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ABSTRACT

The training of large language models (LLMs) is expensive. In this paper, we study
data-efficient approaches for pre-training LLMs, i.e., techniques that aim to opti-
mize the Pareto frontier of model quality and training resource/data consumption.
We seek to understand the tradeoffs associated with data selection routines based on
(i) expensive-to-compute data-quality estimates, and (ii) maximization of coverage
and diversity-based measures in the feature space. Our first technique, ASK-LLM,
leverages the zero-shot reasoning capabilities of instruction-tuned LLMs to directly
assess the quality of a training example. To target coverage, we propose DENSITY
sampling, which models the data distribution to select a diverse sample. Testing
the effect of 22 different data curation techniques on the pre-training of T5-style
of models, involving hundreds of pre-training runs and post fine-tuning evaluation
tasks, we find that ASK-LLM and DENSITY are the best methods in their respective
categories. While coverage sampling techniques often recover the performance of
training on the entire dataset, training on data curated via ASK-LLM consistently
outperforms full-data training—even when we sample only 10% of the original
dataset, while converging up to 70% faster.

1 INTRODUCTION

Large language model (LLM) pre-training is perhaps the most data- and compute-intensive task
attempted by the machine learning community to date, with impressive capabilities primarily being
accomplished by training massive transformer architectures on trillions of tokens of text (OpenAI,
2023; Gemini et al., 2023; Touvron et al., 2023b).

But even these incredibly capable LLMs are subject to empirical scaling laws, which predict sharply
diminishing returns from a linear increase in model- or data-size (Hoffmann et al., 2022; Kaplan
et al., 2020). Power-law scaling therefore acts as a soft limit on model quality, beyond which it is
prohibitively expensive to drive performance by scaling up the data or model. At the same time,
Sorscher et al. (2022)—in the context of vision pre-training—show that we can significantly improve
the power law constants in the aforementioned scaling laws if we prioritize important training
examples using some robust notion of data quality or impact.

A similar call for data-curation is also apparent in the context of training LLMs, where our largest
models are quickly approaching their capacity and data thresholds. LIMA (Zhou et al., 2023) showed
that LLaMA-65B (Touvron et al., 2023a) can be better aligned with human preferences when trained
on a set of 1,000 carefully selected fine-tuning prompts, compared to training on as much as 52,000
unfiltered examples. Tirumala et al. (2023) recently conducted a large-scale data-efficient pre-training
evaluation, showing that a 6.7B OPT model (Zhang et al., 2022) can converge up to 20% faster on
data curated by a technique based on stratified cluster sampling. The Phi-2 experiments also suggest
that when data curation is performed at a human-expert level (e.g., by textbook editors), models can
outperform baselines that are up to 25x larger (Javaheripi et al., 2023).

Data curation routines can be fundamentally characterized as selecting training samples for quality,
coverage, or some mixture of both (Figure 2). In this work, we seek to understand how quality and
coverage affect the data efficiency of LLM pre-training. Our core research question is:

“Are cheap-to-compute heuristics like maximum-coverage enough to pre-train a SoTA LLM, or
are there real benefits from costly samplers that carefully evaluate the quality of each example?”
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Figure 1: Data-efficient pre-training run of T5-Large (800M) using ASK-LLM with Flan-T5-XL as
the data quality scorer. Training on 60% of the original dataset, ASK-LLM is able to train T5-Large
both better and 70% faster, compared to training on 100% of the dataset.

This question is crucial to answer because data-curation algorithms can improve the Pareto frontier
of the data-quantity↔model-quality tradeoff, directly addressing the bottleneck of power-law scaling
by enabling higher-quality models to be trained using less data. Data curation also unlocks new
tradeoffs between training time, inference cost, data collection effort, and downstream performance.
For example, if we consider the compute-constrained (single-epoch) regime, a data-efficient LLM
training routine may reach the desired performance using only X% of the data (corresponding to a
≤X% training speedup).

Despite considerable interest from the community for building data-efficient training meth-
ods (Sorscher et al., 2022; Paul et al., 2021; Coleman et al., 2020; Jiang et al., 2019; Katharopoulos
& Fleuret, 2018), large-scale analyses of data pruning strategies are rare because of the extreme
computational cost—especially in the context of LLM pre-training. To be more specific, an extensive
comparative study necessarily entails pre-training (i) various sizes of LLMs, (ii) for a variety of data
sampling rates, (iii) obtained through various pruning strategies. Further, downstream evaluations for
LLMs also frequently involve fine-tuning, which is resource intensive in itself.

Contributions. We hypothesize that the roles of coverage and quality depend on the stage of training,
size of the model, and the sampling rate. To understand the coverage/quality design choice better, we
develop new data-efficiency routines that independently (and solely) target quality and coverage. Our
ASK-LLM sampler prioritizes high-quality and informative training samples by asking a proxy LLM.
Our DENSITY sampler seeks to maximize the coverage of latent topics in the input dataset through a
diversified sampling procedure. To summarize, our contributions are as follows:

[leftmargin=*]ASK-LLM sampling. We develop ASK-LLM, a data curation technique
that can train better models (vs. training on the entire dataset) even after removing up
to 90% of training samples, while also consistently outperforming other well-established
data curation routines. Furthermore, we find ASK-LLM also promotes data-efficiency
during training (Figure 1). Exhaustive benchmark. We implement 22 different sampling
strategies for pre-training T5-Large (800M) and T5-Small (60M) on 524B tokens and
evaluate them on 111 downstream evaluation tasks. This leads to a total of 220 pre-training
and 1, 100 distinct fine-tuning runs. New insights. By analyzing the differences between
ASK-LLM and DENSITY sampling, we study the role of coverage, quality, and sampling cost
in LLM pre-training. We support our conclusions with additional studies of the convergence
rate, correlations between sampler outputs, and impact of sampling cost on downstream
performance. Our results show that while coverage sampling often recovers the performance
of training on the full dataset, ASK-LLM (quality filtering) can often exceed it. These
experiments suggest that LLM-based data quality raters are a worthwhile and effective way
to drive performance in pre-training.

2 RELATED WORK

Data selection is a classical problem with well-established literature on coresets, sketching, importance
sampling, filtering, denoising, and a host of other algorithms with similar goals. While we cannot
possibly catalog the entire sampling literature, we hope to provide an overview of the principles
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Figure 2: While there is no inherent tradeoff between coverage and quality, samplers target these
metrics on a spectrum (up and to the left indicates a more aggressive prioritization). See Appendix D
for a detailed description.

behind common data selection algorithms. We also describe how these algorithms have been applied
to machine learning, focusing on language model training.

Coverage Sampling. The first class of methods maximize the coverage of the sample by selecting
points that are evenly distributed across the entire input domain, e.g., an ε-net for a Lipschitz
function (Phillips, 2017). Coverage sampling is motivated by the intuition that we ought to show a
language model the full breadth of genres, topics, and languages (Longpre et al., 2023b).

Coverage sampling is typically accomplished by embedding examples into a metric space and
selecting points which are mutually far from each other (Lee et al., 2023). A popular implementation
of coverage sampling are cluster sampling algorithms, which groups inputs based on embedding
similarity and selects representatives from each group. These algorithms are popular, scalable,
interpretable, and enjoy strong theoretical support (Tukan et al., 2021; Feldman et al., 2020).
However, there are also recent techniques based on submodular coverage optimization (Chen et al.,
2012; Indyk et al., 2014; Borsos et al., 2020), models of the data distribution (Coleman et al., 2022),
discrepancy minimization (Karnin & Liberty, 2019), and deduplication through token matching /
similarity hashing (Lee et al., 2022).

Many variations of cluster sampling have been applied to vision and language model training.
Sorscher et al. (2022) propose the “SSL prototypes” method for vision models, which removes points
that fall too close to the nearest k-means centroid. SemDeDup (Abbas et al., 2023) also removes
points based on this distance, but targets pairs of nearby examples, or “semantic duplicates,” and
prefers points close to the centroid. The D4 sampler chains MinHash deduplication, SemDeDup, and
SSL prototypes together to prune both high-variance, sparse regions and prototypical, dense regions
of LLM pre-training datasets (Tirumala et al., 2023). Coleman et al. (2020) considers a k-centers
submodular selection routine on the last-layer embeddings of ResNet vision models.

Quality-score Sampling. Another class of methods are based on quality scores, where a scoring
algorithm rates every example and the sampler preferentially selects points with high scores. For
example, the selection-via-proxy (SVP) algorithm determines the importance of an input using the
validation loss and uncertainty scores of a pre-trained model on the input (Coleman et al., 2020;
Sachdeva et al., 2021). Paul et al. (2021) sample according to an “EL2N score” formed by ensembling
the losses of 10 lightly-trained models. Ensemble prediction variance has also been used as the scoring
metric (Chitta et al., 2021), as have ensemble disagreement rates (Meding et al., 2021). Other scores
measure whether an example is likely to be forgotten (Toneva et al., 2019), memorized (Feldman &
Zhang, 2020), or un-learnable (Mindermann et al., 2022).

In the context of pre-training LLMs, perplexity-filtering is one of the arguably most used quality-
scoring technique, which prioritizes samples with low perplexity or conversely filters out highly
surprising examples (Wenzek et al., 2019; Marion et al., 2023; Muennighoff et al., 2023). Notably,
recent advancements in cheaper to run model-based training-run simulators for LLMs can be used to
estimate the perplexity of a training sample instead of running an LLM inference (Guu et al., 2023).
Another group of methods selects training data that minimizes the distance between the distribution
of selected data and a handcrafted high-quality data source (typically wikipedia and books). Typical
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ways are to do this in a feature space (Xie et al., 2023b) or by training a contrastive-style classifer
(Radford et al., 2019; Anil et al., 2023; Javaheripi et al., 2023). Similar ideas have also been explored
for optimizing the data mixture weights for pre-training (Xie et al., 2023a).

3 METHODS

Ask-LLM prompt

### 
This is a pretraining …. datapoint. 
### 

Does the previous paragraph demarcated within ### and ### 
contain informative signal for pre-training a large-language model? 
An informative datapoint should be well-formatted, contain some 
usable knowledge of the world, and strictly NOT have any harmful, 
racist, sexist, etc. content. 

OPTIONS: 
- yes 
- no

Sampling score = P(“yes” | prompt)

Figure 3: The ASK-LLM prompt to obtain
each example’s sampling score.

We propose two samplers, ASK-LLM and DENSITY.
These samplers have significantly different costs—
ASK-LLM requires an LLM inference call for each
training sample, whereas DENSITY is based on a
diversified sampling routine that is cheaper than even
clustering the dataset. They also exhibit substantially
different selection behavior: ASK-LLM conducts a
highly nuanced and contextual quality evaluation for
each sample, while DENSITY asks whether we have
already sampled many similar examples. By studying
samplers on extreme ends of this spectrum, we hope
to better understand the salient factors for LLM data
curation.

3.1 ASK-LLM SAMPLING

Intuition. Our intuition is that humans can easily identify commonly occurring failure modes in
state-of-the-art data quality scorers. Hence, it should be possible to correct these mistakes using
the reasoning capabilities of modern instruction-tuned LLMs. To do so, in ASK-LLM, we directly
prompt an instruction-tuned proxy LLM with the prospective training example for the sampling
decision (Figure 3). We take the softmax probability of the token “yes” as the estimated data-quality
score. This procedure avoids the following common failure modes of perplexity filtering (i.e., keeping
the lowest perplexity examples). See Appendix H) for a qualitative analysis.

Contextuality. Perplexity filters often select samples that lack context, e.g., containing questions
without answers (Examples 11, 12, 15). ASK-LLM correctly identifies that these examples do not
provide new information.

Nonsense. Perplexity filters can select examples that repeat common words / phrases (Examples 14
and 15), likely because these common word combinations have high likelihood.

Niche examples. Perplexity filters can reject niche topics that are otherwise informative, well-written,
and contain useful tail knowledge of the world. Example 17 contains detailed information about a
Manchester art installation but is assigned a high perplexity, likely because it contains uncommon
(but valid) word combinations. Examples 20-22 display similar behavior for other niche topics.

3.2 DENSITY SAMPLING

Intuition. Our intuition is that the data distribution provides a strong coverage signal. High-
probability regions contain “prototypical” examples—ones with many near-duplicates and strong
representation in the dataset. Low-probability regions will contain outliers, noise, and unique/rare
inputs. If we wish to maximize topic coverage, we should boost the signal from under-represented
portions of the input domain and downsample redundant, high-density information.

The key difficulty for our DENSITY sampler is to accurately estimate an example’s local density.
Like Tirumala et al. (2023) (D4), we assume access to embeddings from a pre-trained LLM. However,
we depart from the traditional approach of clustering and opt to sample based on kernel sums. Given
a dataset D of embeddings and a kernel k(x, y), we estimate the density using the following score.

score(y) =
∑
x∈D

kλ(x, y).

λ is a smoothing parameter called the kernel bandwidth that controls the scale of the points’ effects.
To reduce the complexity from O(N2) to O(N logN), we use recent breakthroughs from the
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algorithm community to approximate the sum (Siminelakis et al., 2019; Coleman & Shrivastava,
2020). Our method resembles that of Coleman et al. (2022), except that (i) we adopt a two-pass
sampling algorithm with stronger theoretical guarantees (Theorem C.2) and (ii) we perform the
density estimation in the latent space of the model, rather than using Jaccard distances on n-grams.

3.3 SAMPLING TECHNIQUES

DENSITY and ASK-LLM are both scoring methods that reduce an example to a floating point value
that measures coverage or quality. Once we have these scores for a complete dataset of training
samples, we consider two ways to select examples.

In our experiments, the DENSITY sampler uses IPS to maximize the coverage of the dataset.1 For our
ASK-LLM filter, we adopt top-k sampling because we expect the “yes” probability to be a reliable
and strong measure of quality.

3.4 RELATIONSHIPS BETWEEN METHODS

DENSITY, Perplexity, and Loss. When a language model is trained to minimize perplexity, the LLM
itself is a data distribution model. Therefore, the perplexity and loss filtering approaches of Marion
et al. (2023), Muennighoff et al. (2023), and other authors can be viewed as model-based density
sampling. However, our sampler measures the density of the training dataset in a latent geometric
space, while perplexity measures the likelihood under the scoring model. The samplers also differ
in terms of decision complexity. Thanks to the capacity of the LLM, a perplexity filter can make
highly-nuanced decisions between two texts on the same topic. On the other hand, our DENSITY
sampler is constructed from a simple nonparametric density model (Rosenblatt, 1956) that does not
have the capacity to distinguish examples at such a granular level.

ASK-LLM and Perplexity. Perplexity filters exhibit a strong in-distribution bias, making decisions
based on the data used to train the scoring model (not the dataset we wish to sample). By using
the LLM for quality evaluation rather than likelihood estimation, our sampler can escape this bias
because the additional context and alternative task change the sampling distribution. This occurs even
when the ASK-LLM and perplexity models are the same size.

DENSITY and Clustering. The kernel sum procedure at the core of DENSITY operates on embedding-
similarity relationships in a similar way to SemDeDup and SSL prototypes. Indeed, near-duplicate
detection can be viewed as a discretized version of similarity-based density estimation (Kirsch &
Mitzenmacher, 2006). Outlier rejection, which motivates the “nearest-to-centroid” heuristic of SSL
prototypes, also has intimate connections with density estimation (Schubert et al., 2014).

Intuition. Perplexity should be viewed as a “difficulty” or “quality” score rather than as a coverage-
maximizing score. Our ASK-LLM sampler should be viewed as a contextualized quality score that
incorporates reasoning.2 Our DENSITY sampler is a pure “coverage” score in the latent representation
space, while SemDeDup, and SSL Prototypes all incorporate quality / outlier filtering to some extent
(e.g., by preferring points near / far from a centroid).

4 EMPIRICAL SETUP

Models. We pre-train T5-style models (Raffel et al., 2020), which belong to the encoder-decoder
family of Transformer models and offer competitive performance on many tasks (Shen et al., 2023).
See Phuong & Hutter (2022) for a formal introduction to various Transformer model configurations.
We train T5-Small (60M) and T5-Large (800M), reusing all of the training settings from the original
T5 implementation except the batch size (2048→ 1024). We train on batches of 1024 sequences of
length 512 for 1M steps. All our experiments are conducted on the TPUv5e architecture.

For perplexity filtering, we experiment with five different language models: T5-{Small, Base, Large,
XL, XXL}. For ASK-LLM’s quality-scoring model, we consider the FLAN-T5 (Longpre et al.,

1We also implemented top-K and bottom-K sampling, but these samplers do not maintain coverage and
perform poorly.

2Note that ASK-LLM may also incidentally improve coverage because it does not suffer from in-distribution
bias.
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2023a) models of the same five sizes (Small to XXL), as well as the instruction-tuned Gemma-7B
model (Team et al., 2024) (named G.7B for brevity).

Datasets. We use the C4 dataset (Raffel et al., 2019) available under the ODC-By license, which
was also used for pre-training the original T5 family of models. The C4 dataset is a version of the
Common Crawl—a publicly available archive of web-text—that has been pre-processed using several
heuristics (Raffel et al., 2020, Section 2.2). In its entirety, C4 contains 184B tokens. We use our
algorithms (see Appendix D for a list) to sample {10, 20, 40, 60, 80}% of C4.

Because a low sampling ratio yields exceedingly small datasets, we choose to train in the iso-compute
setting, i.e., training all models for exactly 524B tokens. This results in more epochs (repetitions) at
smaller sampling rates. We believe this gives each data curation method an equal chance to maximize
model performance, and not penalize methods that sample a small number of high-quality repeatable
tokens vs. large number of non-repeatable tokens. See Appendix D, Figure 8 for a demonstration of
this process.

Evaluation. We use 111 downstream evaluation tasks to assess diverse performance indicators for
pre-trained LLMs. On a high-level, we conduct post-finetuning evaluation on GLUE and SuperGLUE
for natural language understanding capabilities, as well as benchmark on various knowledge, reason-
ing, and Q/A evaluation sets after finetuning on the FLANv2 dataset. See Appendix F for a complete
list and further details.

In addition to these individual tasks, to compare a singular normalized average performance im-
provement over all downstream evaluations, we devise a metric called “Effective Model Size.” It
is challenging to concisely summarize performance using a single measure, primarily because our
evaluation consists of 111 individual tasks, all of which respond at different rates to data and model
optimizations.

Inspired by the LLM scaling-law literature (Hoffmann et al., 2022; Muennighoff et al., 2023), the
“Effective Model Size” metric measures the effective model size by extrapolating on a parametric fit
of the “number of parameters vs. downstream eval” trend, averaged over various downstream tasks.
See Appendix E for a formal definition, as well as the fitted scaling laws for the original T5-models
on the downstream tasks used in this paper. To summarize, this metric gives a principled answer
to the question, “If using a technique leads to x performance, what size LLM achieves the same x
performance if the technique is not used?”

5 EXPERIMENTS

Does reasoning improve efficiency? Figure 4 shows that ASK-LLM trains 800M models to an
equivalent performance, as if we were to train 1.5B models on the original C4 dataset. ASK-LLM
consistently outperforms perplexity filtering (and coverage-maximizing baselines), despite having
access to a scoring model of the same model capacity (XL). Similar findings hold for training
efficiency (Figure 5). ASK-LLM converges faster than perplexity filters, both in average (expected
final performance over all proxy model sizes) and pointwise for the best configuration (Small and XL
for training T5-Small and T5-Large).

Figure 7 further demonstrates that prompting adds critical information to the sampler not present
in perplexity: ASK-LLM scores show no correlation with the perplexity scores. Based on this
clear behavioral difference, we conclude that reasoning and context are crucial ingredients. We
expect prompting techniques such as chain-of-thought reasoning (Wei et al., 2022) to further drive
performance.

When are expensive scores justified? Observing the effective model size while training T5-Large,
Figure 4 suggests that other samplers start performing well only at larger sample ratios (≥ 60%),
with performance very close to ASK-LLM. On the other hand, at smaller sampling ratios, ASK-LLM
tends to significantly outperform both coverage-based samplers, as well as cheaper alternatives for
data-quality scoring like Q-Classifier and DSIR (Appendix D). Hence, the higher costs of LLM-based
filters are most justified in two scenarios: (i) improving full-data performance, where quality filtering
by removing the lowest-quality data is the main way to push the upper limit of model performance;
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Figure 4: Tradeoff between data quantity (number of unique tokens in the sampled dataset) and model
quality for (top) T5-Large and (bottom) T5-Small pre-training. Each point corresponds to a converged
pre-training run over a sub-sample. To avoid clutter, not all sampling methods or evaluation metrics
are shown in Figure 4 or Table 1; see Appendix G for the results of all 22 samplers and metrics.

Table 1: Comparison of sampling algorithms at a fixed sample size. For each sampling strategy, we
sample the dataset to X% of the original size and pre-train T5-Large for 524B tokens. This table is a
cross-section of Figure 4 but with more metrics.

LLM
Training config.

Effective
Model Size

Downstream tasks FLAN Instruction Tuning

Sampler # Tokens GLUE
Super
GLUE

CNN/
DM

SQuAD MMLU BBH Reasoning QA

T5-Large — 184B 800M 88.2 82.5 20.8 86.7 40.7 33.6 21.6 73.0

T5-Large Random 18B 713M 88.4 82.3 20.8 85.9 41.8 33.6 20.6 71.5

T5-Large Density 18B 802M 88.0 80.5 20.9 86.9 42.6 35.5 19.1 70.6
T5-Large Prototypes 18B 423M 87.7 80.5 20.4 86.6 36.7 33.0 17.6 66.0

T5-Large Perplexity (Small) 18B 301M 87.6 80.2 20.5 85.2 36.8 33.8 17.7 60.9
T5-Large DSIR 18B 476M 87.3 81.7 20.7 85.4 39.8 33.3 22.2 65.0
T5-Large Q-Classifier 18B 797M 88.7 83.6 20.8 87.7 40.5 35.0 20.2 65.4
T5-Large Ask-LLM (G.7B) 18B 1.5B 88.2 82.5 20.8 87.8 44.2 37.1 22.7 78.2

or (ii) in the low-data regime, where keeping only the highest-quality data drives the most model
performance compared to other sampling strategies.

We also observe that random sampling is a strong baseline, aligning with recent observations in the
literature. Guo et al. (2022a) found that only three methods outperformed random sampling in a
computer vision benchmark of 15 algorithms, and Ayed & Hayou (2023a) prove the existence of
adversarial problem instances random sampling is optimal. These results higlight the significance of
ASK-LLM’s gains.

Effect of scoring model capacity: Figure 6 demonstrates a clear scaling trend for ASK-LLM’s
quality-scoring model: larger scoring models are increasingly beneficial as the scale of the to-be-
trained LLM increases. Perplexity filters do not seem to exhibit such trends. The strongly consistent
trend suggests that ASK-LLM performance will improve with stronger quality-scoring models –
whether obtained by fine-tuning, chain-of-thought prompting, or size. However, we still observe
compelling performance even when training large models on data chosen by small ASK-LLM models.
For example, ASK-LLM (Base) outperforms perplexity filtering with any scoring-model (including
T5-XXL) for most sampling ratios (Appendix F).

Do samplers select different examples? We computed the Kendall Tau rank correlation between
samplers on 500k examples (Figure 7), finding significant and interesting differences. For example,
the “T5-Large” rows show that (i) T5-Large outputs perplexity scores similar to T5-Small early in
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Figure 5: Training efficiency comparison between ASK-LLM and Perplexity filtering, shown by
comparing performance of intermediate checkpoints. The (Avg) represents performance averaged
across (i) scoring model sizes, i.e., T5-{Small, Base, Large, XL, XXL}; and (ii) sampling ratios, i.e.,
{10, 20, 40, 60, 80}%. The (Small) and (XL) series show the T5-{Small, XL} runs, averaged only
over the sampling ratios.

training, but becomes progressively more nuanced on the path from 20k to 700k training steps, and
(ii) perplexity, density, and ASK-LLM select for wildly different criteria, with almost no ranking
correlation. This supports our hypothesis that DENSITY prioritizes coverage, representing the original
training objective better than any other method besides uniform sampling ( Appendix G); perplexity
re-weights the training objective to up-weight data regions that are in-distribution for the proxy model;
and ASK-LLM up-weights the regions that are identified as “high-quality” by the prompt.

6 DISCUSSION

Amortized scoring. The ASK-LLM and perplexity scorers require considerable computation—one
LLM inference call for every training sample—which is concerning from both a carbon-emissions
and cost perspective (Strubell et al., 2019). However, we argue that the scoring costs are amortized
over many pre-training runs, which together cost significantly more than the ASK-LLM inference
calls (Luccioni et al., 2023). In practical systems, cheaper samplers / scoring models can also
pre-filter examples for our more expensive scorers. While LLM pre-training is often thought of as a
one-time cost, this has historically not been the case. We therefore view quality scores as a long-term
investment. See Appendix C.1 for a deeper discussion about the cost of ASK-LLM scoring.

LLM-Based Data Refinement. Recursively training on model-generated data causes degredation in
both diffusion models and LLMs, inciting concerns about whether the internet will remain a viable
source of training data (Shumailov et al., 2023; Alemohammad et al., 2023; Briesch et al., 2023). It is
therefore somewhat surprising that LLMs are so effective at deciding which training data to consume.
Our ASK-LLM results raise important questions about whether LLM-based filters can function as an
intervention in the self-consumption loop, allowing LLMs to self-improve.

Decoder-Only Models. The experiments in this work address the data-efficiency of encoder-decoder
models in the T5 family. The encoder-decoder structure is still the subject of research and industrial
use, especially for applications that can employ asymmetric encoder and decoder components to
exploit efficiency tradeoffs (Zhang et al., 2025). However, the vast majority of today’s research and
practical applications focus on decoder-only models.

While we do not conduct experiments with decoder-only architectures in this paper, we would like to
note that a variant of our ASK-LLM technique was used in the development of the Gemma 3 family
of models. Specifically, the ASK-LLM framework was employed to re-weight the pretraining corpus
to reduce occurrences of low-quality data (Kamath et al., 2025).
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Figure 7: Kendall’s Tau correlation amongst the scores
from quality filters (first 8), perplexity filters (next 10), and
coverage-based samplers (last 3).

7 CONCLUSION

We studied the performance of sampling algorithms that select high-quality data through highly-
capable proxies and maximize coverage through embedding similarity. Our experiments reveal that
LLM-based quality filtering yields a Parteo optimal efficiency tradeoff between data quantity and
model quality, with important implications for training cost, self-improvement, and LLM training
data curation.
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A IMPACT STATEMENT

While increased LLM accessibility has well-documented risks, we expect data-efficient pre-training to
be a net social good that reduces (amortized) carbon emissions and pre-training cost while improving
quality.

B LIMITATIONS

While the paper pushes the frontier of LLM-training from both quality and efficiency fronts by better
curating pre-training datasets, we would also like to note the limitations of this paper that both better
informs the reader and hopefully guides future work. First, due to the sheer cost of training LLMs
even once, let alone doing data-efficiency research, we only train one kind of transformer models
(encoder-decoder) and only on the C4 dataset. The transferability of our results to more popular,
decoder-only models and larger datasets is still yet to be explored, and an interesting direction for
future work. Next, due to T5-models’ inability to code (primarily a tokenization issue), we don’t
include any coding evaluations in this paper. Curating high-quality coding data is an interesting and
active direction of research (Gunasekar et al., 2023). Further, all of our evaluations are limited to
post-finetuning (as is the prevalent setting with T5 models), hence the effect of our data-curation
techniques on zero/few-shot prompting is also not clear.

C ALGORITHMS

C.1 ASK-LLM SAMPLING

Algorithm 1 ASK-LLM Sampling

Input: Dataset D = {x1, x2, · · · , xN} s.t. xi ∈ X is the training sample in plain-text, sample size
k, scoring modelM : X ;X 7→ R
Output: Sampled data

1: Initialize list of scores S = [].
2: for n = 1→ N do
3: promptn ← make_prompt(xn) . Make ASK-LLM prompts as in Figure 3
4: AppendM(“yes” | promptn) to S . UseM to score xn
5: return k elements from D with top-k scores in S, without replacement.

Discussion on the cost of ASK-LLM scoring. Even though ASK-LLM sampling results in im-
pressive performance and training efficiency improvements compared to training on the full-dataset
(Appendix G), the data quality scoring cost might seem prohibitive. On the other hand, on top of
the improved results, we argue the following to be compelling points in justifying ASK-LLM’s
one-time-amortized data scoring cost:

[leftmargin=*]ASK-LLM only requires forward passes on the entire dataset. This is much
cheaper than (i) training the model itself which requires both forward and backward passes
on multiple repetitions of the entire dataset, (ii) gradient-based data-curation techniques
(Sachdeva & McAuley, 2023; Sachdeva et al., 2023) that also require backward passes, etc.
An additional benefit of the ASK-LLM framework is the ability to leverage memory-efficient,
quantized LLM inference setups (Dettmers et al., 2022). This is strictly not possible, e.g.,
for pre-training LLMs. Notably, quantization isn’t the only ASK-LLM-friendly technique.
All the recent (and future) advances in efficient inference techniques for LLMs (Weng, 2023)
directly reduce the amortization cost of the ASK-LLM framework. Another benefit of

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

ASK-LLM is the ability to naïvely parallelize quality scoring. To be more specific, we can
simply scale-up the amount of small & independent inference resources, and run inference
calls for various training samples parallely. Note that inference hardware has much smaller
requirements compared to, e.g., pre-training or fine-tuning requirements. This is primarily
true because of no batch size requirement for inference vs. large batch size requirement
while training. This enables scaling-up hardware to happen via a large number of small-
compute setups (e.g., 4 interconnected GPUs per node) versus increasing the number of
large-compute setups (e.g., 1000s of interconnected GPUs per node). ASK-LLM also uses
strictly less compute compared to teacher-student knowledge distillation based training
setups (Agarwal et al., 2023). This is true simply because knowledge distillation require (i)
bigger teacher model’s softmax predictions (ii) for each token in our training data. On the
other hand, ASK-LLM requires just the score of the token “yes” given the prompt.

C.2 DENSITY SAMPLING

Our density sampler is adapted from that of Coleman et al. (2022), with a few critical departures:

••••• We use a two-pass procedure that allows for more rigorous theoretical guarantees (and
different sampling behavior).

• We conduct the density estimation in the model’s latent space rather than using Jaccard
similarity over n-grams.

Improvements: Jaccard similarities are sufficient to construct a reasonable sampling distribution
for genomics applications, which are significantly more structured than natural language. However,
this is not the case with text — we found that sampling based on Jaccard density is no better than
random. For this reason, we must use different kernels (p-stable rather than MinHash) and different
input representations (embedding rather than n-grams).

However, our more interesting departure from Coleman et al. (2022) is our two-pass sampling
procedure, which changes the behavior of the algorithm and allows for more rigorous theoretical
guarantees. The original method was only able to demonstrate convergence of cluster populations in
the sampled dataset. While this leads to (weak) convergence for some measures of diversity, it also
requires strong assumptions about the cluster structure.

Theory: We use a recent result that demonstrates consistent sketch-based estimation of the kernel
sum (Theorem 3.3 of Liu et al. (2023)), which we paraphrase below.
Lemma C.1. Let P (x) denote a probability density function. Let D ∼

iid
P (x) denote a dataset. Let

k(x, y) be a positive definite LSH kernel, and let S be the DENSITY score. Then S(x) is a consistent
estimator for the kernel sum.

S(x) →
i.p.

1

N

∑
xi∈D

k(xi, q)

with convergence rate O(
√

logR/R).

If we perform inverse propensity sampling using the score in Lemma C.1, we obtain a sampling
procedure that outputs a uniformly-distributed sample.
Theorem C.2. LetQ(x) be the distribution formed by (i) drawingN samples i.i.d. from a distribution
P , e.g. D = {x1, ...xN} ∼ P , and (ii) keeping x with probability proportional to 1

S(x) . Under the
conditions of Lemma C.1, Q(x) →

i.p.
U(x), where U(x) is the uniform distribution.

Proof. Under the conditions of Wied & Weißbach (2012) (specifically, positive-definiteness and `1
integrability / bounded domain), the kernel sum is a consistent estimator of the density. That is, the
sum converges in probability to P (x).

1

N

∑
xi∈D

k(xi, q) →
i.p.

P (x)

Lemma C.1 shows that S(x) converges in probability to the sum (and thus to P (x)). By Slutsky’s
Theorem, 1

S(x) →
1

P (x) for all x in the support of the distribution (i.e. P (x) 6= 0). The probability of
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generating x as part of the sample is:

Q(x) = Pr[Selectx ∩Generatex] = Pr[Selectx]Pr[Generatex] =
1

S(x)
P (x)

Because 1
S(x) →

c
P (x) for some constant c, we have that Q(x)→ c.

Theorem C.2 demonstrates that our DENSITY sampler outputs a uniformly-distributed collection of
points over the input space (latent LLM representation space).

Algorithm 2 Inverse Propensity Sampling (IPS) via Kernel Density Estimation (KDE)

Input: Dataset D = {x1, x2, · · · , xN} of embeddings, sample size k, kernel k with corresponding
locality-sensitive hash familyH (see Coleman & Shrivastava (2020)), hash range B, rows R, random
seed s
Output: Sampled data

1: Initialize: KDE sketch S ← 0R×B

2: Generate R independent hash functions h1, . . . , hR fromH with range B and random seed s.
3: for n = 1→ N do . Construct KDE estimator for D.
4: for r = 1→ R do . Add xn to the KDE estimator.
5: Sr,hr(xn)+ = 1

6: Initialize list of scores S = [].
7: for n = 1→ N do . Score each example xn
8: score = 0
9: for r = 1→ R do . Compute approximate KDE using S

10: score+ = S[r, hr(xn)]

11: Append score/R to S
12: return k elements from D with probability p =

∑
S
S without replacement.

Cost: Like SemDeDup, D4, and SSL prototypes, our DENSITY sampler requires access to embed-
dings for each example in the training corpus. However, by eliminating the expensive clustering step,
we eliminate a significant computational overhead. Our DENSITY sampling routine required just
80MB of memory and two linear passes through the dataset to score all 364M embeddings. This is
significantly less expensive than clustering.

Tuning: We also eliminate a large number of hyperparameters, improving tuning. Cluster-based
samplers must choose the number of clusters, clustering optimizer and objective, and per-cluster
sampling rate or deduplication similarity. Kernel density estimation, on the other hand, has just
two hyperparameters: the choice of kernel and the bandwidth. We did not observe a significant
performance variation among different bandwidth and kernel choices (e.g., the L2 and cosine kernels
of Coleman & Shrivastava (2020) perform nearly identically). This is likely because all positive-
definite kernels enjoy strong guarantees on the distribution approximation error (Devroye, 1983).

D DATA-CURATION TECHNIQUES

D.1 RANDOM SAMPLING

The de-facto standard for obtaining samples of large datasets where we sample training examples
uniformly at random. Notably, random sampling has also been accompanied with strong results in a
variety of applications in the data-curation literature primarily due to its unbiased sampling (Ayed &
Hayou, 2023b; Guo et al., 2022b).

D.2 DENSITY SAMPLING

See Section 3.2 for technical details about the DENSITY sampler. We use Sentence-T5-Base (Ni
et al., 2021) as our embedding model for training samples, primarily due to its contrastive training,
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Total Training = 524B tokens

100% sample of C4  ☰  184B unique tokens  ☰  2.8 epochs

80% sample of C4  ☰  147B unique tokens  ☰  3.5 epochs

60% sample of C4  ☰  110B unique tokens  ☰  4.7 epochs

40% sample of C4  ☰  73.6B unique tokens  ☰  7.1 epochs

20% sample of C4  ☰  36.8B unique tokens  ☰  14.2 epochs

10% sample of C4  ☰  18.4B unique tokens  ☰  28.4 epochs

Figure 8: We consider a setup where all of our models are trained on exactly 524B tokens, causing us
to repeat the same examples for more epochs when we downsample. We borrow the format of this
graphic from Muennighoff et al. (2023), who consider a similar setting.

giving confidence for computing distances amongst its 768-dim embeddings. We use the PStable
hash (Datar et al., 2004) to hash the embeddings, along with a [1, 000× 20, 000] sketch matrix.

D.3 SEMDEDUP

The key idea is to perform (coverage maximizing) semantic deduplication inside clusters of the
original dataset (Abbas et al., 2023). We re-use the Sentence-T5-Base embeddings of data-points
(Appendix D.2), and perform k-means clustering to obtain 10, 000 clusters of the entire dataset.

D.4 SSL PROTOTYPES

They key idea is to remove prototypical points in a dataset (Sorscher et al., 2022). As a meaningful
proxy, this method removes the points closest to cluster centroids of a dataset. For brevity, we use the
name “Prototypes” when reporting our results. We re-use the same embeddings and clustering for
both SemDeDup and Prototypes.

D.5 PERPLEXITY FILTERING

A popular quality-filtering approach in the literature is to use the perplexity of proxy language models
to filter data-points with a high-perplexity under that language model. While the literature historically
used small language models for perplexity filtering (Wenzek et al., 2019; Muennighoff et al., 2023),
recent work (Marion et al., 2023) suggests improved filtering performance when using LLMs for this
task. To this end, we employ perplexity filtering with T5-{Small, Base, Large, XL, XXL} models; as
well as intermediate checkpoints during the course of training T5-Large: {20k, 100k, 300k, 500k,
700k}.

D.6 TEXT-QUALITY CLASSIFIER (Q-CLASSIFIER)

First proposed by GPT-3 for curating its pretraining dataset (Brown et al., 2020), and later used by
various state-of-the-art LLMs at their time (Chowdhery et al., 2023; Anil et al., 2023; Gao et al.,
2020; Du et al., 2022) another popular quality filtering approach is to train a linear classifier for
distinguishing web-scrape data vs. known reference high-quality data. Consistent with existing usage
of this technique (Gao et al., 2020; Xie et al., 2024; Brown et al., 2020; Chowdhery et al., 2023; Du
et al., 2022), we train a hashing-based linear classifier with a hash size of 262k trained to classify if a
document is either from (negative) C4 or (positive) Wikipedia + BookCorpus. We train this classifier
for a total of 218k steps (equivalent to 14 Trillion unigrams), and based on recent evidence (Xie et al.,
2024) we sample the documents with the highest score according to this classifier.
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D.7 DATA SELECTION WITH IMPORTANCE RESAMPLING (DSIR)

Proposed by Xie et al. (2024), DSIR performs importance sampling using a bag-of-words estimator
(we use unigram and bigram features) over some “high-quality” target data-source. This approach
is, in spirit, quite similar to the aforementioned text-quality classification approach but performs
distribution-matching in a non-parametric way, and without the hassle of training a classifier on large
piles of data. To be consistent, we use Wikipedia + BookCorpus as the target source for DSIR as
well. We re-use the official public implementation for DSIR3.

D.8 ASK-LLM SAMPLING

See Section 3.1 for technical details about the ASK-LLM sampler. Since ASK-LLM relies on the
reasoning capabilities of instruction-tuned models, we use the Flan-T5-{Small, Base, Large, XL,
XXL} (Longpre et al., 2023a) and instruction tuned Gemma-7B (Team et al., 2024) models for
obtaining the quality scores in ASK-LLM.
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Figure 9: Empirical scaling laws for T5-models trained on the entire
C4 dataset for various downstream tasks.

It is challenging to con-
cisely summarize perfor-
mance using a single mea-
sure, primarily because our
evaluation consists of 111
individual tasks, all of
which respond at different
rates to data and model op-
timizations. To provide
a holistic view of perfor-
mance, we fit a paramet-
ric model, a.k.a scaling
law (Hoffmann et al., 2022;
Muennighoff et al., 2023),
of the “model-size↔ qual-
ity” curve for the original
T5 models (i.e., trained on
the full C4 dataset) over var-
ious downstream tasks.

More specifically, we fit functions of the following form, for each downstream task separately:

ModelSize = A+ exp(B + EvalPerformance ∗C) , (1)

and use scipy.optimize.curve_fit to estimate the A,B,C parameters based on the evalu-
ations of T5-{Small, Base, Large, XL}. See Figure 9 for a visual interpretation of the parametric
models we fit.

Finally, given the performance of a model trained on downsampled data, the effective model size
is defined as the predicted model size by plugging in the observed downstream performance into
the parametric scaling law estimated via Equation (1), taking a median over various downstream
evaluation tasks listed in Figure 9.

F DOWNSTREAM EVALUATION TASKS

F.1 PERPLEXITY

Defined as the exponentiated average negative log-likelihood of an average sequence in the dataset;
we report the perplexity computed over the target tokens in T5’s denoising objective (Raffel et al.,
2020) over the default validation set provided by C4. Note that C4’s validation set is a random sample

3https://github.com/p-lambda/dsir
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of the dataset, so it is prone to be of much lower quality than curated sources, and hence, a less
reliable indicator of true model quality.

F.2 HQ PERPLEXITY

As our best effort to devise an inexpensive-to-compute metric that is better aligned with model quality
than perplexity on C4’s validation set, inspired by the evaluation conducted in Tirumala et al. (2023),
we construct a high-quality validation set from non web-scrape sources. We collate the validation
sets from (1) English portion of wiki40b (Guo et al., 2020), (2) realnews and webtext subsets of C4,
and (3) news commentary from the LM1B dataset (Chelba et al., 2013).

F.3 GLUE

A popular natural language understanding meta-benchmark comprising of eleven different tasks
(Wang et al., 2018). Note that we report the average score for all individual tasks, after finetuning on
the concatenation of all individual tasks’ training sets, as is done in the original T5 implementation.

F.4 SUPERGLUE

A harder meta-benchmark (vs. GLUE) built to further test the natural language understanding abilities
of language models (Wang et al., 2019). Similar to GLUE, we report the average score of all tasks,
and conduct fine-tuning on all tasks’ concatenated train-set.

F.5 CNN/DM

We use the CNN/DM dataset (Hermann et al., 2015) for testing our models’ abstractive summarization
abilities. Like the T5 original setting, we finetune on the train-set, and report the ROUGE-2 scores.

F.6 SQUAD

A popular dataset (Rajpurkar et al., 2016) used to evaluate question-answering capabilities of language
models, we compare the finetuned performance of our models using exact-match as the metric.

F.7 FLAN INSTRUCTION TUNING

A popular application of LLMs has been instruction-following, and chatting capabilities. To test our
model’s quality on this front, we finetune our models on the FLANv2 dataset (Longpre et al., 2023a),
and test the instruction-tuned models’ performance from four fronts:

[leftmargin=*]5-shot MMLU (Hendrycks et al., 2020): a popular benchmark consiting of
exam questions from 57 tasks. 3-shot Big Bench Hard (BBH) (Srivastava et al., 2022): a pop-
ular set of 23 hardest tasks from big bench. Reasoning: macro-average 8-shot performance
on GSM8k (Cobbe et al., 2021), SVAMP (Patel et al., 2021), ASDIV (Miao et al., 2021),
and StrategyQA (Geva et al., 2021) benchmarks. QA: macro-average 0-shot performance on
UnifiedQA (Khashabi et al., 2020), BoolQ (Clark et al., 2019), Arc-Easy and Arc-Challenge
(Clark et al., 2018) benchmarks. Average: macro-average of all the four benchmarking
suites listed above: MMLU, BBH, Reasoning, and Q/A.

Please note that all of our reported numbers are based on single checkpoint evaluations, i.e., we first
select the best checkpoint during FLAN finetuning using the average performance on all tasks, and
report the individual task performance on that checkpoint.

G ADDITIONAL RESULTS

G.1 (FIGURE 10) QUALITY-SCORE DISTRIBUTION FOR DIFFERENT SAMPLERS

For different data curation techniques listed in Appendix D, we examine the distribution of estimated
data-quality scores normalized in a way that higher represents better data quality.
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Figure 10: Score distribution of various data curation techniques. The plots for Flan-T5-* models are
for ASK-LLM, whereas ones using T5-* models are for perplexity filtering.

[leftmargin=*]For the DENSITY sampler, the plotted score is proportional to the likelihood
of the example under the kernel density estimate. For the Prototypes sampler, the plotted
score represents the negated cosine similarity of data-point with its assigned cluster centroid.
For the SemDeDup sampler, the plotted score represents the negated maximum cosine
similarity of a datapoint to all other datapoints in its respective cluster. For the perplexity
filtering sampler, the plotted score represents the negated perplexity of a training sample.
For the ASK-LLM sampler, the plotted score represents the log probability of the token
“yes” given the prompt in Figure 3.

G.2 (FIGURE 11) ANALYSIS FOR DIFFERENT SAMPLERS’ AFFINITY TO DIFFERENT TOPICS

Since the different sampling strategies explored in this paper operate with different implicit biases,
we try to understand if certain samplers exhibit more affinity to certain topics in the data compared to
others. To visualize this phenomenon, we conduct the following procedure:

[leftmargin=*]Load a random sample of 500k datapoints, along with their respective data-
quality scores. Perform topic-modeling (via LDA) on the 500k datapoints with 9 topics.
Manually inspect the most common word associations in each of the 9 topics, and label
a “high-level description” for each topic. Assign each of the 500k datapoints to the LDA
topic with the highest likelihood and analyze the differences between the distribution of
scores within each topic and the global score distribution. We conducted a one-way ANOVA,
one-vs-rest style, to determine whether the averages were statistically significant. Because
N = 500k, all effects were significant at the p < 0.01 level. We measure the effect size
using Cohen’s d and report results in Figure 11.

From the topic affinity analysis in Figure 11, we can observe a few interesting common trends:
[leftmargin=*]The perplexity filters have relatively low variance in their scores, indicating
a much less biased sampling. This is expected, because perplexity filtering primarily
biases toward “well-written text” which is relatively task/topic agnostic. The quality-based
samplers (ASK-LLM, DSIR, Q-Classifier) exhibit a much stronger variance in their scores,
with a common liking towards business, political, and religious content; and a common
disliking towards tech, art, and entertainment content. Consistent with the score correlations
in Figure 7, the prototypes and SemDeDup samplers exhibit inverse correlation with most
other samplers when comparing topic affinity too. Density sampling, as expected, exhibits
no special affinity to any particular topic because it’s objective is to only maximize coverage.

G.3 (FIGURES 12 TO 20) DATA-QUANTITY vs. MODEL-QUALITY FOR DIFFERENT SAMPLERS

For different data curation techniques listed in Appendix D, we investigate the tradeoff between the
sampling rate and the respectively trained model’s quality on various downstream evaluations listed
in Appendix F. We plot our results in the following figures:

[leftmargin=*](Figure 12) T5-Small, coverage: Pre-training T5-Small on different amounts
of data sampled by {Random sampling, DENSITY sampling, Self-supervised Prototypes sam-
pling, SemDeDup}. (Figure 13) T5-Large, coverage: Pre-training T5-Large on different
amounts of data sampled by {Random sampling, DENSITY sampling, Self-supervised Proto-
types sampling, SemDeDup}. (Figure 14) T5-Small, ASK-LLM: Pre-training T5-Small on
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Figure 11: Estimated topic affinity for quality filters (first 8), perplexity filters (next 10), and coverage-
based samplers (last 3) over 500k randomly selected training samples.A higher score represents more
affinity. All effects significant at the p < 0.01 level.

different amounts of data sampled by ASK-LLM using the {Flan-T5-Small, Flan-T5-Base,
Flan-T5-Large, Flan-T5-XL, Flan-T5-XXL} scoring models. (Figure 15) T5-Large, ASK-
LLM: Pre-training T5-Large on different amounts of data sampled by ASK-LLM using
the {Flan-T5-Small, Flan-T5-Base, Flan-T5-Large, Flan-T5-XL, Flan-T5-XXL} scoring
models. (Figure 16) T5-Small, Other quality-based Filters: Pre-training T5-Small on
different amounts of data sampled by {Random sampling, DSIR, Q-Classifier, ASK-LLM
(G.7B), ASK-LLM (XL)} scoring models. (Figure 17) T5-Large, Other quality-based
Filters: Pre-training T5-Large on different amounts of data sampled by {Random sampling,
DSIR, Q-Classifier, ASK-LLM (G.7B), ASK-LLM (XL)} scoring models. (Figure 18)
T5-Small, Perplexity filtering: Pre-training T5-Small on different amounts of data sampled
by Perplexity filtering using the {T5-Small, T5-Base, T5-Large, T5-XL, T5-XXL} scoring
models. (Figure 19) T5-Large, Perplexity filtering: Pre-training T5-Large on different
amounts of data sampled by Perplexity filtering using the {T5-Small, T5-Base, T5-Large,
T5-XL, T5-XXL} scoring models. (Figure 20) T5-Large, Perplexity filtering: Pre-training
T5-Large on different amounts of data sampled by Perplexity filtering using the {20k, 100k,
300k, 500k, 700k} intermediate checkpoints of T5-Large as data quality scoring models.
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Figure 12: Tradeoff between data quantity and model quality while pre-training T5-Small. Each
point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F
for a description about the metrics used in this plot.
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Figure 13: Tradeoff between data quantity and model quality while pre-training T5-Large. Each point
in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a
description about the metrics used in this plot.
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Figure 14: Tradeoff between data quantity and model quality while pre-training T5-Small. Each
point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F
for a description about the metrics used in this plot.
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Figure 15: Tradeoff between data quantity and model quality while pre-training T5-Large. Each point
in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a
description about the metrics used in this plot.
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Figure 16: Tradeoff between data quantity and model quality while pre-training T5-Small. Each
point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F
for a description about the metrics used in this plot.
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Figure 17: Tradeoff between data quantity and model quality while pre-training T5-Large. Each point
in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a
description about the metrics used in this plot.
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Figure 18: Tradeoff between data quantity and model quality while pre-training T5-Small. Each
point in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F
for a description about the metrics used in this plot.
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Figure 19: Tradeoff between data quantity and model quality while pre-training T5-Large. Each point
in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a
description about the metrics used in this plot.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

200M

400M

600M

T5-Large

1B

1.2B

Ef
fe

ct
iv

e 
M

od
el

 S
ize

36

38

40

42

44

Av
g.

 (P
os

t-F
LA

N)

31
32
33
34
35
36
37

BB
H 

(P
os

t-F
LA

N)

34

36

38

40

42

44

M
M

LU
 (P

os
t-F

LA
N)

16

18

20

22

24

Re
as

on
in

g 
(P

os
t-F

LA
N)

57
60
63
66
69
72
75

Q/
A 

(P
os

t-F
LA

N)

3.70
3.80
3.90

4
4.10
4.20
4.30

Pe
rp

le
xi

ty
 (C

4)

3.75

3.90

4.05

4.20

4.35

4.50

Pe
rp

le
xi

ty
 (H

Q)
78
79
80
81
82
83
84

Su
pe

r-G
LU

E

20 40 75 115 150 184
Dataset Size (Billion Tokens)

85.60

86.40

87.20

88.00

88.80

GL
UE

20 40 75 115 150 184
Dataset Size (Billion Tokens)

83

84

85

86

87
SQ

uA
D

20 40 75 115 150 184
Dataset Size (Billion Tokens)

19.75

20

20.25

20.50

20.75

21

CN
N-

DM

Full data
Random

Perplexity (20k)
Perplexity (100k)

Perplexity (300k)
Perplexity (500k)

Perplexity (700k)

Figure 20: Tradeoff between data quantity and model quality while pre-training T5-Large. Each point
in this plot comes from the converged pre-training run over a sampled dataset. See Appendix F for a
description about the metrics used in this plot.

G.4 (FIGURES 21 TO 29) QUALITY OF FRESH vs. REPEATED TOKENS FOR DIFFERENT
SAMPLERS

We investigate the data-efficiency for different data curation techniques listed in Appendix D over
various downstream evaluations listed in Appendix F, when stratifying by the maximum number of
repetitions allowed over the sampled dataset. We plot our results in the following figures:

[leftmargin=*](Figure 21) T5-Small, coverage: Average data-efficiency of pre-training
T5-Small on data sampled by {Random sampling, DENSITY sampling, Self-supervised
Prototypes sampling, SemDeDup}, stratified by the maxmimum number of allowed repeti-
tions over the sampled dataset. (Figure 22) T5-Large, coverage: Average data-efficiency
of pre-training T5-Large on data sampled by {Random sampling, DENSITY sampling,
Self-supervised Prototypes sampling, SemDeDup}, stratified by the maxmimum number of
allowed repetitions over the sampled dataset. (Figure 23) T5-Small, ASK-LLM: Average
data-efficiency of pre-training T5-Small on data sampled by ASK-LLM using the {Flan-T5-
Small, Flan-T5-Base, Flan-T5-Large, Flan-T5-XL, Flan-T5-XXL} scoring models, stratified
by the maxmimum number of allowed repetitions over the sampled dataset. (Figure 24)
T5-Large, ASK-LLM: Average data-efficiency of pre-training T5-Large on data sampled
by ASK-LLM using the {Flan-T5-Small, Flan-T5-Base, Flan-T5-Large, Flan-T5-XL, Flan-
T5-XXL} scoring models, stratified by the maxmimum number of allowed repetitions over
the sampled dataset. (Figure 25) T5-Small, Other quality-based Filters: Pre-training
T5-Small on different amounts of data sampled by {Random sampling, DSIR, Q-Classifier,
ASK-LLM (G.7B), ASK-LLM (XL)} scoring models, stratified by the maxmimum number
of allowed repetitions over the sampled dataset. (Figure 26) T5-Large, Other quality-
based Filters: Pre-training T5-Large on different amounts of data sampled by {Random
sampling, DSIR, Q-Classifier, ASK-LLM (G.7B), ASK-LLM (XL)} scoring models, strati-
fied by the maxmimum number of allowed repetitions over the sampled dataset. (Figure 27)
T5-Small, Perplexity filtering: Average data-efficiency of pre-training T5-Small on data
sampled by Perplexity filtering using the {T5-Small, T5-Base, T5-Large, T5-XL, T5-XXL}
scoring models, stratified by the maxmimum number of allowed repetitions over the sampled
dataset. (Figure 28) T5-Large, Perplexity filtering: Average data-efficiency of pre-training
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T5-Large on data sampled by Perplexity filtering using the {T5-Small, T5-Base, T5-Large,
T5-XL, T5-XXL} scoring models, stratified by the maxmimum number of allowed rep-
etitions over the sampled dataset. (Figure 29) T5-Large, Perplexity filtering: Average
data-efficiency of pre-training T5-Large on data sampled by Perplexity filtering using the
{20k, 100k, 300k, 500k, 700k} intermediate checkpoints of T5-Large as data quality scoring
models, stratified by the maxmimum number of allowed repetitions over the sampled dataset.
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Figure 21: Average data-efficiency of pre-training T5-Small on sampled data, stratified by maximum
number of allowed repetitions on the sampled dataset. Each point in this plot represents the perfor-
mance of an intermediate checkpoint averaged over all sampling ratios, as long as the maximum
allowed repetitions have not been reached. See Appendix F for a description about the metrics used
in this plot.
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Figure 22: Average data-efficiency of pre-training T5-Large on sampled data, stratified by maximum
number of allowed repetitions on the sampled dataset. Each point in this plot represents the perfor-
mance of an intermediate checkpoint averaged over all sampling ratios, as long as the maximum
allowed repetitions have not been reached. See Appendix F for a description about the metrics used
in this plot.
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Figure 23: Average data-efficiency of pre-training T5-Small on sampled data, stratified by maximum
number of allowed repetitions on the sampled dataset. Each point in this plot represents the perfor-
mance of an intermediate checkpoint averaged over all sampling ratios, as long as the maximum
allowed repetitions have not been reached. See Appendix F for a description about the metrics used
in this plot.
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Figure 24: Average data-efficiency of pre-training T5-Large on sampled data, stratified by maximum
number of allowed repetitions on the sampled dataset. Each point in this plot represents the perfor-
mance of an intermediate checkpoint averaged over all sampling ratios, as long as the maximum
allowed repetitions have not been reached. See Appendix F for a description about the metrics used
in this plot.
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Figure 25: Average data-efficiency of pre-training T5-Small on sampled data, stratified by maximum
number of allowed repetitions on the sampled dataset. Each point in this plot represents the perfor-
mance of an intermediate checkpoint averaged over all sampling ratios, as long as the maximum
allowed repetitions have not been reached. See Appendix F for a description about the metrics used
in this plot.
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Figure 26: Average data-efficiency of pre-training T5-Large on sampled data, stratified by maximum
number of allowed repetitions on the sampled dataset. Each point in this plot represents the perfor-
mance of an intermediate checkpoint averaged over all sampling ratios, as long as the maximum
allowed repetitions have not been reached. See Appendix F for a description about the metrics used
in this plot.
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Figure 27: Average data-efficiency of pre-training T5-Small on sampled data, stratified by maximum
number of allowed repetitions on the sampled dataset. Each point in this plot represents the perfor-
mance of an intermediate checkpoint averaged over all sampling ratios, as long as the maximum
allowed repetitions have not been reached. See Appendix F for a description about the metrics used
in this plot.
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Figure 28: Average data-efficiency of pre-training T5-Large on sampled data, stratified by maximum
number of allowed repetitions on the sampled dataset. Each point in this plot represents the perfor-
mance of an intermediate checkpoint averaged over all sampling ratios, as long as the maximum
allowed repetitions have not been reached. See Appendix F for a description about the metrics used
in this plot.
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Figure 29: Average data-efficiency of pre-training T5-Large on sampled data, stratified by maximum
number of allowed repetitions on the sampled dataset. Each point in this plot represents the perfor-
mance of an intermediate checkpoint averaged over all sampling ratios, as long as the maximum
allowed repetitions have not been reached. See Appendix F for a description about the metrics used
in this plot.

G.5 (FIGURES 30 TO 36) DATA-EFFICIENCY OF DIFFERENT SAMPLERS

We investigate the data-efficiency for different data curation techniques listed in Appendix D over
various downstream evaluations listed in Appendix F, when stratifying by the sampling ratio or the
size of the sampled dataset. We plot our results in the following figures:

[leftmargin=*](Figure 30) T5-Small, ASK-LLM: Data-efficiency of pre-training T5-Small
on data sampled by ASK-LLM using the {Flan-T5-Small, Flan-T5-Base, Flan-T5-Large,
Flan-T5-XL, Flan-T5-XXL} scoring models, stratified by the sampling ratio. (Figure 31)
T5-Large, ASK-LLM: Data-efficiency of pre-training T5-Large on data sampled by ASK-
LLM using the {Flan-T5-Small, Flan-T5-Base, Flan-T5-Large, Flan-T5-XL, Flan-T5-XXL}
scoring models, stratified by the sampling ratio. (Figure 32) T5-Small, Other quality-based
Filters: Data-efficiency of pre-training T5-Small on data sampled by {Random sampling,
DSIR, Q-Classifier, ASK-LLM (G.7B), ASK-LLM (XL)} scoring models, stratified by
the sampling ratio. (Figure 33) T5-Large, Other quality-based Filters: Data-efficiency
of pre-training T5-Large on data sampled by {Random sampling, DSIR, Q-Classifier,
ASK-LLM (G.7B), ASK-LLM (XL)} scoring models, stratified by the sampling ratio.
(Figure 34) T5-Small, Perplexity filtering: Data-efficiency of pre-training T5-Small on
data sampled by Perplexity filtering using the {T5-Small, T5-Base, T5-Large, T5-XL, T5-
XXL} scoring models, stratified by the sampling ratio. (Figure 35) T5-Large, Perplexity
filtering: Data-efficiency of pre-training T5-Large on data sampled by Perplexity filtering
using the {T5-Small, T5-Base, T5-Large, T5-XL, T5-XXL} scoring models, stratified by
the sampling ratio. (Figure 36) T5-Large, Perplexity filtering: Data-efficiency of pre-
training T5-Large on data sampled by Perplexity filtering using the {20k, 100k, 300k, 500k,
700k} intermediate checkpoints of T5-Large as data quality scoring models, stratified by the
sampling ratio.
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Figure 30: Data efficiency comparison of different samplers while training T5-Small for various
sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the
course of training on sampled data.
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Figure 31: Data efficiency comparison of different samplers while training T5-Large for various
sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the
course of training on sampled data.
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Figure 32: Data efficiency comparison of different samplers while training T5-Small for various
sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the
course of training on sampled data.
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Figure 33: Data efficiency comparison of different samplers while training T5-Large for various
sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the
course of training on sampled data.
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Figure 34: Data efficiency comparison of different samplers while training T5-Small for various
sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the
course of training on sampled data.
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Figure 35: Data efficiency comparison of different samplers while training T5-Large for various
sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the
course of training on sampled data.
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Figure 36: Data efficiency comparison of different samplers while training T5-Large for various
sampling ratios. Each point in this plot is the performance of an intermediate checkpoint during the
course of training on sampled data.

H QUALITATIVE RESULTS

In this section we look at some qualitative training samples, sorted according to various criteria of
data-quality scores. Along with the textual content of each training sample, we also list the estimated
data-quality percentile for ASK-LLM and perplexity filtering samplers, i.e., the percentile of the
given data-point’s quality score amongst the entire training set. A high percentile represents that the
sampler estimates this training sample to have higher quality compared to other training samples in
the dataset. We manually don’t include any NSFW examples to the best of our knowledge.

H.1 HIGH-QUALITY SAMPLES IDENTIFIED BY ASK-LLM

We look at the training samples that all ASK-LLM scoring models, on average, think are good (i.e.,
have a high percentile). To the best of our understanding, the overarching conclusions we make by
observing these qualitative samples are:

[leftmargin=*]ASK-LLM doesn’t seem to have any length bias for good examples. ASK-
LLM can accurately tag high-quality training samples that contain a lot of proper nouns and
named entities. Perplexity filtering gets these kind of samples wrong. Even looking at this
slice of only the highest-quality data tagged by ASK-LLM, perplexity filtering scores don’t
seem to correlate well with ASK-LLM scores as suggested by Figure 7.

Example 1: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

93.33% 88.21% 88.11% 100.0% 99.99% 50.29% 30.34% 32.56% 31.61% 25.62%

BC

What constitutes overtime for a part-time employee? Question: What is overtime for a
part-time employee? Overtime for a part-time employee is time that is beyond the part-time

employee’s ordinary hours of work or outside the agreed number of hours of work, as
specified in their employment contract.
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Example 2: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

99.86% 98.54% 96.4% 96.3% 96.67% 46.2% 54.65% 46.2% 49.85% 20.33%

BC

Viva La Vegan! - Can a Vegan Lifestyle Help to Get Rid of Ocean Dead Zones? Can a Vegan
Lifestyle Help to Get Rid of Ocean Dead Zones? A dead zone is an area at the bottom of the

ocean that is oxygen depleted and cannot maintain any marine life. The biggest cause of
these dead zones is an overflow of fertilizers, sewage and industrial pollutants being pumped

into rivers all over the world. Thankfully dead zones can be reversed and living a vegan
lifestyle can help enormously and I’ll show you how. What are Ocean Dead Zones?

......
Vegans don’t want to harm the planet. On the contrary they want to save it and what better

way than living with nature instead of against it and helping the planet in ways we probably
never even realised, like helping to reverse our oceans dead zones. Next time you think about

buying something you don’t need, or eating food that is highly processed or non-organic,
spare a thought for the largely unknown dead zones and how overconsumption and an

unnatural lifestyle is slowly killing both you and them.

Example 3: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

98.81% 98.96% 95.42% 99.53% 99.56% 88.1% 80.99% 77.13% 65.89% 73.79%

BC

Question: Is it necessary to dredge ponds and lakes in the upper coastal region of South
Carolina? Answer: It is necessary to dredge ponds and lakes in South Carolina, in the upper
coastal region of South Carolina. Each lake and each pond is a different environment and as
years pass, these environments accumulate a lot of sediment. They tend to fill in with storm

water runoff, they tend from natural leafy materials—whether it be grass clippings, leafy
materials, storm water fun off, sand, silt, sediment, muck, mire. All of these produce in the
bottoms of pond beds and lake beds. So it is absolutely necessary to do an evaluation every so
many years to determine whether or not you need to remove the sediment that’s accumulated.
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Example 4: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

88.93% 92.16% 90.3% 95.14% 93.44% 26.83% 34.32% 32.98% 31.14% 28.35%

BC

However, it’s a long and challenging way to mass production. New Tesla Model 3 is an
electric game-changer worth $35,000 and comes in classic black color. A single masterpiece
in black now belongs to Tesla’s CEO and co-founder Elon Musk. Why not mass market yet?
Company has a quite complicated reason. Tesla needs to make sure that it can build, deliver

and service enormous numbers of these awesome electric cars without sacrificing quality.
Tesla will present 30 first cars at a launch celebration dated on July 28. 100 cars with

production speed 3 cars per day dated for August. 1,500 cars will be ready for September.
...

Owners of new Teslas will also enjoy exquisite aerodynamic wheel face. An itemized list of
the Tesla Model 3’s features, specs, and pricing is expected to be revealed on July 28, at the
car’s launch party. 5.6 seconds is what it gets the Model 3 to go from zero to 60 miles per
hour, as May news says. Hot, right? It accelerates even faster than the base model BMW 3
Series or the famous Mercedes-Benz C Class, which are leaders in the compact luxury space.
A single charge will allow minimum 215 miles of single drive. The roof in Model 3 is made

almost entirely of glass, providing an incredible sense of space and infinity. Moreover, it
blocks UV rays and manages the level of heat.

Example 5: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

89.28% 98.11% 98.93% 98.7% 96.32% 26.24% 19.14% 26.25% 26.05% 24.29%

BC

Landmines. Every month, 1200 people are maimed, and a further 800 killed throughout the
world due to landmines. Landmine removal efforts are clearing about 100,000 mines a year,
but at rate it will still be over 1000 years to get them all. The cost of clearing them is huge,

with estimates in excess of $50 billion. Worse still, for every 5000 mines cleared, one person
will die in the process.

...
Hopefully the work that people like Vandiver and Tan can be built upon and further progress
can be made in the fight to clear the world of landmines. The video below shows a group of

minesweepers working with the kits- and it is clear even watching them that the level of
understanding as to how the mine operates is already improving- giving them the knowledge

they need to safely diffuse any mines they encounter.
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Example 6: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

87.79% 98.52% 90.11% 91.65% 88.09% 19.72% 17.88% 21.13% 16.95% 11.92%

BC

By all measures a successful chemical engineering undergraduate at Oregon Agricultural
College, and wanting very much to continue his education and earn his PhD in chemistry,

Linus Pauling wrote to several graduate programs across the country, inquiring in particular
about fellowships. Though he had proven himself to be prodigious talent as a student and,
already, as a teacher, Pauling’s location in Corvallis didn’t carry a great deal of cache with

the country’s elite institutions. And given his family’s shaky financial health, some measure
of institutional funding was going to be required if he were to advance in the academy.

...
During his sparse free time, Pauling wrote letter after letter to his girlfriend, Ava Helen

Miller, who remained in Corvallis to continue work on her Home Economics degree at OAC.
Having expressed a desire to marry at least twice before Linus left for California, only to be
rebuffed by their families, the two decided in their letters that they would absolutely be wed
once Pauling had finished his first year of classes and just prior to his resumption of more

construction work during the summer. Their plan came to fruition in Salem, Oregon on June
17, 1923, and Ava Helen moved to Pasadena that fall to accompany her new husband during

his second year as a graduate student.

Example 7: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

87.08% 89.33% 95.26% 99.13% 99.94% 98.09% 97.52% 98.83% 97.39% 97.38%

BC

Bonelli, N.; Giordano, S.; Procissi, G. Enif-Lang: A Specialized Language for Programming
Network Functions on Commodity Hardware. J. Sens. Actuator Netw. 2018, 7, 34. Bonelli
N, Giordano S, Procissi G. Enif-Lang: A Specialized Language for Programming Network

Functions on Commodity Hardware. Journal of Sensor and Actuator Networks. 2018;
7(3):34. Bonelli, Nicola; Giordano, Stefano; Procissi, Gregorio. 2018. "Enif-Lang: A

Specialized Language for Programming Network Functions on Commodity Hardware." J.
Sens. Actuator Netw. 7, no. 3: 34.
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Example 8: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

96.41% 86.03% 97.38% 95.91% 90.8% 34.7% 44.8% 56.87% 60.15% 77.25%

BC

"What is your number one secret to productivity?" In recording their responses, Kruse came
across some fascinating suggestions. What follows are some of my favorites. They focus on

minutes, not hours. Most people default to hour and half-hour blocks on their calendar;
highly successful people know that there are 1,440 minutes in every day and that there is
nothing more valuable than time. Money can be lost and made again, but time spent can

never be reclaimed. As legendary Olympic gymnast Shannon Miller told Kevin, "To this day,
I keep a schedule that is almost minute by minute." You must master your minutes to master

your life.
...

Energy is everything. You can’t make more minutes in the day, but you can increase your
energy to increase your attention, focus, and productivity. Highly successful people don’t
skip meals, sleep, or breaks in the pursuit of more, more, more. Instead, they view food as
fuel, sleep as recovery, and breaks as opportunities to recharge in order to get even more

done. Author of #1 bestselling book, Emotional Intelligence 2.0, and president of
TalentSmart, world’s leading provider of emotional intelligence.

H.2 LOW-QUALITY SAMPLES IDENTIFIED BY ASK-LLM

We look at the training samples that all ASK-LLM scoring models, on average, think are bad (i.e.,
have a low percentile). To the best of our understanding, the overarching conclusions we make by
observing these qualitative samples are:

[leftmargin=*]ASK-LLM doesn’t seem to have any length bias for bad examples. ASK-
LLM filters hateful or toxic examples that might hurt LLM training. ASK-LLM rejects
non-contextual samples, e.g., having only questions with no answers, repeated non-sensical
content, etc. Notably, perplexity filtering performs bad in these cases, as these low quality
examples tend to have a low perplexity score.

Example 9: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

0.01% 0.01% 0.01% 0.0% 0.0% 40.46% 25.66% 27.42% 25.6% 28.12%

BC

Release name : Juiced2.Hot.Import.Nights-Multi5-RELOADED. ? Format : iso Juiced 2:
HIN evolves the current street racing scene, letting players experience PC Repack DiRT

Rally v1.1 ? Black Box Bears Cant Drift PC torrent uploaded. ? Juiced 2 ? ? ?? ? ???? ????
? ??? ? ?? ? ? ? ? ????! .

...
HIN evolves the current street racing scene, letting players experience the culture of the

real-life HIN tour, the nation?s largest lifestyle custom. Juiced 2 Hot Import Nights Torrent.
Bittorrent 729.64 MB. Juiced 2 Hot Import Nights Download free torrent at Largest

Bittorrent Source with Several Listed Files. Now you can upload screenshots or other images
(cover scans, disc scans,...
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Example 10: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

5.41% 3.86% 0.49% 0.8% 6.24% 62.97% 75.91% 86.3% 85.26% 88.11%

BC

You were a good daughter the first day or two. Now, you are only showing the worst sides of
yourself. I can only be sad and disappointed in you.

Example 11: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

1.08% 0.41% 6.16% 2.46% 1.44% 35.97% 24.13% 31.46% 51.15% 38.19%

BC

Kids can help you enrich your life? Be a better person? Learn to think about someone else?
Apparently whoever said these things has never had children because from everything we

have seen and experienced, kids are flat out horrible. College can’t come fast enough.

Example 12: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

1.89% 3.58% 3.11% 6.02% 0.09% 18.09% 22.8% 25.61% 19.14% 47.01%

BC

EventsThis is how you can go ice skating with real penguinsGrab your tickets before they
sell out! Can you spot anyone you know in these fun pics? EventsHow do I get tickets for

Wimbledon 2018?

Example 13: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

2.17% 1.11% 3.75% 2.0% 5.31% 92.49% 89.88% 86.79% 97.04% 96.78%

BC

That I don’t make you happy? We can start all over some day? Somewhere, are you
dreaming of me? Won’t you come back home to me?
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Example 14: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

0.06% 0.04% 0.08% 0.11% 0.07% 68.86% 51.15% 44.08% 35.81% 19.28%

BC

? , ? , ? , ? , ? ? , ? ? . (1395). ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . ? ? ? ? , 26(2), 145-159. ? ?
; ? ? ; ? ? ? ? . " ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ". ? ? ? ? , 26, 2, 1395, 145-159. ? , ? , ? , ?
, ? ? , ? ? . (1395). ’ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ’, ? ? ? ? , 26(2), pp. 145-159. ? , ? , ? ,
? , ? ? , ? ? . ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . ? ? ? ? , 1395; 26(2): 145-159. ? ? ? ? ? ? ? ?
? ? ? ? ? BHT ? ? ? ? ? ? ? DPPH ? ? ? ? ? ? ? ? ? ? ? ? . ? ? ? ? ? ? ? ? ? ? ? ? (HPMC) ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
...

Effect of the plasticizer on permeability, mechanical resistance and thermal behaviour of
composite coating films. Powder Technology 238:14-19. Martos MV, Mohamady MA,

Fern?ndez?L?pez J, Abd ElRazik KA, Omer EA, P?rez?Alvarez JA and Sendra E, 2011. In
vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian

aromatic plants. Food Control 22: 1715?1722. Phoopuritham P, Thongngam M, Yoksan R
and Suppakul P, 2011. Antioxidant Properties of Selected Plant Extracts and Application in
Packaging as Antioxidant Cellulose?Based Films for Vegetable Oil. Packaging Technology

and Science 25: 125?136. Rojas?Gra? MA, Avena?Bustillos RJ, Olsen C, Friedman M,
Henika PR, Martin?Belloso O, Pan Zh and McHughTH, 2007. Effects...

Example 15: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

0.01% 0.02% 0.02% 0.01% 0.0% 59.41% 36.81% 23.01% 12.95% 17.24%

BC

Showing results for tags ’A3arma_start’. I have a Error mesage "Addon ’A3_epoch_server’
requires addon ’A3_epoch_config’" why is that and how can i fix this? When i click Ok i get
this My Start.cmd losk like this: arma3server.exe [email protected];@EpochHive; -config=C:
? arma 3 ? SC ? config.cfg -ip=192.168.71.234 -port=2301 -profiles=SC -cfg=C: ? arma 3 ?

SC ? basic.cfg -name=SC This is my RPT file:
=====================================================================

== C: ? arma 3 ? arma3server.exe == arma3server.exe [email protected];@EpochHive;
-config=C: ? arma 3 ? SC ?

...
2:05:23 Updating base class ->RscListBox, by a3 ? ui_f ? config.bin/RscIGUIListBox/

2:05:23 Updating base class ->RscListNBox, by a3 ? ui_f ? config.bin/RscIGUIListNBox/
2:05:23 Updating base class ->RscText, by a3 ? ui_f ? config.bin/RscBackground/ 2:05:23

Updating base class ->RscText, by a3 ? ui_f ? config.bin/RscBackgroundGUI/ 2:05:23
Updating base class ->RscPicture, by a3 ? ui_f ? config.bin/RscBackgroundGUILeft/

2:05:23 Updating base class ->RscPicture, by a3 ? ui_f ?
config.bin/RscBackgroundGUIRight/ 2:05:23 Updating base class ->RscPicture, by a3 ? ui_f
? config.bin/RscBackgroundGUIBottom/ 2:05:23 Updating base class ->RscText, by a3...
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Example 16: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

0.47% 3.79% 1.93% 1.08% 10.22% 51.15% 46.92% 63.04% 44.77% 41.35%

BC

10 February 2019 I have 2 houses (joint - me & my wife) in my name and 2 land (plots).
Recently sold one of flat (100% cheque payment). Can I reinvest the Capital gains arriving
out of sale in purchasing a flat? Note: I had reinvested earlier on (4 years ago) the similar

captial gains to buy land from a house sale.

H.3 INCREASING-QUALITY SAMPLES IDENTIFIED BY ASK-LLM

We look at the training samples that ASK-LLM scoring models disagree on as we go from Flan-T5-
Small→ Flan-T5-XXL. Specifically, we look at training samples that Flan-T5-Small thinks are of low
quality, whereas Flan-T5-XXL thinks otherwise. To the best of our understanding, our overarching
conclusions by observing these qualitative samples are:

[leftmargin=*]Larger scoring models in ASK-LLM are able to identify training samples
containing tail-end of knowledge, e.g., rare world-events, rare named entities, etc. The
increasing quality trend going from Flan-T5-Small→ Flan-T5-XXL isn’t correlated with
the quality scoring model size in perplexity filtering.

Example 17: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

7.67% 30.45% 57.41% 78.17% 97.41% 15.56% 31.02% 24.14% 50.59% 49.64%

BC

The historic city of Manchester now features one of the most interesting public art
installations that art lovers have ever witnessed. Design studio, Acrylicize installed five giant

lamps in Piccadilly Place that represent the many historic periods that the city has gone
through, including; Art Deco, Art Nouveau, Victorian, mid-century, and contemporary. The

installation is without any doubt, a great piece of art but unlike other artworks, these are
absolutely functional as well. Each lamp provides the many visitors with seating, shelter,
light and even heat in the winters. The admirers can also witness the historic stories of

Manchester via graphic illustrations on the lamps.

Example 18: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

10.48% 31.26% 54.17% 84.17% 97.93% 30.52% 39.49% 35.79% 30.89% 25.39%

BC

The Cokin Yellow and Pink Center Spot filter has a clear center and diffused yellow and pink
edges. Theses diffused edges will be produce blur while leaving the center sharp. The filter
effect is directly influenced by the f-stop and the focal length. A lens shot at f/1.4 will see a

greater blurring effect than f/8.0 and a 85mm lens will see more blur than a 28mm.
Additionally, a longer focal length lens will visually increase the size of the center spot area

because it sees less of the filter area.
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Example 19: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

7.05% 20.29% 38.23% 50.38% 63.94% 22.41% 14.8% 12.69% 20.68% 8.62%

BC

Provide hoist coverage and 200 degree rotation for individual use in bays, along walls, or
columns of plants, or as a supplement to an overhead crane or monorail system. This jib has
the advantage of providing maximum lift for the hoist, since it can be installed very close to
the underside of the lowest ceiling obstruction. It is composed of a vertical mast mounted to
2 brackets on a wall or vertical building beam with a boom that cantilevers out, perpendicular

from the wall at the top.

Example 20: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

20.76% 45.81% 60.22% 73.95% 84.14% 2.98% 2.94% 3.49% 2.51% 2.09%

BC

The mighty Adyar River that flows through Chennai has a tale to tell. Arun Krishnamurthy,
founder, Environmentalist Foundation of India has documented the origin of the river, the

journey and the culmination all captured in images aimed at sensitizing citizens of Chennai
to a treasure that they are being denied. Titled Urban Waters, the photo exhibition on Adyar

river will bring out Adyar’s rich history, fine ecology, urban exploitation and her innate
beauty through framed images. The exhibition is organised at Max Mueller Bhavan in

Chennai. Goethe Institut, Max Mueller Bhavan is at 4, 5th Street, Rutland Gate, Chennai.

Example 21: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

4.27% 22.22% 47.57% 82.58% 92.4% 6.34% 4.77% 3.89% 8.75% 7.55%

BC

The Pendaries Village Skyline Subdivision is located near both the Santa Fe National Forest
and the Pecos Wilderness in North Central New Mexico. It has the charm of small town New
Mexico, perhaps even more so than its better known nearby sister cities. It offers a unique

opportunity for people wishing to enjoy the quiet beauty of Northern New Mexico.
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Example 22: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

22.09% 66.57% 76.56% 85.51% 96.98% 20.8% 24.82% 17.42% 18.65% 15.55%

BC

Anderson .Paak’s new album, Oxnard, is a nod to the Southern California city where
Anderson grew up. It is the Grammy-nominated artist’s third studio album and the first to be
released on Dr. Dre’s label Aftermath Entertainment. Oxnard includes his latest single, Tints
featuring Kendrick Lamar along with album features from J Cole, Pusha T and many more.
This is the album he dreamed of making in high school, when he was listening to Jay-Z’s The

Blueprint, The Game’s The Documentary, and Kanye West’s The College Dropout. The
classic fourth album from the rap-god Eminem.

Example 23: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

0.98% 24.84% 53.36% 88.98% 98.18% 2.3% 1.48% 2.03% 2.1% 3.07%

BC

The Disknet is a networking solution which uses the external floppy drive port of the Amiga.
It uses the same coax cabling as 10Base2 Ethernet (RG-58U/50Ohm) but is NOT compatible
and is capable of transferring at around 45k/sec. The Disknet may be the same device as the

AmigaLink, but this has not been confirmed.

H.4 DECREASING-QUALITY SAMPLES IDENTIFIED BY ASK-LLM

We look at the training samples that ASK-LLM scoring models disagree on as we go from Flan-T5-
Small→ Flan-T5-XXL. Specifically, we look at training samples that Flan-T5-XXL thinks are of low
quality, whereas Flan-T5-Small thinks otherwise. To the best of our understanding, our overarching
conclusions by observing these qualitative samples are:

[leftmargin=*]Smaller quality-scoring models sometimes mislabel non-informative training
samples, that contain, e.g., non-informative content, or repeated content. The decreasing
quality trend going from Flan-T5-Small→ Flan-T5-XXL isn’t correlated with the quality
scoring model size in perplexity filtering.

Example 24: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

64.05% 46.39% 35.92% 25.29% 9.63% 4.3% 10.21% 3.47% 3.34% 3.35%

BC

one filled with goodwill and cheer. who have supported me thru the year. I wouldn’t be
changing careers. instead of on strange people’s rears. Wishes You a Healthy, Happy

Holidays! Ah, how the mighty have fallen! And a Merry fave to you ... and a happy new rear.
From one Xmas humor story to another, enjoyed this! Thanks Jack & Susan! Doug, I

checked him out–wonderful stuff! Will pass along the good word. Fun and funny–as always!
Thanks for the cheer! I can only fave this once, but I’ve looked at it repeatedly over what has

been a bizarre week– and each time you’ve given me a laugh. That’s a gift Bob and I’m
grateful! Best of holidays to you and a great New Year!
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Example 25: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

91.25% 71.8% 53.1% 24.11% 4.53% 32.4% 36.56% 46.53% 48.19% 54.84%

BC

I hear people saying that vinyl records have a better sound quality than CDs or even DVDs.
A mini LP is a CD version of something that was originally released as a 12" (12 inch) vinyl
LP. In many cases the packaging is superior to, or at least. Vitalogy; Studio album by Pearl
Jam; Released: Vinyl: November 22, 1994 CD: December 6, 1994: Recorded: November

1993 – October 1994: Studio: Bad Animals Studio. Browse best sellers, new releases,
AutoRip CDs and vinyl records, deals, vinyl Audio CD. 7.99. From A Room: Volume 1.
Chris Stapleton. Audio. The one and only CD, DVD, VIDEO, DJ, VINYL, ERO store.

Search our full catalog. Recordstore.co.uk. The UK’s leading online record store. Buy new
and exclusive signed bundles, CDs, LPs, Merchandise and box sets. Recordstore Day, every.
Vinyl Records to CD Conversion - Cheapest on the net! High-quality, standards-compliant

CD-Audio of your favorite vinyl records, saved for posterity. Custom CD, DVD Vinyl
Packaging You’re just a click away from a gorgeous, retail-ready CD or DVD in professional

disc packaging. We also offer a full-range of Vinyl.
...

Buy with confidence as the. Mar 4, 2017 Despite the decline in mainstream CD usage, some
consumers still have CD recording needs for radio, vinyl and other formats. Here are our. 12
results . You can finally burn your cassettes and vinyl records to CD with Crosley’s Memory
Master II CD Recorder. Just play your cassette or record One Nation is back after the Sold
Out New Years Eve event with yet another From its esoteric origins releasing field recordings
of steam engines on vinyl to our latest critically acclaimed Ultradisc UHR™ SACDs, Mobile
Fidelity Sound. How much are worth and valued your rare and collectable vinyl and cd by

searching on Music Price Guide archive. Heel veel CD, LP, Vinyl SACD op voorraad, snelle
levertijden en altijd superscherp geprijsd en lage verzendkosten, voor 17:00 besteld morgen
Some of the greatest music ever made isn t available digitally, on mp3, or on CD; but rather

is only available on vinyl. Moreover, if you already have purchased.
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Example 26: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

96.67% 76.07% 47.33% 30.0% 7.97% 32.02% 21.27% 24.31% 25.77% 23.7%

BC

A brilliant performance by Year 6 based on The Lion King. Brilliant singing and acting from
everyone, congratulations Year 6! A big thank you to all the staff that helped with everything
from costumes, set design, make up and directing. A wonderful commemoration of the seven
years that Year 6 students have spent at The Good Shepherd. Thank you to all of the parents
and staff for attending this celebration and we wish all of the children continued success in
their new schools and hope they continue to do themselves proud. Well done to Foundation

for showing us what it is to be good friends! This week we have been looking at all the
countries in the world that speak Spanish as their native language, there are 21! So

throughout school we spent a day learning lots of wonderful things about our chosen country.
We looked at maps, flags, famous people, food and so much more! Below is a little glimpse

into our fabulous week.
...

Click on the links to take a look at some of the brilliant things we got up to! Faith in Families
is a charity based here in Nottingham who believe, as we do, that all children have the right
to grow up as part of a loving and nurturing family and they provide services for children and
families. We learnt lots about adoption and what it can mean for children and their family.

We learnt about Fairtrade and all the fantastic work they do around the world. We also
discovered lots of products that we did not know were Fairtrade. There was also a sell out

Fairtrade food sale, well done everyone! Year 2 have been able to show off our brilliant new
high visibility jackets! Now we will be able to stay safe and visible on any out of school trips.
We are very lucky to have these donated by Walton & Allen. Thank you! Click on the high
visibility jacket to take a look at our super jackets! Year 4 have wowed us with their acting

skills in a brilliant performance of Ali Baba - well done Year 4! Year...
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Example 27: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

90.79% 75.97% 58.89% 18.06% 3.0% 13.65% 16.88% 17.85% 14.36% 13.67%

BC

Search result for " For Sale " We supply Germany made embalming powder in small
quantities from 1 kg at affordable prices. We have white and pink 100% hot and 98% pink in

stock. Call us on +27786893835 for details. EMBALMING.. EMBALMING POWDER
CALL +27786893835 Hager Werken Embalming Compound Pink Powder call

+27786893835 in General items from Germany Embalming compound in powder form both
PINK and WHITE Radio active.. Sierra Residences Type B, Sg Ara near PISA,

Factory,Air-port Sierra Residences (ID: 5695) ================== Monthly Rent: RM
1,000 BU: 1182 sq.ft. Newly Renovated/NOT Furnished - 3.. Very Strategic and Highly
Potential LAND 9.7 Acres Converted Residential Land For Sale in Taman Melawati !!!!!

Taman Melawati development land , Titile : Freehold, non bumi land. Status:.. I am a
Certified Private Loan Lender, Do you need a Fast and Guarantee loan to pay your bills or
start up a Business? I offer both local and international loan services to meet your financial

needs..
...

Introducing our mining company to you for a very fruitful business transaction. we are a
miners who have come together to upgrade our production through the introduction of

modern technology and.. Commercial land for sale. Location near to Premium Outlet. Size =
32 acres Good land shape and very suitable for development. Selling price RM 60 per sf.

Interested party kindly contact.. Keterangan : * Tanah yang rata dan sangat startegik untuk
buat rumah kediaman/rumah rehat (homestay), atau untuk rumah penginapan

sendirian/Percutian (vacation home) * Tanah lot tepi berdekatan.. Limited gated Semi D at
Sri petaling,fully furnish with lift and move in condition.newly buit,modern,spacius and

practical.Prime location for own stay,good gated security and easy access to few main.. Land
for sale in MELAKA ! Price : RM 65 per sq fit (or roughly U$D 17 per sq fit ) Size : 53000

sf Property type ï¼šfreehold housing land Location : Jalan Laksamana Cheng Ho,Â ..
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Example 28: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

94.72% 87.31% 78.07% 13.77% 6.51% 5.75% 9.63% 13.12% 17.51% 17.12%

BC

FIFA 20 CONFIRMED TRANSFERS SUMMER 2019 & RUMOURS | w/ ALEX SANDRO
BALE & NEYMAR JR. TO BARCELONA!! Top 10 Worst Transfers In Football History!

70 CONFIRMED TRANSFERS JANUARY 2019 ———————— Thank You For
Watching ——————————— * Like + Subscribe * =================. FIFA 20
| CONFIRMED TRANSFERS SUMMER 2019 & RUMOURS | w ZIDANE COUTINHO &
RONALDO BACK TO R.MADRID! REBUILDING REAL MADRID | DREAM TEAM

LINEUP 2019-2020 | POTENTIAL TRANSFERS | w/ NEYMAR & RONALDO! FIFA 20 |
CONFIRMED TRANSFERS SUMMER 2019 & RUMOURS | w BALE FEKIR UMTITI &

NEYMAR £300M TO MADRID! SUBSCRIBE http://bit.ly/SoccerAMSub Dean from
442oons is back with his list of the top 5 deals that were done on transfer deadline day. Do
you agree with .. FIFA 20 | CONFIRMED TRANSFERS SUMMER 2019 & RUMOURS | w

STERLING JAMES AUBAMEYANG & GRIEZMANN! SUBSCRIBE to FOOTBALL
DAILY: http://bit.ly/fdsubscribe Last week we broke down our best signings of the summer

so far. Now lets expose the worst! Top 150 confirmed transfers / signings of the summer
transfer window 2018 ft. Ronaldo, Mbappe, Mahrez, Vidal, Courtois... THANK FOR

WATCHING! FIFA 20 | CONFIRMED TRANSFERS SUMMER 2019 & RUMOURS | w/
POGBA SANCHO THIAGO & MESSI TO INTER!!

Example 29: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

86.25% 69.2% 61.9% 46.57% 19.99% 76.61% 71.91% 94.86% 92.93% 94.99%

BC

Phone 1300 616 202 if you’re looking for a trustworthy, experienced and licensed Plumber
Leopold. We know that getting plumbing repairs in Leopold can be a pain and you’ve got

better things to do than look for a plumber. Clearwater Plumbing and Maintenance will save
you from any unnecessary hassle and expense for a Plumber Leopold. We make sure that
wherever you need a Plumber Leopold, Clearwater Plumbing and Maintenance will assist
you with your plumbing worries. Plumbing problems with your taps, toilets, gas, hot water
and drains are painful enough. You don’t need the extra stress of finding a Plumber Leopold
that you can trust. And what about all of those plumbers in Leopold who don’t clean up after

themselves, leaving mud and materials all over your home? Our professional team are
different!

...
Do you have hot water system repairs Leopold. We have highly experienced plumbers who
know how to fix hot water systems Leopold. There can be many possible reasons why your
hot water system Leopold is broken. Our Leopold plumbers are reliable, fast and know hot to
diagnose problems. Our hot water system repairs Leopold plumbers are trained and qualified.
To book an appointment, please call 1300 616 202. We will do our best to get a plumber to
you in Leopold as soon as possible. If you notice that there is water leaking from the bottom
of your hot water system in Leopold, chances are the system is completely broken. In this

scenario, you will need to replace your hot water system in Leopold. Our team of plumbers
can help you to choose what hot water system you will need.
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Example 30: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

82.64% 75.2% 63.2% 29.51% 8.94% 78.34% 82.07% 91.01% 87.78% 88.02%

BC

You can now configure the minimum TLS protocol level for client connections and
connections to other servers. Refer to the following page for more information: Advanced
TLS. You can now set an Integrated Capture Point (ICP) to stopped mode by changing the
state of the corresponding configuration object to disabled; changing the state to enabled

restarts the inbound cycle of the ICP. You can now set the minimum TLS protocol level for
the Web Service Capture Point by configuring the option <sec-protocol> in the section

<settings> of the Capture Point object.
...

Support for the following databases. See the Supported Operating Environment: eServices
page for more detailed information and a list of all supported databases. No special

procedure is required to upgrade to release 8.5.201.05. Retrieved from
"https://docs.genesys.com/Documentation:RN:mm-ixn-svr85rn:mm-ixn-svr8520105:8.5.x

(2019-04-21 22:59:48)" This page was last modified on November 8, 2018, at 08:48.

Example 31: Estimated Data-Quality (Percentile – Higher is better)

ASK-LLM Perplexity Filtering
Small Base Large XL XXL Small Base Large XL XXL

62.21% 54.71% 35.73% 22.64% 6.76% 64.82% 85.95% 94.65% 93.35% 85.29%

BC

are willing to provide you with perfect services and striding for Display Stand For Boutique ,
Display Stand for Boutique , Display Stand for Phone , Our product quality is one of the

major concerns and has been produced to meet the customer’s standards. "Customer services
and relationship" is another important area which we understand good communication and

relationships with our customers is the most significant power to run it as a long term
business. "We have quite a few great team customers very good at internet marketing, QC,

and dealing with kinds of troublesome trouble while in the output approach for Display Stand
For Boutique , Display Stand for Boutique , Display Stand for Phone , We set a strict quality
control system. We’ve got return and exchange policy and you can exchange within 7 days
after receive the wigs if it is in new station and we service repairing free for our solutions.

You should feel free to contact us for further information and we are going to give you
competitive price list then.
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