Iterative Tool Usage Exploration for Multimodal
Agents via Step-wise Preference Tuning

Pengxiang Li'2* Zhi Gao''?>>* Bofei Zhang? Yapeng Mi** Xiaojian Ma?
Chenrui Shi''? Tao Yuan? Yuwei Wu'°> Yunde Jia®>' Song-Chun Zhu?3:% Qing Li%*
!Beijing Key Laboratory of Intelligent Information Technology,
School of Computer Science & Technology, Beijing Institute of Technology
2State Key Laboratory of General Artificial Intelligence, BIGAI
3State Key Laboratory of General Artificial Intelligence, Peking University *Harbin Institute of Technology
®Guangdong Laboratory of Machine Perception and Intelligent Computing, Shenzhen MSU-BIT University
SDepartment of Automation, Tsinghua University
https://sport-agents.github.io

Abstract

Multimodal agents, which integrate a controller (e.g., a vision language model)
with external tools, have demonstrated remarkable capabilities in tackling complex
multimodal tasks. Existing approaches for training these agents, both supervised
fine-tuning and reinforcement learning, depend on extensive human-annotated task-
answer pairs and tool trajectories. However, for complex multimodal tasks, such
annotations are prohibitively expensive or impractical to obtain. In this paper, we
propose an iterative tool usage exploration method for multimodal agents without
any pre-collected data, namely SPORT, via step-wise preference optimization to
refine the trajectories of tool usage. Our method enables multimodal agents to
autonomously discover effective tool usage strategies through self-exploration
and optimization, eliminating the bottleneck of human annotation. SPORT has
four iterative components: task synthesis, step sampling, step verification, and
preference tuning. We first synthesize multimodal tasks using language models.
Then, we introduce a novel trajectory exploration scheme, where step sampling
and step verification are executed alternately to solve synthesized tasks. In step
sampling, the agent tries different tools and obtains corresponding results. In
step verification, we employ a verifier to provide Al feedback to construct step-
wise preference data. The data is subsequently used to update the controller for
tool usage through preference tuning, producing a SPORT agent. By interacting
with real environments, the SPORT agent gradually evolves into a more refined
and capable system. Evaluation in the GTA and GAIA benchmarks shows that
the SPORT agent achieves 6.41% and 3.64% improvements, underscoring the
generalization and effectiveness introduced by our method.

1 Introduction

Leveraging large language models (LLMs) or vision-language models (VLMs) as controllers to call
external tools (e.g., web search, visual reasoning, file understanding, and object localization) has
become a promising direction in building multimodal agents [47, 19,14, 48], achieving impressive
performance for complex tasks [[17, 36} 130} [13]]. To enhance the planning and reasoning abilities of
agents, existing studies focus on collecting tool usage trajectories to fine-tune the controller of an
agent [21 [18]], using human annotation or distillation from closed-source APIs. However, collecting
high-quality tool usage data is labor-intensive and high-cost, and such pre-collected data may lead to
biased distributions inconsistent with the target environments (such as task distributions and available
tools), causing inferior generalization.

*Equal contribution. =1 Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://sport-agents.github.io

Task Generation Step Sampling (@) Step Verification Preference Tuning

R
(u(®
e Thought 1 Code 1
. ought 1 Code
Query Result 1 OI \
— — |E|_> s 5 Thought 1 Code 1 Result 1 Thought 2 Code 2 1
File Thought 2 Code 2/ Tool | Result 2 /
TaskSeed LLM Model Controller calling Verifier A (3 / Controlie?

Thought 1 Code 1
Image Thought 3 Code 3 Result 3
Task Thought 3 Code 3

Figure 1: Pipeline of the proposed SPORT method, including four iterative components: task
generation, step sampling, step verification, and preference tuning.

In this paper, we study whether multimodal agents can improve their tool usage capability via self-
exploration without any pre-collection. We are inspired by existing research in LLMs and VLMs,
which has shown impressive performance in self-instruction [52, [33], self-verification [39,|58]], and
self-learning [[10} 25]]. Based on the above observation, we expect that agents automatically generates
tasks, searches for useful tools in solving synthetic tasks, evaluates the exploration by itself, and
updates controllers using the exploration process. In this case, agents will improve the generalization
of tool usage by interacting with environments.

To achieve this goal, we must address two key challenges in such tool usage exploration for complex
multimodal tasks. (1) Lack of off-the-shelf tasks and annotation. There is no off-the-shelf dataset
with ground truth annotations (answers and trajectories) for solving multimodal tasks. These tasks
are usually domain-specific [50, 40|, making it non-trivial to verify whether the outcome is correct.
Solving these tasks requires a long trajectory to call diverse tools, and thus, it is challenging to
produce an exactly correct trajectory and compare the quality among different trajectories. (2) Low
sampling efficiency and high cost. The exploration process requires executing the sampled tools
(e.g., large language models, web search, and image generation), which results in both high monetary
and computational costs, making it challenging to scale up.

To solve the above challenges, we propose SPORT, an iterative tool usage exploration method via
step-wise preference optimization to refine trajectories of multimodal agents, as shown in Figure
SPORT operates through four iterative components: task synthesis, step sampling, step verification,
and preference tuning. Firstly, we generate queries and multimodal files for task synthesis based on
provided task seeds. Secondly, we introduce a new search scheme that samples step-level candidate
actions (including the thoughts and codes) to call tools. Thirdly, we employ a multimodal verifier that,
given the task context, step actions with execution results, provides Al-generated feedback to estimate
step-level preferences. Finally, we perform step-wise preference tuning to refine the controller and
obtain the SPORT agent, which is then used to guide tool sampling in the next iteration.

SPORT enables agents to autonomously generate tasks and explore tool usage trajectories, removing
reliance on pre-collected datasets. Step-level verification is easier than trajectory-level evaluation
for pre-trained LLMs, circumventing annotation difficulties. Furthermore, SPORT improves data
utilization by extracting useful step-level preferences even from failed trajectories, enabling more
effective learning with the same number of samples. These capabilities enable stable and scalable
self-exploration, achieving better generalization for complex multimodal tool usage tasks.

We conduct experiments on the two multimodal reasoning benchmarks: GTA and GAIA, and results
show that our SPORT agent outperforms the SFT agent by 6.41% and 3.64%, respectively. This
indicates that our SPORT agent method leads to a more powerful reasoning and planning capability
for tool usage by interacting with the environment.

In summary, our contributions are threefold. (1) We propose SPORT, a tool usage exploration
framework for multimodal agents, providing a possible way for multimodal tool learning, leading
to generalization without any annotation. (2) The obtained SPORT Agent achieves significant
performance improvements compared with SFT agents on two popular benchmarks: GTA and GAIA.
(3) We collect the explored preference tuning data into a dataset composed of 16K data, which is
conducive to the subsequent research on tool usage and multimodal agents.

2 Related Work
2.1 Agent Tuning

Due to the disparity between the LLMs and the requirements of agents, agent tuning is necessary to
adapt to practical tasks. Research for agent tuning could be divided into two categories: supervised

fine-tuning (SFT) and reinforcement learning (RL). SFT methods collect trajectory data via distillation
from closed-source API (e.g., GPT-40) [18}137,159,162] or human annotation [35}19]. Then they use
these collected data to tune the controller via SFT. However, the SFT methods suffer from huge costs
and inferior generalization [45]]. To solve this issue, researchers have paid attention to RL agent
tuning methods that allow agents to interact with the environment and learn from the feedback. Some
methods utilize the policy gradient technique [64] to update the controller with a reward model that is
designed as a fine-tuned model [43161]], environment feedback [2,|60], human-designed rules [41}163]],
or tree search results [11]. Especially, some methods resort to the policy gradient method for tool
learning [23. [15]], where they use the prediction correctness as the reward. To simplify this procedure,
the direct preference optimization (DPO) methods are applied to agent tuning [55]], which construct
step-level [42, [7] or trajectory-level [63] 46] preference data based on whole correct trajectories.
Nevertheless, most existing agent tuning methods rely on answer or trajectory annotations that are
difficult to obtain in multimodal tool usage tasks. In contrast, our tool usage exploration framework
does not rely on any annotation via step-wise preference tuning.

2.2 Step-wise Preference Tuning

Preference tuning methods rely on paired data, which is not readily available for complex tasks with
multi-step reasoning, making it non-trivial to determine which trajectory is better. Furthermore, for
long trajectories, only an overall preference verification can not capture the relationships among steps
and ignores the fine-grained preference between different steps. To overcome this problem, step-wise
preference has been studied. STEP-DPO [26] and SCDPO [38]] collect step-wise preference data by
localizing error steps or disturbing the correct path. OREO [5] and SVPO [49] train value models
for step-wise verification and inference guidance. SDPO [24] combines step-level, turn-level, and
session-level preference data for full-grained optimization. The above methods mainly focus on
code generation and math reasoning tasks that are easy to obtain correct trajectories to construct
step-wise preference data. In contrast, this method focuses on multimodal agents for tool usage,
where obtaining correct trajectories is challenging. Thus, our agent explores the tool usage by itself
via an iterative manner, which uses designed Al feedback to construct step-wise preference data
without any annotation.

2.3 Learning from Al Feedback

Using models to generate Al feedback for performance improvement has emerged as a critical
paradigm [4]. Existing methods can be broadly divided into three categories. The first category adds
Al feedback into prompts for in-context learning [39]. LLaVA-Cirtic [54] trains a model to provide
multimodal Al feedback. VLM-F [31]], VolCaNo [28], and Clarify [29] use Al feedback to address
visual hallucinations. CLOVA [17] and CompAgent [53]] refine prompts using Al feedback. The
second category uses Al feedback to filter data for supervised fine-tuning, such as M-STAR [34] for
visual mathematical reasoning and APIGen [37], MAT [18]], and visualagentbench [35] for agent
trajectories. The third category uses Al feedback for reinforcement learning, producing rewards for
policy gradient optimization [27, 16, 44] or preference data for DPO [38]]. Different from them, our
Al feedback is well-designed for evaluating tool usage in complex scenarios of multimodal agents.

3 Method

3.1 Formulation

We opt for the framework of the ReAct agent [56] that performs step-by-step reasoning for tool usage.
In each step, based on the input z;, the agent outputs an action a; for tool calling.

a; :argmaxﬂe(ai|$iaT)7 M

where 7y is the controller (an VLM in our method) of agents with 6 being the parameters, z; is
composed of the task (including a query () in natural language and multimodal files F') and the
history h; of previous steps, i.e., z; = {Q, F, h; }. The action a; consists of the thought ¢; and code
¢; for tool calling, a; = {t;,¢;}. T denotes available tools, and we follow the work [[18] using the
same toolkit. In this case, we further rewrite Eq. (I)) as

ty,c; :argmaxw@(tivci|QathivT)a (2)

171

Task: How many grams of sugar will | take in if |

® Task: What is the total N e

Action Action
.

Action |
55 | Disreferred |
/

/

|
P {commassonto. I
User percent of commission o el e | User drink two drinks of this 12 oz can a day like that
agents in terms of marine - | in the picture for a week?
issues? : Parallel | sampling -
| | | sPORT Agent
Parallel | sampling | [Action11 Action 1.2 Action 1.3
SPOI ent =35; =
! ! 1 BN |t [ask_search(*question="to Sagar =35 cans =2 Inage_qa(* question="How much
Action 1.1 Action 1.2 Action 1.3 | §|w much sugar is in 12 oz|| toral_sugar_intake = sugar is in 12 oz can of
ol _sugar_intal 507 imaoe S e ing”
| summarize image_qga (question = ‘commission agents of | | summarize | & | can of cloa? ') (sugar * cans) * days cloaz , image /image.jpg")
| ‘./image.jpg’) all categories ’, image = './image.jpg’) (“./image2.png’) | Obs 1.1 Obs 1.2 Obs 1.3
2
¥ |0bs1.1 Obs1.2 Obs1.3 | |39grams l(l. 490 grams 12 grams
N hatool. Fire-Retail: 15% Marine-Cargo: 15.0%. No such a file. J gj I ;
0 such a too D e 16.0% 1 O : Parallel|samp|mg'
v Parallel| sampling i v |] i]
! ! 1 | [Action21 Action 2.2 Action 2.3
Action 2.1 Action 2.2 Action 2.3 | cans = 2 cans = 239 Zugar :739
" " | sugar = 39 sugar = lays =
& | Final_answer = Sum Final_answer = Marine-cargo | |Final_answer = marine- | afali_sugar = sugar * days = 7 all_sugar = sugar
£ (all contents) cargo + Marine-Hull | 2 cans all_sugar = sugar * cans * days * days
@ [obs 2.1 0Obs 1.2 | [obs23 | | obs 2.1 0Obs 2.2 Obs 2.3
80% ',']I 15% L) 25% | | |78erams l I 546 grams I 273 grams l ll
~ ~ I A4 A
Data Collection | Data Collection
/- _ ™ /- _ ™
| | Task — AN | preferred Task | — Action |_ 063\ [Action | oocoroq |1 [s =] A0 | preterred Task |y Action | (0bs\ | Action | b ocerreq
as o | Preferre 12 5 I as o7 | preferre 11 21
i Action | [Action . | i Action /Obs) Action .
| _
i Action |_/0bs__| Action
[N : -
i ,

Figure 2: Demonstrations of the search scheme used in the SPORT method. Given a task, the agent
samples potential actions for each step and verifies their qualities in an online manner. Then, we
construct the step-wise preference data based on such self-exploration.

where ¢7 and ¢ are thought and code for the <¢-th step, and the history h; =
{t1,¢1,01,- - ,ti—1,¢i—1,0;,—1} is composed of thought {¢; _ ,_1}, code {c1, . ;_1}, and observa-
tion {01,... ;—1} of previous steps.

Agent tuning aims to update 6 to increase the tool usage capabilities of agents. This paper proposes
an iterative tool usage exploration method, SPORT, to update # via step-wise preference optimization
in refining trajectories, as shown in Figure[I] Concretely, SPORT has iterative components: task
synthesis, step sampling, step verification, and preference tuning. In one iteration, SPORT first
generates some multimodal tasks. For each generated task, SPORT performs step sampling and step
verification alternately to construct step-wise preference data. Finally, SPORT uses the step-wise
preference data to tune the controller.

3.2 Task Synthesis

Since a multimodal task is composed of a language query and multimodal files, the task synthesis
component is divided into query generation and multimodal file generation. We first generate queries
and then generate files, rather than the reverse order, since the multimodal files are diverse (such as
DOCX, PPTX, XLSX, and PDF), and it is challenging to construct a diverse file dataset in advance.
In addition, tasks are usually based on multiple files instead of only one. First obtaining files and
then generating queries may cause weak relevance of files and unnatural queries.

To produce diverse and practical queries, we collect seed from the existing method MAT [18] and
employ an LLM (e.g., Qwen2.5-7B) to generate queries. We feed randomly sampled seed queries,
used tools, and a designed prompt to the LLM that generates multiple queries at once. For each
generated query, we prompt the LLM to output the needed files. If images are needed, we search for
source images from off-the-shelf datasets based on similarities. For other files, we prompt the LLM
to generate Python code to produce files.

3.3 Data Construction

The two components: step sampling and step verification, are performed to construct high-quality
preference data, playing key roles in our method. To avoid potential bias issues in constructed data,
we introduce an online search scheme, where the step sampling and step verification are executed

alternately in each generated task, as shown in Figure [2]

The step-wise preference data is formulated as a triplet (x;,a?", a%%), where z; = {Q, F,h;}
denotes the input including the query @), ﬁles F, and the history h; of previous steps, a?"“ is the
preferred action in the current step, and a%** is the dispreferred action.

%

Concretely, given a task with the query @ and files F', the agent expands the search space for the first
step by sampling n actions {a},a?,--- a7}, including the thought and code {t},ci, - 7, c}}
from the controller, and execute them to obtain n observations {o1,--- ,07}. Then, we feed the
query @, n actions, and n observations to an LLM, and ask an LLM to select the best action {¢], ¢} }
with its corresponding observation o7.

Along {t%, ¢t} and o, we expand the search space for the second step. Regarding {t], ¢}, 0} } as the
history hs, the controller samples n actions {t3,cl,--- 2 2} from the controller, and executes
them to obtain n observations {03, - - , 05 }. We feed the query @, history hs, n actions in this step,
and n corresponding observations to the LLM, and ask the LLM to select the best action {¢3, ¢}
with its corresponding observation o5. In this case, the agent gradually expands the search space
and selects the best action for the next step, until the agent believes that the task is over. Here, we
provide observations {03, - - , 0%} and prompt the verifier to check which tools lead to desirable

observations, instead of verifying which observation is correct.

Assume there are m steps in solving one task. In this case, we could collect m(n — 1) preference
data pairs. In the i-th step, the selected best action {¢}, ¢} is the preferred output, and the rest n — 1
actions are the dispreferred outputs, collected in a set D*, |D%*| = n — 1. The preference data
in oFe ta]sk is denoted as {(z;,a?", a®*)}, where a}™ = {t,c;}, ad’® = {t},c!} € DI, and
1€ [1,m|.

3.4 Preference Tuning

Objective. In one iteration, we may generate multiple tasks and construct preference data for them.
After that, we denote the obtained preference data set as D = {(z;,al"", a**)}. We choose the
flexible DPO algorithm,

mo(al™®|x;)
W — flog

Tref (ai

mo(ag**|z:)

Tref (ai®];)

‘C(e) = 7E(r,ﬂ,,a€m,afi5))~D [log U(ﬂ 1Og)}7 3)

where 7y is the controller to be updated, ;.. ¢ is the controller for reference (the model after SFT in
practice), 3 is the weighting parameter that controls the deviation from the reference controller, and
o(+) is the logistic function.

Training Scheme. The proposed tool usage exploration is performed after an SFT stage for controllers,
since the effectiveness of self-exploration requires the controller to have the ability to generate
accurate actions. The SFT stage is the same as MAT [18]], where 20K trajectories are used to align
the agent controller (Qwen2VL-7B in practice) with desirable outputs. In the self-exploration stage,
we use preference tuning to update Qwen2-VL. The preference tuning process is summarized in
Algorithm 1]

Algorithm 1: Training process in SPORT

Require: Seed of tasks, initial agent controller 7y after SFT, and 7,y = mg. Preference data D = ().
Ensure: Updated agent controller mg=.
1: while Not converged do

2: SetD=40.

3: Randomly sample task seeds, and send them to an LLM to generate tasks.
4: for Each generated task do

5: for the i-step in solving the task do

6: Sa{nple n actions {t%, ch, .t ;' } based on the history h;, and execute them to obtain results

{Oiw"ao?}'

7: Select the best action {¢], c; }.

8: Construct n — 1 preference pairs, and add them into D.

9: Add t7,c},of into h;.
10: end for

11: end for

12: Use D to update 7y via the preference tuning algorithm in Eq. (3).
13: end while

Table 1: Results on two benchmarks: GTA and GAIA. The bold results represent the best performance
compared to the open-source models.

GTA GAIA
Method ‘ Controller ToolAcc CodeExec AnsAcc Level 1 Level 2 Level 3 AnsAcc
Closed-source Controller
Lego Agent GPT-4 - - 46.59 - - -
Lego Agent GPT-40 - - 41.52 - - - -
Warm-up Agent GPT-4-turbo - - - 30.20 15.10 0.00 17.60
HF Agent GPT-40 63.41 95.12 57.05 47.17 31.40 11.54 33.40
HF Agent GPT-40-mini 56.10 100.00 57.69 33.96 27.91 3.84 26.06
Open-Source Controller
HF Agent LLaVA-NeXT-8B 14.97 25.08 14.10 9.43 1.16 0.00 3.64
HF Agent InternVL2-8B 36.75 52.18 32.05 7.55 4.65 0.00 4.85
HF Agent MiniCPM-V-8.5B 36.59 56.10 33.97 13.21 5.81 0.00 7.27
HF Agent Qwen2-VL-7B 44.85 65.19 42.31 16.98 8.14 0.00 9.70
T3-Agent MAT-MiniCPM-V-8.5B 65.85 80.49 52.56 26.42 11.63 3.84 15.15
T3-Agent MAT-Qwen2-VL-7B 64.63 84.32 53.85 26.42 15.12 3.84 16.97
Ours
SPORT Agent [Tuned-Qwen2-VL-7B [72.41 91.87 60.26 [35.85 16.28 3.84 20.61

4 Experiments

4.1 Setting

The performance of the proposed SPORT approach is assessed on the GTA [50] and GAIA [40]]
benchmarks. Results are compared against agents powered by both closed-source models (e.g., GPT-4,
GPT-40, Claude3) and open-source models, including LLaMA-3-70B-instruct [12], Qwen1.5-72B-
chat [3], LLaVA-NeXT-8B [32], InternVL2-8B [8]], Qwen2-VL-7B [51], and MiniCPM-V-8.5B [57].
Specifically, we perform direct comparisons with leading agents, such as Lego Agent [1] and Warm-
up Act Agent [40]. As a baseline, we use the Huggingface Agent (HF Agent) [22]], which operates
with the same toolset as the SPORT Agent . We first evaluate these agents on two benchmarks, then
assess the quality of the produced preference data, and finally show several visualization examples to
demonstrate the effectiveness of our method.

We employ the Qwen-2-VL model as the controller. In the training process of our VLM controller,
we freeze the vision encoder and visual token compressor, and fine-tune the language model using
LoRA [20]. We set the rank as 32 and apply LoRA on query, key, and value projection matrices in all
self-attention layers. We use the AdamW optimizer with a cosine annealing scheduler. The learning
rate is 1.0e — 6 and the batch size is 2 per device. We set the max context window as 10240 to support
complex trajectories of our agent. All training is conducted on a node equipped with 8 x A100 GPUs.
The training time is positively correlated with the number of iterations and iteration step size d. For
all the evaluations, we disable the sampling and verification during inference for fair comparison.

Benchmark. The GTA and GAIA benchmarks serve as robust evaluation frameworks for assessing
multimodal agents. The GTA benchmark includes 229 tasks paired with 252 images, where task
completion requires 2 to § steps, with most tasks involving 2 to 4 steps. This benchmark challenges
multimodal agents to exhibit advanced perception, operational skills, logical reasoning, and creative
thinking based on visual data. In real-world multimodal scenarios, agents often need to handle diverse
file formats such as PPTX, PDF, and XLSX. To evaluate agent performance on such files, the GAIA
benchmark is used, comprising 446 tasks across 109 files. GAIA’s tasks are organized into three
levels, with task complexity varying from 2 steps to sequences of indefinite length. It evaluates
document comprehension, web navigation, logical reasoning, and summarization abilities.

Metric. Following existing methods [50} [18]], we assess agent performance using three key metrics:
AnsAcc, ToolAcc, and CodeExec for the GTA benchmark. AnsAcc gauges the accuracy of predicted
answers. ToolAcc evaluates the correctness of tool usage and the quality of answer summaries.
CodeExec measures the percentage of generated code that executes without errors. In the GAIA
benchmark, we focus on measuring AnsAcc at its three levels.

4.2 GTA Results

The results on the GTA benchmark are shown in Table [T} where key metrics including AnsAcc,
ToolAcc, and CodeExec are reported. Our agent surpasses the Lego agent that utilizes closed-source

models (e.g., GPT-4 and GPT-40), as well as the HF agent that uses closed-source models and
open-source models (e.g., InternVL2-8B), showcasing the ability of our SPORT Agent to tackle
complex tasks with greater efficiency. A comparison between agents through SFT (i.e., T3-Agent)
and our SPORT Agent demonstrates the effectiveness of our online self-exploration framework and
the advantages of our Step-wise optimization approach. Our method has about 7% improvements on
the final accuracy, since it calls more suitable tools (8% improvements) and reduces code error (7%
improvements). Compared with the HF agent using GPT-40 and GPT-40 mini, our agent achieves
higher ToolAcc and comparable CodeExec. This indicates that the proposed SPORT method improves
the planning and reasoning capabilities of agents again.

4.3 GAIA Results

In Table[I] we report the performance of SPORT Agent on the GAIA validation set. SPORT Agent
achieves best results among agents that use open-source models, surpassing the best-performing
open-source model, Qwen2-VL-7B, by about 11% on AnsAcc. The consistent improvements across
different levels underscore the efficacy of our online self-exploration framework. Furthermore,
SPORT Agent demonstrates significant gains over the SFT-tuned controller, with an improvement of
about 4% over MAT-Qwen2-VL-7B. However, when compared to agents leveraging closed-source
models such as GPT-4, SPORT Agent exhibits a slight performance gap. We attribute this discrepancy
to the larger model sizes and more extensive training data available to closed-source models.

4.4 Ablation

Effectiveness of Iteration Step Size We conduct an ablation study on the GTA benchmark to
investigate the impact of the iteration step size d that denotes the number of used trajectories in each
iteration. We set d € {200, 500, 1000}, adjusting the number of iterations to (5, 2, 1), respectively, to
ensure a total of 1000 trajectories are processed in each setting. As shown in Table[2] setting d = 500
yields the best overall performance across all metrics. When d = 1000, the model sees all tasks in a
single pass, which limits adaptability and leads to a slight drop in answer accuracy and execution
success. In contrast, using a smaller step size (d = 200) results in less diverse updates per iteration,
which may reduce robustness. These results suggest that a moderate value of d offers a good balance
between update frequency and data diversity, leading to more stable and effective training.

Comparison with Static Preference Data We conduct ablation experiments to compare our
method (online exploration) with DPO on static tasks. In doing so, we directly apply DPO to the
MM-Traj dataset [18]]. Specifically, we treat the MM-Traj data (GPT-40 generated) as “preferred”
samples and synthetically generate an equal number of “dispreferred” examples via the MAT-SFT
model, matching the total volume of our SPORT preference data. We then fine-tune MAT-SFT using
DPO under this constructed preference dataset.

Table [3] reports results on the GTA benchmark. Compared to vanilla MAT-SFT, MAT-SFT-DPO
yields only modest improvements (AnsAcc +1.28, ToolAcc +2.67, CodeExec +1.58), indicating that
naively applying DPO to MAT provides limited gains. In contrast, SPORT substantially outperforms
MAT-SFT-DPO (AnsAcc +5.13, ToolAcc +5.11, CodeExec +5.97), demonstrating the effectiveness
of our framework in leveraging diverse, multimodal preference data.

Training with Different Base Models To evaluate the generalizability of SPORT, we apply it to
different base models. We compare four configurations on the GTA benchmark: Qwen2-VL-7B
(base model), MAT-Qwen2-VL-7B (base model with MAT applied), SPORT-Qwen2-VL-7B (SPORT
applied directly to base model), and SPORT-MAT-Qwen2-VL-7B (SPORT applied to MAT-tuned
model).

Table 2: Ablation on iteration step d in the Table 3: Ablation on preference data: MAT-SFT vs.

GTA benchmark. MAT-SFT-DPO vs. SPORT on the GTA benchmark.
d AnsAcc (%) ToolAcc (%) CodeExec (%) Method AnsAcc (%) ToolAcc (%) CodeExec (%)
200 56.41 68.58 88.46 MAT-SFT 53.85 64.63 84.32
500 57.69 69.87 89.74 MAT-SFT-DPO 55.13 67.30 85.90
1000 57.05 69.87 88.46 SPORT (Ours) 60.26 72.41 91.87

Table 4: Answer accuracies (%) on GTA Table 5: Impact of task diversity on the GTA

benchmark with different base models. benchmark.
Model AnsAcc (%) Method AnsAcc (%)
Qwen2-VL-7B 42.31
MAT-Qwen2-VL-7B 5385 MAT-Qwen2-VL-7B 53.85
SPORT-Qwen2-VL-7B 55.13 SPORT w/ 5 from 100 seeds 58.33
SPORT-MAT-Qwen2-VL-7B 60.26 SPORT w/ 20 from 425 seeds 60.26

Table [] presents the answer accuracies. Applying SPORT directly to Qwen2-VL-7B improves
accuracy from 42.31% to 55.13% (+12.82%), demonstrating SPORT’s effectiveness as a standalone
method. When applied to MAT-tuned baseline, SPORT achieves the highest accuracy of 60.26%
(+5.13% over MAT alone), indicating that SPORT can effectively complement existing tuning
methods. These results confirm that SPORT is a flexible approach that enhances agent performance
both independently and in combination with other preference optimization methods.

Sensitivity to Task Quality and Diversity To assess SPORT’s robustness to the quality and
diversity of synthetic tasks in early-stage self-exploration, we conduct an ablation study where the
in-context examples are reduced from 20 to 5 and the task seed pool is narrowed from 425 to 100.
This setup mimics a low-diversity scenario during early-stage exploration.

As shown in Table [5] this reduction leads to a moderate drop in performance (60.26 — 58.33).
However, the result still significantly outperforms the SFT baseline (58.33 vs. 53.85), demonstrating
that SPORT maintains strong performance even under constrained task diversity. These findings
indicate that while task quality and diversity do impact SPORT’s effectiveness, the method exhibits
robustness to variations in the synthetic task generation process.

4.5 Statistic

We aggregate step-wise preference data from all iterations, each with d = 500 and a sampling size of
5, resulting in a total of 16K samples. We analyze the differences between the chosen and rejected
step-wise data in terms of code error rate, tool selection, and content variations.

Tool Distribution We analyze the distribution Tool Frequency Distribution (Chosen vs Rejected)
of t.O(.)IS in the chosen and rejected steps by ex- 2000 — Chosen
amining their frequency of occurrence, as shown Rejected

in Figure [3] The results highlight differences in
tool usage between the two groups.

In the chosen steps, tools such as visualizer
(2101 occurrences) and objectloc (1051 oc-
currences) are used more frequently. In con-
trast, in the rejected steps, objectloc (1442 oc-
currences) and visualizer (1524 occurrences)
are more prevalent. Additionally, tools like ocr Figure 3: Tool distribution for the chosen and re-
and seg appear more often in the rejected steps. jected steps.

To quantify the overall discrepancy in tool us-

age, we computed a tool distribution difference of 45.62%, indicating a substantial variation in the
tool selection between the chosen and rejected steps.

Code Error Rate We compared the code execution status of chosen and rejected steps by measuring
the proportion of execution results (Observations) that contained code errors. The rejected steps
exhibit a significantly higher error rate (81.94%) compared to the chosen steps (18.35%). This
indicates that our step-wise preference data favors code that executes successfully. Consequently,
this preference also leads to the improvement in the code accuracy of the SPORT Agent, as shown in
Table[l](CodeExec 84.32% — 91.87%).

Content Difference We compared the BLEU scores of steps selected by our verifier and those
selected randomly. BLEU scores measure the similarity between different sequences, with lower
scores indicating higher discrimination. As shown in Table [] our verifier consistently achieved

Table 6: Comparison of BLEU scores (lower Table 7: Average scores from humans on data
scores indicate greater discrimination) between quality.
our verifier and random selection.

Verifier B1 (\L) B2 (i) B3 (J,) B4 (J,) Task Trajectory Pref
Random Select 0.53 041 0.36 0.34 Reasonable Natural | Tool Content Code relerence
Ours 0.30 0.18 0.14 0.11 8.16 848 | 878 9.08 844 | 82%

lower BLEU scores across all n-grams compared to random selection. Specifically, for BLEU-1,
BLEU-2, BLEU-3, and BLEU-4, our verifier’s scores were (.30, 0.18, 0.14, and 0.11, respectively,
while random selection yielded higher scores of 0.53, 0.41, 0.36, and 0.34. The results demonstrate
that our verifier selects more distinct steps, enhancing the quality of the chosen steps.

4.6 Data Quality

To evaluate the effectiveness of the constructed preference data, we conducted a user study involving
20 Al researchers with coding and development experience from various universities and research
institutes. These participants were not provided with any background information about our method-
ology; instead, they were only briefed on the purpose and functionality of the agent. They were
required to justify whether the preferred and dispreferred pairs were proper.

The evaluation was performed for tasks and trajectories, based on five criteria: (1) ‘Reasonableness’
to evaluate whether the generated tasks are infeasible; (2) ‘Naturalness’ to evaluate whether the
generated tasks are natural; (3) ‘Code’ to evaluate the accuracy of code in action; (4) “Tool’ to assess
the appropriateness of tool selection; and (5) ‘Parameter’ to assess the correctness of parameter
passing. Participants provided scores ranging from 1 to 10, with higher scores indicating better
performance. As shown in Table [7] the average scores for our task and framework exceeded 8,
demonstrating the validity of the preference data collected by our approach.

To further assess the effectiveness of the verifier in generating preference data, we conducted an
additional study with a separate group of 20 researchers. Each participant was asked to evaluate
50 steps sampled in parallel by making preference selections. The preferences were determined
using the same three criteria: code accuracy, tool selection appropriateness, and parameter passing
correctness. We measured the agreements between the verifier’s preferences and those of the human
participants, denoted as ‘Preference’ in Table [7} The results revealed an 82% overlap. This high level
of agreement validates the reliability of the verifier in capturing human-like preferences.

Query: Find out the latest reviews for the smartphone featured in this image. Attached Image: —
. P . i f
Include comparisons with its competitors. Attachment: “image.jpg &
Parallel | Sampling
1‘ @ Thought: Q) Thought: Q Thought:
I need to find the latest reviews for the I'll use OCR to extract any visible text that might contain clues about the phone's Tofind the | - for th o P dinth
| | smartphone displayed in the image. Since the name or brand. Then, | will search the web for reviews on that specific model. © find the latest reviews for the smartphone featured in the
p " image, | need to use the ask_search_agent" tool to query the
| image contains the text “Zenfone Max Plus,” | latest N d ificati bout the rtph
will use the “ask_search_agent" tool to gather ® Code: o e: "e"'ewjla" specifications aboutt the sd"“" "_f?"e_
| recent reviews for this model and compare it from PIL o mage model, as well as its competitors' ratings and specifications.
| with its competitors. import import io 8 Code:
= | Code: # Load the image for OCR processing ask_search_agent(query="Lat est reviews for the smartphone
@ = open(io.ByteslO(self.get Attachment(”image.jpg"))) in the image", image_path="image.jpg")
& | ‘ pyreviews = ask_search_agent(query="Latest text = pytesseract.image_to_string(img) competitors = ask_search_agent(query="Competitors of the
reviews for Zenfone Max Plus and comparison # Search for reviews of the extracted phone model smartphone in the image and their ratings",
| with competitors") review_search = ask_search_agent(f'Find the latest reviews for {text} :md'tphurve.‘r image_path="image.jpg") m
| Sample 1 I Sample 2 Q l Sample 3 |
1
| 8B verification Reason:
| The positive solution can correctly identify the brand of the smartphone, and get some review from the Internet. In contrast, the two negative solutions cannot correctly identify the brand of the smartphone.
¥ OCRcannot obtain the brand, and the ‘ask_search_agent’ tool cannot process images.
Parallel | Sampling
4 Q@ Thought: Q Thought: Q@ Thought:
1 will now look for more current reviews comparing it with | The image and search results have led me to understand that the To provide a more comprehensive comparison, [l gather
| | its competitors like Nokia 6.1 Plus and Redmi Note 6 Pro. Zenfone Max Plus was a popular mid-range smartphone. To better inform more recent reviews for these competing models and also
| you, | will compare it with some mid-range smartphone competitors. look for more recent reviews on newer smartphones in the
same price bracket.
| Code: P
X [k _search_agent(query="Current reviews for Zenfore Max = code: = code:
o Plus compared to Nokia 6.1 Plus and Redmi Note 6 Pro") ask_search_agent(query="Latest smartphone reviews in the mid-range ‘ [ask_search_agent(query="Reviews for newer smartphones in
& | | printcurrent_reviews) | price bracket for performance and battery life") the same price bracket")
sample 1 l Sample 2 " , sample 3 OI

| &8 verification Reason:
| The positive solution search for i about mid-range itors, while the negative solutions only compare Zenfone Max Plus with a special smartphone, or does not mention the Zenfone Max Plus
v smartphone.

Figure 4: Example of constructed preference data.

Query: How many science fiction novels did | borrow?
Attachment: “gta_benchmark/image_276.jpg”

Attached Image:

Query: What is the VRAM of the
product of the image? Attachment:
“gta_benchmark/image_305.jpg”

Attached image:

Ground-truth: 11

| Ground-truth: 24 GB

"The Three-Body Problem" s explicitly mentioned as a
science fiction novel, | will conclude that there is only one
science fiction novel borrowed.

™ code:

1 science fiction novel

books are "The Three-Body Problem" (3 copies) and "Leagues |
under the Sea (8 copies). | will sum these counts.

‘The NVIDIA RTX 4090 graphics card has

he NVIDIA RTX 4090 graphics card.

™ code:

o

1668 of GODREX VRAM.
23
= code:

total_science_fiction_books = 3+ 8

final_answer("16G8")

final_answer("There is

final_answer(total_science_fiction_books)

Q observation
1{ There s 1 science fiction novel borrowed.

s v

(a) Different tool selection.

1668 24GB

X = v

(b) Hallucination vs. Tool calling.

1 Q Thought: SFT Agent 1 Q hought: SPORT Agent (ours) 1 @ Thought: SFT Agent 1 Q Thought: SPORT Agent (ours)
1| Based on common knowledge, "The Three-Body Problem” is 1| need to identify which books are science fiction novels. The | 1 [To find out the VRAM (video Random 1170 find out the VRAM (Video Random Access
|| often considered a science fiction novel. | will use the || relevant books are "The Three-Body Problem’” and "Leagues || Access Memory) of the graphics card || Memory) of the graphics card shown in the
1 visualizer" tool to confirm if it falls under this category. || under the Sea”. I will use the ‘ask_search_agent' tool to 1| shown n the image, I need to use OCR | image, I need to use OCR (Optical Character
&3 o || confirm them. ! (Optical Character Recognition) to extract . || Recognition) to extract the text from the image.
= % g the text from the image. g
book_info = visualizaNquestion="1s 'The Three-Body S code: = s 7| ™ code:
Problem’a science fiction no 1 [science_ ficton movls sk_search_sgeMuery="Ave The 1 code: [extracted_text = ocr("image_305.jpg’)
image_path="cache/image_276.jog") ! e’ and 'Leagues under the Sea' science i v — 1] printCextracted Text, extracted_text)
Q observation: ! || extracted_text age_path) | Q Observation
Code error. No such fle or directory: .cache/image_276.jpg’ I) || print(“Extracte extracted._text) 4 RTX40%0
! [Both ‘The Three-Body Problem’ and Twenty Thousand Leagues | 'aQ N
' } | Under the Sea'are classified as science fiction novels. | {iPatEOtenetion ! Q Thought:
' Q Thought: N iy 1 (w0 1| willse the visualizer t0olto analyze the image
|| Itseems there was no direct way to count the science 1" ["The Three-8ody Problem" and "Leagues under the Sear are | g :G::xr\nr:i‘o '55‘17:.”:9'Tﬂ‘l’?§§&"c ;n;;mou'm
| fiction novels from the given information. However, since || indeed science fiction novels. From the table, the relevant 1 Q Thought: ! pacity
o ! | '
: '
i '
] 1
: I
: '
: '
] '
] I
v '

Figure 5: Comparisons between SFT Agent and our SPORT Agent.

4.7 Visualization

We visualize the preference data generated by the online self-exploration framework, as shown in
Figure[d The verifier can successfully choose actions that lead to correct intermediate results. In
step 1, the action that produces the correct brand and basic information about the smartphone is
selected as the preferred data. In step 2, the action that searches for content most relevant to the task
is selected as the preferred data. It compares the smartphone with mid-range competitors, while the
rest compares the smartphone with a special one.

We visualized the task-solving procedure of the SPORT Agent compared with the SFT Agent (T3
agent), as shown in Figure[5] The SPORT Agent after the step-wise preference tuning can well solve
the issues of code hallucination and tool error. For example, in case (a), the SPORT Agent correctly
selects the web search tool while the SFT Agent uses the wrong tool with an incorrect image path. In
case (b), the SPORT Agent utilizes tools to solve the task, while the SFT Agent produces an answer
via hallucination.

5 Conclusion

In this paper, we have presented an online self-exploration framework for multimodal agents, through
which the agents can learn via automatic interaction with new environments without accessing any
annotations. Based on this framework, we have presented a step-wise optimization for refining trajec-
tories (SPORT), which can produce in-distribution preference data in complex environments. Given
proper prompts, the proposed SPORT method can generate diverse multimodal tasks and provide
good verification of agent actions aligned with humans. Experiments on two challenging benchmarks,
GTA and GAIA, show that the proposed SPORT method achieves significant improvements on
multimodal agents, demonstrating its effectiveness.

Limitations The verifier plays an important role in the current SPORT method. However, it heavily
relies on human-designed rules and prompts, causing inferior generalization for some outliers. In
the future, we will explore the self-exploration techniques for the verifier, that is, learning to verify,
through which the verifier can adapt to new environments with the controller together. Furthermore,
we will explore the theoretical guarantee for the verifier, allowing it to scale to open settings.

10

Acknowledgements This work was supported by the Natural Science Foundation of China (NSFC)
under Grants No. 62406009, No. 62172041 and No. 62176021, Shenzhen Science and Technology
Program under Grant No. JCYJ20241202130548062, and Natural Science Foundation of Shenzhen
under Grant No. JCYJ20230807142703006.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

AgentLego Contributors. AgentLego: Open-source tool API library to extend and enhance LLM agents,
December 2023.

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. Advances in Neural
Information Processing Systems (NeurlPS), 37:12461-12495, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from
ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization for
mathematical reasoning. In Annual Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 7889-7903, 2024.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.
Sharegpt4v: Improving large multi-modal models with better captions. In European Conference on
Computer Vision (ECCV), pages 370-387. Springer, 2024.

Sijia Chen, Yibo Wang, Yi-Feng Wu, Qingguo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Lijun
Zhang. Advancing tool-augmented large language models: Integrating insights from errors in inference
trees. Advances in Neural Information Processing Systems (NeurlPS), 37:106555-106581, 2024.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial multimodal
models with open-source suites. arXiv preprint arXiv:2404.16821, 2024.

Chunyuan Deng, Xiangru Tang, Yilun Zhao, Hanming Wang, Haoran Wang, Wangchunshu Zhou, Arman
Cohan, and Mark Gerstein. Mimir: A streamlined platform for personalized agent tuning in domain
expertise. arXiv preprint arXiv:2404.04285, 2024.

Yihe Deng, Pan Lu, Fan Yin, Ziniu Hu, Sheng Shen, James Zou, Kai-Wei Chang, and Wei Wang.
Enhancing large vision language models with self-training on image comprehension. In Advances in
Neural Information Processing Systems (NeurlPS), 2024.

Zhirui Deng, Zhicheng Dou, Yutao Zhu, Ji-Rong Wen, Ruibin Xiong, Mang Wang, and Weipeng Chen.
From novice to expert: LIm agent policy optimization via step-wise reinforcement learning. arXiv preprint
arXiv:2411.03817, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Yue Fan, Xiaojian Ma, Rongpeng Su, Jun Guo, Rujie Wu, Xi Chen, and Qing Li. Embodied videoagent:
Persistent memory from egocentric videos and embodied sensors enables dynamic scene understanding.
International Conference on Computer Vision (ICCV), 2025.

Yue Fan, Xiaojian Ma, Rujie Wu, Yuntao Du, Jiaqi Li, Zhi Gao, and Qing Li. Videoagent: A memory-
augmented multimodal agent for video understanding. European Conference on Computer Vision (ECCV),
2024.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin
Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms. arXiv preprint
arXiv:2504.11536, 2025.

Yuwei Fu, Haichao Zhang, Di Wu, Wei Xu, and Benoit Boulet. Furl: visual-language models as fuzzy
rewards for reinforcement learning. In International Conference on Machine Learning (ICML), pages
14256-14274, 2024.

11

[17]

(18]

[19]

(20]

(21]

(22]
(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

Zhi Gao, Yuntao Du, Xintong Zhang, Xiaojian Ma, Wenjuan Han, Song-Chun Zhu, and Qing Li. Clova: A
closed-loop visual assistant with tool usage and update. In The IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 13258-13268, 2024.

Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao Yuan, Yue Fan, Yuwei Wu, Yunde Jia, Song-Chun
Zhu, and Qing Li. Multi-modal agent tuning: Building a vlm-driven agent for efficient tool usage. In
International Conference on Learning Representations (ICLR), 2025.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning without
training. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
14953-14962, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations (ICLR), 2022.

Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy Viswanathan, Kenji Hata, Enming Luo, Ranjay
Krishna, and Ariel Fuxman. Visual program distillation: Distilling tools and programmatic reasoning
into vision-language models. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9590-9601, 2024.

HuggingFace Contributors. Agents and tools, 2024.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. Search-r1: Training llms to reason and leverage search engines with reinforcement learning. arXiv
preprint arXiv:2503.09516, 2025.

Aobo Kong, Wentao Ma, Shiwan Zhao, Yongbin Li, Yuchuan Wu, Ke Wang, Xiaoqian Liu, Qicheng Li,
Yong Qin, and Fei Huang. Sdpo: Segment-level direct preference optimization for social agents. arXiv
preprint arXiv:2501.01821, 2025.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli, Shariq
Igbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via reinforcement
learning. arXiv preprint arXiv:2409.12917, 2024.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqgiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-wise
preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629, 2024.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Ren Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif vs. rlhf: Scaling reinforcement learning
from human feedback with ai feedback. In International Conference on Machine Learning (ICML), pages
26874-26901. PMLR, 2024.

Seongyun Lee, Sue Park, Yongrae Jo, and Minjoon Seo. Volcano: Mitigating multimodal hallucination
through self-feedback guided revision. In North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), pages 391-404, 2024.

Yoonho Lee, Michelle S Lam, Helena Vasconcelos, Michael S Bernstein, and Chelsea Finn. Clarify:
Improving model robustness with natural language corrections. In ACM Symposium on User Interface
Software and Technology (UIST), pages 1-19, 2024.

Shilong Li, Xingyuan Bu, Wenjie Wang, Jiaheng Liu, Jun Dong, Haoyang He, Hao Lu, Haozhe Zhang,
Chenchen Jing, Zhen Li, et al. Mm-browsecomp: A comprehensive benchmark for multimodal browsing
agents. arXiv preprint arXiv:2508.13186, 2025.

Yuan-Hong Liao, Rafid Mahmood, Sanja Fidler, and David Acuna. Can feedback enhance semantic
grounding in large vision-language models? arXiv preprint arXiv:2404.06510, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next:
Improved reasoning, ocr, and world knowledge, January 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
Neural Information Processing Systems (NeurlPS), 36:34892-34916, 2023.

Wei Liu, Junlong Li, Xiwen Zhang, Fan Zhou, Yu Cheng, and Junxian He. Diving into self-evolving
training for multimodal reasoning. arXiv preprint arXiv:2412.17451, 2024.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai, Xinyi
Liu, Hanlin Zhao, et al. Visualagentbench: Towards large multimodal models as visual foundation agents.
arXiv preprint arXiv:2408.06327, 2024.

12

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

Ziyu Liu, Yuhang Zang, Yushan Zou, Zijian Liang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin,
and Jiaqi Wang. Visual agentic reinforcement fine-tuning. arXiv preprint arXiv:2505.14246, 2025.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao, Zhiwei Liu, Yihao
Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating verifiable and diverse function-calling
datasets. Advances in Neural Information Processing Systems (NeurIPS), 37:54463-54482, 2024.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and Hongsheng
Li. Step-controlled dpo: Leveraging stepwise error for enhanced mathematical reasoning. arXiv preprint
arXiv:2407.00782, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegrefte, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback.
Advances in Neural Information Processing Systems (NeurIPS), 36:46534-46594, 2023.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants. International Conference on Learning Representations (ICLR),
2023.

Feng Peiyuan, Yichen He, Guanhua Huang, Yuan Lin, Hanchong Zhang, Yuchen Zhang, and Hang
Li. Agile: A novel reinforcement learning framework of 1lm agents. Advances in Neural Information
Processing Systems (NeurlPS), 37:5244-5284, 2024.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and Rafael
Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv preprint
arXiv:2408.07199, 2024.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Xinyue Yang, Jiadai Sun, Yu Yang, Shuntian
Yao, Tianjie Zhang, et al. Webrl: Training Ilm web agents via self-evolving online curriculum reinforcement
learning. arXiv preprint arXiv:2411.02337, 2024.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-language
models are zero-shot reward models for reinforcement learning. arXiv preprint arXiv:2310.12921, 2023.

Wentao Shi, Mengqi Yuan, Junkang Wu, Qifan Wang, and Fuli Feng. Direct multi-turn preference
optimization for language agents. In Annual Meeting of the Association for Computational Linguistics
(ACL), pages 2312-2324, 2024.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error: Exploration-
based trajectory optimization of llm agents. In Annual Meeting of the Association for Computational
Linguistics (ACL), pages 7584-7600, 2024.

Didac Suris, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. In International Conference on Computer Vision (ICCV), pages 11888-11898, 2023.

Chenyu Wang, Weixin Luo, Qianyu Chen, Haonan Mai, Jindi Guo, Sixun Dong, Zhengxin Li, Lin Ma,
Shenghua Gao, et al. Tool-lmm: A large multi-modal model for tool agent learning. arXiv preprint
arXiv:2401.10727, 2024.

Huaijie Wang, Shibo Hao, Hanze Dong, Shenao Zhang, Yilin Bao, Ziran Yang, and Yi Wu. Offline
reinforcement learning for 1lm multi-step reasoning. arXiv preprint arXiv:2412.16145, 2024.

Jize Wang, Zerun Ma, Yining Li, Songyang Zhang, Cailian Chen, Kai Chen, and Xinyi Le. Gta: A
benchmark for general tool agents. In Proceedings of the Neural Information Processing Systems (NeurlPS)
Track on Datasets and Benchmarks, 2024.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at any
resolution. arXiv preprint arXiv:2409.12191, 2024.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In Annual
Meeting of the Association for Computational Linguistics (ACL), pages 1348413508, 2023.

Zhenyu Wang, Enze Xie, Aoxue Li, Zhongdao Wang, Xihui Liu, and Zhenguo Li. Divide and conquer:

Language models can plan and self-correct for compositional text-to-image generation. arXiv preprint
arXiv:2401.15688, 2024.

13

[54]

[55]

(561

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu, Heng Huang, and Chunyuan
Li. Llava-critic: Learning to evaluate multimodal models. arXiv preprint arXiv:2410.02712, 2024.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, Xun Wang, Ke Wang, Cheng Li, Wei Peng, and
Sujian Li. Watch every step! 1lm agent learning via iterative step-level process refinement. In Annual
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1556-1572, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. Re-
act: Synergizing reasoning and acting in language models. In International Conference on Learning
Representations (ICLR), 2023.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin
Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint arXiv:2408.01800,
2024.

Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He, Zhiyuan
Liu, Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-source ai feedback for super gpt-4v
trustworthiness. arXiv preprint arXiv:2405.17220, 2024.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms. In Annual Meeting of the Association for Computational
Linguistics (ACL), pages 3053-3077, 2024.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via reinforcement
learning. Advances in Neural Information Processing Systems (NeurIPS), 37:110935-110971, 2024.

Yuanzhao Zhai, Tingkai Yang, Kele Xu, Dawei Feng, Cheng Yang, Bo Ding, and Huaimin Wang. Enhancing
decision-making for llm agents via step-level g-value models. In AAAI Conference on Artificial Intelligence
(AAAI), volume 39, pages 27161-27169, 2025.

Bofei Zhang, Zirui Shang, Zhi Gao, Wang Zhang, Rui Xie, Xiaojian Ma, Tao Yuan, Xinxiao Wu, Song-
Chun Zhu, and Qing Li. Tongui: Building generalized gui agents by learning from multimodal web
tutorials. arXiv preprint arXiv:2504.12679, 2025.

Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Chaoqi Wang, Mingyu Ding, Dieter Fox, and
Huaxiu Yao. Grape: Generalizing robot policy via preference alignment. arXiv preprint arXiv:2411.19309,
2024.

Yifei Zhou, Qianlan Yang, Kaixiang Lin, Min Bai, Xiong Zhou, Yu-Xiong Wang, Sergey Levine, and Erran
Li. Proposer-agent-evaluator (pae): Autonomous skill discovery for foundation model internet agents.
arXiv preprint arXiv:2412.13194, 2024.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language

model agents via hierarchical multi-turn rl. In International Conference on Machine Learning (ICML),
pages 62178-62209. PMLR, 2024.

14

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: We believe the main claims made in the abstract and introduction accurately
reflect the paper’s contributions in multimodal tool usage agents.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

15

Justification: The limitation has been discussed in Section 3] (Conclusion).
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theoretical assumption is needed.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code and data will all be open-sourced once the final decision of this paper
is given.

Guidelines:

16

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the codes (including the data generation pipeline) and the prefer-
ence data in the supplemental material.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are described in Section @] (Experiment) in
detail.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in the appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the error bar for the main results in the Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The computing resources are discussed in Section 4] (Experiment).
Guidelines:

* The answer NA means that the paper does not include experiments.

18

9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We confirm that our research fully complies with the NeurIPS Code of Ethics.
All experiments were conducted responsibly, and ethical considerations were carefully
addressed throughout the study.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impacts are discussed in the Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

19

https://neurips.cc/public/EthicsGuidelines

12.

13.

Answer: [Yes]

Justification: While our work leverages pretrained large language models, they are used
solely to enhance the agent’s ability to interact with tools in a controlled setting. Therefore,
we believe the risk is minimal and no additional safeguards are necessary beyond standard
responsible use practices.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the assets used in this paper are cited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The data generation pipeline, data format and examples are well discussed in
SectionBlin detail.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

20

paperswithcode.com/datasets

14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We report the number of participants and the detailed human study setting in
Section 4.6 and Appendix [D.1]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:[Yes]

Justification: We invite humans to evaluate the quality of the generated data. All human
evaluations were conducted in accordance with the NeurIPS ethical guidelines and approved
by an appropriate ethics review process. Participants were informed of the study’s purpose,
any potential risks, and their rights, and provided informed consent before participation.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use VLMs for data generation and agent tool calling. We fine-tune VLMs
as the agent controller.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Broader Impacts

SPORT’s ability to autonomously explore tool usage and refine behavior via preference feedback
promises to lower the barrier to creating versatile multimodal agents, enabling researchers and
practitioners—even those with limited resources—to build domain-adapted systems for tasks such as
document analysis, scientific data interpretation, and accessible educational or healthcare interfaces.
By reducing reliance on costly human annotation and manual rule-crafting, SPORT can accelerate
innovation across diverse fields, fostering more inclusive and scalable Al solutions.

At the same time, increased agent autonomy raises risks of unintended bias, error propagation, and
resource inefficiency. SPORT’s verifier, grounded in heuristic rules and model judgments, may
inadvertently reinforce spurious behaviors or hallucinations, particularly in high-stakes domains
like legal or medical analysis. We therefore advocate for transparent auditing, human-in-the-loop
oversight, and careful management of exploration budgets to ensure responsible deployment.

B Comparison with Existing Sampling Frameworks

Our method constructs step-level preference data for complex multimodal tasks. To contextualize its
contributions, we compare against representative reinforcement-learning—based sampling frameworks
along three dimensions: (1) Task Domain, (2) Collection Granularity, and (3) Annotation Format.
Table [§] summarizes this comparison.

Table 8: Comparison with existing sampling schemes

Method Task Domain Collection Granularity Annotation Format
WebRL [43] GUI control Trajectory-Level Finetune a reward model
PAE [64] GUI control Trajectory-Level Use a pre-trained model
ETO [46] GUI control & Embodied Al Trajectory-Level Expert labels for comparisons
DMPO [45] GUI control & Embodied Al Trajectory-Level Finetune a reward model
DigiRL [2] GUI control Step-Level Finetune a reward model
TP-LLAMA [7 API calling Step-Level Use expert data

IPR [55] GUI control & Embodied Al Step-Level Use expert data
StepAgent-Inverse [L1] GUI control & Embodied Al Step-Level Use expert data

Ours Multimodal Reasoning Step-Level Use a pre-trained model

The multimodal reasoning domain poses unique challenges that prior sampling frameworks do not
adequately address:

1. Data scarcity. There is a shortage of collected tasks and expert trajectories in complex
multimodal settings.

2. Inadequate reward modeling. Approaches effective in GUI or API domains—such as pre-
trained classifiers or rule-based rewards—struggle to capture multimodal task complexity.

3. Low sampling efficiency. Generating high-quality trajectories for multimodal tasks requires
expensive tool usage (e.g. LLM calls, web searches), making naive sampling impractical.

To overcome these issues, we leverage pre-trained LLMs to generate step-wise preference data
automatically, providing a scalable and practical solution for training agents on complex multimodal
reasoning tasks.

C Computational Efficiency Analysis

We provide a comprehensive comparison of compute time and GPU usage between the baseline
method (MAT) and our SPORT framework. Table E] summarizes the estimated compute time and
GPU cost for both methods, measured in GPU hours (GPUh) using a single A100 80GB GPU.

Data Generation Efficiency. The computational cost of Task Synthesis, Step Sampling, and Tool
Calling is closely tied to the data scale. MAT synthesizes and samples steps for 20K tasks and 20K
trajectories, resulting in high overhead across all three components. In contrast, SPORT performs Task
Synthesis on only 2K tasks and constructs 16K preference pairs for tuning, leading to substantially
reduced compute time in these stages. Specifically, SPORT reduces Task Synthesis time from 29.13h
to 3.61h, Step Sampling from 69.92h to 4.53h, and Tool Calling from 58.93h to 9.86h.

22

Table 9: Estimated compute time and GPU cost comparison between MAT and SPORT. GPU hours
(GPUh) are measured as usage of a single A100 80GB GPU for one hour. The estimates for MAT are
derived from its reported tool invocation frequency, combined with empirical measurements of the
GPT-40-mini API and tool execution latency on our hardware.

Component MAT Time (h) SPORT Time (h) MAT Cost (GPUh) SPORT Cost (GPUh)

Data Generation
Task Synthesis 29.13 3.61 0 (GPT-40-mini API ~$500) 3.61 (Qwen2-VL-7B)
Step Sampling 69.92 4.53 0 (GPT-40-mini API ~$1500) 4.53 (Tuned-Qwen2-VL-7B)
Step Verification 0 3.36 0 3.36 (Qwen2.5-7B)
Tool Calling 58.93 9.86 58.93 9.86

Training
Model Training w/ 4x A100 80G GPU 15.77 15.20 63.08 60.80

Total 173.75 36.56 122.01 82.16

Step Verification. SPORT introduces an additional Step Verification process to obtain step-level
preferences, which incurs 3.36 GPU hours. While this stage adds computational cost, it remains
acceptable relative to the total runtime due to the smaller data volume (16K preference pairs vs. 20K
trajectories in MAT).

Training Efficiency. Model training with 4x A100 80GB GPUs shows comparable efficiency
between both methods, with SPORT requiring 15.20h (60.80 GPUh) compared to MAT’s 15.77h
(63.08 GPUh). This marginal difference demonstrates that SPORT’s efficiency gains primarily stem
from the data generation stage rather than the training phase.

Overall Cost Reduction. As shown in Table 9] SPORT achieves a total compute time of 36.56h
compared to MAT’s 173.75h, representing a 4.75x speedup. In terms of GPU cost, SPORT requires
82.16 GPUh versus MAT’s 122.01 GPUh, resulting in a 32.7% cost reduction. These substantial
improvements in computational efficiency, combined with SPORT’s superior performance, validate
the effectiveness of our preference-based learning approach.

D Task Generation

Following MAT [[18]], we first use an LLM to generate queries, and then generate both the file content
and file type based on the query. Depending on the file type, we adopt different strategies for file
generation:

» For image files, we retrieve relevant images from a large image dataset [[6] based on the
generated file content.

* For non-image files, .PDF, .XLSX, .DOCX, or .MP3, etc, we employ the LLM to write Python
code that calls relevant libraries to convert the file content into the corresponding file format.

After generating the files, we adopt a two-step query-file verification process—Revision and Filter-
ing—to ensure the quality of each task (i.e., query-file pair).

In the Revision step, both the query and the corresponding file are fed into a vision-language model
(VLM), which is instructed to revise the query to better align with the file if necessary. For image
data, we directly input the image into the VLM; for non-image data, we input the file content instead.

In the Filtering step, the VLM is no longer allowed to modify the query. Instead, it is asked to assess
whether the task meets a predefined quality threshold. Only tasks that pass this quality check are
retained, while all others are discarded.

D.1 Model Comparison on Task Generation

We conducted a comparative analysis of task quality between open-source and closed-source models.
For this evaluation, we employed Qwen-2VL-7B (open-source) and GPT-40-mini (closed-source) to
generate 200 tasks each under identical system prompts. The resulting 400 tasks were subsequently
randomized and anonymized to eliminate source bias. We recruited 20 human evaluators, with each
participant assessing 20 tasks according to two key metrics: naturalness and reasonableness, rated on
a 10-point scale (higher scores indicating superior quality). As demonstrated in Table[I0} the tasks

23

produced by both models achieved comparable quality ratings, providing compelling evidence that
open-source models possess sufficient capability for high-quality task generation in this domain.

Table 10: User study for open-source vs. close-source models generated tasks. Scores are scaled from
1 to 10 and a higher score denotes better quality.

Model Task Naturalness Task Reasonableness
GPT-40-mini 8.71 8.37
QWen-2VL-7B 8.75 8.35

E Error bar for the main results

We conduct each experiment five times and report the performance variance, as shown in Table[TT]
The results demonstrate that our improvements are statistically significant compared to the observed
variances.

Table 11: Performance with variance on the GTA benchmark.

Method Controller AnsAcc ToolAcc CodeExec
T3-Agent MAT Tuned Qwen2-VL-7B 53.85 64.63 84.32
SPORT Agent (Ours) Tuned Qwen2-VL-7B 6026 +£1.51 7241+1.11 91.87+141

F System Prompts

We referenced the task generation prompts from MAT][18]] for our implementation.

F.1 Prompt for Query Generation

The prompt for query generation is shown in fig. [6]

~)
You are tasked with generating user queries that will prompt an agent to call various tools (only use the
tool listed in our toolset), including internet search capabilities, to solve real-world, practical problems.
The problems should be natural, varied, and challenging, requiring the agent to reason across different
domains. Ensure that the problems span a range of practical scenarios.

Our toolset: TOOL_SET
I will now provide examples, along with the tools.
Examples of user queries: IN_CONTEXT_EXAMPLES

Please output the Queries in a json format. Make sure that the queries share a similar style to the
in-context examples. The output template is:

"query": "What is the weather today?", <The user query to the agent.>

"tools": ["tooll", "tool2",...], <A list consisting of the tool names related to the query.>

b

Figure 6: Prompt for query generation.

F.2 Prompt for File Generation

The prompt for file content generation is shown in fig. [7]and fig. [8] and the prompt for file code
generation is shown in fig.[9and fig.

24

You are a smart reasoner that can restore a query_solving scene between a human and an agent.
Human gives a complex query and several images to the agent, and then the agent answers the query
by searching on the Internet and applying tools to the images with step-by-step reasoning. Now, you
will be given the query with suggested tools, I suggest you analyze the needed information to solve the
query, and divide the information into two groups: searching from the Internet and extracting from the
images using tools. Based on the information from the images, you need to further infer the content of
these images, through which the agent could correctly solve the query.

Our toolset: TOOL_SET
Output MUST use the following json template.

"information": <Needed information to solve the query. For the query including creating/generating
images, the information should NOT be the description of the described image.>
"information from the Internet": <Information from the Internet inferences based on the given
query and suggested tools. Determine which information is suitable to be obtained from the Internet.
Or say no information is required from the Internet.>
"information from images": <Information extracted from given images based on the suggested
tools to solve the query. It should be several sentences, including information extracted from the
images using tools. Determine which information is suitable to be obtained from the images, and using
which tools. Do not generate image_content for the query including generating/creating an image. Or
say no information is required from the images.>
"file": {
"image_numbers": <set an int number, the number is depended on needed information from
images>,
"image_content":
{
"image_1": <The image content should be a natural language, describing the content of
the
first image relevant to the query. The content should be concrete, such as concrete
number, concrete name. The content should match the query and the above images.>
... <if you think the query needs more than 1 image, please output image content like
’image_2’.>

Figure 7: System prompt for the file content generation.

Now given the query: QUERY, firstly analyze the needed information to solve the query and divide the
information into two groups: searching from the Internet or extracting from images using tools. Then
for information from images, imagine possible answers for each information (it should be concrete
answers instead of descriptions). Finally, output the json for the inferenced information and the content
of images.

Figure 8: User prompt for the file content generation.

25

You are a helpful assistant and can generate a <file type placeholder> file by writing Python code. You
will be given a description of the content of the file. You need to first largely extend the content, and
then write Python code to generate a <file type placeholder> file. GUARANTEE that the provided
content is in the file.
The output Python code MUST use the following template.

extention start

Extened content: <here is the extented content>
extention end

code start
<here is the Python code to generate a <file type placeholder> file>
code end

nn

Figure 9: User prompt for the non-image file generation.

Now, given the following content: <file content>, first largely extend the content, and output a code to
generate a <file type placeholder> file, where the file name is <file name> and the file will be saved in
<save path>.

Figure 10: User prompt for the non-image file content generation.

F.3 Prompt for Query-file Filter

The prompt for the query-file filter is shown in fig.[TT]and fig. [T2}

F.4 Prompt for Step Verifier

To evaluate the quality of intermediate steps taken by an agent during task execution, we design a
step verifier consisting of two key components: a system prompt and a user prompt. The system
prompt (Figure [T3) provides the verifier model with detailed instructions for evaluating multiple
candidate steps ("CURRENT_STEP’) based on their coherence, logical progression, and effectiveness
in advancing the task. It guides the model to consider contextual alignment with the prior step, tool
usage, hallucination, and content relevance. The verifier is required to select the best step and justify
its decision in a structured json format.

The user prompt (Figure[T4) supplies the concrete input to the verifier, including the task description
and a list of candidate step sets. Each step set contains the result from the previous step, the current
step (thought and code), and the result produced by executing that step. Together, these prompts
simulate a human-like evaluation process, encouraging the model to perform judgment aligned with
human preferences in multi-step reasoning scenarios.

26

You are a helpful assistant that is given a query and several images. You need to check whether the
images are relevant to the query. The query and images are used to evaluate the perception ability,
reasoning ability, and information search ability of an Al agent. The agent solves the query by
searching for information on the Web and extracting information from the images. In some cases,
based on the given images, the agent could not solve the query, even though it searched for information
from the Web (e.g., some specific knowledge). You need to pick up these bad cases.

The agent can call the following tools to solve the query. TOOL_SET .

Thus, the images should follow these requirements.

1. Relevance: The depicted scenarios or objects in images should be relevant to the query. The images
should contain scenarios or objects that are mentioned in the images.

2. Usefulness: The image should contain necessary information to address the query, such as some
specific details that cannot be obtained from the Web.

3. Some queries require the agent to search for knowledge from the Web and combine the information
in the image to solve the queries. Thus, in some cases, the images do not contain all the information to
solve the query, but the missed information could be searched on the Web. These cases should be
regarded as correct cases.

The output MUST use the following json template to check the images.
{ "information_for_query": <Required information to solve the query.>,

"useful_information_in_image": <Useful information that can be extracted from images to solve
the query>,

"missed_information_in_images": <Missed information that is necessary to solve the query but
does not exist in the images.>,

"missed_information_web_search": <You need to justify whether the missed information could be
searched from the Web, using your rich experience in surfing the Internet.> ,

"missed_information_obtained": <You need to justify whether the missed information could be
obtained via computing or reasoning based on information extracted from the images or searched from
the Web.>,

"thought": <Now, you need to determine whether the images can solve the query. If the missed
information could be searched from the Web or obtained based on existing information, the images
can solve the query. If not, the images cannot solve the query.>,

"correct": <According to the above reasoning, if you consider the images reasonable for the query
to be solved by the tools, set the value to ’yes’, otherwise set the value to 'no’.>,

"updated_query": <If you judge the correctness as 'no’, please rewrite the query to make it more
relevant to the given images. If you judge the correctness as ’yes’, please output "no revision is
needed." >

} 999

Figure 11: System prompt for the query-file verification.

Following are images, the query: <query>, inference whether the images can solve the query based on
the perception ability, reasoning ability, and information search ability of an Al agent.

Figure 12: User prompt for the query-file verification.

27

You are an evaluation assistant responsible for analyzing and evaluating agent trajectories. Your
goal is to rank <N> ‘CURRENT_STEP* entries based on their coherence, logical progression, and
effectiveness in addressing the TASK, as observed in the ‘CURRENT_RESULT", and their alignment
with the ‘PREVIOUS_STEP".

Input Description:
You will receive <N> sets of the following:

- ‘PREVIOUS_RESULT": The prior results obtained by the agent.

- ‘CURRENT _STEP‘: The agent’s output, containing a ‘thought‘ and ‘code‘ intended to complete
the task based on the observation.

- ‘CURRENT_RESULT": The result or state produced by executing the ‘CURRENT_STEP*.

Your Task:
1. Evaluate each ‘CURRENT_STEP*:

- Assess how well the proposed ‘CURRENT_STEP* aligns with the context established by the
‘PREVIOUS_STEP* and the observation reflected in the ‘CURRENT_RESULT".

- Check for coherence, logical progression, and contextual relevance.

- Prioritize outputs that effectively build upon or adapt to the ‘PREVIOUS_STEP* while
addressing the ‘CURRENT_RESULT".

2. Select the BEST of the ‘CURRENT_STEP® entries:
- Pick the best ‘CURRENT_STEP* according to the following guidelines.

3. Provide a concise explanation for your choice:
- Highlight key factors that influenced your decision, such as logical flow, contextual relevance,
effectiveness, and uniqueness of the result.

Evaluation Guidelines:

- Hallucination: Penalize the directly hallucinated content in the code instead of being produced
from tools.

- Tool selection: Pay attention to whether the controller selects the proper tool.

- Best content pass into the tool: For the two step that uses the same tool, pay attention to the query
that the controller sends to the tools, such as the ’question’ in visualizer() and ask_search_agent().

- Task Relevance: Ensure the CURRENT_STEP contributes meaningfully to solving the task.

- Maintain objectivity and avoid assumptions beyond the provided inputs.

Output Format:
Return your evaluation in the following json structure:
{
"reason": "<concise_explanation_of_ranking>"
"best_id": <An int that indicates the id for the best step. Since there are five CURRENT_RESULTS,
the id should only be one of 1,2,3,4, and 5>,

}

Figure 13: System prompt for the step verifier.

28

The following are the given task, results of previous steps, and result of the current step.
TASK: <task>

Step Sets: <step_set>
Format of step_set:

{
‘PREVIOUS_RESULT*: <The prior results obtained by the agent.>
‘CURRENT_STEP‘: <The agent’s output, containing a ‘thought® and ‘code‘ intended to

complete the task based on the observation.>

‘CURRENT_RESULT*: <The result or state produced by executing the ‘CURRENT_STEP‘.>
#}

Now, you need to determine the best of the current steps based on the above information.

Figure 14: User prompt for the step verifier.

G User Study Interface

G.1 Preference Alignment Study

Figure [T5a] presents the web interface used to evaluate how well our automated verifier’s preferences
align with those of human judges. In each trial, participants were shown a single task case along with
a collection of candidate next-step actions (each consisting of a brief “Thought” description and an
optional code snippet or tool invocation). These options were the same ones ranked by our verifier,
but presented in random order to prevent positional bias.

Participants were instructed to review each candidate step and select the one they considered most
appropriate for progressing the task. No additional scoring rubric was provided: judges were simply
asked to choose the option they “would use” if they were guiding the model. Once a selection was
made, participants clicked “Submit” to lock in their preference and proceed to the next case.

By comparing the human-selected option against the top choice of the verifier, we compute an
agreement rate for each model and task type. High agreement indicates that the verifier captures
human judgments of step quality; lower agreement reveals areas where the verifier’s ranking diverges
from human intuition. These results were aggregated over 50 cases per participant, enabling both
per-case analysis and overall statistics on human—verifier alignment.

G.2 Data quality

Figure [I5b] illustrates the web interface employed in our user study. For each case, participants
proceeded through two consecutive scoring phases:

Task Evaluation.

* Reasonableness (1-10): Does the prompt and the displayed interaction trajectory form a
logical, feasible, and well-defined user request?
— 1-3: Highly unreasonable or ill-posed.
— 4-6: Somewhat reasonable but with noticeable flaws.
— 7-9: Mostly reasonable, with only minor issues.
— 10: Fully logical and indistinguishable from genuine user queries.

* Naturalness (1-10): Is the phrasing realistic, user-like, and fluent?

— 1-3: Artificial or awkward.

— 4-6: Acceptable but with unnatural turns of phrase.
— 7-9: Mostly natural, with only minor awkwardness.
— 10: Fully natural and conversational.

29

Trajectory Evaluation. After reading both the “Chosen” and “Rejected” responses, participants
rated the model’s proposals on three dimensions, each on a 1-10 scale (1 = lowest, 10 = highest):

* Code Accuracy: Correctness and completeness of any code snippets.

* Tool Effectiveness: Appropriateness and utility of the suggested APIs or functions.

» Content Accuracy: Relevance and factual correctness of the text or image descriptions.
In both phases, brief written examples anchored scores at the low, mid, and high ends to promote

consistency. Upon completing all six ratings for a case, participants clicked “Next” to submit their
responses and proceed to the following item.

.................

(a) Interface for the user study on verifier performance. Users select their (b) Interface for the user

preferred steps. study on task execution and
trajectory. Users evaluate
the quality of tasks and tra-
jectories.

Figure 15: User interface.

30

H More Visualization

To further demonstrate the effectiveness and interpretability of our data generation and selection
strategy, we present additional case studies in Figure [T7} Figure [I8] and Figure [T6] These
visualizations provide qualitative insights into how our method synthesizes diverse and informative
training instances, and how the selection mechanism prioritizes samples that contribute meaningfully

to model learning.

w;

paradise? Attachment: “image.jpg”

Query: Can you edit the image of my backyard to make it look like a tropical

Attached Image:

¥

Q Thought:

|

v
@ Thought:

v

Q@ Thought:

Thought: | need to edit the image to make it look like a
tropical paradise. | will use the image_edit tool to add
palm trees, sand, and ocean waves to the image. | will also
change the sky to a clear blue color.

® Code:

from llava import LLAVARenderer # Load the image
image_path = "image.jpg"

image = LLAVARenderer().load_image(image_path)
edited_image = LL).edit_i i

1 will use the ‘image_generator’ tool to generate an image that
resembles a tropical paradise, and the ‘image_edit’ tool to
modify the image based on the user's request. | will first use the
‘image_generator’ tool to create an image that looks like a
tropical paradise.

™ code:

import image_generator as ig
prompt = "A tropical paradise with lush greenery and wooden
pathways"

tropical_paradise_image = ig.generate_image(prompt=prompt)

prompt="a tropical paradise") # Save the edited image
output_path = "image.jpg"
LLAVARenderer().save_image(edited_image, output_path)

—
[=%
]

=

)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Q Observatio

Code execution failed due to the following error:
EXECUTION FAILED: Evaluation stopped at line 'from llava
import LLAVARenderer' because of the following error.
Import from llava is not allowed.

sample 1
|

&B verification Reason:

|_paradise_image)

Q observation:

Code execution failed due to the following error: EXECUTION
FAILED: Evaluation stopped at line 'import image_generator as ig'
because of the following error: Import of image_generator is not
allowed. Authorized imports are: ['re!, time’, 'statistics',
datetime’, 'math’, ‘collections’, 'yahoo_finance, 'matploti',
‘torch', 'queue’, 'PyPDF2', 'xml', 'unicodedata’, 'random’,
‘pandas’, 'pptx’, 'requests', 'pubchempy’, ‘itertools’, 'bsa,
‘numpy’, 'scipy’, ‘cv2', ‘chess', 'pydub’, fractions’, 'io", 'stat’, "PIL',

QI

‘esv', pickle!, 'Bio’, 'sklearn’, os', ‘zipfile!, json’, 'sympy']

Sample 2

ol

Sample3 is the best CURRENT_STEP because it focuses on creating a detailed text prompt that clearly describes the desired changes to the image, even though it does not execute the actual image editing.
This approach ensures that the task is well-defined and aligns with the task of transforming the backyard into a tropical paradise. Sample1 and Sample2 both attempt to directly edit the image but fail due to
import restrictions, making them less effective. Sample3, although it does not execute the image editing, provides a solid foundation for a subsequent step that could address the task more effectively,

I need to use the image editing tool to transform the image into a
tropical paradise. However, | cannot edit the image directly. | need to
create a text prompt that describes the desired changes to the
image. | will start by creating a text prompt using the image as a
reference.

® Code:

Generate a text prompt for the image editing tool

image_path = ‘image.jpg’

image_caption = fThe image depicts a backyard with grass, flowers,
and a fence. To transform this image into a tropical paradise, the
editing tool should make the following changes: \n\n- Add palm
trees and other tropical plants. \n- Create a pool with waterfalls and
fountains. \n- Paint the sky to look like a sunny day in paradise. \n-
Replace the fence with a wooden pergola. \n- Light the scene with
bright, warm tropical lighting. \n\nThe editing tool should aim to
make the backyard look like a tropical paradise with all the elements
listed above. '

Q Observation:

No observation found from the code execution. You should use
“print’ function if need some information from the code execution.

sample 3 I

v

T Q Thought:

3

Q@ Thought:

The code execution did not produce any output, indicating that there was no
error o issue with the code. However, | need to proceed with the task, so |

will move forward with the next step.

12

Q Thought:

Thought: | have generated the text prompt.
Next, | will use the image editing tool to apply
the prompt to the image and create a new

® Code:

image that looks like a tropical paradise.

image_path = image.jpg’

image_caption = f'The image depicts a backyard with grass, flowers, and a

|
|
|
| [# Generate a text prompt for the image editing tool
|
|
|
|

® code:

Use the image editing tool to create the
tropical paradise image edited_image_path =
image_edit(prompt=image_caption,
image_path=image_path) print(f'The new
tropical paradise image is available at:
{edited_image_path}')

Q Observatiol

I need to use the image editing tool to transform the image into a
tropical paradise. However, | cannot edit the image directly. | need
to create a text prompt that describes the desired changes to the
image. | will start by creating a text prompt using the image as a
reference.

™ code:

Generate a text prompt for the image editing tool

image_path = ‘image.jpg’

image_caption = f'The image depicts a backyard with grass,
flowers, and a fence. To transform this image into a tropical
paradise, the editing tool should make the following changes:
\n\n- Add palm trees and other tropical plants. \n- Create a pool
with waterfalls and fountains. \n- Paint the sky to look like a sunny
day in paradise. \n- Replace the fence with a wooden pergola. \n-
Light the scene with bright, warm tropical lighting. \n\nThe editing
tool should aim to make the backyard look like a tropical paradise
with all the elements listed above. '

The new tropical paradise image is available at:

~ fence. To transform this image into a tropical paradise, the editing tool should
| | make the following changes: \n\n- Add palm trees and other tropical plants.
& \n- Create a pool with waterfalls and fountains. \n- Paint the sky to look like a
sunny day in paradise. \n- Replace the fence with a wooden pergola. \n- Light
| the scene with bright, warm tropical lighting. \n\nThe editing tool should aim
to make the backyard look like a tropical paradise with all the elements listed
| |above.
| |* Call the image editing tool with the generated text prompt
edited_image_path = image_edit(prompt=image_caption,
| | image_path=image_path)
| & observation:
| | No observation found from the code execution. You should use ‘print’
v function if need some information from the code execution.

Sample 1

8B verification Reason:

.cache/1743230311361_1chwsd8a.png

Q, Observation:

Sample 2

|
6]

No rvation found from the code execution. You should use
“print’ function if need some information from the code executi

sample 3

Sample2 has the most coherent and logical progression. It directly uses the previously generated text prompt to call the image editing tool, which is the most straightforward and relevant approach to
transforming the image into a tropical paradise. Sample1 and Sample3 both attempt to generate a text prompt but do not actually execute the image editing process, making them less effective in achieving the

task.

Figure 16: Case study for data generation and selection.

31

Query.

If I wanted to buy the two cheapest snacks visible in the picture, how
much would it cost? Attachment: “

image.jpg”

¥

Q Thought:

|
v

@ Thought:

@ Thought:

I will use the "visualizer' tool to get the price of each snack in
the image. Then, | willsort the prices and select the two
cheapest snacks. Finally, | wil calculate the total cost of these
two snacks.

I need to identify the two cheapest snacks in the image and then
calculate their total cost. First, | will use the ‘visualizer’ tool to
extract the names and prices of the snacks in the image.

8 Code:

® Code:

prices = visualizer(question="Please extract the prices of each
snack in the image.", image_path="image.jpg")

prices = [float(price.split("F3")[0]) for price in prices]
sorted_prices = sorted(prices)

snack_data = visualizer(question="What are the prices of the
snacks?", image_path="image.jpg")
print(snack_data)

I need to find the two cheapest snacks in the picture and calculate
their total cost. | will first use the ‘visualizer" tool to identify the
prices of each snack and then select the two cheapest ones. After
that, | can calculate the total cost of the two snacks.

B Code:

snack_prices
in the picture"”
prices =[]

for price_info in snack_prices: price = float(price_info.strip())

isualizer(question="Please find the prices of snacks
, image_path="image.jpg") print(snack_prices)

¥170, with most snacks priced around ¥138, ¥148, and ¥158. ‘ |

ol

Now | have the price range for the snacks. | wil flter out the
snacks with the lowest prices and calculate the total cost.

Now | have the price range of the snacks in the image. To find the
two cheapest snacks, | need to iterate through the prices and find

& code:

the minimum prices. Let's use a loop to do that.

[Now I have the price range of the snacks. Next, | need to find
the two cheapest snacks. | can use a list comprehension to filter
out the prices and then sort them to find the two lowest values.

o '
2 | | cheapest_prices = sorted_prices[:2] prices.append(price)
8 total_cost = sum(cheapest_prices) two_cheapest_prices = sorted(prices)[:2]
a | Linalenswertiotal cos) Q Observation: total_cost = sum(two_cheapest_prices) final_answer(total_cost)
The prices of the snacks in the image range between ¥118 and
| ¥170, with most snacks priced around ¥138, ¥148, and ¥158.
| Q Observation: Q observation:
Code execution failed due to the following error: could not The prices of the snacks in the image range between ¥118 and
|| convert string to float: 'H' —,
| sample 1 Ul Sample 2 l sample 3
1
| 8B verification Reason:
| sample2's CURRENT_STEP is the most coherent and aligned with the task requirements. It correctly uses the visualizer" tool to extract snack prices without attempting to convert non-numeric strings to floats,
|| which caused errors in Trajectories 1 and 3. Afthuigh it dd ot complete the task by providing the final answer, it ad a soid foundation fo identifing the correct snack prices, making it the best option among
the three.
-~
T Q Thought: Q@ Thought: Q@ Thought:

prices = [price.split('F3')(0] for price in snack_data]

total_cost = sum([int(price) for price in cheapest_prices])
| print(total_cost)

‘ ® Code:

prices = [118, 122, 132, 138, 140, 148, 152, 158, 162, 170]
cheapest_prices = sorted(prices)[0:2]
print(cheapest_prices)

|
|
| cheapest_prices = sorted(prices)(:2)
|
|

Q Observation:

Code execution failed due to the following error: invalid literal
for int() with base 10: '

Q observation:

8 code:

List of snack prices

snack_prices = [118, 138, 148, 158, 168, 170]
Find the two cheapest prices
two_cheapest_prices = sorted(snack_prices]
print(two_cheapest_prices)

‘ [118, 122]

sample 1

8B verification Reason:

Sample 2

Qo
[0 ‘ [170, 168]
|

sample2 is the best CURRENT_STEP because it correctly identifies and sorts the prices to find the two cheapest snacks without any errors. Sample1 fails due to an invalid literal error, and Sample3 incorrectly
sorts the prices in reverse order, resulting in the two highest prices being selected.

sample 3

v

Q Thought:

T

17

Q Thought:

2

Q Thought:

I have found the two cheapest prices in the image. Now, | will use the “visualizer" tool again to find out ‘

what snacks correspond to these prices.

M code:

Now | have the two cheapest prices: ¥118 and
¥122. To calculate the total cost, | will simply
add these two prices together.

I have identified the two cheapest prices,
which are ¥118 and ¥122. Now, | will use
these prices to calculate the total cost. Let's

cheapest_snacks = [] for price in cheapest_prices:

cheapest_snacks.append(snack_names)

snack_names = visualizer(question=f"What snacks cost {price} yen?", image_path="

. & code:
"image.jpg")

assume the two snacks have the same price
for this calculation.

‘ total_cost = cheapest_prices[0] + ‘

cheapest_prices[1]

& Code:

Q observation:

Q observation:

total_cost = cheapest_prices[0] +
cheapest_prices[1] print(total_cost)

|
|
|
|
| print(cheapest_snacks)
|
|
|

Step3

that exact price point.

The snacks that cost 118 yen in the image are the two packages located in the middle section of the
display. They are labeled with a red price tag indicating 118 yen., 'In the image provided, there are no
snacks explicitly priced at 122 yen. The closest prices seem to be 118 yen and 138 yen. If you are
looking for a specific snack at 122 yen, you might need to check another location or different stores for

execution.

No observation found from the code
execution. You should use “print” function if
need some information from the code

Q observation:
240

Sample 1

B verification Reason:

Ssample 2

VI

QI 1
|

Sample3 provides the most coherent and logical progression towards completing the task. It correctly identifies the two cheapest prices and calculates the total cost without any additional unnecessary
steps. Sample2 fails to execute the code properly and does not provide useful information. Sample1, although it uses the visualizer tool, does not actually contribute to calculating the total cost but rather
identifies the snacks corresponding to the prices, which is not required for the task.

Y

| Code execution failed due to the following error: can only
concatenate str (not "int") to str

Step4

Code execution failed due to the following error: The code

sample 1

8B verification Reason:

|

|

|

|
4

Vl (<unknown>, line 1)

generated by the agent is not valid. invalid character ¥ 'Uwﬁl

v

Sample 2

Q Observation:
| The total cost for the two cheapest snacks is ¥240.

12 2 y

@ Thought: Q@ Thought: Q Thought:
| [The total cost of the two cheapest snacks is ¥240. | The total cost of the two cheapest snacks in the picture is ¥240. The total cost for the two cheapest snacks visible in the
| picture is ¥240. | will provide this as the final answer.

& code: & code:
| \ final_answer(240) [va40 ® Code:
| final_answer("The total cost for the two cheapest snacks is
| Q o ¥240.")

10

sample 3

Sample3 provides a coherent thought process and a logically structured code that correctly uses the *final_answer" function to present the total cost for the two cheapest snacks. It avoids the issues
present in Sample1 and Sample2, such as incorrect concatenation and invalid characters, making it the most effective and aligned with the task.

Figure 17: Case study for data generation and selection.

32

Query: In the attached photo, can you locate and mark the fruits present in Attached Image:
the image? Attachment: “image.jpg”

¢ I |

4 Q Thought: Q@ Thought: Q Thought:
Thought: | will use the “objectlocation” ‘ Thought: I need to use the tool ‘ 1 will use the “objectlocation” tool to identify and mark the fruits present in the image.
tool to identify and mark the fruits ‘objectlocation’ to find the bounding boxes ® Code:
| present in the image. | of the fruits in the image. :

Step2

—_————————

[P

import requests from io import BytesiO
from PIL import Image
import numpy as np # Load the image
B Code: image_url = ‘image.jpg’ response = requests.get(image_url)
‘ image_data = ByteslO(response.content)
image = Image.open(image_data) # Extract bounding boxes for fruits

& code:
fruits = objectlocation(object="fruit",
image_path="image.jpg")

fruit_types = objectlocation(object="fruit”,

image_path="image.jpg")

‘ print(fruits) ‘ printl(fruit._types) fruit_bounding_boxes = objs ject="fruit', image_path=imagt
= print(fruit_bounding_boxes)
Q Observation: Q ol i Qo
[119.86, 241.54, 293.5, 356.05]] N [119.86, 241.54, 2935, 356.05]] ’_‘l Code execution failed due to the following error: Invalid URL image.jog': No scheme supplied. gy
Sample 1 Sample 2 V sample 3
|

&B verification Reason:
sample1 and Sample2 both correctly used the *objectlocation" tool to find the bounding box of the fruits, but Sample1's code is more straightforward and aligns well with the task. Sample3 attempted to load
the image from a URL but incorrectly formatted the path, leading to a failure. Therefore, Sample1 is the best option.

v v v

Q Thought: © Thought: Q Thought:

Thought: Now, | have found the bounding box of a fruit. | will mark it in the image using Thought: Now | have the bounding box of the frutt. | will mark The fruits have been successfully
the ‘image_generator" tool. the fruit using the ‘image_edit' tool. marked. | will use the ‘final_answer"
) Code: tool to provide the output.

import matplotlib.pyplot as pit

_fmm PIlepclr’lInge. X o Code: o code:

image_path = "image.jog

image = Image.open(image_path) mage_path = "image jpg' y N . final_answer("Fruits: 1")

bbox = [19.86, 241.54, 293.5, 356.05] marked_image_path = image_edit(prompt="mark the fruit", —
fig, ax = plt.subplots() ax.imshow(image) image_path=image_path) print(marked_image_path)

ax.add_patch(plt.Rectangle((bbox[0], bbox[1]), bbox[2]-bbox[0], bbox[3]-bbox[1],
fill=False, edgecolor="red!, linewidth=2))
plt.savefig(fruit jpg’)

Q observation:

- Q Observation:
Q, Observation: -
| .cache/1743258820375_suxeyakt.png Fruits: 1

.cache/1743258870327_ruxsubtw.png.

Sample 1 I O Sample 2 O l Sample 3 O l
&B verification Reason:

sample 1 successfully drew the bounding box (bbox) on the image via pit. Sample 2 used the image_edit tool but ignored the bbox information. Sample 3 did not use any tool to draw on the image. Therefore,
Sample 1 is the best.

Figure 18: Case study for data generation and selection.

33

	Introduction
	Related Work
	Agent Tuning
	Step-wise Preference Tuning
	Learning from AI Feedback

	Method
	Formulation
	Task Synthesis
	Data Construction
	Preference Tuning

	Experiments
	Setting
	GTA Results
	GAIA Results
	Ablation
	Statistic
	Data Quality
	Visualization

	Conclusion
	Broader Impacts
	Comparison with Existing Sampling Frameworks
	Computational Efficiency Analysis
	Task Generation
	Model Comparison on Task Generation

	Error bar for the main results
	System Prompts
	Prompt for Query Generation
	Prompt for File Generation
	Prompt for Query-file Filter
	Prompt for Step Verifier

	User Study Interface
	Preference Alignment Study
	Data quality

	More Visualization

