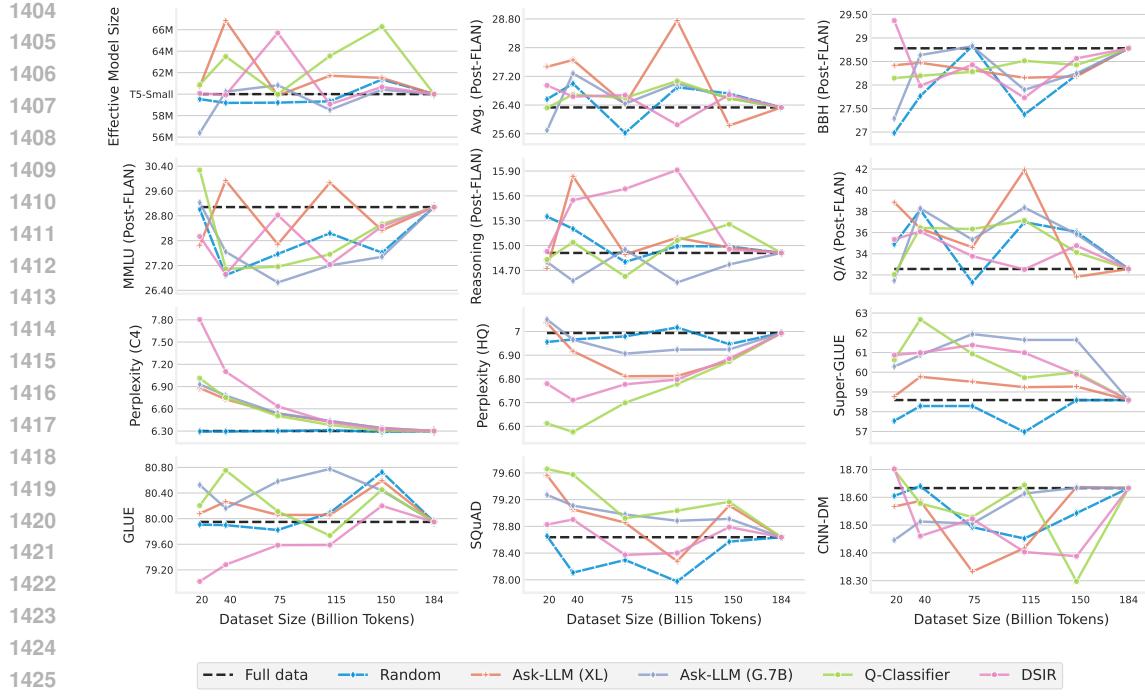


Figure 16: Tradeoff between data quantity and model quality while pre-training T5-Small. Each point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a description about the metrics used in this plot.

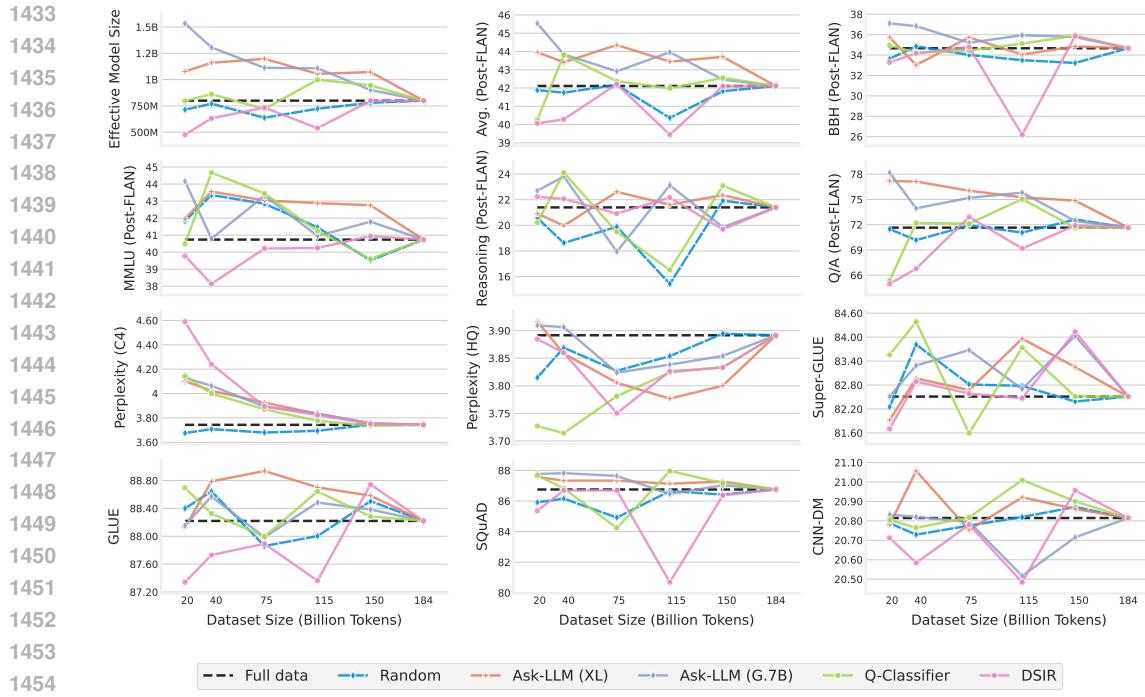


Figure 17: Tradeoff between data quantity and model quality while pre-training T5-Large. Each point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a description about the metrics used in this plot.

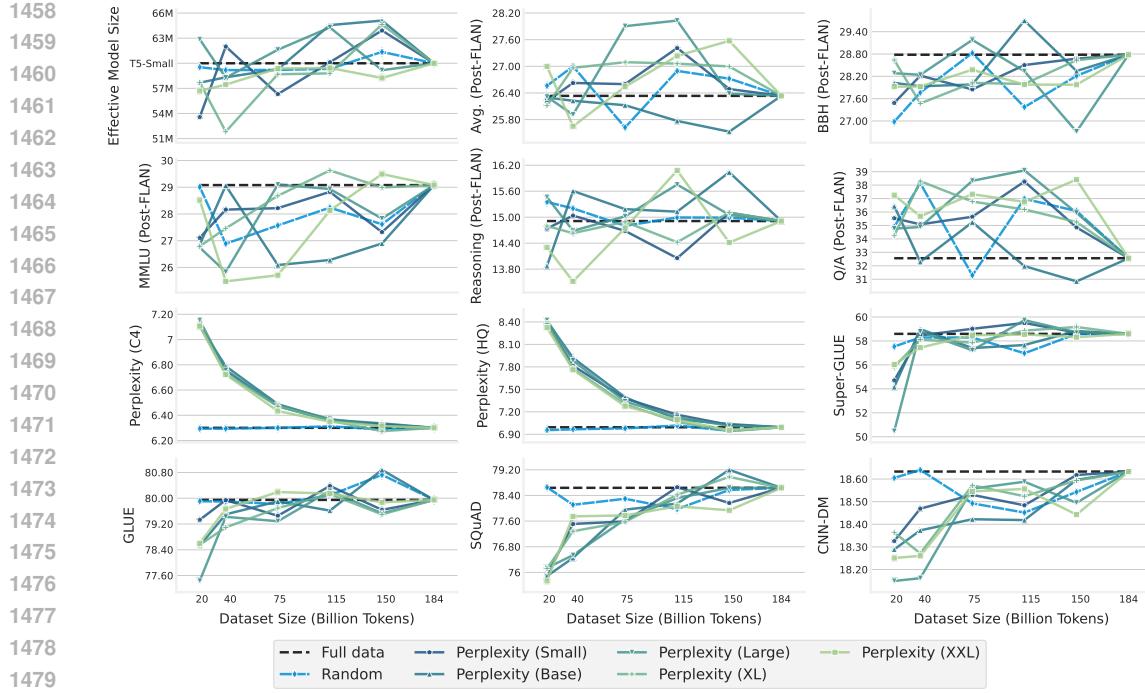


Figure 18: Tradeoff between data quantity and model quality while pre-training T5-Small. Each point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a description about the metrics used in this plot.

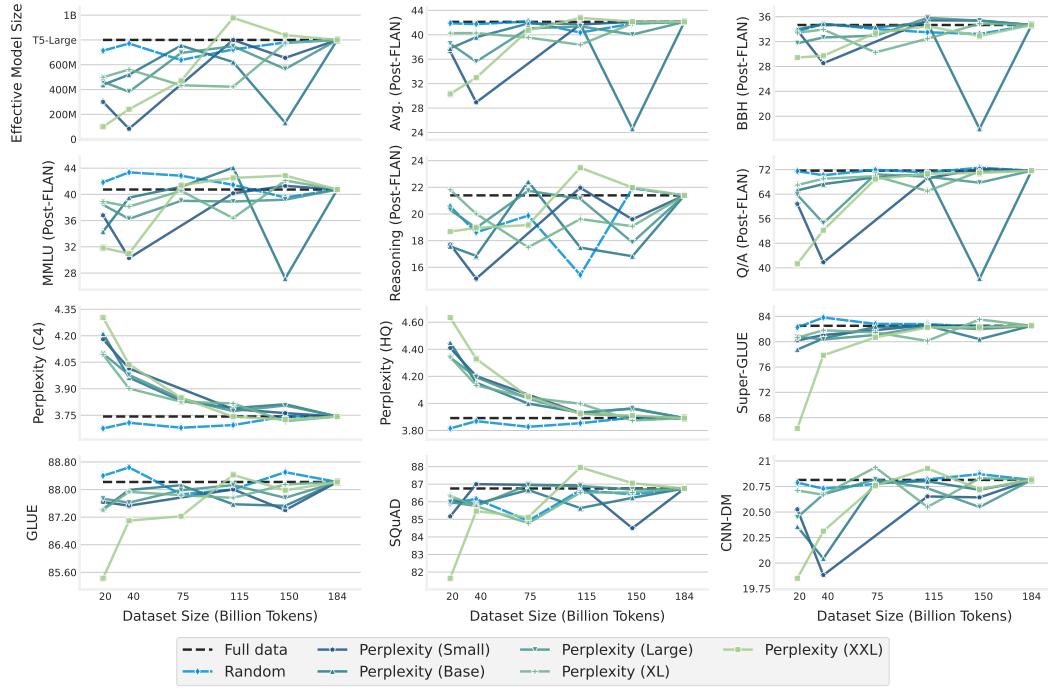


Figure 19: Tradeoff between data quantity and model quality while pre-training T5-Large. Each point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a description about the metrics used in this plot.

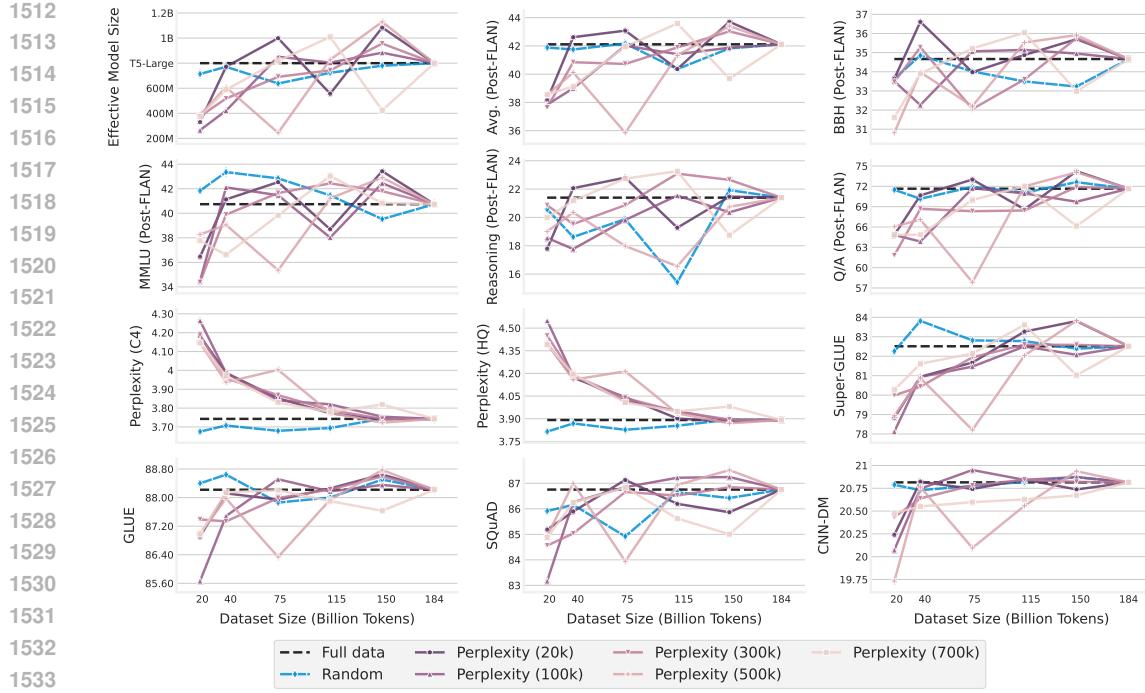


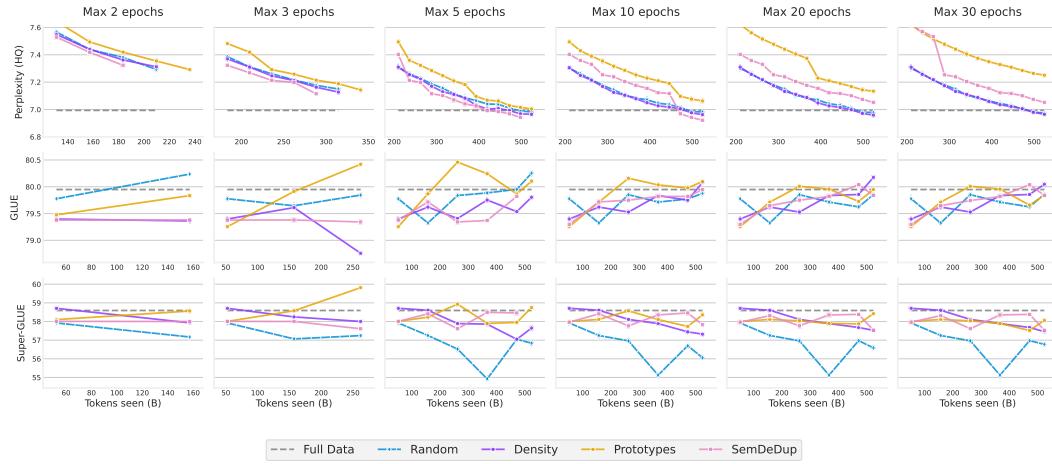
Figure 20: Tradeoff between data quantity and model quality while pre-training T5-Large. Each point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a description about the metrics used in this plot.

G.4 (FIGURES 21 TO 29) QUALITY OF FRESH vs. REPEATED TOKENS FOR DIFFERENT SAMPLERS

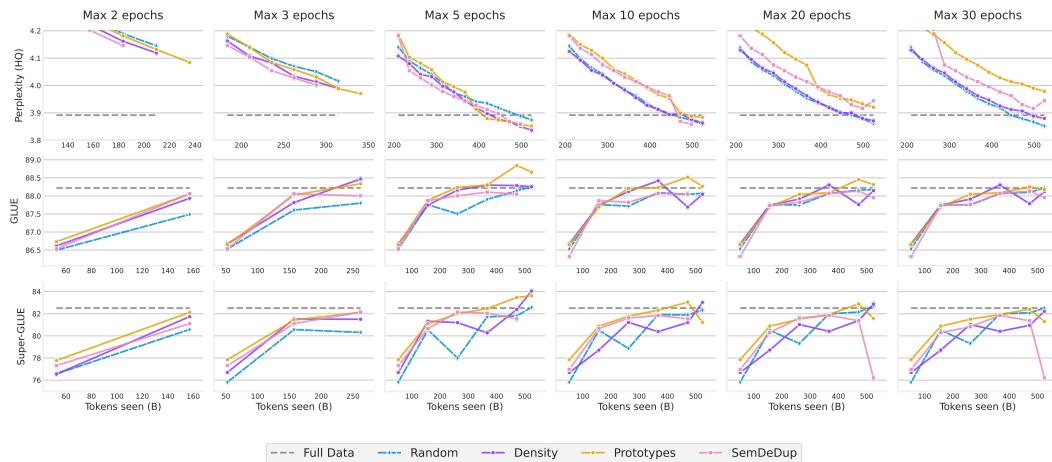
We investigate the data-efficiency for different data curation techniques listed in Appendix D over various downstream evaluations listed in Appendix F, when stratifying by the maximum number of repetitions allowed over the sampled dataset. We plot our results in the following figures:

[leftmargin=*)(Figure 21) **T5-Small, coverage:** Average data-efficiency of pre-training T5-Small on data sampled by {Random sampling, DENSITY sampling, Self-supervised Prototypes sampling, SemDeDup}, stratified by the maximum number of allowed repetitions over the sampled dataset. (Figure 22) **T5-Large, coverage:** Average data-efficiency of pre-training T5-Large on data sampled by {Random sampling, DENSITY sampling, Self-supervised Prototypes sampling, SemDeDup}, stratified by the maximum number of allowed repetitions over the sampled dataset. (Figure 23) **T5-Small, ASK-LLM:** Average data-efficiency of pre-training T5-Small on data sampled by ASK-LLM using the {Flan-T5-Small, Flan-T5-Base, Flan-T5-Large, Flan-T5-XL, Flan-T5-XXL} scoring models, stratified by the maximum number of allowed repetitions over the sampled dataset. (Figure 24) **T5-Large, ASK-LLM:** Average data-efficiency of pre-training T5-Large on data sampled by ASK-LLM using the {Flan-T5-Small, Flan-T5-Base, Flan-T5-Large, Flan-T5-XL, Flan-T5-XXL} scoring models, stratified by the maximum number of allowed repetitions over the sampled dataset. (Figure 25) **T5-Small, Other quality-based Filters:** Pre-training T5-Small on different amounts of data sampled by {Random sampling, DSIR, Q-Classifier, ASK-LLM (G.7B), ASK-LLM (XL)} scoring models, stratified by the maximum number of allowed repetitions over the sampled dataset. (Figure 26) **T5-Large, Other quality-based Filters:** Pre-training T5-Large on different amounts of data sampled by {Random sampling, DSIR, Q-Classifier, ASK-LLM (G.7B), ASK-LLM (XL)} scoring models, stratified by the maximum number of allowed repetitions over the sampled dataset. (Figure 27) **T5-Small, Perplexity filtering:** Average data-efficiency of pre-training T5-Small on data sampled by Perplexity filtering using the {T5-Small, T5-Base, T5-Large, T5-XL, T5-XXL} scoring models, stratified by the maximum number of allowed repetitions over the sampled dataset. (Figure 28) **T5-Large, Perplexity filtering:** Average data-efficiency of pre-training

1566
 1567 T5-Large on data sampled by Perplexity filtering using the {T5-Small, T5-Base, T5-Large,
 1568 T5-XL, T5-XXL} scoring models, stratified by the maximum number of allowed rep-
 1569 etitions over the sampled dataset. (Figure 29) **T5-Large, Perplexity filtering:** Average
 1570 data-efficiency of pre-training T5-Large on data sampled by Perplexity filtering using the
 1571 {20k, 100k, 300k, 500k, 700k} intermediate checkpoints of T5-Large as data quality scoring
 1572 models, stratified by the maximum number of allowed repetitions over the sampled dataset.
 1573
 1574
 1575



1591 Figure 21: Average data-efficiency of pre-training T5-Small on sampled data, stratified by maximum
 1592 number of allowed repetitions on the sampled dataset. Each point in this plot represents the performance
 1593 of an intermediate checkpoint *averaged* over all sampling ratios, as long as the maximum
 1594 allowed repetitions have not been reached. See Appendix F for a description about the metrics used
 1595 in this plot.



1616 Figure 22: Average data-efficiency of pre-training T5-Large on sampled data, stratified by maximum
 1617 number of allowed repetitions on the sampled dataset. Each point in this plot represents the performance
 1618 of an intermediate checkpoint *averaged* over all sampling ratios, as long as the maximum
 1619 allowed repetitions have not been reached. See Appendix F for a description about the metrics used
 in this plot.

Figure 23: Average data-efficiency of pre-training T5-Small on sampled data, stratified by maximum number of allowed repetitions on the sampled dataset. Each point in this plot represents the performance of an intermediate checkpoint *averaged* over all sampling ratios, as long as the maximum allowed repetitions have not been reached. See Appendix F for a description about the metrics used in this plot.

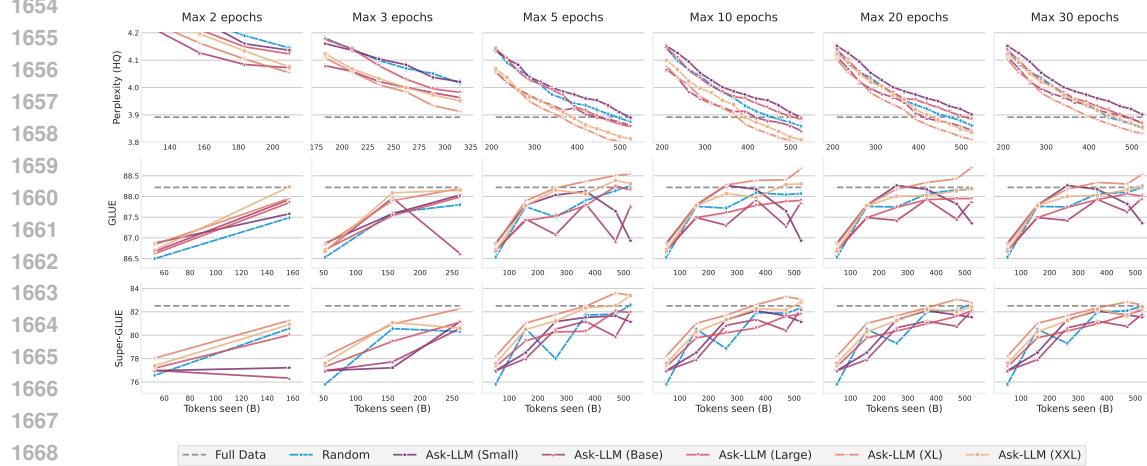


Figure 24: Average data-efficiency of pre-training T5-Large on sampled data, stratified by maximum number of allowed repetitions on the sampled dataset. Each point in this plot represents the performance of an intermediate checkpoint *averaged* over all sampling ratios, as long as the maximum allowed repetitions have not been reached. See Appendix F for a description about the metrics used in this plot.

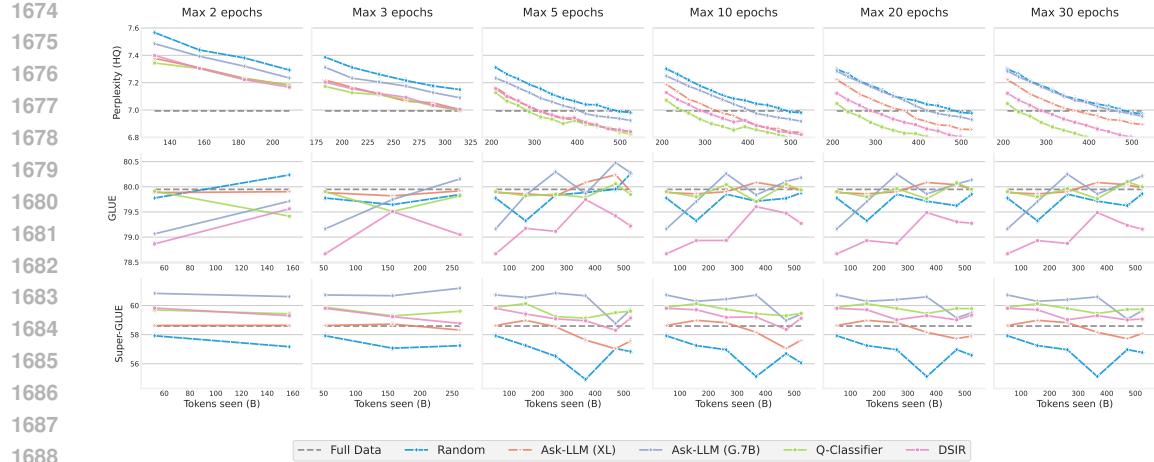


Figure 25: Average data-efficiency of pre-training T5-Small on sampled data, stratified by maximum number of allowed repetitions on the sampled dataset. Each point in this plot represents the performance of an intermediate checkpoint *averaged* over all sampling ratios, as long as the maximum allowed repetitions have not been reached. See Appendix F for a description about the metrics used in this plot.

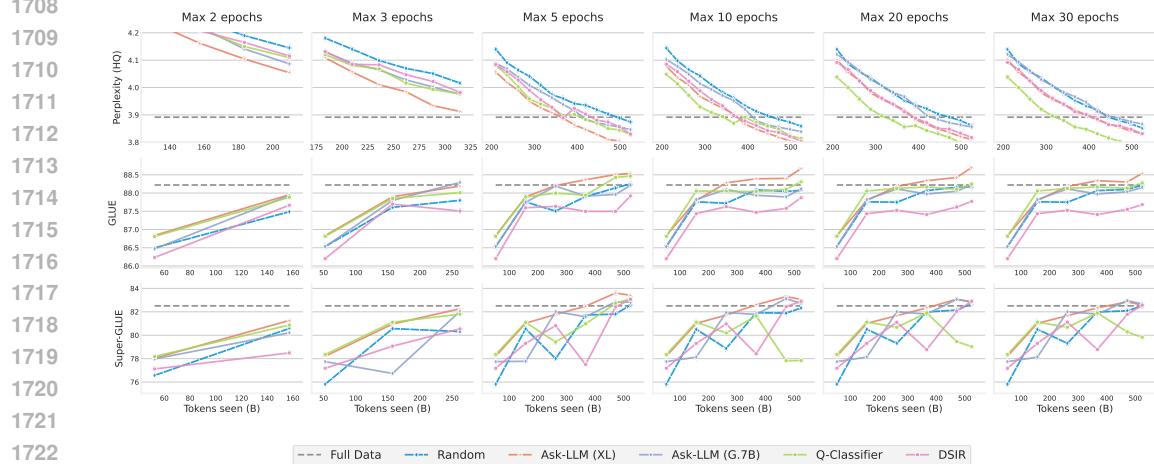


Figure 26: Average data-efficiency of pre-training T5-Large on sampled data, stratified by maximum number of allowed repetitions on the sampled dataset. Each point in this plot represents the performance of an intermediate checkpoint *averaged* over all sampling ratios, as long as the maximum allowed repetitions have not been reached. See Appendix F for a description about the metrics used in this plot.

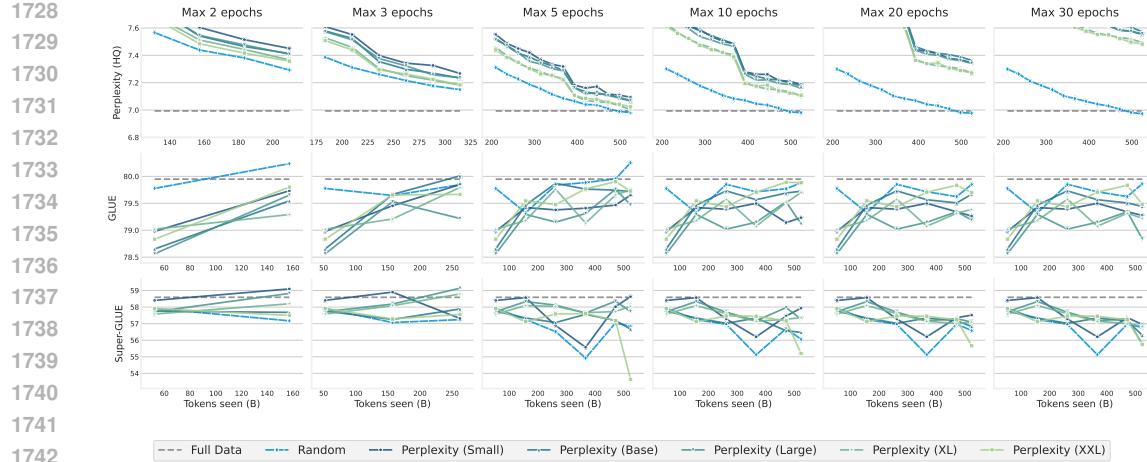


Figure 27: Average data-efficiency of pre-training T5-Small on sampled data, stratified by maximum number of allowed repetitions on the sampled dataset. Each point in this plot represents the performance of an intermediate checkpoint *averaged* over all sampling ratios, as long as the maximum allowed repetitions have not been reached. See Appendix F for a description about the metrics used in this plot.

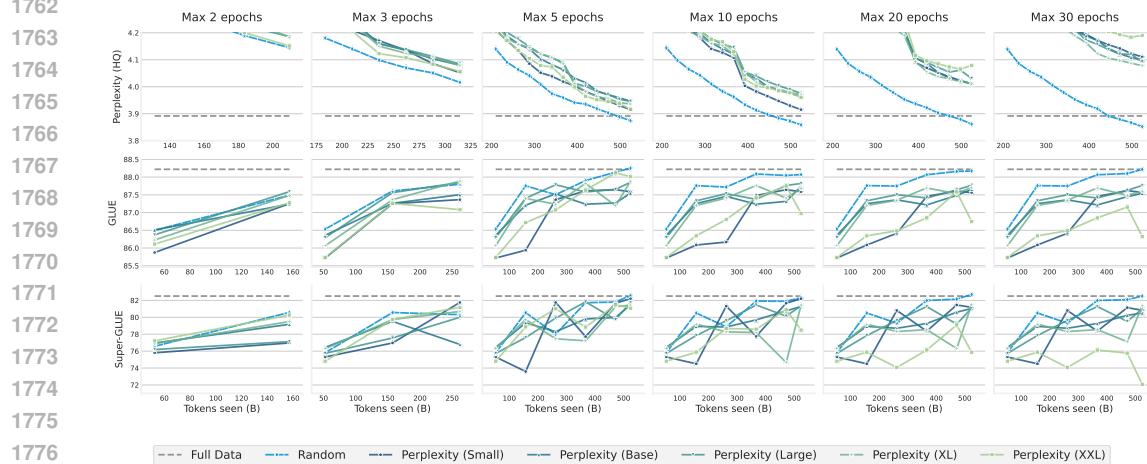


Figure 28: Average data-efficiency of pre-training T5-Large on sampled data, stratified by maximum number of allowed repetitions on the sampled dataset. Each point in this plot represents the performance of an intermediate checkpoint *averaged* over all sampling ratios, as long as the maximum allowed repetitions have not been reached. See Appendix F for a description about the metrics used in this plot.

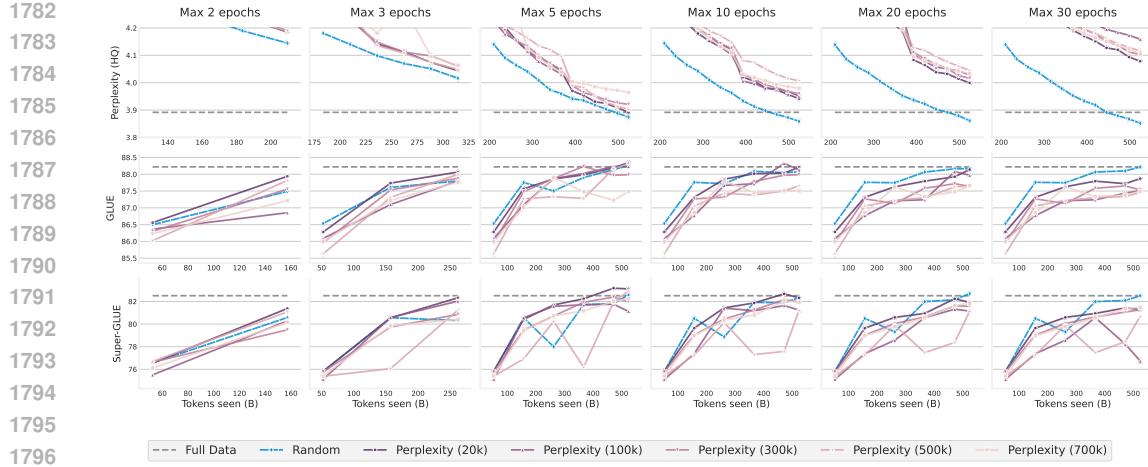


Figure 29: Average data-efficiency of pre-training T5-Large on sampled data, stratified by maximum number of allowed repetitions on the sampled dataset. Each point in this plot represents the performance of an intermediate checkpoint *averaged* over all sampling ratios, as long as the maximum allowed repetitions have not been reached. See Appendix F for a description about the metrics used in this plot.

G.5 (FIGURES 30 TO 36) DATA-EFFICIENCY OF DIFFERENT SAMPLERS

We investigate the data-efficiency for different data curation techniques listed in Appendix D over various downstream evaluations listed in Appendix F, when stratifying by the sampling ratio *or* the size of the sampled dataset. We plot our results in the following figures:

[leftmargin=*)(Figure 30) **T5-Small, ASK-LLM**: Data-efficiency of pre-training T5-Small on data sampled by ASK-LLM using the {Flan-T5-Small, Flan-T5-Base, Flan-T5-Large, Flan-T5-XL, Flan-T5-XXL} scoring models, stratified by the sampling ratio. (Figure 31) **T5-Large, ASK-LLM**: Data-efficiency of pre-training T5-Large on data sampled by ASK-LLM using the {Flan-T5-Small, Flan-T5-Base, Flan-T5-Large, Flan-T5-XL, Flan-T5-XXL} scoring models, stratified by the sampling ratio. (Figure 32) **T5-Small, Other quality-based Filters**: Data-efficiency of pre-training T5-Small on data sampled by {Random sampling, DSIR, Q-Classifier, ASK-LLM (G.7B), ASK-LLM (XL)} scoring models, stratified by the sampling ratio. (Figure 33) **T5-Large, Other quality-based Filters**: Data-efficiency of pre-training T5-Large on data sampled by {Random sampling, DSIR, Q-Classifier, ASK-LLM (G.7B), ASK-LLM (XL)} scoring models, stratified by the sampling ratio. (Figure 34) **T5-Small, Perplexity filtering**: Data-efficiency of pre-training T5-Small on data sampled by Perplexity filtering using the {T5-Small, T5-Base, T5-Large, T5-XL, T5-XXL} scoring models, stratified by the sampling ratio. (Figure 35) **T5-Large, Perplexity filtering**: Data-efficiency of pre-training T5-Large on data sampled by Perplexity filtering using the {T5-Small, T5-Base, T5-Large, T5-XL, T5-XXL} scoring models, stratified by the sampling ratio. (Figure 36) **T5-Large, Perplexity filtering**: Data-efficiency of pre-training T5-Large on data sampled by Perplexity filtering using the {20k, 100k, 300k, 500k, 700k} intermediate checkpoints of T5-Large as data quality scoring models, stratified by the sampling ratio.

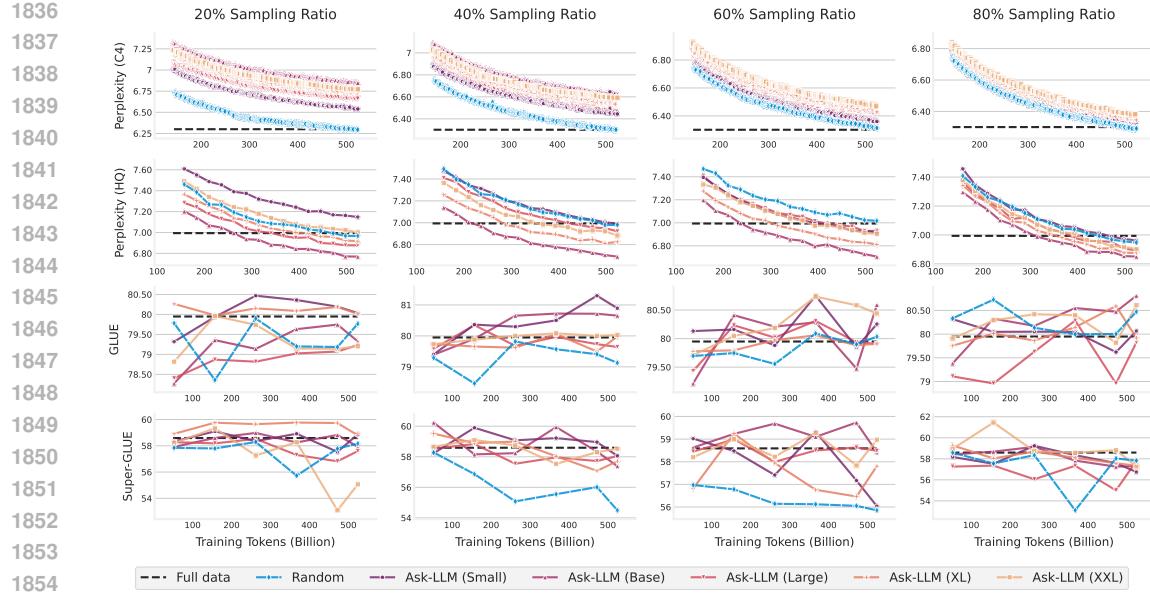


Figure 30: Data efficiency comparison of different samplers while training T5-Small for various sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the course of training on sampled data.

Figure 31: Data efficiency comparison of different samplers while training T5-Large for various sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the course of training on sampled data.

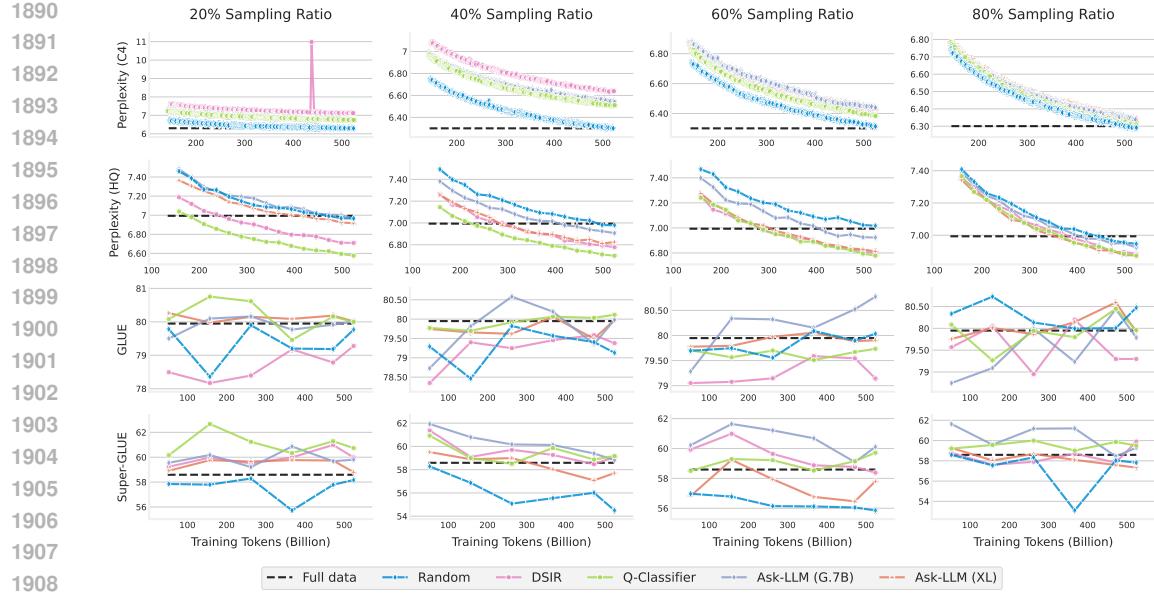


Figure 32: Data efficiency comparison of different samplers while training T5-Small for various sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the course of training on sampled data.

Figure 33: Data efficiency comparison of different samplers while training T5-Large for various sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the course of training on sampled data.

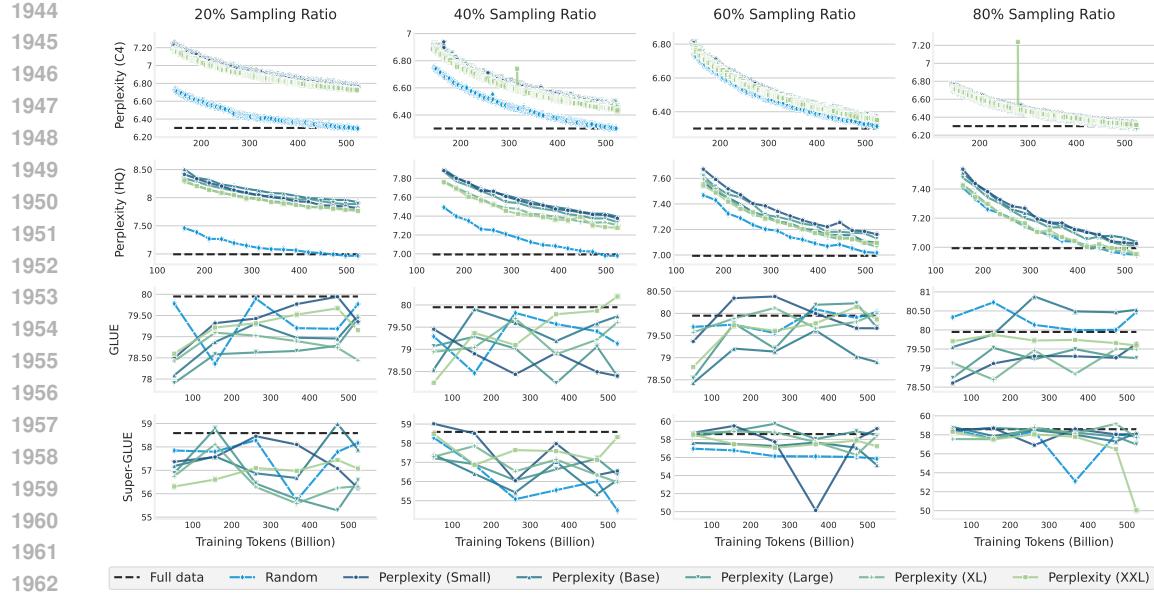


Figure 34: Data efficiency comparison of different samplers while training T5-Small for various sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the course of training on sampled data.



Figure 35: Data efficiency comparison of different samplers while training T5-Large for various sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the course of training on sampled data.

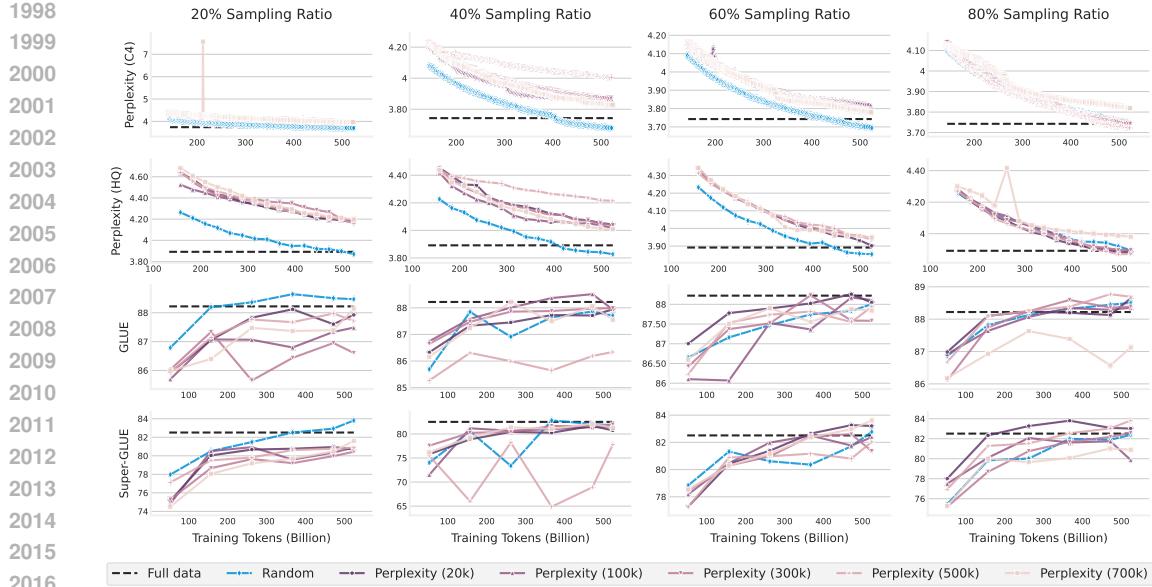


Figure 36: Data efficiency comparison of different samplers while training T5-Large for various sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the course of training on sampled data.

H QUALITATIVE RESULTS

In this section we look at some qualitative training samples, sorted according to various criteria of data-quality scores. Along with the textual content of each training sample, we also list the estimated data-quality percentile for ASK-LLM and perplexity filtering samplers, *i.e.*, the percentile of the given data-point’s quality score amongst the entire training set. A high percentile represents that the sampler estimates this training sample to have higher quality compared to other training samples in the dataset. We manually don’t include any NSFW examples to the best of our knowledge.

H.1 HIGH-QUALITY SAMPLES IDENTIFIED BY ASK-LLM

We look at the training samples that *all* ASK-LLM scoring models, on average, think are good (*i.e.*, have a high percentile). To the best of our understanding, the overarching conclusions we make by observing these qualitative samples are:

[leftmargin=*)]ASK-LLM doesn’t seem to have any length bias for good examples. ASK-LLM can accurately tag high-quality training samples that contain a lot of proper nouns and named entities. Perplexity filtering gets these kind of samples wrong. Even looking at this slice of only the highest-quality data tagged by ASK-LLM, perplexity filtering scores don’t seem to correlate well with ASK-LLM scores as suggested by Figure 7.

Example 1: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
93.33%	88.21%	88.11%	100.0%	99.99%	50.29%	30.34%	32.56%	31.61%	25.62%

What constitutes overtime for a part-time employee? Question: What is overtime for a part-time employee? Overtime for a part-time employee is time that is beyond the part-time employee’s ordinary hours of work or outside the agreed number of hours of work, as specified in their employment contract.

2052

Example 2: Estimated Data-Quality (Percentile – Higher is better)

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
99.86%	98.54%	96.4%	96.3%	96.67%	46.2%	54.65%	46.2%	49.85%	20.33%

Viva La Vegan! - Can a Vegan Lifestyle Help to Get Rid of Ocean Dead Zones? Can a Vegan Lifestyle Help to Get Rid of Ocean Dead Zones? A dead zone is an area at the bottom of the ocean that is oxygen depleted and cannot maintain any marine life. The biggest cause of these dead zones is an overflow of fertilizers, sewage and industrial pollutants being pumped into rivers all over the world. Thankfully dead zones can be reversed and living a vegan lifestyle can help enormously and I'll show you how. What are Ocean Dead Zones?

.....

Vegans don't want to harm the planet. On the contrary they want to save it and what better way than living with nature instead of against it and helping the planet in ways we probably never even realised, like helping to reverse our oceans dead zones. Next time you think about buying something you don't need, or eating food that is highly processed or non-organic, spare a thought for the largely unknown dead zones and how overconsumption and an unnatural lifestyle is slowly killing both you and them.

Example 3: Estimated Data-Quality (Percentile – Higher is better)

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
98.81%	98.96%	95.42%	99.53%	99.56%	88.1%	80.99%	77.13%	65.89%	73.79%

Question: Is it necessary to dredge ponds and lakes in the upper coastal region of South Carolina? Answer: It is necessary to dredge ponds and lakes in South Carolina, in the upper coastal region of South Carolina. Each lake and each pond is a different environment and as years pass, these environments accumulate a lot of sediment. They tend to fill in with storm water runoff, they tend from natural leafy materials—whether it be grass clippings, leafy materials, storm water fun off, sand, silt, sediment, muck, mire. All of these produce in the bottoms of pond beds and lake beds. So it is absolutely necessary to do an evaluation every so many years to determine whether or not you need to remove the sediment that's accumulated.

2106

Example 4: Estimated Data-Quality (Percentile – Higher is better)

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
88.93%	92.16%	90.3%	95.14%	93.44%	26.83%	34.32%	32.98%	31.14%	28.35%

However, it's a long and challenging way to mass production. New Tesla Model 3 is an electric game-changer worth \$35,000 and comes in classic black color. A single masterpiece in black now belongs to Tesla's CEO and co-founder Elon Musk. Why not mass market yet? Company has a quite complicated reason. Tesla needs to make sure that it can build, deliver and service enormous numbers of these awesome electric cars without sacrificing quality.

Tesla will present 30 first cars at a launch celebration dated on July 28. 100 cars with production speed 3 cars per day dated for August. 1,500 cars will be ready for September.

...

Owners of new Teslas will also enjoy exquisite aerodynamic wheel face. An itemized list of the Tesla Model 3's features, specs, and pricing is expected to be revealed on July 28, at the car's launch party. 5.6 seconds is what it gets the Model 3 to go from zero to 60 miles per hour, as May news says. Hot, right? It accelerates even faster than the base model BMW 3 Series or the famous Mercedes-Benz C Class, which are leaders in the compact luxury space. A single charge will allow minimum 215 miles of single drive. The roof in Model 3 is made almost entirely of glass, providing an incredible sense of space and infinity. Moreover, it blocks UV rays and manages the level of heat.

2129

2130

Example 5: Estimated Data-Quality (Percentile – Higher is better)

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
89.28%	98.11%	98.93%	98.7%	96.32%	26.24%	19.14%	26.25%	26.05%	24.29%

Landmines. Every month, 1200 people are maimed, and a further 800 killed throughout the world due to landmines. Landmine removal efforts are clearing about 100,000 mines a year, but at rate it will still be over 1000 years to get them all. The cost of clearing them is huge, with estimates in excess of \$50 billion. Worse still, for every 5000 mines cleared, one person will die in the process.

...

Hopefully the work that people like Vandiver and Tan can be built upon and further progress can be made in the fight to clear the world of landmines. The video below shows a group of minesweepers working with the kits- and it is clear even watching them that the level of understanding as to how the mine operates is already improving- giving them the knowledge they need to safely diffuse any mines they encounter.

2160

Example 6: Estimated Data-Quality (Percentile – Higher is better)

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
87.79%	98.52%	90.11%	91.65%	88.09%	19.72%	17.88%	21.13%	16.95%	11.92%

By all measures a successful chemical engineering undergraduate at Oregon Agricultural College, and wanting very much to continue his education and earn his PhD in chemistry, Linus Pauling wrote to several graduate programs across the country, inquiring in particular about fellowships. Though he had proven himself to be prodigious talent as a student and, already, as a teacher, Pauling’s location in Corvallis didn’t carry a great deal of cache with the country’s elite institutions. And given his family’s shaky financial health, some measure of institutional funding was going to be required if he were to advance in the academy.

...

During his sparse free time, Pauling wrote letter after letter to his girlfriend, Ava Helen Miller, who remained in Corvallis to continue work on her Home Economics degree at OAC. Having expressed a desire to marry at least twice before Linus left for California, only to be rebuffed by their families, the two decided in their letters that they would absolutely be wed once Pauling had finished his first year of classes and just prior to his resumption of more construction work during the summer. Their plan came to fruition in Salem, Oregon on June 17, 1923, and Ava Helen moved to Pasadena that fall to accompany her new husband during his second year as a graduate student.

2183

2184

Example 7: Estimated Data-Quality (Percentile – Higher is better)

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
87.08%	89.33%	95.26%	99.13%	99.94%	98.09%	97.52%	98.83%	97.39%	97.38%

Bonelli, N.; Giordano, S.; Prociassi, G. Enif-Lang: A Specialized Language for Programming Network Functions on Commodity Hardware. *J. Sens. Actuator Netw.* 2018, 7, 34. Bonelli N, Giordano S, Prociassi G. Enif-Lang: A Specialized Language for Programming Network Functions on Commodity Hardware. *Journal of Sensor and Actuator Networks.* 2018; 7(3):34. Bonelli, Nicola; Giordano, Stefano; Prociassi, Gregorio. 2018. "Enif-Lang: A Specialized Language for Programming Network Functions on Commodity Hardware." *J. Sens. Actuator Netw.* 7, no. 3: 34.

2268
2269

Example 10: Estimated Data-Quality (Percentile – Higher is better)

2270
2271
2272
2273

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
5.41%	3.86%	0.49%	0.8%	6.24%	62.97%	75.91%	86.3%	85.26%	88.11%

2274
2275
2276
2277

You were a good daughter the first day or two. Now, you are only showing the worst sides of yourself. I can only be sad and disappointed in you.

2278

Example 11: Estimated Data-Quality (Percentile – Higher is better)

2280
2281
2282
2283

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
1.08%	0.41%	6.16%	2.46%	1.44%	35.97%	24.13%	31.46%	51.15%	38.19%

2284
2285
2286
2287
2288

Kids can help you enrich your life? Be a better person? Learn to think about someone else? Apparently whoever said these things has never had children because from everything we have seen and experienced, kids are flat out horrible. College can't come fast enough.

2289
2290
2291

Example 12: Estimated Data-Quality (Percentile – Higher is better)

2292
2293
2294
2295
2296

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
1.89%	3.58%	3.11%	6.02%	0.09%	18.09%	22.8%	25.61%	19.14%	47.01%

2297
2298
2299
2300

EventsThis is how you can go ice skating with real penguinsGrab your tickets before they sell out! Can you spot anyone you know in these fun pics? EventsHow do I get tickets for Wimbledon 2018?

2301
2302

Example 13: Estimated Data-Quality (Percentile – Higher is better)

2303
2304
2305
2306
2307

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
2.17%	1.11%	3.75%	2.0%	5.31%	92.49%	89.88%	86.79%	97.04%	96.78%

2308
2309
2310

That I don't make you happy? We can start all over some day? Somewhere, are you dreaming of me? Won't you come back home to me?

2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

2376

Example 16: Estimated Data-Quality (Percentile – Higher is better)

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

H.3 INCREASING-QUALITY SAMPLES IDENTIFIED BY ASK-LLM

2391

We look at the training samples that ASK-LLM scoring models *disagree on* as we go from Flan-T5-Small → Flan-T5-XXL. Specifically, we look at training samples that Flan-T5-Small thinks are of low quality, whereas Flan-T5-XXL thinks otherwise. To the best of our understanding, our overarching conclusions by observing these qualitative samples are:

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
0.47%	3.79%	1.93%	1.08%	10.22%	51.15%	46.92%	63.04%	44.77%	41.35%

10 February 2019 I have 2 houses (joint - me & my wife) in my name and 2 land (plots). Recently sold one of flat (100% cheque payment). Can I reinvest the Capital gains arriving out of sale in purchasing a flat? Note: I had reinvested earlier on (4 years ago) the similar capital gains to buy land from a house sale.

H.3 INCREASING-QUALITY SAMPLES IDENTIFIED BY ASK-LLM

2391

We look at the training samples that ASK-LLM scoring models *disagree on* as we go from Flan-T5-Small → Flan-T5-XXL. Specifically, we look at training samples that Flan-T5-Small thinks are of low quality, whereas Flan-T5-XXL thinks otherwise. To the best of our understanding, our overarching conclusions by observing these qualitative samples are:

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

Example 17: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
7.67%	30.45%	57.41%	78.17%	97.41%	15.56%	31.02%	24.14%	50.59%	49.64%

The historic city of Manchester now features one of the most interesting public art installations that art lovers have ever witnessed. Design studio, Acrylicize installed five giant lamps in Piccadilly Place that represent the many historic periods that the city has gone through, including; Art Deco, Art Nouveau, Victorian, mid-century, and contemporary. The installation is without any doubt, a great piece of art but unlike other artworks, these are absolutely functional as well. Each lamp provides the many visitors with seating, shelter, light and even heat in the winters. The admirers can also witness the historic stories of Manchester via graphic illustrations on the lamps.

Example 18: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
10.48%	31.26%	54.17%	84.17%	97.93%	30.52%	39.49%	35.79%	30.89%	25.39%

The Cokin Yellow and Pink Center Spot filter has a clear center and diffused yellow and pink edges. These diffused edges will produce blur while leaving the center sharp. The filter effect is directly influenced by the f-stop and the focal length. A lens shot at f/1.4 will see a greater blurring effect than f/8.0 and a 85mm lens will see more blur than a 28mm. Additionally, a longer focal length lens will visually increase the size of the center spot area because it sees less of the filter area.

2430

Example 19: Estimated Data-Quality (Percentile – Higher is better)

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
7.05%	20.29%	38.23%	50.38%	63.94%	22.41%	14.8%	12.69%	20.68%	8.62%

Provide hoist coverage and 200 degree rotation for individual use in bays, along walls, or columns of plants, or as a supplement to an overhead crane or monorail system. This jib has the advantage of providing maximum lift for the hoist, since it can be installed very close to the underside of the lowest ceiling obstruction. It is composed of a vertical mast mounted to 2 brackets on a wall or vertical building beam with a boom that cantilevers out, perpendicular from the wall at the top.

Example 20: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
20.76%	45.81%	60.22%	73.95%	84.14%	2.98%	2.94%	3.49%	2.51%	2.09%

The mighty Adyar River that flows through Chennai has a tale to tell. Arun Krishnamurthy, founder, Environmentalist Foundation of India has documented the origin of the river, the journey and the culmination all captured in images aimed at sensitizing citizens of Chennai to a treasure that they are being denied. Titled Urban Waters, the photo exhibition on Adyar river will bring out Adyar’s rich history, fine ecology, urban exploitation and her innate beauty through framed images. The exhibition is organised at Max Mueller Bhavan in Chennai. Goethe Institut, Max Mueller Bhavan is at 4, 5th Street, Rutland Gate, Chennai.

Example 21: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
4.27%	22.22%	47.57%	82.58%	92.4%	6.34%	4.77%	3.89%	8.75%	7.55%

The Pendaries Village Skyline Subdivision is located near both the Santa Fe National Forest and the Pecos Wilderness in North Central New Mexico. It has the charm of small town New Mexico, perhaps even more so than its better known nearby sister cities. It offers a unique opportunity for people wishing to enjoy the quiet beauty of Northern New Mexico.

2484

Example 22: Estimated Data-Quality (Percentile – Higher is better)

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
22.09%	66.57%	76.56%	85.51%	96.98%	20.8%	24.82%	17.42%	18.65%	15.55%

Anderson .Paak’s new album, Oxnard, is a nod to the Southern California city where Anderson grew up. It is the Grammy-nominated artist’s third studio album and the first to be released on Dr. Dre’s label Aftermath Entertainment. Oxnard includes his latest single, Tints featuring Kendrick Lamar along with album features from J Cole, Pusha T and many more. This is the album he dreamed of making in high school, when he was listening to Jay-Z’s The Blueprint, The Game’s The Documentary, and Kanye West’s The College Dropout. The classic fourth album from the rap-god Eminem.

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

Example 25: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
91.25%	71.8%	53.1%	24.11%	4.53%	32.4%	36.56%	46.53%	48.19%	54.84%

88

I hear people saying that vinyl records have a better sound quality than CDs or even DVDs. A mini LP is a CD version of something that was originally released as a 12" (12 inch) vinyl LP. In many cases the packaging is superior to, or at least. Vitalogy; Studio album by Pearl Jam; Released: Vinyl: November 22, 1994 CD: December 6, 1994: Recorded: November 1993 – October 1994: Studio: Bad Animals Studio. Browse best sellers, new releases, AutoRip CDs and vinyl records, deals, vinyl Audio CD. 7.99. From A Room: Volume 1. Chris Stapleton. Audio. The one and only CD, DVD, VIDEO, DJ, VINYL, ERO store. Search our full catalog. Recordstore.co.uk. The UK's leading online record store. Buy new and exclusive signed bundles, CDs, LPs, Merchandise and box sets. Recordstore Day, every. Vinyl Records to CD Conversion - Cheapest on the net! High-quality, standards-compliant CD-Audio of your favorite vinyl records, saved for posterity. Custom CD, DVD Vinyl Packaging You're just a click away from a gorgeous, retail-ready CD or DVD in professional disc packaging. We also offer a full-range of Vinyl.

...

Buy with confidence as the. Mar 4, 2017 Despite the decline in mainstream CD usage, some consumers still have CD recording needs for radio, vinyl and other formats. Here are our. 12 results . You can finally burn your cassettes and vinyl records to CD with Crosley's Memory Master II CD Recorder. Just play your cassette or record One Nation is back after the Sold Out New Years Eve event with yet another From its esoteric origins releasing field recordings of steam engines on vinyl to our latest critically acclaimed Ultradisc UHR™ SACDs, Mobile Fidelity Sound. How much are worth and valued your rare and collectable vinyl and cd by searching on Music Price Guide archive. Heel veel CD, LP, Vinyl SACD op voorraad, snelle levertijden en altijd superscherp geprijsd en lage verzendkosten, voor 17:00 besteld morgen Some of the greatest music ever made isn't available digitally, on mp3, or on CD; but rather is only available on vinyl. Moreover, if you already have purchased.

2592

Example 26: Estimated Data-Quality (Percentile – Higher is better)

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
96.67%	76.07%	47.33%	30.0%	7.97%	32.02%	21.27%	24.31%	25.77%	23.7%

A brilliant performance by Year 6 based on The Lion King. Brilliant singing and acting from everyone, congratulations Year 6! A big thank you to all the staff that helped with everything from costumes, set design, make up and directing. A wonderful commemoration of the seven years that Year 6 students have spent at The Good Shepherd. Thank you to all of the parents and staff for attending this celebration and we wish all of the children continued success in their new schools and hope they continue to do themselves proud. Well done to Foundation for showing us what it is to be good friends! This week we have been looking at all the countries in the world that speak Spanish as their native language, there are 21! So throughout school we spent a day learning lots of wonderful things about our chosen country. We looked at maps, flags, famous people, food and so much more! Below is a little glimpse into our fabulous week.

...

Click on the links to take a look at some of the brilliant things we got up to! Faith in Families is a charity based here in Nottingham who believe, as we do, that all children have the right to grow up as part of a loving and nurturing family and they provide services for children and families. We learnt lots about adoption and what it can mean for children and their family.

We learnt about Fairtrade and all the fantastic work they do around the world. We also discovered lots of products that we did not know were Fairtrade. There was also a sell out Fairtrade food sale, well done everyone! Year 2 have been able to show off our brilliant new high visibility jackets! Now we will be able to stay safe and visible on any out of school trips. We are very lucky to have these donated by Walton & Allen. Thank you! Click on the high visibility jacket to take a look at our super jackets! Year 4 have wowed us with their acting skills in a brilliant performance of Ali Baba - well done Year 4! Year...

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Example 27: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
90.79%	75.97%	58.89%	18.06%	3.0%	13.65%	16.88%	17.85%	14.36%	13.67%

gg

Search result for " For Sale " We supply Germany made embalming powder in small quantities from 1 kg at affordable prices. We have white and pink 100% hot and 98% pink in stock. Call us on +27786893835 for details. EMBALMING.. EMBALMING POWDER CALL +27786893835 Hager Werken Embalming Compound Pink Powder call +27786893835 in General items from Germany Embalming compound in powder form both PINK and WHITE Radio active.. Sierra Residences Type B, Sg Ara near PISA, Factory,Air-port Sierra Residences (ID: 5695) ===== Monthly Rent: RM 1,000 BU: 1182 sq.ft. Newly Renovated/NOT Furnished - 3.. Very Strategic and Highly Potential LAND 9.7 Acres Converted Residential Land For Sale in Taman Melawati !!!! Taman Melawati development land , Title : Freehold, non bumi land. Status:.. I am a Certified Private Loan Lender, Do you need a Fast and Guarantee loan to pay your bills or start up a Business? I offer both local and international loan services to meet your financial needs..

...
Introducing our mining company to you for a very fruitful business transaction. we are a miners who have come together to upgrade our production through the introduction of modern technology and.. Commercial land for sale. Location near to Premium Outlet. Size = 32 acres Good land shape and very suitable for development. Selling price RM 60 per sf. Interested party kindly contact.. Keterangan : * Tanah yang rata dan sangat startegik untuk buat rumah kediaman/rumah rehat (homestay), atau untuk rumah penginapan sendirian/Percutian (vacation home) * Tanah lot tepi berdekatan.. Limited gated Semi D at Sri petaling,fully furnish with lift and move in condition.newly buit,modern,spacious and practical.Prime location for own stay,good gated security and easy access to few main.. Land for sale in MELAKA ! Price : RM 65 per sq fit (or roughly U\$D 17 per sq fit) Size : 53000 sf Property type 1/4 freehold housing land Location : Jalan Laksamana Cheng Ho,Â ..

2700

Example 28: Estimated Data-Quality (Percentile – Higher is better)

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
94.72%	87.31%	78.07%	13.77%	6.51%	5.75%	9.63%	13.12%	17.51%	17.12%

FIFA 20 CONFIRMED TRANSFERS SUMMER 2019 & RUMOURS | w/ ALEX SANDRO BALE & NEYMAR JR. TO BARCELONA!! Top 10 Worst Transfers In Football History! 70 CONFIRMED TRANSFERS JANUARY 2019 _____ Thank You For Watching _____ * Like + Subscribe * =====. FIFA 20 | CONFIRMED TRANSFERS SUMMER 2019 & RUMOURS | w ZIDANE COUTINHO & RONALDO BACK TO R.MADRID! REBUILDING REAL MADRID | DREAM TEAM LINEUP 2019-2020 | POTENTIAL TRANSFERS | w/ NEYMAR & RONALDO! FIFA 20 | CONFIRMED TRANSFERS SUMMER 2019 & RUMOURS | w BALE FEKIR UMTITI & NEYMAR £300M TO MADRID! SUBSCRIBE <http://bit.ly/SoccerAMSub> Dean from 442oons is back with his list of the top 5 deals that were done on transfer deadline day. Do you agree with .. FIFA 20 | CONFIRMED TRANSFERS SUMMER 2019 & RUMOURS | w STERLING JAMES AUBAMEYANG & GRIEZMANN! SUBSCRIBE to FOOTBALL DAILY: <http://bit.ly/fdsubscribe> Last week we broke down our best signings of the summer so far. Now lets expose the worst! Top 150 confirmed transfers / signings of the summer transfer window 2018 ft. Ronaldo, Mbappe, Mahrez, Vidal, Courtois... THANK FOR WATCHING! FIFA 20 | CONFIRMED TRANSFERS SUMMER 2019 & RUMOURS | w POGBA SANCHO THIAGO & MESSI TO INTER!!

Example 29: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
86.25%	69.2%	61.9%	46.57%	19.99%	76.61%	71.91%	94.86%	92.93%	94.99%

Phone 1300 616 202 if you're looking for a trustworthy, experienced and licensed Plumber Leopold. We know that getting plumbing repairs in Leopold can be a pain and you've got better things to do than look for a plumber. Clearwater Plumbing and Maintenance will save you from any unnecessary hassle and expense for a Plumber Leopold. We make sure that wherever you need a Plumber Leopold, Clearwater Plumbing and Maintenance will assist you with your plumbing worries. Plumbing problems with your taps, toilets, gas, hot water and drains are painful enough. You don't need the extra stress of finding a Plumber Leopold that you can trust. And what about all of those plumbers in Leopold who don't clean up after themselves, leaving mud and materials all over your home? Our professional team are different!

...

Do you have hot water system repairs Leopold. We have highly experienced plumbers who know how to fix hot water systems Leopold. There can be many possible reasons why your hot water system Leopold is broken. Our Leopold plumbers are reliable, fast and know hot to diagnose problems. Our hot water system repairs Leopold plumbers are trained and qualified. To book an appointment, please call 1300 616 202. We will do our best to get a plumber to you in Leopold as soon as possible. If you notice that there is water leaking from the bottom of your hot water system in Leopold, chances are the system is completely broken. In this scenario, you will need to replace your hot water system in Leopold. Our team of plumbers can help you to choose what hot water system you will need.

2754

Example 30: Estimated Data-Quality (Percentile – Higher is better)

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
82.64%	75.2%	63.2%	29.51%	8.94%	78.34%	82.07%	91.01%	87.78%	88.02%

You can now configure the minimum TLS protocol level for client connections and connections to other servers. Refer to the following page for more information: Advanced TLS. You can now set an Integrated Capture Point (ICP) to stopped mode by changing the state of the corresponding configuration object to disabled; changing the state to enabled restarts the inbound cycle of the ICP. You can now set the minimum TLS protocol level for the Web Service Capture Point by configuring the option <sec-protocol> in the section <settings> of the Capture Point object.

...

Support for the following databases. See the Supported Operating Environment: eServices page for more detailed information and a list of all supported databases. No special procedure is required to upgrade to release 8.5.201.05. Retrieved from "https://docs.genesys.com/Documentation:RN:mm-ixn-svr85rn:mm-ixn-svr8520105:8.5.x (2019-04-21 22:59:48)" This page was last modified on November 8, 2018, at 08:48.

Example 31: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM					Perplexity Filtering				
Small	Base	Large	XL	XXL	Small	Base	Large	XL	XXL
62.21%	54.71%	35.73%	22.64%	6.76%	64.82%	85.95%	94.65%	93.35%	85.29%

are willing to provide you with perfect services and striding for Display Stand For Boutique , Display Stand for Boutique , Display Stand for Phone , Our product quality is one of the major concerns and has been produced to meet the customer's standards. "Customer services and relationship" is another important area which we understand good communication and relationships with our customers is the most significant power to run it as a long term business. "We have quite a few great team customers very good at internet marketing, QC, and dealing with kinds of troublesome trouble while in the output approach for Display Stand For Boutique , Display Stand for Boutique , Display Stand for Phone , We set a strict quality control system. We've got return and exchange policy and you can exchange within 7 days after receive the wigs if it is in new station and we service repairing free for our solutions.

You should feel free to contact us for further information and we are going to give you competitive price list then.