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Comprehensive and clinically accurate head
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Accurate organ-at-risk (OAR) segmentation is critical to reduce radiotherapy
complications. Consensus guidelines recommend delineating over 40OARs in
the head-and-neck (H&N). However, prohibitive labor costs cause most insti-
tutions to delineate a substantially smaller subset ofOARs, neglecting the dose
distributions of other OARs. Here, we present an automated and highly
effective stratified OAR segmentation (SOARS) system using deep learning
that precisely delineates a comprehensive set of 42 H&N OARs. We train
SOARS using 176 patients from an internal institution and independently
evaluate it on 1327 external patients across six different institutions. It con-
sistently outperforms other state-of-the-art methods by at least 3–5% in Dice
score for each institutional evaluation (up to 36% relative distance error
reduction). Crucially, multi-user studies demonstrate that 98% of SOARS pre-
dictions need only minor or no revisions to achieve clinical acceptance
(reducing workloads by 90%). Moreover, segmentation and dosimetric accu-
racy are within or smaller than the inter-user variation.

Head and neck (H&N) cancer is one of the most common cancers
worldwide1. Radiation therapy (RT) is an important and effective
treatment for H&N cancer2. In RT, the radiation dose to normal
anatomical structures, i.e., organs at risk (OARs), needs to be lim-
ited to reduce post-treatment complications, such as dry mouth,
swallowing difficulties, visual damage, and cognitive decline3–6. This
requirement demands accurate OAR delineation on the planning
computed tomography (pCT) images used to configure the radia-
tion dosage treatment. Recent consensus guidelines recommend a
set of more than 40 OARs in the H&N region7. Nevertheless, precise
manual delineation of this quantity of OARs is an overwhelmingly
demanding task that requires great clinical expertise and time
efforts, e.g., >3 h for 24 OARs8. Due to the factors of patient over-
load and shortage of experienced physicians, long patient waiting

times and/or undesirably inaccurate RT delineations are more
common than necessary, reducing the treatment efficacy and
safety9. To shorten time expenses, many institutions choose a
simplified (sometimes overly simplified) OAR protocol by con-
touring a small subset of OARs (e.g., only the OARs closest to the
tumor). Dosimetric information cannot be recorded for non-
contoured OARs, although it is clinically important to track for
analysis of post-treatment side effects10. Moreover, because clin-
icians often follow the institution-specific OAR contouring style,
manual delineation is easily prone to large inter-observer variations
leading to differences/discrepancies in dose parameters potentially
impacting the treatment outcome7. Therefore, automatic and
accurate segmentation of a comprehensive set of H&N OARs is of
great clinical benefit in this context.
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OARs are spatially densely distributed in the H&N region and
often have complex anatomical shapes, large size variations, and low
CTcontrasts.Conventional atlas-basedmethodshavebeen extensively
explored previously11–15, but significant amounts of editing efforts were
found to be unavoidable8,16. Atlas-based methods heavily rely on the
accuracy and reliability of deformable image registration,which canbe
very challenging due to OARs’ large shape variations, normal tissue
removal, tumor growth, and image acquisition differences. Volumetric
deformable registration methods often take many minutes or even
hours to compute.

Deep learning approaches have shown substantial improve-
ments in improving segmentation accuracy and efficiency as
compared to atlas-based methods17. After early patch-based
representation18, fully convolutional network is the dominant
formulation on segmentation19–22 or adopting a segmentation-by-
detection strategy23,24when the number of considered OARs is
often fewer than or around 20. With a greater number of OARs
needed to be segmented, deep network optimization may become
increasingly difficult. From an early preliminary version of this
work25, we introduced a stratified deep learning framework to
segment a comprehensive set of H&NOARs by balancing the OARs’
intrinsic spatial and appearance complexity with adaptive neural
network architectures. The proposed system, stratified organ at
risk segmentation (SOARS), divides OARs into three levels, i.e.,
anchor, mid-level, and small & hard (S&H) according to their
complexity. Anchor OARs are high in intensity contrast and low in
inter-user variability and can be segmented first to provide infor-
mative location references for the following harder categories.
Mid-level OARs are low in contrast but not inordinately small. We
use anchor-level predictions as additional input to guide the mid-
level OAR segmentation. S&H OARs are very small in size or very
poor in contrast. Hence, we use a detection by segmentation
strategy to better manage the unbalanced class distributions
across the entire volume. Besides this processing stratification, we
further deploy another stratification by using neural architecture
search (NAS) to automatically determine the optimal network
architecture for each OAR category since it is unlikely the same
network architecture suits all categories equally. We specifically
formulate this structure learning problem as differentiable
NAS26,27, allowing automatic selection across 2D, 3D, or Pseudo-3D
(P3D) convolutions with kernel sizes of 3 or 5 pixels at each
convolutional block.

SOARS segments a large number (42) of OARs with quantita-
tively leading performance in a single institution cross-validation
evaluation25, but essential questions remain unclear regarding its
clinical applicability and generality: (1) does SOARS generalize well
into a large-scale multi-institutional evaluation?; (2) how much
manual editing effort is required before the predicted OARs can be
considered as clinically accepted?; (3) how well does the seg-
mentation accuracy of SOARS compare towards inter-user varia-
tion?; and more critically, (4) what are the dosimetric variations
brought by OAR differences in the downstream RT planning stage?
To adequately address these questions, we first enhance SOARS by
replacing the segmentation backbone of P-HNN28 with UNet29 and
conduct the NAS optimization based on the UNet architecture.
Then, we extensively evaluate SOARS on an external set of 1327
unseen H&N cancer patients from six institutions (one internal and
five external). Finally, using 50 randomly selected external
patients (from two clinical sites), we further conducted three
subjective user studies: (1) physician’s assessment of the revision
effort and time spent when editing on predicted OARs; (2) a
comparison of contouring accuracy between SOARS and the inter-
user variation; and (3) in the intensity modulated RT (IMRT)
planning, a dosimetric accuracy comparison using different OAR

contours (SOARS, SOARS + physician editing, and physician’s
manually labeling).

Results
Datasets for training and evaluation
In this multi-institutional retrospective study, we collected, in total,
1503 H&N cancer patients (each with a pCT scan and who received RT
as their primary treatment) to develop and evaluate the performance
of SOARS. Besides the pCT scans, MRI scans (if available) and other
clinical information were also provided to physicians as references
during their manual OAR delineation procedure. Radiologists were
also consulted when encountering difficult cases, such as tumors very
close to the OARs. Patients were collected fromChang GungMemorial
Hospital (CGMH), First Affiliated Hospital of Xi’an Jiaotong University
(FAH-XJU), and First Affiliated Hospital of Zhejiang University (FAH-
ZU), Gansu Provincial Hospital (GPH), Huadong Hospital Affiliated of
Fudan University (HHA-FU), Southern Medical University (SMU).
Detailed patient characteristics in each institution are shown in Table 1
and image scanning parameters in each institution are listed in Sup-
plementary Table 1.

Training-validation dataset. First, we created a training-validation
dataset to develop SOARS using 176 patients from CGMH between
2015 and 2018 (internal training dataset). Each patient had 42 OARs
manually delineated by senior physicians (board-certified radiation
oncologists specialized in HN cancer treatment) according to the
consensus guideline7 or delineationmethods30,31 recommended by the
guideline7. Among theseOARs, several subdivisions of brain structures
were considered, because studies have reported the radiotherapy-
induced fatigue, short-term memory loss, and cognition change
associated with the volume of scatter dose to these brain
substructures32–36. Note that a senior physician in our study is not only
required to have experience in the head& neck specialty for at least 10
years with 100–300 annually treated patients but also is very familiar
with and follows the delineation consensus guidelines7 in their clinical
practice with high fidelity. Based on the OAR statistical shape, CT
appearance and location characteristics (confirmed by the physicians),
42 OARs are divided into the following three categories. Anchor OARs:
brainstem, cerebellum, eye (left and right), mandible (left and right),
spinal cord, and temporomandibular joint (TMJoint, left and right).
Mid-level OARs: brachial plexus (left and right), basal ganglia (left and
right), constrictor muscle (inferior, middle, and superior), esophagus,
glottic and supraglottic larynx (GSL), glottic area, oral cavity, parotid
(left and right), submandibular gland (SMG, left and right), temporal
lobe (left and right), thyroid (left and right). S&H OARs: cochlea (left
and right), hypothalamus, inner ear (left and right), lacrimal gland (left
and right), lens (left and right), optic nerve (left and right), optic
chiasm, pineal gland, and pituitary. These 42 OARs represent one of
the most comprehensive H&N OAR sets and can serve as a superset
when testing/evaluating patients in other institutions. We divided this
dataset into two subgroups: 80% to train and validate the segmenta-
tion model and 20% to evaluate the ablation performance. Detailed
data split protocols for the NAS training, and the ablation evaluation
are reported in the supplementary materials. The ablation perfor-
mance of SOARS is depicted in Table 2.

Independent internal testing dataset. Next, for independent evalua-
tion, we collected 326 patients fromCGMHbetween 2014 and 2020 as
another internal testing dataset besides the training-validation. OAR
labels in this cohort were extracted from those generated during the
clinical RT contouring process that senior physicians examined and
confirmed. Depending on the H&N cancer types or tumor locations, a
range of 18–42 OAR contours were generally available for each patient
in this cohort.
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Multi-institutional external testing dataset. For quantitative external
evaluation, 1001 patientswere collected fromfivedifferent institutions
located in various areas of mainland China between 2014 and 2020
(external testing dataset). Each patient is accompanied by the clinical
RT treatment OAR contours, ranging from 13 to 25 OARs, depending
on their institutional-specific RT protocols. Two steps of examinations
were conducted to ensure the accuracy and consistency of reference
OAR contours among different institutions. First, senior physicians of
each institution first examined and edited the clinical OAR contours of
the data from their own institution to ensure that they met the deli-
neation consensus guidelines7. Next, three senior physicians (C. Lin, X.
Ye, and J. Ge) further examined all cases. If any cases in an institution
were found deviating from the delineation guideline, the modification
suggestions were provided to corresponding senior physicians of that
institution for confirmation and follow-up editing. Detailed patient
statistics and subject characteristics of these five external institution
datasets are given in Table 1.

Multi-user testing dataset. To further evaluate the clinical applic-
ability of SOARS, 50 nasopharyngeal cancer (NPC) patients were ran-
domly selected from twoexternal institutions (30 fromFAH-ZU and 20
from SMU) to form amulti-user testing dataset. In this cohort, for each
patient, we used 13 common OAR reference contours of FAH-ZU and
SMU, the tumor target volume contours, and the IMRT plan originally

generated by the clinical teams. First, two senior physicians edited the
SOARS predicted 42 OARs (resulting in SOARS-revised contours) and
recorded the editing time to assess the revision efforts required for
making SOARS predicted OAR contours to be clinically accepted. One
senior physicianmanually edited the 13 commonOARsused in FAH-ZU
and SMU, while the other senior physician edited the rest 29 OARs.
Second, another physician with 4 years’ experience manually con-
toured the 13 common OARs used in FAH-ZU and SMU following the
consensus guideline7 (denoted as human reader contours). Then,
using the clinical reference contours of the 13 OARs as gold-standard
references, we compared the contouring accuracy of SOARS, SOARS-
revised, and the human reader. Third, we measured the direct dosi-
metric accuracy (Diffdirectmeandose and Diffdirectmaxdose in Eqs. 6 and 7) brought
by the OAR’s variance. To do this, we kept the original dose grid in the
clinical-treated IMRT plan, we replaced the clinical reference OAR
contours with SOARS, SOARS-revised, and human reader contours,
respectively, to analyze the direct impact on OARs’ dose metrics.
Fourth, we further examined the clinical dosimetric accuracy
(Diffclinicalmeandose and Diffclinicalmaxdose in Eqs. 8 and 9), where three new IMRT
planning dose grids were generated by using the original tumor target
volumes and three substituteOARcontour sets (SOAR, SOARS-revised,
and human reader). Then, the clinical reference OAR contours were
overlaid on top of each replanned dose grid to evaluate the dose
metrics. We randomly selected 10 patients from FAH-ZU’s multi-user

Table 1 | Subject characteristics

Characteristics Train/validation
CGMH (n = 176)

Internal testing
CGMH (n = 326)

External testing
FAH-XJU (n = 82)

External testing
FAH-ZU (n = 447)

External testing
GPH (n = 50)

External testing
HHA-FU (n = 195)

External testing
SMU (n = 227)

Sex

Male 160 (91%) 284 (87%) 65 (79%) 321 (72%) 33 (66%) 145 (75%) 161 (71%)

Female 16 (9%) 42 (13%) 17 (21%) 126 (28%) 17 (34%) 50 (25%) 66 (29%)

Diagnostic age 54 [48–61] 54 [49–62] 57 [49–66] 57 [50–65] 58 [49–70] 56 [47–65] 50 [42–57]

Tumor site

Nasopharynx 7 (4%) 90 (28%) 16 (19%) 349 (78%) 2 (4%) 94 (48%) 199 (88%)

Oropharynx 140 (80%) 86 (26%) 20 (24%) 26 (6%) — 2 (1%) 9 (4%)

Hypopharynx 16 (9%) 115 (35%) — 16 (4%) — 8 (4%) 3 (1%)

Larynx 2 (1%) 12 (4%) 38 (47%) 11 (2%) 9 (18%) 25 (13%) 4 (2%)

Oral Cavity 9 (5%) 15 (5%) 9 (10%) 39 (9%) 3 (6%) 2 (1%) 5 (2%)

Salivary gland — — — — 4 (8%) 4 (2%) 3 (1%)

Others 2 (1%) 8 (2%) — 6 (1%) 32 (64%) 60 (31%) 4 (2%)

Clinical T-stage

cT1 23 (13%) 50 (15%) 10 (12%) 55 (12%) 12 (24%) 14 (7%) 20 (9%)

cT2 64 (36%) 82 (25%) 33 (41%) 181 (41%) 18 (36%) 64 (33%) 54 (24%)

cT3 42 (24%) 81 (25%) 25 (30%) 122 (27%) 12 (24%) 35 (18%) 101 (44%)

cT4 47 (27%) 113 (35%) 14 (17%) 89 (20%) 8 (16%) 82 (42%) 52 (23%)

OAR types annotated 42 42 13 13 17 13 25

CGMH Chang Gung Memorial Hospital, FAH-XJU First Affiliated Hospital of Xi'an Jiaotong University, FAH-ZU First Affiliated Hospital of Zhejiang University, GPH Gansu Provincial Hospital, HHA-FU
Huadong Hospital Affiliated of Fudan University, SMU Southern Medical University.
Note: others of tumor sites include tumors located in the brain, nasal cavity, or lymph node metastasis.

Table 2 | Quantitative results of the ablation evaluation using the validation set of the training-validation dataset

Anchor OARs Mid-level OARs S&H OARs All OARs

DSC HD ASD DSC HD ASD DSC HD ASD DSC HD ASD

Baseline nnUNet39 84.3% 12.4 1.0 71.4% 18.0 2.0 58.3% 4.7 1.1 70.4% 12.7 1.4

nnUNet + PS 86.7% 6.4 0.9 72.6% 11.4 1.9 73.7% 4.6 0.7 76.1% 8.2 1.3

nnUNet+PS+NAS 87.4% 5.4 0.8 74.2% 10.4 1.7 76.2% 3.5 0.6 77.8% 7.2 1.2

Note: PS, NAS represent processing stratification and neural architecture search, respectively. The unit for Hausdorff distance (HD) and average surface distance (ASD) is in mm. The best
performance scores are highlighted in bold font.
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testing set for this user study. These two dosimetric experiments help
determine if differences in OAR contouring would produce clinically
relevant differences of radiation doses received by the OARs in the
downstream dose planning stage. The overview of the multi-user
evaluation is illustrated in Fig. 1.

It is worth noting that clinical reference OAR contours (gold
standard OAR contours) of all patients from the independent internal
testing dataset, multi-institutional external testing dataset and the
multi-user testing dataset do not appear in the training. Training data
only includes the training-validation dataset, i.e., 176 patients
from CGMH.

Public HN OAR datasets. Finally, we evaluated two public HN OAR
segmentation datasets to demonstrate the performance of SOARS,
i.e., MICCAI15 and StructSeg 2019 (https://structseg2019.grand-
challenge.org) datasets. MICCAI 2015 dataset provides 33 training
and 15 testing patients recruited from Norther America, and con-
siders 9 HNOARs: brainstem, mandible (left and right), optic chiasm,
optic nerve (left and right), parotid (left and right), SMG (left and
right). StructSeg 2019 dataset includes 50 training and 10 testing
patients frommainland China, and examines 22 HNOARs: brainstem,
eye (left and right), inner ear (left and right), lens (left and right),
mandible (left and right), middle ear (left and right), optic chiasm,
optic nerve (left and right), parotid (left and right), pituitary, spinal
cord, temporal lobe (left and right), TMJ (left and right).

Performance on the CGMH internal testing dataset
The quantitative performance of SOARS in the internal testing
dataset is summarized in Table 3. SOARS achieved a mean Dice
score coefficient (DSC), Hausdorff distance (HD) and average sur-
face distance (ASD) of 74.8%, 7.9mm, and 1.2 mm, respectively,

among 42 OARs. For stratified OAR categories, mean DSC, HD, and
ASD for anchor OARs were 86.9%, 5.0mm and 0.7mm, respectively;
for mid-level OARs were 74.6%, 12.4mm, and 1.8mm, respectively;
and for S&H were 67.2%, 3.7 mm and 0.7mm, respectively. In com-
parison, the previous state-of-the-art H&N OAR segmentation
approach UaNet24 had inferior performance that was statistically
significant (DSC: 69.8% vs 74.8%, HD: 8.8 vs 7.9mm, ASD: 1.6 vs
1.2 mm; all p < 0.001). UaNet adopted amodified version of 3DMask
R-CNN37, which decoupled the whole task into detection followed
by segmentation. Although UaNet achieved one of the previous best
performances, it lacked dedicated stratified learning to adequately
handle a larger number of OARs, possibly accounting for the
markedly inferior segmentation accuracy compared to SOARS.
Among three stratified OAR categories, S&H OARs exhibited the
largest gap between SOARS and UaNet (DSC: 67.2% vs 59.4%, HD: 3.7
vs 4.7mm, ASD: 0.7 vs 1.2 mm; all p < 0.001). This result further
confirmed the advantage of SOARS, which employed an adaptively
tailored processing workflow and an optimized network archi-
tecture towards a particular category of OARs. Figure 2 shows sev-
eral qualitative comparisons of the internal testing dataset.

Performance on the multi-institutional external testing dataset
Theoverall quantitative external evaluation and the individual external
institution evaluation results are shown in Table 4 and Supplementary
Tables 2 to 6. SOARS achieved a mean DSC, HD, and ASD of 78.0%,
6.7mm, and 1.0mm, respectively, among 25 H&N OARs overall. These
represented significant performance improvement (p <0.001) as
compared against the UaNet (~4% absolute DSC increase, 16.3% HD
reduction, and 28.5% ASD reduction). For individual institutions,
average DSC scores of SOARS ranged from 76.9% in FAH-XJU to 80.7%
in GPH, while most institutions yielded approximately 78% DSC. HD

Stratified organs at risk segmentation 
(SOARS) model development using 
most comprehensive 42 H&N OARs 

Dataset of CGMH
176 patients (176 RTCT scan)
42 H&N organs at risk (OARs)

Head & neck OAR segmentation model training

Training set and model development Multicenter external testing

Dataset of CGMH
326 patients

independent internal testing Multi-user & 
Dosimetric evaluation

Dataset of 50 patients from 
FAH-ZU and SMU

manual revision efforts: 42 OAR types

Quant. contour accuracy: 42 OAR types

compare to human reader: 13 OAR types

dose metric evaluation: 13 OAR types

Dataset of FAH-XJU
82 patients Quant. contour accuracy: 13 OAR types

Dataset of FAH-ZU
447 patients Quant. contour accuracy: 13 OAR types

Dataset of GPH
50 patients Quant. contour accuracy: 17 OAR types

Dataset of HHA-FU
195 patients Quant. contour accuracy: 13 OAR types

Dataset of SMU
227 patients Quant. contour accuracy: 25 OAR types

Fig. 1 | The study flow diagram. We totally collected 1503 head and neck (HN)
cancer patients to develop and evaluate the performance of the proposed
stratified organ at risk segmentation (SOARS). The training patients were col-
lected from Chang Gung Memorial Hospital (CGMH), while the testing patients
were collected from the internal institution CGMH and other five external institu-
tions including First Affiliated Hospital of Xi’an Jiaotong University (FAH-XJU), First
Affiliated Hospital of Zhejiang University (FAH-ZU), Huadong Hospital Affiliated of

Fudan University (HHA-FU), Gansu Provincial Hospital (GPH), and Southern Medi-
cal University (SMU). We further randomly selected 50 nasopharyngeal cancer
patients from FAH-ZU and SMU to form amulti-user testing dataset to evaluate the
clinical applicability of SOARS, including the effort formanual revision, comparison
to the inter-userOARsegmentation accuracy and comparison to the inter-userOAR
dosimetric accuracy.
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Table 3 | Quantitative comparisons of the internal testing of 326 patients

Anchor OARs UaNet SOARS

DSC HD (mm) ASD (mm) DSC HD (mm) ASD (mm)

BrainStem 81.6%± 5.3% 8.8 ± 3.3 1.7 ± 0.7 83.2%± 5.8% 9.0 ± 4.3 1.6 ±0.8

Cerebellum 90.1%± 9.4% 9.5 ± 6.6 1.2 ± 0.5 92.9%± 2.2% 7.9 ± 4.8 0.9±0.3

Eye_Lt 85.1%± 13.2% 3.7 ± 1.4 0.8 ± 0.5 88.5% ±4.9% 2.9 ± 1.0 0.3 ±0.4

Eye_Rt 86.2%± 9.8% 3.6 ± 1.2 0.8 ± 0.4 88.7% ± 4.8% 2.8 ± 1.1 0.3 ±0.4

Mandible_Lt 85.0%± 14.6% 14.7 ± 13.3 1.7 ± 4.4 89.1% ± 2.9% 5.4 ± 4.4 0.5 ±0.4

Mandible_Rt 86.0% ± 12.3% 13.5 ± 11.6 1.5 ± 3.9 89.0%±3.4% 5.5 ± 4.6 0.5 ±0.4

SpinalCord 81.5%± 9.8% 17.1 ± 37.5 4.2 ± 14.5 86.3%±4.0% 4.7 ± 1.4 0.7 ±0.2

TMJ_Lt 73.0%± 7.0% 4.8 ± 1.6 1.2 ± 0.4 81.0%±9.1% 3.5 ± 1.4 0.7 ±0.5

TMJ_Rt 75.5% ± 7.1% 4.4 ± 1.6 1.1 ± 0.4 83.6%±6.6% 3.4 ± 1.1 0.6 ±0.3

Mid-level OARs

BasalGanglia_Lt 76.0%± 7.7% 9.5 ± 3.0 1.8 ±0.7 70.9% ± 9.5% 11.4 ± 3.6 2.3 ± 1.0

BasalGanglia_Rt 73.8% ±9.1% 10.2 ± 2.8 2.0 ±0.8 71.4% ± 10.1% 10.7 ± 3.3 2.2 ± 0.9

Brachial_Lt 57.5% ± 8.1% 19.8 ± 11.1 1.9 ± 1.4 60.8%± 7.6% 21.8 ± 13.2 1.9 ± 1.7

Brachial_Rt 54.6% ± 10.1% 19.9 ± 9.7 2.0 ± 1.6 59.6%± 7.8% 24.8 ± 11.7 2.0 ± 1.8

Const_Inf 68.2%± 11.9% 7.2 ± 2.9 1.3 ± 0.5 70.2% ± 10.9% 5.9 ± 2.6 1.1 ± 0.5

Const_Mid 61.3% ± 10.8% 11.5 ± 5.9 1.9 ± 0.8 63.5% ±8.7% 10.2 ± 5.5 1.7 ± 0.6

Const_Sup 58.6 ± 10.3% 11.1 ± 4.3 2.0 ± 0.9 61.2% ±8.8% 10.6 ± 3.9 1.9 ±0.7

Esophagus 74.2 ± 10.5% 16.3 ± 11.4 2.0 ± 2.4 72.7% ± 11.2% 28.9 ± 30.6 4.2 ± 7.2

Glottic area 58.6 ± 15.3% 9.5 ± 6.3 2.7 ± 2.1 67.8%± 10.8% 6.1 ± 1.9 1.7 ± 0.6

GSL 68.1 ± 10.2% 8.9 ± 3.6 1.3 ± 0.7 71.3%±9.2% 6.7 ± 3.0 1.1 ± 0.6

OralCavity 73.4 ± 6.0% 21.2 ± 5.1 5.1 ± 1.3 75.5%± 7.4% 19.2 ± 5.2 4.0± 1.6

Parotid_Lt 83.2 ± 5.8% 9.6 ± 3.3 1.4 ± 0.6 88.4%±4.3% 7.8 ± 4.0 0.9±0.4

Parotid_Rt 82.7 ± 6.2% 10.6 ± 4.6 1.5 ± 0.7 87.7%±3.9% 8.4± 4.5 1.0 ±0.5

SMG_Lt 79.2 ± 8.9% 7.7 ± 4.4 1.3 ± 0.6 82.0%± 7.8% 6.5 ± 4.1 1.0 ±0.5

SMG_Rt 77.7 ± 9.2% 7.9 ± 4.0 1.4 ± 0.8 82.2%±6.6% 6.4 ± 2.8 1.0 ±0.4

TempLobe_Lt 80.9 ± 6.2% 13.9 ± 5.9 2.4 ± 0.9 82.9%± 5.2% 13.0 ± 5.0 2.2 ±0.7

TempLobe_Rt 81.4 ± 5.6% 13.9 ± 5.1 2.3 ± 0.8 83.4 ± 5.2% 12.1 ± 4.6 2.1 ± 0.7

Thyroid_Lt 80.0 ± 9.8% 7.5 ± 4.7 1.0 ±0.7 82.8 ± 8.7% 7.7 ± 15.0 1.1 ± 3.5

Thyroid_Rt 80.6 ± 8.9% 7.4 ± 4.9 1.0 ± 0.9 84.1 ± 5.8% 6.3 ± 4.0 0.8±0.4

S&H OARs

Cochlea_Lt 62.8 ± 15.9% 2.8 ± 1.5 0.8 ± 0.7 66.0± 11.4% 2.3 ± 0.7 0.6±0.3

Cochlea_Rt 61.7 ± 16.1% 2.9 ± 1.6 0.8 ± 0.7 66.5 ± 10.7% 2.3 ± 0.7 0.6±0.3

Hypothalamus 37.5 ± 23.1% 9.2 ± 4.2 3.0 ± 1.9 59.1 ± 11.5% 5.7 ± 2.2 1.4 ±0.7

InnerEar_Lt 65.6 ± 11.3% 4.2 ± 1.6 1.1 ± 0.6 75.3 ± 7.9% 3.0 ±0.7 0.6±0.3

InnerEar_Rt 66.0 ± 10.4% 4.2 ± 1.4 1.1 ± 0.5 75.0 ± 7.8% 3.0 ±0.7 0.7 ±0.6

LacrimalGland_Lt 45.9 ± 13.7% 5.7 ± 1.4 1.6 ± 0.5 57.8 ± 9.5% 4.0±0.9 0.9±0.3

LacrimalGland_Rt 43.6 ± 13.9% 5.6 ± 1.3 1.6 ± 0.5 56.3 ± 10.2% 4.3 ± 1.2 1.0 ±0.3

Lens_Lt 70.9 ± 8.9% 2.8 ± 0.7 0.6 ± 0.3 74.8 ± 9.7% 2.7 ± 0.8 0.4±0.3

Lens_Rt 72.4 ± 9.7% 2.8 ± 0.7 0.5 ± 0.3 79.5 ± 8.3% 2.2 ±0.8 0.3 ±0.2

OpticChiasm 59.8 ± 15.8% 6.5 ± 2.4 1.4 ± 0.7 67.1 ± 11.4% 6.4 ± 2.1 0.8 ±0.5

OpticNerve_Lt 67.6 ± 8.6% 5.2 ± 2.6 0.8 ± 0.3 69.8± 7.3% 4.8± 3.1 0.7 ±0.3

OpticNerve_Rt 67.0 ± 9.7% 5.4 ± 4.6 0.8 ± 0.5 68.2 ± 7.1% 4.5 ± 3.0 0.7 ±0.3

PinealGland 50.6 ± 14.0% 4.0 ± 1.4 1.1 ± 0.5 55.6 ± 10.1% 3.6 ± 1.3 0.9±0.4

Pituitary 60.2 ± 16.0% 4.1 ± 1.3 1.0 ± 0.4 69.6 ± 12.1% 3.4 ± 1.2 0.6±0.4

Average Anchor 82.7% 8.9 1.6 86.9% 5.0 0.7

Average Mid-level 72.1% 11.8 1.9 74.6% 12.4 1.8

Average S&H 59.4% 4.7 1.2 67.2% 3.7 0.7

Average all 69.8% 8.8 1.6 74.8% 7.9 1.2

Note: Bold values represent the statistically significant improvements (calculated using Wilcoxon matched-pairs signed rank test) as compared between UaNet and SOARS. When the mandible is
considered as a singleOAR instead of left and rightmandible, SOARS achieves themean DSC, HD andASDof 89.1%, 5.4mm, and0.5mm, respectively. Similarly, when the thyroid is considered as a
single OAR instead of left and right thyroid, SOARS achieves the mean DSC, HD, and ASD of 83.5%, 7.0mm, and 1.0mm, respectively.
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values of SOARS were from 5.9mm in FAH-ZU to 8.1mm in SMU; and
ASD obtained from 0.9mm in FAH-ZU and GPH to 1.3mm in SMU and
FAH-XJU. Although the OAR numbers varied for external institutions
(due to differences among institutional specific RT treatment proto-
cols), these quantitative performance metrics are generally compar-
able against the internal testing performance levels, demonstrating
that SOARS’ generality and accuracy hold well to this large-scale
external dataset. SOARS consistently and statistically significantly
outperforms (p < 0.001) UaNet in external evaluation (UaNet had a
mean DSC, HD and ASD of 74.3%, 8.0mm, and 1.4mm, respectively).
SOARS outperforms UaNet in 21 out of 25 OARs on all metrics, with an

average DSC improvement of ~4% and relative distance error reduc-
tions of 16.3% for HD and 28.5% for ASD.

Performance on the public datasets
Quantitative evaluation results on the MICCAI 2015 dataset are shown
in Supplementary Table 7. When the SOARS model (trained using
CGMH Training-Validation dataset and denoted as SOARS_Inference)
was directly applied to the MICCAI 2015 testing set, it led to a decent
performance of 80.4% mean DSC among 9 OARs higher than most of
the recent methods19–23. After retraining SOARS using theMICCAI 2015
training set (denoted as SOARS_Retrain), it achieved the top

Fig. 2 | Qualitative 42 OAR segmentation using UaNet and SOARs on the
internal (upper 4 rows) & external (lower 5 rows) datasets. Rows 5–9 are sample
images from GPH, FAH-ZU, HHA-FU, SMU, and FAH-XJU, respectively. The 1–4
columns are pCT image, pCT with manual OAR delineations, pCT with UaNet

predictions, pCT with SOARS predictions, respectively. The five external centers
have different OAR delineation protocols–a subset of 42 OARs is manually labeled.
For better comparison, we only show the ground truth associated predictions and
use red arrows to indicate the improvements.
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performance of 83.6%meanDSCwith 2.4% absoluteDSC improvement
over the leading approach of UaNet24.

Quantitative experimental results on the StructSeg 2019 dataset
are shown in the supplementary Table 8. For this dataset, because of
the broken-down issue of the official challenge website, it is not fea-
sible to evaluate on the testing set. We chose to conduct a 5-fold cross-
validation using the available CT and OAR annotations of 50 patients
and compared among SOARS, UaNet24 and nnUNet38. Out of 22 con-
sidered OARs, SOARS achieved a mean DSC and HD of 80.9% and
5.8mm, respectively, outperforming those of UaNet (78.6% and
6.6mm) and nnUNet (79.2% and 6.7mm).

Assessment of editing effort in multi-user testing dataset
In 50 multi-user evaluation patients, assessment from two senior
physicians showed that the vast majority (2060 of 2100 = 42 OAR
types × 50, or 98%) of OAR instances produced by SOARS were clini-
cally acceptable or required only veryminor revision (no revision: 1228
(58%); revision < 1minute: 832 (40%)). Only 40 (2%) OAR instances had
automated delineation or contouring errors that required 1–3minutes
of moderate modification efforts. None OAR instances required > 3mi

of major revision. Figure 3 details the assessment results. Another
follow-up blinded assessment experiment indicates that these obser-
vations are reliable (see the supplementary material). OAR types that
needed the most frequent major revisions are hypothalamus, optic
chiasm, esophagus, oral cavity, SMG, and temporal lobes. The average
total editing time of all 42 OARs for each patient is 10.3min. Using a
random selection of 5 out of 50 patients, two senior physicians also
annotated 42 OARs from scratch, which took averaged 106.4 minutes
per patient. Thus, the contouring time was significantly reduced by
90% when editing based on SOARS predictions. This observation
strongly confirms the added value of SOARS in clinical practice.

Inter-user contouring accuracy in multi-user testing dataset
The contouring accuracy of SOARS, SOARS-revised and human reader
in the multi-user testing dataset is shown in Table 5. It is observed that
SOARS consistently yielded higher or comparable performance in all
13 OARs (commonly used in FAH-ZU’s and SMU’s RT protocol) as
compared to the performance of the human reader (a physicianwith 4
years’ experience). Overall, SOARS achieved statistically significantly
improved quantitative results (p <0.001) in mean DSC (80.9% vs

Table 4 | Quantitative comparisons on the external testing dataset of 1001 patient

OARs UaNet SOARS

DSC HD (mm) ASD (mm) DSC HD (mm) ASD (mm)

BrainStem 77.7% ± 10.7% 11.4 ± 11.1 2.6 ± 2.4 81.2% ±9.8% 9.6 ± 11.3 2.0 ± 2.3

Eye_Lt 86.8% ± 5.6% 3.9 ± 1.4 0.7 ± 0.4 89.1%±4.8% 3.7 ± 1.5 0.5 ±0.3

Eye_Rt 86.6% ± 6.4% 4.1 ± 4.1 0.8 ± 3.1 88.9%±4.2% 3.6 ± 1.0 0.5 ±0.3

InnerEar_Lt 55.1% ± 12.8% 8.0 ± 7.4 1.9 ± 1.0 61.6% ± 14.0% 4.9 ± 2.0 0.9 ±0.6

InnerEar_Rt 54.0% ± 14.5% 9.4 ± 11.2 2.4 ± 2.4 64.0%± 13.8% 4.7 ± 1.9 0.8 ±0.5

Lens_Lt 74.4% ± 11.1% 2.6 ± 1.0 0.5 ± 0.4 76.8% ±9.7% 2.5 ± 1.0 0.4 ±0.4

Lens_Rt 74.7% ± 10.8% 2.6 ± 1.0 0.4 ±0.5 76.9%±9.4% 2.5 ±0.9 0.4 ±0.3

Mandible_Lt 85.5%± 12.2% 9.2 ± 8.8 1.5 ± 2.7 88.9%±3.5% 7.6 ± 7.5 1.2 ± 1.0

Mandible_Rt 85.8% ± 7.1% 9.3 ± 8.0 1.3 ± 1.2 89.2%±3.3% 7.7 ± 7.6 1.2 ± 1.0

OpticChiasm 55.1%± 15.6% 9.1 ± 5.1 2.1 ± 1.4 66.2%± 12.3% 6.6 ± 4.2 1.0 ±0.6

OpticNerve_Lt 63.8%± 12.8% 7.6 ± 5.2 1.1 ± 1.6 66.8%±8.2% 5.3 ± 2.7 0.7 ±0.4

OpticNerve_Rt 65.5% ± 12.2% 6.7 ± 4.1 1.0 ± 0.9 66.6%±8.3% 5.1 ± 2.3 0.7 ±0.3

OralCavity 66.4% ± 5.6% 23.6 ± 3.8 5.7 ± 1.0 68.5%± 7.2% 25.7 ± 4.5 4.8 ± 1.4

Parotid_Lt 83.2%± 5.9% 11.6 ± 6.9 1.4 ± 0.8 85.7%± 5.0% 10.0± 6.9 1.1 ± 0.6

Parotid_Rt 82.8% ± 6.4% 11.9 ± 8.7 1.6 ± 2.1 85.2% ± 5.1% 10.6± 8.2 1.2 ± 1.6

Pituitary 67.5% ± 15.4% 4.1 ± 1.4 0.9 ± 0.7 74.7% ± 10.6% 3.6 ± 1.1 0.5 ±0.4

SpinalCord 81.2%± 10.1% 10.6 ± 19.4 1.3 ± 4.6 83.8%± 7.1% 7.2 ± 15.7 1.1 ± 4.6

SMG_Lt 72.0% ± 2.0% 9.4 ± 4.9 2.4 ± 0.3 76.8%± 4.9% 6.4 ± 2.3 1.3 ±0.2

SMG_Rt 75.1%± 3.2% 8.2 ± 4.9 1.5 ± 0.4 74.8%± 5.6% 9.1 ± 4.3 0.9 ±0.1

TempLobe_Lt 75.9% ± 4.3% 22.5 ± 6.7 2.6 ± 1.1 78.7% ±3.0% 20.7 ± 5.8 2.2 ±0.9

TempLobe_Rt 78.2%± 4.3% 20.2 ± 5.8 2.1 ± 0.9 79.1% ± 3.3% 20.4 ± 7.1 2.1 ± 0.9

Thyroid_Lt 73.1% ± 10.0% 14.8 ± 15.3 2.2 ± 2.3 74.5% ± 10.4% 14.5 ± 16.0 2.1 ± 2.6

Thyroid_Rt 73.6% ± 10.8% 10.4 ± 5.5 1.6 ± 1.2 76.4%±9.7% 9.2 ± 4.6 1.4 ± 1.0

TMJ_Lt 63.7% ± 12.6% 6.0 ± 4.3 1.6 ± 1.1 75.3%±9.2% 4.1 ± 1.5 0.7 ±0.4

TMJ_Rt 64.9% ± 12.0% 6.0 ± 4.7 1.6 ± 1.2 74.0%± 9.4% 4.3 ± 1.9 0.8 ±0.5

FAH-XJU (#82, OAR 13) 74.8% 7.2 1.2 77.3% 6.4 1.0

FAH-ZU (#447, OAR 13) 73.7% 7.5 1.3 77.4% 5.9 0.9

GPH (#50, OAR17) 76.0% 7.6 1.4 80.7% 6.8 0.9

HHA-FU (#195, OAR 13) 73.5% 8.0 1.5 77.7% 6.4 1.0

SMU (#227, OAR 25) 73.4% 9.5 1.8 76.9% 8.1 1.3

Average all 74.3% 8.0 1.4 78.0% 6.7 1.0

The “#” and “OAR” in each parenthesis denote the number of patients and the number of annotated OARs, respectively. SOARS achieves the best average performance in all metrics among five
external centers. DSC, HD, and ASD represent Dice similarity coefficient, Hausdorff distance and average surface distance, respectively.
Note: Bold values represent the statistically significant improvements (calculated usingWilcoxon matched-pairs signed rank test) as compared between UaNet and SOARS, respectively. When the
mandible is considered as a single OAR instead of left and right mandible, SOARS achieves the mean DSC, HD, and ASD of 89.1%, 7.6mm, and 1.2mm, respectively. Similarly, when the thyroid is
considered as a single OAR instead of left and right thyroid, SOARS achieves the mean DSC, HD and ASD of 75.5%, 11.8mm, and 1.7mm, respectively.
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77.1%), HD (4.3 vs 6.3mm) and ASD (0.7 vs 1.0mm). 11 out of 13 OAR
types demonstrated marked improvements when comparing SOARS
with the human reader. On the other hand, by comparing the con-
touring accuracy between SOARS and SOARS-revised, they have
shown very similar quantitative performances (mean DSC: 80.9%vs
82.2%, HD: 4.3 vs 4.0mm, and ASD: 0.7 vs 0.6mm). Note that SOARS
derived contours (both SOARS and SOARS revised) overall have sta-
tistically significantly better performance as compared to those of the
human reader, representing the inter-user segmentation variation.
Results from the inter-user variation and the previous revision effort
assessment validated that SOARS can be readily serving as an alter-
native “expert” to output high-quality automatically delineated OAR
contours, where very minor or no manual efforts are usually required
on further editing the SOARS’ predictions.

Direct and clinical dosimetric accuracy in multi-user testing
dataset
Although OAR contouring accuracy reflects the OAR delineation
quality, we can further examine its impact on the important
downstream dose planning step. Two dosimetic experiments were

conducted, i.e., the direct dosimetric accuracy (fixing the original
clinical dose grid and replacing with the substitute OAR contours)
and the clinical dosimetric accuracy (generating the replanned dose
grids with substitute OAR contours). The quantitative direct dosi-
metric accuracy (Diffdirectmeandose and Diffdirectdose ) of various OAR sets, i.e.,
SOARS, SOARS-revised, and human reader, is illustrated in Table 5
and Fig. 4c, and the relationship between contouring accuracy and
direct dosimetric accuracy is plotted in Supplementary Figs. 2 and 3.
It was observed that, for SOARS, the direct dosimetric differences in
mean dose and in maximum dose were 4.2% and 3.3%, respectively,
averaged across all 13 OARs using 50 patients. These were statisti-
cally significantly smaller (p < 0.001) than those of the human
reader contours (6.0% and 4.4%), and comparable to those of
SOARS-revised (4.2% and 3.2%). More specifically, using SOARS
predictions, only 62 out of 650 (9.5%) OAR instances among 50
patients had a mean dose variation larger than 10%, and only 5 OAR
instances have a mean dose difference larger than 30%. In com-
parison, using the human reader contours, 115 out of 650 (17.7%)
OAR instances among 50 patients had a mean dose variation larger
than 10%, and 20 OAR instances with a mean dose difference larger

Table 5 | Quantitative contouring accuracy and direct dosimetric accuracy (Diffdirectmean dose and Diffdirectmaxdose) comparison between
SOARS, SOARS-revised and the human reader on the multi-user testing dataset of 50 patient

Segmentation accuracy

OARs Human reader SOARS SOARS-revised

DSC HD (mm) DSC HD (mm) DSC HD (mm)

BrainStem 84.3%± 5.0% 7.4 ± 3.6 87.0% ± 3.3% 5.7 ± 1.6 87.9% ± 3.3% 5.1 ± 1.6

Eye_Lt 89.5%± 3.3% 3.4 ± 0.7 90.0% ± 2.6% 3.3 ± 0.7 89.9% ± 2.7% 3.2 ± 0.7

Eye_Rt 88.2% ± 5.7% 3.6 ± 1.0 89.3% ± 4.3% 3.3 ± 0.5 89.1% ± 4.4% 3.3 ± 0.6

Lens_Lt 74.7% ± 9.1% 2.5 ± 0.8 74.2% ± 7.6% 2.2 ± 0.6 75.9% ± 7.7% 2.2 ± 0.6

Lens_Rt 72.2% ±9.7% 2.7 ± 0.8 75.4% ± 6.0% 2.2 ± 0.6 76.8% ± 5.7% 2.1 ± 0.6

OpticChiasm 67.6% ± 15.4% 5.1 ± 1.7 74.2% ± 8.9% 4.3 ± 1.0 77.7% ± 9.5% 4.2 ± 1.2

OpticNerve_Lt 65.3%±9.8% 8.2 ± 3.6 73.2% ± 7.4% 4.4 ± 1.9 74.8% ± 6.8% 3.7 ± 1.3

OpticNerve_Rt 64.9%± 12.2% 7.5 ± 4.5 72.1% ± 7.1% 4.1 ± 1.6 73.4% ± 7.9% 3.9 ± 1.5

Parotid_Lt 83.1% ± 4.6% 12.6 ± 5.3 88.2% ± 3.4% 7.6 ± 2.8 88.3% ± 3.3% 7.6 ± 2.8

Parotid_Rt 82.7%± 5.2% 12.3 ± 5.5 87.8% ± 3.6% 7.5 ± 2.9 87.9% ± 3.5% 7.2 ± 2.0

SpinalCord 81.7% ± 6.1% 9.3 ± 8.1 83.7% ± 3.0% 4.4 ± 1.3 83.9% ± 3.0% 3.8 ± 0.7

TMJ_Lt 74.0% ± 9.9% 3.5 ± 0.9 79.0% ± 8.6% 3.2 ± 0.8 82.1% ± 9.9% 2.8 ± 0.6

TMJ_Rt 73.6% ± 12.7% 3.5 ± 1.3 77.6% ± 7.3% 3.4 ± 0.6 81.1% ± 10.5% 2.9 ± 0.6

Average 77.1% 6.3 80.9% 4.3 82.2% 4.0

Dosimetric accuracy (Diffdirectmean dose and Diffdirectmaxdose)

OARs human reader SOARS SOARS-revised

mean dose diff max dose diff mean dose diff max dose diff mean dose diff max dose diff

BrainStem 4.7% ± 5.1% 5.1% ± 6.7% 2.8%± 2.8% 4.3%±4.1% 3.1%± 3.1% 4.1% ±4.2%

Eye_Lt 3.8% ± 3.4% 6.9% ± 7.5% 4.1% ± 3.0% 5.9%±4.7% 4.4% ± 2.9% 4.7%±4.3%

Eye_Rt 5.4% ± 5.2% 6.6% ± 5.7% 5.1% ±4.0% 6.2% ±5.0% 4.9% ±3.9% 5.8%±5.0%

Lens_Lt 2.2%± 2.7% 2.8% ± 2.9% 1.8% ± 2.2% 2.7%± 2.7% 1.5% ± 1.4% 2.4%± 2.4%

Lens_Rt 3.5% ± 4.2% 4.8% ± 5.6% 2.6%±3.3% 3.8%±5.8% 2.5% ±3.2% 3.5%±5.7%

OpticChiasm 8.2%± 11.5% 5.9% ± 9.6% 5.1% ±6.3% 3.3%± 7.0% 4.9% ±8.0% 3.8%± 7.3%

OpticNerve_Lt 13.0% ± 11.2% 7.2%± 9.5% 9.0%±9.4% 4.0% ±6.0% 9.2% ±8.8% 3.5%± 7.4%

OpticNerve_Rt 11.7% ± 10.9% 6.9% ± 9.4% 9.8%± 10.1% 3.7%±4.9% 10.9%± 10.4% 3.9%±6.1%

Parotid_Lt 4.8% ± 4.8% 2.1% ± 2.5% 2.6%±3.3% 1.4%± 1.6% 2.5% ±3.2% 1.5% ± 1.7%

Parotid_Rt 4.8% ± 5.3% 2.0% ± 2.2% 2.8%±3.5% 1.2%± 1.9% 2.8% ±3.5% 1.2% ± 1.9%

SpinalCord 10.2% ± 12.7% 3.3% ± 5.4% 2.9%±4.4% 1.7%± 2.3% 2.7% ±4.2% 1.9% ± 2.3%

TMJ_Lt 2.6% ± 2.4% 2.7% ± 2.9% 3.0%± 2.5% 3.1% ± 2.6% 2.6%± 3.1% 3.2% ± 3.0%

TMJ_Rt 2.5%± 3.0% 2.5% ± 2.7% 2.8%± 1.9% 1.9%± 1.9% 2.7% ± 2.9% 2.0%± 2.1%

Average 6.0% 4.4% 4.2% 3.3% 4.2% 3.2%

Note: mean dose diff and max dose diff represent the difference in the mean dose and difference in maximum dose, respectively. Bold values represent the best performance scores.
DSC, HD and ASD represent Dice similarity coefficient, Hausdorff distance, and average surface distance, respectively. Direct mean dose differences Diffdirectmean dose and direct maximum dose
differences Diffdirectmaxdose are calculated using the Eqs. (6) and (7), respectively. DSC higher the better, while HD, Diffdirectmean dose and Diffdirectmaxdose lower the better
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than 30%. SOARS-revised contours generally had comparable per-
formance with SOARS. Similar trends were observed for the differ-
ences in maximum dose (Fig. 4).

For the clinical dosimetric accuracy evaluation (Diffclinicalmeandose and
Diffclinicalmaxdose), the quantitative results are shown in the supplementary
Table 9, and the relationship between the contouring accuracy and
clinical dosimetric accuracy is plotted in supplementary Figs. 4 and 5.
It was observed that, for SOARS, the clinical dosimetric differences in
mean dose and in maximum dose were 5.0% and 3.4%, respectively,
averaged across all 13 OARs. These errors were slightly smaller than
those of the human reader contours (5.3% and 4.1%, respectively), and
comparable to those of SOARS-revised (5.0% and 3.5%, respectively).
More OARs from the human reader have clinical dose errors that were
larger than 10% or 30%, as compared to SOARS and SOARS-revised,
which is consistent with what observed in the direct dosimetric errors.

These results demonstrated that the high contouring accuracy of
SOARS led to the better dosimetric accuracy in the dose planning
stage. Figure 4(a, b) shows qualitative dosimetric examples and dose-
volume histograms (DVH) for using three substitute OAR sets (SOARS,
SOARS-revised, human reader). It was observed that doses received by
most OARs from SOARS and SOARS-revised matched more closely to
the clinical reference doses than those from the human reader.

Discussion
In this multi-institutional study, a Stratified OAR Segmentation deep
learningmodel, SOARS, was proposed and developed that can be used
to automatically delineate 42 H&N OARs following the most compre-
hensive clinical protocol. By stratifying the organs into three different
OAR categories, the processing workflows and segmentation archi-
tectures (computedbyNAS)were optimally tailored. As such, SOARS is
a well-calibrated synthesis of organ stratification, multi-stage seg-
mentation, and NAS. SOARS was trained using 176 patients from
CGMH and extensively evaluated on 1327 unseen patients from six
institutions (326 from CGMH and 1001 from five other external

medical centers). It achieved a mean DSC and ASD of 74.8% and
1.2mm, respectively, in 42 OARs from the CGMH internal testing and
generalized well to the external testing with a mean DSC of 78.0% and
ASD of 1.0mm, respectively, in 25 OARs. SOARS consistently out-
performed the previous state-of-the-art method UaNet24 by 3–5%
absolute DSC and 17–36% of relative ASD in all six institutions. In a
multi-user study, 98% of SOARS-predicted OARs required no revision
or very minor revision from physicians before they were clinically
accepted, and the manual contouring time can be reduced by 90%
(from 106.4 to 10.3 minutes). In addition, the segmentation and dosi-
metric accuracy of SOARS were comparable to or smaller than the
inter-user variation. It is also noted that the proposed SOARS may be
also applied to other body sites, where anatomical structures are
densely distributed with different levels of segmentation difficulty,
e.g., many anatomical tissues in chest or abdomen regions39.

Recent consensus guidelines recommend delineating more
than 40 OARs in H&N cancer patients7. However, in practice, it is an
unmet need. Most institutions only delineated a small subset of
H&N OARs per their institutional specific RT protocol, or they can
only afford to delineate OARs that are closest to tumor targets. The
challenges of following the consensus guidelines were probably
due to the lack of efficient and accurate OAR delineation tools
(most automated tools focused on segmenting less than or around
20 H&N OARs18,21,23,40). Manually contouring 40+ OARs was too
time-consuming and expertise-demanding, hence unrealistic in
practice. Without assessment of the dosimetric results in the
complete set of OARs, it was infeasible to track and analyze the
organ-specific adverse effects after RT treatment in multi-
institutional clinical trials. In addition, data pooling analysis of
radiation therapy from different institutions was impeded by the
inconsistency in OAR contouring guidance. The Global Quality
Assurance of Radiation Therapy Clinical Trials Harmonization
Group (CHG) has provided standardized nomenclature for clinical
trial use to address this problem41. With the proposed SOARS, it is

Fig. 3 | Summary of human experts’ assessment of revision effort on SOARS
predicted 42 OARs using 50 multi-user testing patients. Anchor, mid-level and
S&HOAR categories are shown separately. Vastmajority of SOARS predictedOARs
only required minor revision or no revision from expert’s editing before they can

be clinically accepted. Only a very small amount or percentage of OARs need
moderate revision, and no OARs need major revision. Minor revision: editing
required in <1 min; moderate revision: editing required in 1–3 min; and major
revision: editing required in >3 min.
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feasible to provide comprehensive OAR dose evaluation, further
facilitating post-treatment complications and quality assurance
studies.

In this work, from the OAR contouring quality, we further ana-
lyzed the OAR dosimetric accuracy in the subsequent dose planning
step. Two dosimetric evaluation scenarios were considered and ana-
lyzed, i.e., (1) the direct dosimetric evaluation when fixing the original
clinical reference dose grid and replacing the clinical reference OAR
contours with those of substitute OARs; and (2) the clinical dosimetric
evaluation when generating new replanned dose grids with substitute
OAR contours and overlaying the clinical reference OAR contours on
top of each. The dosimetric differences inmean dose and inmaximum
dose for both scenarios were used as dose metrics consistently with
previous work42. Overall, the majority of SOARS-predicted OAR
instances had the mean and maximum dose variance no larger than
10%, which was comparable to or smaller than the inter-user dose
variations in our experiment. This variation was also smaller than the
previously reported inter-user dose variations in six H&N OAR types42,

where quite few are larger than 30% or even above 50%. For individual
OARs, we observed that the optic chiasm and optic nerve (left and
right) exhibited increaseddose variation (10–40%) in a small portionof
patients (Supplementary Figs. 2 to 5). This phenomenon was con-
sistently observed in SOARS, SOARS-revised, and the human reader
contours. This indicated that dosimetries in areas consisting of these
OARs are sensitive to contouring differences, suggesting that more
attention should be required to delineate the aboveOAR types forNPC
patients.

It is also worth noting that in the generation of clinical reference
OAR contours (“gold standard” contours for training and validation) of
our study, MRI scans (if available) and other clinical information were
also provided to physicians as reference. We did not directly fuse the
pCT and MRI scans in our study. This is because hyperextension
positioning under the cast fixation for CT simulation is usually used in
head and neck cancer treatment, while diagnostic MR images are
acquired in a neutral position. Directly fusing them using the current
rigid or deformable registration algorithms often leads to large

Red: Clinical reference contours; Blue: human reader contours; Yellow: SOARS-revised; Green: SOARS contours(a)

(b)

(c)

Fig. 4 | OAR dosimetric illustrations. Using a specific patient, without loss of
generality, we illustrate a qualitatively direct dosimetric example a in axial views of
two anatomic locations. Clinical OAR reference: red; human reader: blue; SOARS
OAR: green; SOARS-revised: yellow. b the dose–volume histograms (DVH) plot of
OARs in this patient. c The scatter plots of direct mean dose differences
Diffdirectmean dose and directmaximumdose differences (Diffdirectmaxdose) brought by various

OAR contour sets of human reader, SOARS, and SOARS-revised among 50 multi-
user testing patients. Blue triangle, green cross and red circle represent the results
of human reader, SOARS-revised and SOARS, respectively. Wilcoxon matched-
pairs signed rank test is used to compare between SOARS/SOARS-revised results
and human reader’s results, and statistical significance is set at two-tailed p <0.05.
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errors43. Instead, physicians would open two PACS windows in the
computer to view pCT and MRI separately to help the delineation (if
they felt it necessary to consult to MRI). Hence, the “gold standard”
OAR references could be viewed as human experts contouring using
both CT and MR information. In contrast, SOARS is trained using only
CT images (with the “gold standard” labels involving both CT andMRI)
and is able to reliably generate the OAR contours on unseen patients
using only CT. This may be the strength of deep learning methods,
which could use CT modality alone to achieve statistically comparable
or in some scenarios better and/or more consistent performance than
human experts leveraging on both CT and MRI.

Our study has several limitations. First, the external testing datasets
do not have a complete set or the same amount of 42 OAR types. This
reflects real-world situations among different institutions. Manually
labeling 42 OARs for all 1001 external testing patients is impractical
(estimated to require ≥3h per patient). Hence, we chose to use the
existing clinically labeled OAR types to supplement testing. Second, the
multi-user testing dataset of FAH-ZU contains only 13 clinical reference
OAR types according to its RT protocol. Thus we evaluated the inter-
user variation of segmentation and dosimetric accuracy using these 13
OARs instead of the complete 42 OAR types. Nevertheless, these 13 OAR
types included those from the three different OAR categories of anchor,
mid-level, and S&H. We believe the performance from these would
reflect the real inter-user variation with a larger number of OAR types.

Third, it would be helpful to conduct a randomized clinical trial com-
paring the side effects and life quality as outcomes of manual and
SOARS-assisted OAR contouring. This could further validate the clinical
value of SOARS. We leave this for our future works.

To conclude, we introduced and developed a stratified deep
learning method to segment the most comprehensive 42 H&N OAR
types in radiotherapy planning. Through extensive multi-institutional
validation, we demonstrated that our SOARSmodel achieved accurate
and robust performance andproduced comparableor higher accuracy
inOAR segmentation and the subsequent doseplanning than the inter-
user variation. Physicians needed very minor or no revision for 98% of
the OAR instances (when editing on SOARS predicted contours) to
warrant clinical acceptance. SOARS could be implemented and adop-
ted in the clinical radiotherapy workflow for a more standardized,
quantitatively accurate, and efficient OAR contouring process with
high reproducibility.

Methods
Requirements to obtain informed consent were waived by the insti-
tutional reviewboards because this study is retrospective anddoes not
affect patients' treatment and outcomes. A total of 1503 patients with
head and neck cancer from six institutions were collected in this ret-
rospective study under each institutional review board approval,
including Chang Gung Memorial Hospital, First Affiliated Hospital of

Fig. 5 | The stratifiedorgan at risk segmentation (SOARS)method. a SOARS first
stratifies OAR into anchor, mid-level, and small & hard (S&H) categories and uses
the anchor OARs to guide the mid-level and S&H OAR segmentation. b SOARS

further stratifies thebackbone networkUNetwith neural architecture search (NAS),
which permits an automatic selection across 2D, 3D, and P3D convolution blocks.
c The NAS convolution setting.
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Xi’an Jiaotong University, First Affiliated Hospital of Zhejiang Uni-
versity, Gansu Provincial Hospital, Huadong Hospital Affiliated of
Fudan University, and Southern Medical University.

The SOARS framework is illustrated in Fig. 5. It consists of three
processing branches to stratify the anchor, mid-level, and S&H OAR
segmentation, respectively. Stratification manifested first in the dis-
tinct processing workflow used for each OAR category. We next stra-
tified neural network architectures by using differentiable neural
architecture search (NAS)26,27 to search a distinct network structure for
each OAR category. We will explain each stratification process below.

Processing stratification in SOARS
SOARS first segmented the anchor OARs. Then, with the help of pre-
dicted anchorOARs,mid-level and S&HOARswere segmented. For the
most difficult category of S&HOARs, SOARS first detected their center
locations and then zoomed in accordingly to segment the small OARs.
For the backbone of all three branches, we adopted the UNet structure
implemented in the nnUNet framework38, which has demonstrated
leading performance in many medical image segmentation tasks. We
tailored each UNet with NAS, which is explained in the subsequent
subsection.

We denoted the training data of N instances as
S = Xi,Y

A
i ,Y

M
i ,Y

S
i

n oN

i= 1
, where Xi, Y

A
i , Y

M
i , and YS

i were the input pCTs and
ground-truth masks for anchor, mid-level, and S&H OARs, respectively.
The indexing parameter i was dropped for clarity. We used boldface to
denote vector-valued volumes and used vector concatenation as an
operation across all voxel locations.

Anchor branch: Assuming there are C anchor classes, we first used
the anchor branch to generate OAR prediction maps for every voxel
location, j, and every output class, c:

Ŷ
A
c ðjÞ=pAðYAðjÞ= c∣X; WAÞ, ŶA

= ½ŶA
1 � � � ŶA

C � ð1Þ

where UNet functions, parameters, and the output prediction maps
were denoted as pA(·), W(·) and Ŷ

A
, respectively. Anchor OARs are easy

and robust to segment based on their own CT image appearance and
spatial context features. Consequently, they provided highly infor-
mative location and semantic cues to support the segmentation of
other OARs.

Mid-level branch: Most mid-level OARs are primarily soft tissue,
which has limited contrast and can be easily confused with other
structures with similar intensities and shapes. Hence, we incorporated
the anchor predictions intomid-level learning. Specifically, the anchor
predictions and the pCT were concatenated to create a multi-channel
input ½X ,Ŷ

A�:

Ŷ
M
c ðjÞ=pMðYM ðjÞ= c∣X,ŶA

; WMÞ ð2Þ

Small & hard branch: Considering the low contrast and unba-
lanced class distributions for S&H OARs across the entire CT volume,
direct S&H OAR segmentation is challenging. Here, we further
decoupled this branch into a detection followed by segmentation
process. Because the H&N region has relatively stable anatomical
spatial distribution, detecting rough locations of S&H OARs is a much
easier and reliable task. Once the OAR center was approximately
determined, a localized region can be cropped out to focus on seg-
menting the fine boundaries in a zoom-in fashion. The detection was
implemented using a simple yet effective heat map regression
approach and the heatmap labelswere generated at eachorgan center
using a 3DGaussian kernel44,45. Let f(·) denote theUNet function for the
detection module, we also combined the anchor branch predictions
with pCT as the detection input:

Ĥ = f ðX, ŶA
; WDÞ, ð3Þ

where Ĥ were the predicted heat maps of S&H OARs. Given the
regressed heatmap Ĥ, the pixel location corresponding to the highest
value was extracted to crop a volume of interest (VOI) using three
times the extent of the maximum size of the OAR of interest. Then,
SOARS segmented thefineboundaries of S&HOARswithin the VOI. Let
V denote the cropped VOI in pCT. The S&H OAR segmentation was
implemented as:

Ŷ
S
c ðjÞ=pSðYSðjÞ= c∣V; WSÞ: ð4Þ

Automatic neural architecture search in SOARS
Considering the significant statistical variations in OAR appearance,
shape, and size, it is unlikely that the same network architecture would
suit each OAR category equally. Hence, SOARS automatically searches
the more suitable network architectures for each branch, adding an
additional dimension to the stratification. We conducted the differ-
entiable NAS26,27 on top of the network structure of UNet29. The NAS
search space included 2D, 3D, and pseudo-3D convolutions with either
kernel sizes of 3 or 5. Figure 5b, c demonstrates the network archi-
tecture and the search space of NAS. Let ϕ(·; ωx×y×z) denote a com-
posite function of the following consecutive operations: a convolution
with an x × y × z dimension kernel, an instance normalization, and a
Leaky ReLuunit. If one of the kernel dimensions is set to 1, it reduces to
a 2D kernel. The search space Φ can be represented as.

ϕ2D3
=ϕ �;ω3 × 3× 1

� �
,

ϕ2D5
=ϕ �;ω5 × 5 × 1

� �
,

ϕ3D3
=ϕ �;ω3 × 3× 3

� �
,

ϕ3D5
=ϕ �;ω5 × 5 × 5

� �
,

ϕP3D3
=ϕ ϕ �;ω3 × 3× 1

� �
;ω1 × 1 × 3

� �
,

ϕP3D5
=ϕ ϕ �;ω5 × 5× 1

� �
;ω1 × 1 × 5

� �
,

Φ= fϕ2D3
,ϕ2D5

,ϕ3D3
,ϕ3D5

,ϕP3D3
,ϕP3D5

g ð5Þ

The architecture was learned in a differentiable fashion. We made the
search space continuous by relaxing the selection of ϕ(·; ωx×y×z) to a
softmax function over ϕ. For k operations, we define a set of αk
learnable logits for each. The weight γk for an operation is defined as

γk =
exp αk

� �
P

mexpðαmÞ, and the combinedoutput isϕ′ =∑kγkϕk. As the result

of NAS, we selected the operation with the top weight to be the sear-
ched operation.We used the same scheme to search the segmentation
network architecture for all three branches (excluding the S&H
detection module) and trained SOARS using the final auto-searched
architecture. The searched network architectures for each branch are
listed in supplementary Fig. 1. The implementation details are also
reported in the supplementary materials.

Quantitative evaluation of contouring accuracy
For the internal and external testing datasets, the contouring accuracy
was quantitatively evaluated using three common segmentation
metrics46,47, i.e., Dice similarity coefficient (DSC), Hausdorff distance
(HD) and average surface distance (ASD). Additionally, for quantitative
comparison, we also trained and tested the previous state-of-the-art
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H&NOAR segmentationmethod, UaNet24. For themodel development
of UaNet, we used the default parameter setting from original
authors24 as these have been already specifically tuned for the head
andneckOARs.We applied the same training-validation split as ours to
ensure a fair comparison.

Human experts’ assessment of revision efforts
An assessment experiment by human experts was conducted to eval-
uate the editing efforts needed for the predicted OARs to be clinically
accepted. Specifically, using the 50 multi-user testing dataset, two
senior physicians (X. Ye and J. Ge) were asked to edit SOARS predic-
tions of 42 OARs according to the consensus guideline7. Besides the
pCT scans, other clinical information, and imaging modality such as
MRI (if available) were also provided to physicians as reference. The
edited OAR contours were denoted as SOARS-revised. Four manual
revision categories were designated as no revision required, revision
required in <1 minute (minor revision), revision required in
1–3 minutes (moderate revision), and revision required in >3 minutes
(major revision).

Inter-user contouring evaluation
Using themulti-user testing dataset, we further asked a board-certified
radiation oncologist with 4 years’ experience specialized in treating
H&N cancers to manually delineate the 13 common OAR types used in
FAH-ZU and SMU following the consensus delineation guideline7.
Patients’ pCT scans along with their clinical information and other
available medical images (including MRI) were provided to the physi-
cian. The labeled OAR contours were denoted as human reader con-
tours. Then, we compared the contouring accuracy between SOARS,
SOARS-revised, and the human reader using the evaluation metrics of
DSC, HD, andASD. The contouring performance of SOARS-revised and
the human reader represents the inter-user variation in OAR
contouring.

Inter-user direct and clinical dosimetric evaluation
Differences in the OAR contouring accuracy would not, by itself,
indicate whether such differences are clinically relevant in terms of
radiation doses received by the OARs. Therefore, we further quan-
tified the dosimetric impact brought by the OAR contouring differ-
ences. Two dosimetric experiments were conducted: (1) the direct
dosimetric evaluation by fixing the original clinical dose grid and
replacing the clinical reference OAR contours with substitute OAR
contours of SOARS, SOARS-revised and human reader; (2) the clinical
dosimetric evaluation by generating the replanned dose grids with
substitute OAR contours and then overlaying the clinical reference
OAR contours on top of each replanned dose grid. Regarding the
direct dosimetric evaluation, for each patient in the multi-user test-
ing dataset, we first used the original clinical reference OARs and the
corresponding dose grid (dose voxel sizes ranging from 2 to 4mm)
to compute the OAR dose metrics in terms of mean doses and max
doses. Then, the same dose grid was combined with different OAR
contour sets, i.e., SOARS, SOARS-revised, human reader, and the
dose metrics of each OAR contour set were calculated. This design
was to isolate the dose effects due strictly to OAR contouring dif-
ferences because the dose grid was fixed, and the dose metrics were
quantified by replacing each clinical reference contours with the
substitute contours. Following the work42, we calculated the direct
mean dose and maximum dose differences as follows:

Diffdirectmeandose =
mean dose OARsubstitute, Doseref

� ��mean dose OARref , Doseref
� �

mean dose OARref , Doseref

� � × 100 % ð6Þ

Diffdirectmaxdose =
maxdose OARsubstitute, Doseref

� ��maxdose OARref , Doseref
� �

maxdose OARref , Doseref
� � × 100 % ð7Þ

where OARsubstitute represents the OAR contours by SOARS, SOARS-
revised, and the human reader, respectively, while OARref and Doseref
represent the original clinical reference OAR contours and dose grid
used in the original RT plan, respectively. For the clinical dosimetric
evaluation, three new IMRT planning dose grids were generated by
using the original tumor target volumes and three substitute OAR
contours (SOAR, SOARS-revised, and human reader). Then, the
clinical reference OAR contours were overlaid on top of each
replanned dose grid to calculate the clinical mean dose and max-
imum dose differences as follows42:

Diffclinicalmeandose =
meandoseðOARsubstitute, DosesubstituteÞ �meandoseðOARref , DosesubstituteÞ

meandoseðOARref , DosesubstituteÞ
× 100%

ð8Þ

Diffclinicalmax dose =
maxdoseðOARsubstitute, DosesubstituteÞ � maxdoseðOARref , DosesubstituteÞ

maxdoseðOARref , DosesubstituteÞ
× 100% ð9Þ

where Dosesubstitute represents the new dose grids in the replanned RT
when using OAR contours of SOARS, SOARS-revised, and the human
reader, respectively. The dose-volume histogram (DVH) was also
plotted for qualitative illustration. The dose/DVH statistics were
generated using Eclipse 11.0 (Varian Medical Systems Inc., Palo
Alto, CA).

Statistical Analysis
TheWilcoxonmatched-pairs signed rank testwas used to compare the
evaluation metrics in paired data, while Manning-Whitney U test was
used to compare the unpaired data. All analyses were performed by
using R48. Statistical significance was set at two-tailed p < 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging data from internal and external institutions are not pub-
licly available due to the data privacy and restricted permissions of the
current study. The anonymized data are available under restricted
access forpatient privacy. Access canbeobtainedby sending a request
to the corresponding author for academic purposes. The raw patient
data are protected and are not available due to data privacy laws.
Sample testing imaging data from two public HN OAR datasets can be
directly downloaded from https://www.imagenglab.com/newsite/
pddca and https://structseg2019.grand-challenge.org.

Code availability
The baseline UNet used in this study is implemented in the nnUNet
deep learning framework, available at https://github.com/MIC-DKFZ/
nnUNet. The codes used for inference and result evaluation is available
at: https://doi.org/10.5281/zenodo.6998392.
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