

ANALYZING TIME-INDEPENDENT CLASSIFIERS FOR CONDITIONAL GENERATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Classifier guidance diffusion models have advanced conditional image genera-
 012 tion by training a **time-dependent** classifier on noisy data from every diffusion
 013 timestep to guide denoising process. We revisit this paradigm and show that
 014 such dense guidance is unnecessary: a small set of **time-independent** classifiers,
 015 trained on data from selected timesteps, suffices to produce high-quality, class-
 016 consistent samples. Theoretically, we first analyze the feasibility of using a single
 017 time-independent classifier trained on clean data to guide generation under cer-
 018 tain conditions which are unrealistic in practice. To address the limitations of
 019 real-world image data, we then extend this approach to a small set of classifiers
 020 trained on noisy data from some timesteps and derive a convergence bound that
 021 depends on the number of classifiers employed. Experiments on both synthetic
 022 and real-world datasets demonstrate that guiding an unconditional diffusion model
 023 with only a few time-independent classifiers achieves performance comparable to
 024 models guided by a fully time-dependent classifier.

1 INTRODUCTION

028 In recent years, denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020; Nichol & Dhari-
 029 wal, 2021; Sohl-Dickstein et al., 2015; Song et al., 2020) have emerged as powerful generative mod-
 030 els capable of producing data of quality comparable to that of GANs (Brock et al., 2018; Goodfellow
 031 et al., 2014; Karras et al., 2019), spanning modalities such as images (Zhang et al., 2023; Ho & Sal-
 032 imans, 2022; Dhariwal & Nichol, 2021; Ramesh et al., 2021), videos (Ho et al., 2022b;a), and audio
 033 (Kong et al., 2020). A DDPM consists of a forward process that gradually perturbs clean training
 034 data by increasing the noise scale, and a reverse process that reconstructs the original data distribu-
 035 tion. As a result, DDPMs can generate high-quality novel samples by initiating the reverse process
 036 from standard Gaussian noise (Ho et al., 2020).

037 Conditional generation (Song et al., 2021; Dhariwal & Nichol, 2021; Ho & Salimans, 2022) is a key
 038 problem in DDPMs, enabling condition-consistent sample generation such as class-specific images.
 039 A representative approach is the classifier-guided diffusion model (CGDM) (Dhariwal & Nichol,
 040 2021), which uses a **time-dependent** classifier to guide the generation process. Specifically, Song
 041 et al. (2021) proposed constructing intermediate conditional distributions $p_t(\mathbf{x} \mid y)$ in the reverse
 042 process using conditional score functions, so that it can finally generate the target conditional distri-
 043 bution $p_0(\mathbf{x} \mid y)$. CGDM employs this idea by decomposing the conditional score function into an
 044 unconditional score function together with a guidance term provided by a time-dependent classifier
 045 $p_t(y \mid \mathbf{x})$. Although this strategy enables high-quality conditional generation, it requires training the
 046 classifier on noisy data at every timestep of the forward process, which is computationally expensive
 and labor-intensive.

047 In this paper, we investigate whether training a single **time-independent** classifier on clean data,
 048 or a small set of time-independent classifiers on noisy data from a few timesteps, can still provide
 049 sufficient guidance for conditional generation. Our key observation is that the target conditional
 050 distribution can be expressed as $p_0(\mathbf{x} \mid y) \propto p_0(\mathbf{x})p_0(y \mid \mathbf{x})$, which suggests that it suffices to
 051 generate intermediate distributions of the form $p_t(\mathbf{x})p_0(y \mid \mathbf{x})$ in the reverse process, rather than
 052 the full conditional distributions $p_t(\mathbf{x} \mid y) \propto p_t(\mathbf{x})p_t(y \mid \mathbf{x})$. To achieve this, under DDPM
 053 framework in discrete settings, we construct a transition probability and show that it can guide the
 reverse process generating $\mathbf{x}_{t-1} \sim p_{t-1}(\mathbf{x}_{t-1})p_0(y \mid \mathbf{x}_{t-1})$ if $\mathbf{x}_t \sim p_t(\mathbf{x}_t)p_0(y \mid \mathbf{x}_t)$. Crucially,

Figure 1: The confidence scores of classifiers during the reverse diffusion process and the generated images of 256×256 resolution by an unconditional diffusion model are guided by classifiers of (1, 2, 4, 8, 16, all) timesteps, where all is 1000, with each classifier represented by a different color. The class is "ocean liner".

this transition probability depends only on the time-independent classifier $p_0(y | x)$, making it the single classifier required to generate the target conditional distribution.

However, the above analysis requires sampling $x_T \sim p_T(x_T)p_0(y | x_T)$ for initializing the reverse process, which is intractable. Although $p_T(x) \approx \mathcal{N}(x; 0, I)$ for large T , the complexity of the classifier $p_0(y | x)$ makes it impossible to sample directly from $\mathcal{N}(x; 0, I)p_0(y | x)$. This raises the question of whether we can instead sample $x_T \sim \mathcal{N}(x_T; 0, I)$. Under a mild smoothness assumption on the unconditional score function, we prove that if the classifier $p_0(y | x)$ is strongly log-concave, then starting from $\mathcal{N}(x; 0, I)$ can still converge to the target conditional distribution exponentially in T . Furthermore, experiments on both synthetic and real-world image datasets corroborate this result.

In practice, an additional challenge arises. The above analysis requires $p_0(y | \cdot)$ to be defined on the entire space \mathbb{R}^n so that it can provide guidance even for noisy data. However, this condition does not hold in real-world scenarios due to the manifold hypothesis (Bengio et al., 2013), which states that real-world data typically lie on a low-dimensional submanifold $\mathcal{M}_0 \subset \mathbb{R}^n$. As a result, $p_0(y | \cdot)$ is only meaningful in a neighborhood of the data manifold \mathcal{M}_0 and fails to provide informative guidance for noisy data far from \mathcal{M}_0 . To address this limitation, we propose training a small number of time-independent classifiers on noisy data at selected timesteps so that they remain informative for noisy inputs. Theoretically, we show that the total variation distance between the distribution generated by our model guided by k classifiers and the target conditional distribution is bounded by $\mathcal{O}(1/k)$. In practice, k can be chosen much smaller than the number of diffusion timesteps T . For example, experiments on ImageNet-1K (Deng et al., 2009) demonstrate that with only $k = 8$ classifiers, the reverse process still produces high-quality samples, and evaluation metrics such as FID and sFID remain comparable to those achieved by CGDM with $T = 1000$ classifiers.

In conclusion, our contributions include the following three aspects.

- (i) We theoretically prove that only using the time-independent classifier $p_0(y | x)$ trained on clean data can also guide the reverse process to generate the conditional distribution if we can sample $x_T \sim p_T(x_T)p_0(y | x_T)$, and also our synthetic experiment shows the validity of this result.
- (ii) To relax the initialization requirement, we analyze the possibility of drawing the initial sampling from $\mathcal{N}(x; 0, I)$. Under a smoothness assumption of unconditional score function, theoretical result shows that if $p_0(y | \cdot)$ is strongly log-concave, then initialization from $\mathcal{N}(x; 0, I)$ still ensures reliable generation. Experiments on both synthetic and real-world datasets confirm this result.
- (iii) To deal with real-world image datasets, because of the manifold hypothesis, we propose to train a few time-independent classifiers on noisy data of some timesteps to guide the generation. Theoretically, we derive an upper bound on the total variation distance between the generated distribution and the target distribution in terms of the number of classifiers. Empirically, experiments on ImageNet-1K show that even with a small number of classifiers, our method achieves competitive performance.

Figure 2: For $i = 1, 2$, reverse diffusion process that initially samples from the distributions $\mathcal{N}(\mathbf{x}; 0, I)p_0(y_i|\mathbf{x})$, and the classifier guided diffusion model reconstructs the conditional distribution $p_0(\mathbf{x}|y = y_i)$.

2 RELATED WORKS

Diffusion Model. Denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) have become a powerful paradigm for data generation (Zhang et al., 2023; Rombach et al., 2022). Score-based generative models (Song & Ermon, 2019) estimate data gradients and sample with Langevin dynamics, and Song et al. (2021) unified them with DDPMs via stochastic differential equations. While DDPMs produce high-quality images, they require many steps, leading to high computational costs. To improve efficiency, Song et al. (2020) proposed denoising diffusion implicit models (DDIMs), which generalize DDPMs with non-Markovian processes while preserving the same training objective. DDIMs achieve comparable quality with fewer steps. Building on these foundations, recent works (Zhang et al., 2023; Ho & Salimans, 2022; Dhariwal & Nichol, 2021; Rombach et al., 2022; Peebles & Xie, 2023; Stypułkowski et al., 2024; Tevet et al., 2022; Ramesh et al., 2022) have demonstrated the broad applicability of diffusion models across diverse domains.

In theoretical analysis, many works research the distance between the target distribution and the generated distribution. These works study the convergence guarantees for ODE-based samplers (Huang et al., 2024; Chen et al., 2023b) and SDE-based samplers (Bortoli et al., 2021; Li & Yan, 2024). Moreover, they propose many techniques for relaxing the assumptions. Especially, in order to weaken the assumptions of smoothness, the technique of applying Girsanov’s theorem (Chen et al., 2023c) has been proposed for analyzing SDE-based samplers.

Conditional Generation. Conditional generation is a key task in diffusion models. Dhariwal & Nichol (2021) introduced the classifier-guided diffusion model (CGDM), which uses an auxiliary time-dependet classifier to guide the reverse process and improves class-conditional sampling quality. However, the classifier must be trained on noisy samples from every timestep, which is costly. Our work shows that this is unnecessary: classifiers from only a few timesteps—or even timestep zero—are sufficient for conditional generation.

Ho & Salimans (2022) proposed classifier-free guidance, which removes the classifier by approximating classifier gradients with score function differences, but still requires labeled data for training. Other approaches, such as off-the-shelf and plug-and-play methods (Ma et al., 2023; Go et al., 2023; Graikos et al., 2022; Nguyen et al., 2017; Chao et al., 2022; Huang et al., 2022), reduce classifier training by reusing pretrained models, though their focus lies beyond the scope of our work.

3 INVESTIGATION OF THE CLASSIFIER GUIDANCE

3.1 PRELIMINARIES

Diffusion model. Diffusion model (Ho et al., 2020) is a method for generating new samples $\mathbf{x} \sim p(\mathbf{x})$. It first draws sample $\mathbf{x}_0 \sim p_0(\mathbf{x}_0) = p(\mathbf{x}_0)$ and then gradually add noise to \mathbf{x}_0 so that after sufficient steps the \mathbf{x}_T approximately obeys $\mathcal{N}(\mathbf{x}_T; 0, I)$. Formally, $\mathbf{x}_t \sim p_t(\mathbf{x}_t)$ is given by $p(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t I)$. Next, the denoising process is to gradually generate clean samples by learning $p(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_t(\mathbf{x}_t), \sigma_t^2 I)$, where $\boldsymbol{\mu}_t(\mathbf{x}_t)$ is obtained by removing the noise $\boldsymbol{\epsilon}_t(\mathbf{x}_t)$ from \mathbf{x}_t , i.e., $\boldsymbol{\mu}_t(\mathbf{x}_t) = \frac{1}{\sqrt{1 - \beta_t}}(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \alpha_t}}\boldsymbol{\epsilon}_t(\mathbf{x}_t))$, $\bar{\alpha}_t := \prod_{s=1}^t (1 - \beta_s)$. So after T steps of denoising, \mathbf{x}_0 can be recovered. These two processes can also be expressed by using stochastic differential equation (SDE) framework (Song et al., 2021); see more details in Appendix B.

Figure 3: Generated images of 256×256 resolutions under the guidance of the different number of classifiers. Left: no classifiers guidance (FID 26.21), middle: 8 classifiers guidance (FID 12.90), right: 1000 classifier guidance (FID 12.00). The ground truth labels are "Maltese dog", "monarch butterfly", "balloon", and "cheeseburger".

Classifier guidance. Classifier guidance diffusion models (CGDM) (Dhariwal & Nichol, 2021) generate samples $\mathbf{x} \sim p_0(\mathbf{x} \mid y)$ by using an additional classifier to guide the reverse process. Specifically, in CGDM, the goal is to generate all intermediate conditional distribution $p_t(\mathbf{x} \mid y)$. Since $p_{t-1}(\mathbf{x}_{t-1} \mid y) = \int p_t(\mathbf{x}_t \mid y) p(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y) d\mathbf{x}_t$, it needs to obtain the transition probability $p(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y)$,

$$p(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y) = \frac{p(\mathbf{x}_{t-1} \mid \mathbf{x}_t) p(y \mid \mathbf{x}_{t-1}, \mathbf{x}_t)}{p_t(y \mid \mathbf{x}_t)} = p(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \frac{p_{t-1}(y \mid \mathbf{x}_{t-1})}{p_t(y \mid \mathbf{x}_t)},$$

where we use the fact that $p(y \mid \mathbf{x}_{t-1}, \mathbf{x}_t) = p_{t-1}(y \mid \mathbf{x}_{t-1})$ (Dhariwal & Nichol, 2021). This transition consists of two terms: the unconditional transition $p(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$ and the ratio $p_{t-1}(y \mid \mathbf{x}_{t-1})/p_t(y \mid \mathbf{x}_t)$, which introduces the new term $\nabla_{\mathbf{x}} \log p_t(y \mid \mathbf{x}_t)$ in the reverse process. Consequently, the reverse process is

$$\mathbf{x}_{t-1} = \boldsymbol{\mu}_t(\mathbf{x}_t) + \sigma_t^2 \nabla_{\mathbf{x}} \log p_t(y \mid \mathbf{x}_t) + \sigma_t \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, I), \quad (1)$$

where the classifier guidance $\nabla_{\mathbf{x}} \log p_t(y \mid \mathbf{x})$ is time-dependent and requires training classifiers on noisy data for all timestep t .

3.2 TIME-INDEPENDENT CLASSIFIER GUIDANCE

Let us reconsider the reverse process in CGDM. The main technique is applying the transition probability $p(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y)$ that can generate $\mathbf{x}_{t-1} \sim p_{t-1}(\mathbf{x}_{t-1} \mid y)$ from $\mathbf{x}_t \sim p_t(\mathbf{x}_t \mid y)$ step by step, ultimately yielding $p_0(\mathbf{x} \mid y)$. However, the goal is to generate $p_0(\mathbf{x} \mid y)$, instead of all $p_t(\mathbf{x} \mid y)$. Noting that $p_0(\mathbf{x} \mid y) \propto p_0(\mathbf{x}) p_0(y \mid \mathbf{x})$, we observe that it suffices to generate $\mathbf{x}_{t-1} \sim p_{t-1}(\mathbf{x}_{t-1}) p_0(y \mid \mathbf{x}_{t-1})$ from $\mathbf{x}_t \sim p_t(\mathbf{x}_t) p_0(y \mid \mathbf{x}_t)$, then it can complete the goal of generating $p_0(\mathbf{x} \mid y)$. This perspective motivates the construction of a new transition probability $\tilde{p}(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y)$. The following theorem provides a general framework for constructing such a transition probability; see Appendix A.1 for the proof.

Theorem 3.1. For a fixed classifier $h_y(\mathbf{x})$, if we draw $\mathbf{x}_t \sim Z_t p_t(\mathbf{x}_t) h_y(\mathbf{x}_t)$ and generate \mathbf{x}_{t-1} by applying the transition probability

$$\tilde{p}(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y) := p(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \frac{h_y(\mathbf{x}_{t-1})}{h_y(\mathbf{x}_t)},$$

then the generated

$$\mathbf{x}_{t-1} \sim Z_{t-1} p_{t-1}(\mathbf{x}_{t-1}) h_y(\mathbf{x}_{t-1}),$$

where Z_t and Z_{t-1} are normalization terms.

Therefore, if we set the classifier $h_y := p_0(y \mid \cdot)$ in Theorem 3.1 and draw

$$\begin{aligned} \mathbf{x}_T &\sim Z_T p_T(\mathbf{x}_T) p_0(y \mid \mathbf{x}_T) \Rightarrow \mathbf{x}_{T-1} \sim Z_{T-1} p_{T-1}(\mathbf{x}_{T-1}) p_0(y \mid \mathbf{x}_{T-1}), \\ &\quad \Rightarrow \dots, \\ &\quad \Rightarrow \mathbf{x}_0 \sim Z_0 p_0(\mathbf{x}_0) p_0(y \mid \mathbf{x}_0) = p_0(\mathbf{x}_0 \mid y), \end{aligned}$$

Algorithm 1 Sampling using diffusion $(\mu_\theta(\mathbf{x}_t), \Sigma_\theta(\mathbf{x}_t))$ and k classifiers $p_{t_i}(y | \mathbf{x}_t)$

```

216 Input: class label  $y$ , gradient scale  $s$ 
217  $\mathbf{x}_T \leftarrow$  sample from  $N(\mathbf{x}_T; 0, I)$  and compute time interval  $t^* \leftarrow T/k$ 
218 for all  $t$  from  $T$  to 1 do
219    $i \leftarrow \lfloor t/t^* \rfloor$ 
220    $\mu, \Sigma \leftarrow \mu_\theta(\mathbf{x}_t), \Sigma_\theta(\mathbf{x}_t)$ 
221    $\mathbf{x}_{t-1} \leftarrow \mathcal{N}(\mu + s\Sigma \nabla_{\mathbf{x}_t} \log p_i(y | \mathbf{x}_t), \Sigma)$ 
222 end for
223 return  $\mathbf{x}_0$ 
224
225
226
```

227 then we can successfully recover $p_0(\mathbf{x} | y)$. The intermediate \mathbf{x}_t just needs to obey $p_t(\mathbf{x}_t)p_0(y | \mathbf{x}_t)$
 228 for all t , which can be achieved by applying the transition probability $\tilde{p}(\mathbf{x}_{t-1} | \mathbf{x}_t, y)$. Import-
 229 antly, this transition probability requires only the knowledge of the single time-independent classi-
 230 fier $p_0(y | \cdot)$. More specifically, the reverse process is characterized by the following proposition
 231 and the proof is provided in Appendix A.2.

232 **Proposition 3.2.** *Using the same notations as in Theorem 3.1, if $\mathbf{x}_t \sim Z_t p_t(\mathbf{x}_t) h_y(\mathbf{x}_t)$ and gener-
 233 ating \mathbf{x}_{t-1} by*

$$234 \quad \mathbf{x}_{t-1} = \mu(\mathbf{x}_t) + \sigma_t^2 \nabla_{\mathbf{x}} \log h_y(\mathbf{x}_t) + \sigma_t \epsilon, \quad \epsilon \sim \mathcal{N}(0, I), \quad (2)$$

235 *then $\mathbf{x}_{t-1} \sim Z_{t-1} p_{t-1}(\mathbf{x}_{t-1}) h_y(\mathbf{x}_{t-1})$, where Z_t and Z_{t-1} are normalization terms.*

236 By comparing the reverse dynamics in (2) and (1), we can see that the classifier guidance term
 237 $\nabla_{\mathbf{x}} \log p_0(y | \mathbf{x})$ in our model is time-independent and can be trained solely on clean data. We
 238 construct a synthetic experiment to test the validity of the reverse dynamics (2); see the results in
 239 Section 4.1.

242 3.3 INITIAL SAMPLING AND CONTRACTIVE PROPERTY

243 The next challenge is handling the initial sampling $\mathbf{x}_T \sim p_T(\mathbf{x}_T)p_0(y | \mathbf{x}_T)$. Although $p_T(\mathbf{x})$
 244 approximates $\mathcal{N}(\mathbf{x}; 0, I)$, the complexity of $p_0(y | \mathbf{x})$ results in sampling from $\mathcal{N}(\mathbf{x}; 0, I)p_0(y | \mathbf{x})$
 245 intractable. This raises the question of whether we can instead directly sample $\mathbf{x}_T \sim \mathcal{N}(\mathbf{x}_T; 0, I)$.
 246 To answer this question, we analyze the contractive property of the reverse dynamics (2) in the
 247 following theorem. A more formal statement of Theorem 3.3, along with its proof, is provided in
 248 Appendix B.1.

249 **Theorem 3.3 (Informal).** *Under a mild smoothness assumption on the unconditional $\log p_t$, if the
 250 time-independent classifier h_y is M -strongly log-concave, i.e., $-\nabla_{\mathbf{x}}^2 \log h_y(\mathbf{x}) \succeq M I$ for some
 251 constant $M > 0$, then even when $\mathbf{x}_T \sim \mathcal{N}(\mathbf{x}_T; 0, I)$ is used as the initialization in the reverse
 252 process (2), the generated distribution converges to the target distribution exponentially in T .*

253 The main idea of Theorem 3.3 is to establish a contractive inequality for (2), given by

$$254 \quad \|\bar{\mathbf{x}}_t - \hat{\mathbf{x}}_t\|^2 \leq e^{-K(T-t)} \|\bar{\mathbf{x}}_T - \hat{\mathbf{x}}_T\|^2, \quad (3)$$

255 where $\bar{\mathbf{x}}_t$ and $\hat{\mathbf{x}}_t$ are generated by (2) from different initializations $\bar{\mathbf{x}}_T$ and $\hat{\mathbf{x}}_T$, respectively. Owing
 256 to the smoothness of $\log p_t$ and the strong log-concavity of $p_0(y | \cdot)$, we can ensure the existence
 257 of a positive constant $K > 0$. Inequality (3) then implies that the distance between $\bar{\mathbf{x}}_t$ and $\hat{\mathbf{x}}_t$
 258 decays exponentially in T . Consequently, sampling $\mathbf{x}_T \sim \mathcal{N}(\mathbf{x}_T; 0, I)$ has little impact on the final
 259 generation compared with $\mathbf{x}_T \sim p_T(\mathbf{x}_T)p_0(y | \mathbf{x}_T)$.

260 For the strong log-concavity of the classifier h_y , a simple example is the “Gaussian-like” classifier
 261 of the form $h_y(\mathbf{x}) = \exp(-\|\mathbf{x} - \mu_y\|^2 / \sigma_y^2)$, which has been used in the noise inverse problem
 262 (Dhariwal & Nichol, 2021). It is clear that such an h_y is $1/\sigma_y^2$ -strongly log-concave. Using this type
 263 of classifier, we construct synthetic datasets to verify the results of Theorem 3.3; see Appendix D.1
 264 for details. For real-world image datasets, although the strong log-concavity of the classifier cannot
 265 be guaranteed, our experiments demonstrate that initialization with $\mathcal{N}(\mathbf{x}; 0, I)$ remains valid; see
 266 Section 4.2. We also empirically evaluate the contractive property on real-world image datasets, and
 267 the results are shown in Section 4.3.

270 3.4 MANIFOLD HYPOTHESIS AND MORE CLASSIFIERS
271

272 In previous analysis, we omitted an important assumption that $p_0(y | \cdot)$ is meaningful even for
273 noisy data \mathbf{x}_t at large t . However, this assumption is generally not satisfied for real-world image
274 datasets. High-dimensional data typically concentrate on a much lower-dimensional submanifold, a
275 phenomenon known as the manifold hypothesis (Bengio et al., 2013), which has been extensively
276 examined in both theory (Fefferman et al., 2016) and experiments (Brown et al., 2022). Since clean
277 data in \mathbb{R}^n lie on a low-dimensional submanifold $\mathcal{M}_0 \subset \mathbb{R}^n$, a classifier $p_0(y | \cdot)$ trained on clean
278 data is only meaningful within a small neighborhood of \mathcal{M}_0 . Consequently, $p_0(y | \cdot)$ cannot provide
279 reliable guidance for noisy samples \mathbf{x}_t far from the data manifold \mathcal{M}_0 .
280

281 Our next goal is to address this limitation. Motivated by the approach of Song & Ermon (2019), we
282 train a small number of time-independent classifiers on noisy data from different timesteps of the
283 forward diffusion process so that they remain informative even for noisy inputs. Let $T = t_0 > t_1 >$
284 $\dots > t_k = 0$. For each t_i , we train a classifier $h_y^i := p_{t_i}(y | \cdot)$ on noisy data \mathbf{x}_{t_i} , for $i = 1, 2, \dots, k$.
285 During generation, from step t_{i-1} to step t_i , we employ h_y^i to guide sampling according to the
286 reverse dynamics (2).
287

288 However, two additional issues must be addressed: how to design the transition probability at each
289 step t_i when the classifier changes, and how to modify the reverse dynamics (2) at t_i . First, for
290 $i = 1, 2, \dots, k-1$, the transition probability at t_i can be defined as
291

$$\tilde{p}_{t_i}(\mathbf{x}_{t_i} | \mathbf{x}_{t_{i+1}}, y) := p(\mathbf{x}_{t_i} | \mathbf{x}_{t_{i+1}}) \frac{h_y^{i+1}(\mathbf{x}_{t_i})}{h_y^i(\mathbf{x}_{t_{i+1}})} = p(\mathbf{x}_{t_i} | \mathbf{x}_{t_{i+1}}) \frac{p_{t_{i+1}}(y | \mathbf{x}_{t_i})}{p_{t_i}(y | \mathbf{x}_{t_{i+1}})}. \quad (4)$$

292 Under this transition probability, when $\mathbf{x}_{t_{i+1}} \sim p_{t_{i+1}}(\mathbf{x}_{t_{i+1}})p_{t_i}(y | \mathbf{x}_{t_{i+1}})$, it follows that $\mathbf{x}_{t_i} \sim$
293 $p_{t_i}(\mathbf{x}_{t_i})p_{t_{i+1}}(y | \mathbf{x}_{t_i})$. The reasoning is analogous to the proof of Theorem 3.1; see Appendix A.1.
294 Based on this transition probability, the reverse dynamics is formulated in the following proposition,
295 with proof provided in the Appendix A.3.
296

Proposition 3.4. *Using the same notations as the above, the desired \mathbf{x}_{t_i} can be generated from
297 $\mathbf{x}_{t_{i+1}}$ by*

$$\mathbf{x}_{t_i} = \mu(\mathbf{x}_{t_{i+1}}) + \sigma_{t_{i+1}}^2 \nabla_{\mathbf{x}} \log p_{t_i}(y | \mathbf{x}_{t_{i+1}}) + \sigma_{t_{i+1}} \boldsymbol{\varepsilon}.$$

300 Except at the timesteps t_i where the guidance changes, the transition from $\mathbf{x}_{t_{i-1}}$ to generate $\mathbf{x}_{t_{i+1}}$
301 follows the same reverse dynamics as in (2), guided by $p_{t_{i+1}}(y | \mathbf{x})$. In other words, the term
302 $\nabla_{\mathbf{x}} \log p_{t_i}(y | \mathbf{x})$ is used from step $t_{i-1} - 1$ to step t_i , while the term $\nabla_{\mathbf{x}} \log p_{t_{i+1}}(y | \mathbf{x})$ is used
303 from step $t_i - 1$ to step t_{i+1} . The complete sampling pipeline is summarized in Algorithm 1, where
304 we also introduce a guidance scale s to control the strength of guidance.
305

306 The next question is how to determine the number k of classifiers. To this end, we investigate
307 whether it is possible to establish an upper bound on the distance between the distribution gener-
308 ated with k classifiers and the target conditional distribution. To address this, we apply Girsanov’s
309 theorem (Liptser & Shiryaev, 2013) to bound the total variation between the target distribution
310 $p_y := p(\cdot | y)$ and the generated distribution \tilde{p}_y . A formal statement of the following theorem
311 and its proof are provided in Appendix B.2.
312

Theorem 3.5 (Informal). *Under some assumptions, we have that*

$$\text{TV}(p_y, \tilde{p}_y) \leq \mathcal{O}\left(\frac{1}{k}\right).$$

313 Here, we outline the key ideas in the proof of this theorem, which consists of two parts. First,
314 Girsanov’s theorem is applied to relate the total variation (TV) to the difference in guidance terms,
315 i.e.,
316

$$\text{TV}(p_y, \tilde{p}_y) \leq \sum_{i=1}^k \int_{t_i}^{t_{i-1}} \mathbb{E} [\|p_{t_i}(y | \mathbf{x}_t) - p_t(y | \mathbf{x}_t)\|^2] dt,$$

317 an idea inspired by Bortoli et al. (2021); Chen et al. (2023c). However, we employ another proof
318 without considering the Wiener space as the previous works did. Second, to obtain an upper bound
319 for the term on the right-hand side, we apply Grönwall’s Inequality under suitable assumptions on
320 the target conditional distribution.
321

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

Table 1: Comparison between the different numbers of classifier guidance on sample quality.

SIZE	CONDITIONAL	CLASSIFIERS	FID	SFID
256	✗	0	26.21	6.35
256	✗	4	14.81	8.51
256	✗	8	12.90	11.09
256	✗	16	12.33	11.43
256	✗	1000	12.00	10.40
<hr/>				
256	✓	0	10.94	6.02
256	✓	8	4.78	5.22
256	✓	1000	4.59	5.25
<hr/>				
128	✓	0	5.91	5.09
128	✓	8	3.05	5.18
128	✓	1000	2.97	5.09
<hr/>				
64	✓	8	4.79	6.07
64	✓	1000	4.14	5.82

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Experimentally, we investigate the confidence score of the generated results guided by different number of time-independent classifiers provided by Nichol & Dhariwal (2021). As shown in Figure 1, the model fails to provide meaningful guidance when only a single classifier at timestep 0 is used. This is because one classifier cannot provide reliable guidance for noisy data far from the data manifold \mathcal{M}_0 , as discussed earlier. In contrast, when the number of classifiers increases to $k = 8$ or $k = 16$, the reverse process produces results with performance comparable to CGDM, which relies on all 1000 classifiers. These findings empirically validate our approach.

4 EXPERIMENTAL RESULTS

In this section, we present experiments on both synthetic and real-world datasets to validate the proposed theory, with implementation details provided in Appendix C.

4.1 ONE CLASSIFIER GUIDANCE FOR SYNTHETIC DATA

As discussed in Theorem 3.1, one classifier can be sufficient for conditional generation guidance, if the initial sampling condition can be satisfied and the classifier is meaningful even for noisy data. In this subsection, we experiment on 2-dimensional toy datasets to verify this.

Let the clean data be drawn from $p_0(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_0, \Sigma)$. Suppose it has two classes $y \in \{y_1, y_2\}$ with classifiers set by $p_0(y = y_1 \mid \mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \Sigma)$ and $p_0(y = y_2 \mid \mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_2, \Sigma)$, where $\Sigma = I$, $\boldsymbol{\mu}_0 = (-6, 0)$, $\boldsymbol{\mu}_1 = (0, 6)$, and $\boldsymbol{\mu}_2 = (0, -6)$. Under these settings, by $p_0(\mathbf{x} \mid y) \propto p_0(\mathbf{x}) \cdot p_0(y \mid \mathbf{x})$, the objective conditional distributions $p_0(\mathbf{x} \mid y = y_1)$ and $p_0(\mathbf{x} \mid y = y_2)$ are also normal distributions with expectations $\boldsymbol{\mu}_{\mathbf{x}_0|y_1} = (\boldsymbol{\mu}_0 + \boldsymbol{\mu}_1)/2$ and $\boldsymbol{\mu}_{\mathbf{x}_0|y_2} = (\boldsymbol{\mu}_0 + \boldsymbol{\mu}_2)/2$ and variances $\Sigma_{\mathbf{x}_0|y_1} = \Sigma_{\mathbf{x}_0|y_2} = \Sigma/2$.

We randomly sampled 30k two-dimensional points from $p_0(\mathbf{x})$ as training data to train an unconditional diffusion model with $T = 1000$. For the reverse process, we sampled $2k$ two-dimensional points for each class y_i from the distribution $\mathcal{N}(\mathbf{x}; 0, I)p_0(y_i \mid \mathbf{x})$, for $i = 1, 2$. This sampling is tractable because they are also normal distributions. The final generation results are shown in Figure 2. Both groups of data run the reverse diffusion process guided by their corresponding fixed classifiers $p_0(y_i \mid \mathbf{x})$ and successfully reconstruct the distributions $p_0(\mathbf{x}_0 \mid y = y_i)$. This verifies Theorem 3.1, demonstrating that the information provided by the classifier $p_0(y \mid \mathbf{x})$ alone is sufficient to generate the final conditional distribution.

4.2 QUANTITATIVE COMPARISON

Theorem 3.1 shows that guided diffusion does not require a time-dependent classifier trained on noisy data from all timesteps. For real-world image datasets, as discussed in Section 3.4, a small set of time-independent classifiers trained on noisy data from a few timesteps (e.g., 8 timesteps instead

Figure 4: Classifier guided samples on CIFAR-10, each column corresponds to different classes. The upper 5 rows are guided by 1000 classifiers, and the lower 5 rows are guided by 10 classifiers.

Table 2: Samples quality guided by 10 and 1000 classifiers on CIFAR10 dataset.

CLASSIFIERS	TRAINING ITER	FID	SFID
1000	100K	19.36	18.22
10	30K	7.36	6.91

of all 1000) can also guide the diffusion model to reconstruct $p_0(\mathbf{x} \mid y)$. In this subsection, we conduct experiments on ImageNet-1K to quantitatively verify this idea. For simplicity, we refer to the use of time-independent classifiers trained on noisy data from k timesteps as "using k classifiers."

We report experimental results using a diffusion model (Nichol & Dhariwal, 2021) trained on ImageNet-1K, with classifiers (Nichol & Dhariwal, 2021) trained on $k = 8$ different timesteps. The total number of timesteps is set to $T = 1000$, and the reverse diffusion process is executed according to Algorithm 1 to guide an unconditional diffusion model in sample generation.

Figure 3 presents images generated by an unconditional diffusion model with the guidance of 0, 8, and 1000 classifiers. The leftmost images show that using 0 classifiers yields poor class consistency, as the diffusion model generates samples without guidance. In contrast, when following the strategy of Algorithm 1, class consistency improves substantially with classifier guidance. The middle images in Figure 3, generated with 8 classifiers, demonstrate that even this small number of classifiers is sufficient to produce high-quality, class-consistent samples. Moreover, the visual quality and detail of these samples are comparable to those generated with 1000 classifiers, i.e., using a time-dependent classifier trained on noisy data from all timesteps. More experiments with larger figure are provided in Appendix E.

To quantitatively demonstrate the performance, we evaluate multiple metrics, including Fréchet Inception Distance (FID) (Heusel et al., 2017), sliding FID, Inception Score (IS) (Szegedy et al., 2016), recall, and precision (Kynkänniemi et al., 2019). As shown in the top rows of Table 1, the unconditional diffusion model without classifier guidance fails to generate high-quality samples, whereas models with classifier guidance achieve substantial improvements. Guidance with as few as 4 classifiers leads to significant gains across all metrics, and using 8 classifiers yields performance comparable to guidance with all 1000 classifiers. Increasing the number of classifiers to 16 results in only marginal improvements, with performance effectively saturated at the level of 1000 classifiers. Experiments with conditional diffusion report similar results across all image resolutions. These findings validate our theory that only a small number of classifiers are sufficient for effective conditional generation.

We further validate our theory by training classifiers from scratch for an unconditional diffusion model with 1000 timesteps and with 10 timesteps on the CIFAR-10 dataset (Krizhevsky, 2009). As shown in Figure 4, the upper 5 rows display results generated with classifiers corresponding to all 1000 diffusion timesteps (trained with batch size 64 for 100k iterations), while the lower 5 rows

Figure 5: Left: Confidence score of classifiers with different classifier scales from 0.0 to 10.0: Given the bias $\mu = -0.03 \cdot \mathbf{1}$ on the initial sampling, the generated images for class "peacock".

visualize results guided by classifiers corresponding to only 10 timesteps (trained for 30k iterations). The quantitative results are reported in Table 2. Both models achieve comparable image quality, but our approach substantially reduces computational cost by requiring far fewer classifiers.

4.3 VERIFYING CONTRACTIVE PROPERTY

Theorem 3.3 investigates the contractive property of the reverse dynamics (2) under the smoothness assumption of the unconditional score function and the strong log-concavity of the classifier. To test its validity, we first conduct a synthetic experiment on a toy dataset by setting the initial distribution as either a standard Gaussian or an arbitrary Gaussian, as shown in Appendix D.1.

To verify the contraction property discussed in Theorem 3.3 on real-world datasets, we test the conditional diffusion model by incrementally increasing the classifier guidance scale. The motivation is that, under the assumptions of Theorem B.1, i.e., the smoothness of the unconditional score function and the strong log-concavity of the classifier, increasing the guidance scale to a suitable value can make the contractive inequality hold, as discussed in Remark 3.

In this case, we initially samples $\mathbf{x}_T \sim \mathcal{N}(\mathbf{x}_T; \mu, I)$ with the bias $\mu = -0.03 \cdot \mathbf{1}$.

As shown in Figure 5, the classifier guidance scale increases from 0.0 to 10.0 from left to right. When the scale is 0, the samples generated by the conditional diffusion model without guidance are of poor quality. As the scale increases, the generated images gradually improve, ranging from nearly blank outputs to realistic bird images. This validates the contractive property of the reverse dynamics (2) even on real-world datasets. Moreover, this contractive property enhances the robustness of the diffusion model against distribution shifts in the initial sampling. Additional experimental results are provided in Appendix D.2.

4.4 COMPARISON TO CLASSIFIER-FREE GUIDANCE MODEL

Our idea can be directly applied to classifier-free guidance model (CFG), because CFG and classifier guidance model (CG) are theoretically equivalent. Note that the main goal of these two approaches is to estimate the guidance term $\nabla_{\mathbf{x}} \log p_t(y | \mathbf{x})$. In classifier guidance, a time-dependent classifier is trained to approximate $p_t(y | \cdot)$ on all noisy data. In classifier-free guidance, a new neural network $s_{\theta}(t, \mathbf{x}, y)$ is trained to estimate the conditional score $\nabla_{\mathbf{x}} \log p_t(\mathbf{x} | y)$, while $s_{\phi}(t, \mathbf{x}, \emptyset)$ approximates the unconditional score $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$. The guidance term is then computed as

$$\nabla_{\mathbf{x}} \log p_t(y | \mathbf{x}) \approx s_{\phi}(t, \mathbf{x}, y) - s_{\phi}(t, \mathbf{x}, \emptyset).$$

So the main goal of CFG is to train time-dependent $s_{\phi}(t, \mathbf{x}, y)$. Based on our theoretical analysis, instead of training a time-dependent $s_{\phi}(t, t, y)$, we can train k time-independent

$$s_{\phi_1}(\mathbf{x}_{t_1}, y), \dots, s_{\phi_k}(\mathbf{x}_{t_k}, y),$$

because according to Proposition 3.4, we only need guidance at t_1, \dots, t_k , i.e., training $s_{\phi_k}(\mathbf{x}, y)$ such that

$$\nabla_{\mathbf{x}} \log p_{t_i}(y | \mathbf{x}) \approx s_{\phi_i}(\mathbf{x}, y) - s_{\phi_i}(\mathbf{x}, \emptyset).$$

Figure 6: Class-conditional samples generated by our classifier-free guided diffusion model using only $k = 10$ conditional score $s_{\phi_i}(\mathbf{x}_{t_i}, y)$ with guidance scale $s = 1.3$ at selected timesteps $t_k \in [0, 100, 200, \dots, 900]$.

For sampling, we only need to replace $\nabla_{\mathbf{x}} \log p_{t_i}(y \mid \mathbf{x})$ by $s_{\phi_i}(\mathbf{x}, y) - s_{\phi_i}(\mathbf{x}, \emptyset)$ in Algorithm 1.

Here, we demonstrate the qualitative results obtained by our classifier-free guidance diffusion model using $k = 10$ learned guidance heads. As shown in Figure 6, our approach is able to generate visually compelling class-conditional samples across a wide range of CIFAR-10 categories. Even though guidance is only provided at a limited set of time steps, the model still achieves strong semantic control while preserving high-frequency image details.

Compared with standard classifier-free guidance, our method significantly reduces the complexity of conditional score learning. Instead of modeling the conditional distribution over the entire diffusion trajectory, guidance networks are only instantiated at the selected key times $\{t_i\}_{i=1}^k$, thus lowering both training cost and memory usage. This supports our theoretical conclusion that the guidance signal does not need to be time-dense to effectively steer the reverse diffusion process.

In summary, these results validate that our proposed sparse-time guidance strategy is compatible with classifier-free guidance (CFG), and that only a few conditional score function are sufficient to achieve high-quality, class-consistent generation.

5 CONCLUSION

This paper explores the possibility of training a time-independent classifier to guide an unconditional diffusion model in generating target conditional distributions. We theoretically show that a single time-independent classifier trained on clean data can enable conditional generation under certain conditions. However, since real-world data often fails to satisfy these conditions, we propose two techniques to address this limitation. First, the initial sampling condition is intractable; we resolve this by simplifying the initialization to a standard Gaussian through analysis of the contractive property of the reverse process guided by a suitable classifier. Second, due to the manifold hypothesis, a single classifier lacks sufficient information for guidance; therefore, we employ a small number of time-independent classifiers trained at different noise levels to guide conditional generation on real-world data. To analyze the effect of the number of classifiers, we provide a theoretical convergence analysis and establish an upper bound in terms of the number of classifiers. Moreover, experiments on both synthetic and real-world datasets confirm our conclusion that using only a few time-independent classifiers achieves performance comparable to CGDM, which requires a time-dependent classifier trained on noisy data at all timesteps.

REFERENCES

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. *Gradient flows: in metric spaces and in the space of probability measures*. Springer Science & Business Media, 2008.

540 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
 541 perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828,
 542 2013.

543 Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
 544 bridge with applications to score-based generative modeling. In A. Beygelzimer, Y. Dauphin,
 545 P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*,
 546 2021.

547 Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
 548 image synthesis. *arXiv preprint arXiv:1809.11096*, 2018.

549 Bradley CA Brown, Anthony L Caterini, Brendan Leigh Ross, Jesse C Cresswell, and Gabriel
 550 Loaiza-Ganem. Verifying the union of manifolds hypothesis for image data. In *The Eleventh
 551 International Conference on Learning Representations*, 2022.

552 Chen-Hao Chao, Wei-Fang Sun, Bo-Wun Cheng, Yi-Chen Lo, Chia-Che Chang, Yu-Lun Liu, Yu-
 553 Lin Chang, Chia-Ping Chen, and Chun-Yi Lee. Denoising likelihood score matching for condi-
 554 tional score-based data generation. *arXiv preprint arXiv:2203.14206*, 2022.

555 Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
 556 User-friendly bounds under minimal smoothness assumptions. In *International Conference on
 557 Machine Learning*, pp. 4735–4763. PMLR, 2023a.

558 Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probabili-
 559 ty flow ODE is provably fast. In *Thirty-seventh Conference on Neural Information Processing
 560 Systems*, 2023b.

561 Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as easy as
 562 learning the score: theory for diffusion models with minimal data assumptions. In *The Eleventh
 563 International Conference on Learning Representations*, 2023c.

564 Sinho Chewi, Jonathan Niles-Weed, and Philippe Rigollet. Statistical optimal transport. *arXiv
 565 preprint arXiv:2407.18163*, 2024.

566 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 567 ierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 568 pp. 248–255. Ieee, 2009.

569 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
 570 *Advances in Neural Information Processing Systems*, volume 34, pp. 8780–8794, 2021.

571 Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
 572 *Journal of the American Mathematical Society*, 29(4):983–1049, 2016.

573 Hyojun Go, Yunsung Lee, Jin-Young Kim, Seunghyun Lee, Myeongho Jeong, Hyun Seung Lee,
 574 and Seungtaek Choi. Towards practical plug-and-play diffusion models. In *Proceedings of the
 575 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1962–1971, 2023.

576 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 577 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information
 578 processing systems*, 27, 2014.

579 Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as
 580 plug-and-play priors. *Advances in Neural Information Processing Systems*, 35:14715–14728,
 581 2022.

582 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 583 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
 584 neural information processing systems*, 30, 2017.

585 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
 586 arXiv:2207.12598*, 2022.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances*
595 *in Neural Information Processing Systems*, volume 33, pp. 6840–6851, 2020.

596

597 Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
598 Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
599 video generation with diffusion models. *arXiv preprint arXiv:2210.02303*, 2022a.

600 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
601 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–
602 8646, 2022b.

603

604 Daniel Zhengyu Huang, Jiaoyang Huang, and Zhengjiang Lin. Convergence analysis of probability
605 flow ode for score-based generative models. *arXiv preprint arXiv:2404.09730*, 2024.

606

607 Paul Kuo-Ming Huang, Si-An Chen, and Hsuan-Tien Lin. Improving conditional score-based gener-
608 ation with calibrated classification and joint training. In *NeurIPS 2022 Workshop on Score-Based
609 Methods*, 2022.

610

611 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
612 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
613 recognition*, pp. 4401–4410, 2019.

614

615 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
616 diffusion model for audio synthesis. *arXiv preprint arXiv:2009.09761*, 2020.

617

618 A Krizhevsky. Learning multiple layers of features from tiny images. *Master's thesis, University of
619 Tront*, 2009.

620

621 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
622 precision and recall metric for assessing generative models. *Advances in neural information
623 processing systems*, 32, 2019.

624

625 Gen Li and Yuling Yan. $o(d/t)$ convergence theory for diffusion probabilistic models under minimal
626 assumptions. *arXiv preprint arXiv:2409.18959*, 2024.

627

628 Robert S Liptser and Albert N Shiryaev. *Statistics of random processes: I. General theory*, volume 5.
629 Springer Science & Business Media, 2013.

630

631 Jiajun Ma, Tianyang Hu, Wenjia Wang, and Jiacheng Sun. Elucidating the design space of classifier-
632 guided diffusion generation. *arXiv preprint arXiv:2310.11311*, 2023.

633

634 Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug & play
635 generative networks: Conditional iterative generation of images in latent space. In *Proceedings
636 of the IEEE conference on computer vision and pattern recognition*, pp. 4467–4477, 2017.

637

638 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
639 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

640

641 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
642 the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

643

644 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
645 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine
646 learning*, pp. 8821–8831. Pmlr, 2021.

647

648 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
649 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

650

651 Daniel Revuz and Marc Yor. *Continuous martingales and Brownian motion*, volume 293. Springer
652 Science & Business Media, 2013.

653

654 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
655 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
656 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

648 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 649 learning using nonequilibrium thermodynamics. In *International conference on machine learning*, pp. 2256–2265. PMLR, 2015.
 650

651 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 652 preprint arXiv:2010.02502*, 2020.

653

654 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 655 In *Advances in Neural Information Processing Systems*, volume 32, 2019.

656

657 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 658 Poole. Score-based generative modeling through stochastic differential equations. In *International
 659 Conference on Learning Representations*, 2021. URL [https://openreview.net/
 forum?id=PxTIG12RRHS](https://openreview.net/forum?id=PxTIG12RRHS).

660

661 Michał Stypułkowski, Konstantinos Vougioukas, Sen He, Maciej Zięba, Stavros Petridis, and Maja
 662 Pantic. Diffused heads: Diffusion models beat gans on talking-face generation. In *Proceedings
 663 of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 5091–5100, 2024.

664 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
 665 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on
 666 computer vision and pattern recognition*, pp. 2818–2826, 2016.

667

668 Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano.
 669 Human motion diffusion model. *arXiv preprint arXiv:2209.14916*, 2022.

670

671 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 672 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 673 pp. 3836–3847, 2023.

674

A PROOFS

A.1 PROOF OF THEOREM 3.1

678 *Proof.* If $\mathbf{x}_t \sim \tilde{p}_t(\mathbf{x}_t \mid y) \propto p_t(\mathbf{x}_t)h_y(\mathbf{x}_t)$ and $\tilde{p}(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y)$ is defined as the theorem, then
 679 $\tilde{p}_{t-1}(\mathbf{x}_{t-1} \mid y)$ is

$$\begin{aligned}
 680 \int \tilde{p}_t(\mathbf{x}_t \mid y) \tilde{p}(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y) d\mathbf{x}_t &\propto \int p_t(\mathbf{x}_t)h_y(\mathbf{x}_t)p(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \frac{h_y(\mathbf{x}_{t-1})}{h_y(\mathbf{x}_t)} d\mathbf{x}_t \\
 681 &= \int p_t(\mathbf{x}_t)p(\mathbf{x}_{t-1} \mid \mathbf{x}_t)h_y(\mathbf{x}_{t-1}) d\mathbf{x}_t \\
 682 &= h_y(\mathbf{x}_{t-1}) \int p_t(\mathbf{x}_t)p(\mathbf{x}_{t-1} \mid \mathbf{x}_t) d\mathbf{x}_t \\
 683 &= p_{t-1}(\mathbf{x}_{t-1})h_y(\mathbf{x}_{t-1}).
 \end{aligned}$$

684 So $\mathbf{x}_{t-1} \sim \tilde{p}_{t-1}(\mathbf{x}_{t-1} \mid y) \propto p_{t-1}(\mathbf{x}_{t-1})h_y(\mathbf{x}_{t-1})$. □

A.2 PROOF OF PROPOSITION 3.2

691 *Proof.* First, by the reverse process of the unconditional diffusion model, we know

$$692 p(\mathbf{x}_{t-1} \mid \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_t(\mathbf{x}_t), \sigma_t^2 I) \propto \exp\left(-\frac{\|\mathbf{x}_{t-1} - \boldsymbol{\mu}_t(\mathbf{x}_t)\|^2}{2\sigma_t^2}\right).$$

693 Because the transition probability is

$$694 \tilde{p}(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y) = p(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \frac{h_y(\mathbf{x}_{t-1})}{h_y(\mathbf{x}_t)} = p(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \exp(\log h_y(\mathbf{x}_{t-1}) - \log h_y(\mathbf{x}_t))$$

695 and by the Taylor formula at \mathbf{x}_t ,

$$696 \log h_y(\mathbf{x}_{t-1}) - \log h_y(\mathbf{x}_t) \approx (\mathbf{x}_{t-1} - \mathbf{x}_t) \nabla_{\mathbf{x}} \log h_y(\mathbf{x}_t)$$

702 we can get
 703

$$\begin{aligned}
 704 \tilde{p}(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y) &\propto \exp\left(-\frac{\|\mathbf{x}_{t-1} - \boldsymbol{\mu}_t(\mathbf{x}_t)\|^2}{2\sigma_t^2} + (\mathbf{x}_{t-1} - \mathbf{x}_t) \nabla_{\mathbf{x}} \log h_y(\mathbf{x}_t)\right) \\
 705 &\propto \exp\left(-\frac{\|\mathbf{x}_{t-1} - \boldsymbol{\mu}_t(\mathbf{x}_t) - \sigma_t^2 \nabla_{\mathbf{x}} \log h_y(\mathbf{x}_t)\|^2}{2\sigma_t^2}\right).
 \end{aligned}$$

706 Therefore, we have $\mathbf{x}_{t-1} = \boldsymbol{\mu}(\mathbf{x}_t) + \sigma_t^2 \nabla_{\mathbf{x}} \log h_y(\mathbf{x}_t) + \sigma_t \boldsymbol{\varepsilon}$, $\boldsymbol{\varepsilon} \sim \mathcal{N}(0, I)$. \square
 707

710 A.3 PROOF OF PROPOSITION 3.4

712 *Proof.* Similarly as the proof in Theorem 3.1, if $\mathbf{x}_{t_i+1} \sim p_{t_i+1}(\mathbf{x}_{t_i+1})p_{t_i}(y \mid \mathbf{x}_{t_i+1})$, then with the
 713 transition probability $\tilde{p}_{t_i}(\mathbf{x}_{t_i} \mid \mathbf{x}_{t_i+1}, y)$ defined in (4), \mathbf{x}_{t_i} obeys
 714

$$\begin{aligned}
 715 \int p_{t_i+1}(\mathbf{x}_{t_i+1})p_{t_i}(y \mid \mathbf{x}_{t_i+1})p(\mathbf{x}_{t_i} \mid \mathbf{x}_{t_i+1}) \frac{p_{t_i+1}(y \mid \mathbf{x}_{t_i})}{p_{t_i}(y \mid \mathbf{x}_{t_i+1})} d\mathbf{x}_{t_i+1} \\
 716 = p_{t_i+1}(y \mid \mathbf{x}_{t_i}) \int p_{t_i+1}(\mathbf{x}_{t_i+1})p(\mathbf{x}_{t_i} \mid \mathbf{x}_{t_i+1}) d\mathbf{x}_{t_i+1} \\
 717 = p_{t_i}(\mathbf{x}_{t_i})p_{t_i+1}(y \mid \mathbf{x}_{t_i}).
 \end{aligned}$$

721 So this transition probability is valid. And when viewing $p_t(y \mid \mathbf{x})$ as two variables function of
 722 (t, \mathbf{x}) , by the Taylor formula,
 723

$$\log p_{t_i+1}(y \mid \mathbf{x}_{t_i}) - \log p_{t_i}(y \mid \mathbf{x}_{t_i+1}) \approx (\mathbf{x}_{t_i} - \mathbf{x}_{t_i+1}) \nabla_{\mathbf{x}} \log p_{t_i}(y \mid \mathbf{x}_{t_i+1}) + C,$$

724 where C is independent with \mathbf{x}_{t_i} . Similarly as the proof of Proposition 3.2,
 725

$$\begin{aligned}
 726 \tilde{p}_{t_i}(\mathbf{x}_{t_i} \mid \mathbf{x}_{t_i+1}, y) &\propto \exp\left(-\frac{\|\mathbf{x}_{t_i} - \boldsymbol{\mu}(\mathbf{x}_{t_i+1})\|^2}{2\sigma_{t_i+1}^2} + (\mathbf{x}_{t_i} - \mathbf{x}_{t_i+1}) \nabla_{\mathbf{x}} \log p_{t_i}(y \mid \mathbf{x}_{t_i+1})\right) \\
 727 &\propto \exp\left(-\frac{\|\mathbf{x}_{t_i} - \boldsymbol{\mu}(\mathbf{x}_{t_i+1}) - \sigma_{t_i+1}^2 \nabla_{\mathbf{x}} \log p_{t_i}(y \mid \mathbf{x}_{t_i+1})\|^2}{2\sigma_{t_i+1}^2}\right).
 \end{aligned}$$

731 Therefore, generating
 732

$$\mathbf{x}_{t_i} = \boldsymbol{\mu}(\mathbf{x}_{t_i+1}) + \sigma_{t_i+1}^2 \nabla_{\mathbf{x}} \log p_{t_i}(y \mid \mathbf{x}_{t_i+1}) + \sigma_{t_i+1} \boldsymbol{\varepsilon}. \quad \square$$

735 B PROOFS BY APPLYING SDE FORMULAS

737 Song et al. (2021) provided a stochastic differential equation (SDE) framework to explain the diffusion
 738 model, which is helpful for us to obtain the results of Theorem 3.3 and Theorem 3.5.
 739

740 To simplify the following analysis, let's choose the forward process to be the Ornstein–Uhlenbeck
 741 (OU) process, for $t \in [0, T]$ (Note that here we use T to be the endpoint of the diffusion interval,
 742 instead of the time-steps of discrete diffusion model, because in this section we won't consider the
 743 discrete version of the diffusion process),
 744

$$d\mathbf{x}_t = -\mathbf{x}_t dt + \sqrt{2} dB_t, \quad \mathbf{x}_0 \sim p,$$

745 where $(B_t)_{t \in [0, T]}$ is a standard Brownian motion on \mathbb{R}^d . So it is a particular case of our above
 746 practical settings, by
 747

$$\beta_t \equiv 2, \quad \forall t \in [0, T].$$

748 The OU process has an analytic solution
 749

$$\mathbf{x}_t \stackrel{d}{=} \lambda_t \mathbf{x}_0 + \sigma_t W, \quad W \sim \mathcal{N}(0, I),$$

750 with $\lambda_t = e^{-t}$ and $\sigma_t = \sqrt{1 - e^{-2t}}$, where $\stackrel{d}{=}$ means the random variables of the RHS and the LHS
 751 have the same distribution function.
 752

753 Now, to be more clear in notations, let denote $(\bar{\mathbf{x}}_t)_{t \in [0, T]}$ be the reverse process, that is,
 754

$$\bar{\mathbf{x}}_t := \mathbf{x}_{T-t}.$$

756 Then $(\bar{\mathbf{x}}_t)_{t \in [0, T]}$ satisfies the SDE
 757

$$758 d\bar{\mathbf{x}}_t = (\bar{\mathbf{x}}_t + 2\nabla_{\mathbf{x}} \log p_{T-t}(\bar{\mathbf{x}}_t)) dt + \sqrt{2}d\bar{B}_t, \quad \bar{\mathbf{x}}_0 \sim p_T, \quad (5)$$

760 where $(\bar{B}_t)_{t \in [0, T]}$ is the Brownian motion in reverse time, and $p_t = \text{Law}(\mathbf{x}_t)$, the density function
 761 of \mathbf{x}_t .

762 By Song et al. (2021), we can use the reverse process to generate the conditional distribution $p(\mathbf{x} \mid y)$
 763 by replacing $\nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{x})$ with

$$764 \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{x} \mid y) = \nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{x}) + \nabla_{\mathbf{x}} \log p_{T-t}(y \mid \mathbf{x}).$$

766 Therefore, let $(\mathbf{y}_t)_{t \in [0, T]}$ be the conditional reverse process for generating $p(\mathbf{x} \mid y)$, so it satisfies
 767 the following SDE, for $t \in [0, T]$,

$$769 d\mathbf{y}_t = (\mathbf{y}_t + 2\nabla_{\mathbf{x}} \log p_{T-t}(\mathbf{y}_t) + 2\nabla_{\mathbf{x}} \log h_y(t, \mathbf{y}_t)) dt + \sqrt{2}d\bar{B}_t, \quad \mathbf{y}_0 \sim p_T(\cdot \mid y), \quad (6)$$

771 where $h_y(t, \mathbf{x}) := p_{T-t}(y \mid \mathbf{x})$. Along this process, it can generate $\mathbf{y}_T \sim p(\cdot \mid y) =: p_y$.

773 B.1 CONTRACTIVE PROPERTY

774 In our setting, instead of choosing $h_y(t, \mathbf{x}) = p_{T-t}(y \mid \mathbf{x})$, we let

$$776 h_y(\mathbf{x}) = p_0(y \mid \mathbf{x}),$$

778 which is a time-independent classifier trained the clean dataset. Therefore, the SDE formula of our
 779 reverse process (2) is defined as

$$780 d\bar{\mathbf{y}}_t = (\bar{\mathbf{y}}_t + 2\nabla_{\mathbf{x}} \log p_{T-t}(\bar{\mathbf{y}}_t) + 2\nabla_{\mathbf{x}} \log h_y(\bar{\mathbf{y}}_t)) dt + \sqrt{2}d\bar{B}_t, \quad \bar{\mathbf{y}}_0 \sim Z_T p_T(\cdot) p_0(y \mid \cdot).$$

782 *Remark 1.* In practice, there exists a scale s to control the strength of guidance, that is replacing
 783 $\nabla_{\mathbf{x}} \log h_y(\bar{\mathbf{y}}_t)$ by $s\nabla_{\mathbf{x}} \log h_y(\bar{\mathbf{y}}_t)$. Here to simplify the analysis, we set $s = 1$.

785 As mentioned before, it is intractable to draw $\bar{\mathbf{y}}_0 \sim Z_T p_T(\cdot) p_0(y \mid \cdot)$ or its approximated version
 786 $\bar{\mathbf{y}}_0 \sim Z_T \mathcal{N}(0, I) p_0(y \mid \cdot)$. Instead, we consider

$$787 d\hat{\mathbf{y}}_t = (\hat{\mathbf{y}}_t + 2\nabla_{\mathbf{x}} \log p_{T-t}(\hat{\mathbf{y}}_t) + 2\nabla_{\mathbf{x}} \log h_y(\hat{\mathbf{y}}_t)) dt + \sqrt{2}d\bar{B}_t, \quad \hat{\mathbf{y}}_0 \sim \mathcal{N}(0, I).$$

789 The problem is what is the distance between $\bar{\mathbf{y}}_T \sim \bar{p}_y$ and $\hat{\mathbf{y}}_T \sim \hat{p}_y$. Here we choose the Wasserstein
 790 distance to measure the distance, which coincides with the FID score in practice. For two distribution
 791 p, q , the 2-Wasserstein distance between p and q is

$$792 \mathcal{W}_2(p, q)^2 = \inf \left\{ \int \|x - y\|^2 d\gamma(x, y) : \gamma \in \Gamma(p, q) \right\} \\ 793 = \inf \left\{ \mathbb{E} [\|X - Y\|^2] : X \sim p, Y \sim q \right\},$$

796 where $\Gamma(p, q)$ is the set of all joint distributions with marginal distributions p and q ; see more details
 797 in Chewi et al. (2024).

798 **Assumption 1.** There exists $L_p > 0$ such that $\log p_t(\mathbf{x})$ is L_p -smooth, i.e. $\|\nabla_{\mathbf{x}}^2 \log p_t(\mathbf{x})\|_{\text{op}} \leq L_p$.

800 *Remark 2.* The smoothness condition of score functions is widely used in theoretical analysis (Li
 801 & Yan, 2024; Chen et al., 2023b;c). In fact, it can be replaced by the smoothness condition of
 802 $\log p_0(\mathbf{x})$; see more details in Chen et al. (2023a).

803 Under Assumption 1, we can provide a formal version of Theorem 3.3 and its proof.

805 **Theorem B.1** (Formal). *Using notations as above and under Assumption 1, if for any \mathbf{x}*

$$806 -\nabla_{\mathbf{x}}^2 \log h_y(\mathbf{x}) \succeq MI,$$

808 where $M > 0$ such that $M > L_p + 1/2$, i.e. h_y is M -strongly log-concave, then

$$809 \mathcal{W}_2(\bar{p}_y, \hat{p}_y) \leq \mathcal{O}(e^{-T}).$$

810 *Proof.* First, let $K = 4(M - L_p) - 2 > 0$. By Itô's formula,

$$\begin{aligned}
 812 \quad d\left(\|\bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t\|^2 e^{Kt}\right) &= K e^{Kt} \|\bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t\|^2 dt + 2e^{Kt} \langle \bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t, d\bar{\mathbf{y}}_t - d\hat{\mathbf{y}}_t \rangle \\
 813 \quad &= (K + 2)e^{Kt} \|\bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t\|^2 dt \\
 814 \quad &\quad + 4e^{Kt} \langle \bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t, \nabla_{\mathbf{x}} \log p_{T-t}(\bar{\mathbf{y}}_t) - \nabla_{\mathbf{x}} \log p_{T-t}(\hat{\mathbf{y}}_t) \rangle dt \\
 815 \quad &\quad + 4e^{Kt} \langle \bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t, \nabla_{\mathbf{x}} \log h_y(\bar{\mathbf{y}}_t) - \nabla_{\mathbf{x}} \log h_y(\hat{\mathbf{y}}_t) \rangle dt. \\
 816 \quad & \\
 817 \quad &
 \end{aligned} \tag{7}$$

818 Under Assumption 1, because $\|\nabla_{\mathbf{x}}^2 \log p_t(\mathbf{x})\|_{\text{op}} \leq L_p$, we have

$$820 \quad \langle \bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t, \nabla_{\mathbf{x}} \log p_{T-t}(\bar{\mathbf{y}}_t) - \nabla_{\mathbf{x}} \log p_{T-t}(\hat{\mathbf{y}}_t) \rangle \leq L_p \|\bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t\|^2. \tag{8}$$

821 Moreover, because $\nabla_{\mathbf{x}}^2 \log h_y(\mathbf{x}) \preceq -MI$,

$$823 \quad \langle \bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t, \nabla_{\mathbf{x}} \log h_y(\bar{\mathbf{y}}_t) - \nabla_{\mathbf{x}} \log h_y(\hat{\mathbf{y}}_t) \rangle \leq -M \|\bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t\|^2. \tag{9}$$

825 By Combining (8) and (9) with (7), we obtain

$$826 \quad d\left(\|\bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t\|^2 e^{Kt}\right) \leq (K + 2 + 4(L_p - M))dt = 0,$$

828 which implies that

$$830 \quad \|\bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t\|^2 \leq e^{-Kt} \|\bar{\mathbf{y}}_0 - \hat{\mathbf{y}}_0\|^2 \Rightarrow \mathbb{E} \left[\|\bar{\mathbf{y}}_t - \hat{\mathbf{y}}_t\|^2 \right] \leq e^{-Kt} \mathbb{E} \left[\|\bar{\mathbf{y}}_0 - \hat{\mathbf{y}}_0\|^2 \right].$$

832 Therefore,

$$833 \quad \mathcal{W}_2(\bar{p}_y, \hat{p}_y)^2 \leq \mathbb{E} \left[\|\bar{\mathbf{y}}_T - \hat{\mathbf{y}}_T\|^2 \right] \leq C e^{-KT} = \mathcal{O}(e^{-T}). \quad \square$$

835 *Remark 3.* Note that even $h_y(\mathbf{x})$ is M -strongly log-concave, we cannot guarantee $M > L_p + 1/2$. However, as mentioned before, in practice, we can adjust the guidance scale s to make $-s \nabla_{\mathbf{x}}^2 \log h_y(\mathbf{x}) \succeq sMI$ and $sM > L_p + 1/2$ such that the contractive property can be satisfied; see the experiments in Section 4.3 and Appendix D.2.

840 B.2 CHOICE OF THE NUMBER OF CLASSIFIERS

841 In the following, we provide a theoretical analysis of the relationship between the performance and 842 the number of classifiers k .

844 In our settings, it first chooses a partition of $[0, T]$,

$$845 \quad 0 = t_0 < t_1 < \dots < t_k = T,$$

847 and $t_{i+1} - t_i = T/k$ for any $i = 0, 1, \dots, k - 1$. Then define $\tilde{h}_y(t, \mathbf{x})$ piecewise as

$$849 \quad \tilde{h}_y(t, \mathbf{x}) = h_y(t_i, \mathbf{x}), \quad \forall t \in (t_i, t_{i+1}].$$

850 So the generated process $(\tilde{\mathbf{y}}_t)_{t \in [0, T]}$ in our case satisfies the following SDE

$$852 \quad d\tilde{\mathbf{y}}_t = \left(\tilde{\mathbf{y}}_t + 2\nabla_{\mathbf{x}} \log p_{T-t}(\tilde{\mathbf{y}}_t) + 2\nabla_{\mathbf{x}} \log \tilde{h}_y(t, \tilde{\mathbf{y}}_t) \right) dt + \sqrt{2}d\bar{B}_t, \quad \tilde{\mathbf{y}}_0 \sim p_T(\cdot | y). \tag{10}$$

854 Let $\tilde{\mathbf{y}}_T \sim \tilde{p}_y$. So the main goal is to measure the total variation of p_y and generated \tilde{p}_y , $\text{TV}(p_y, \tilde{p}_y)$, 855 from the SDEs (6) and (10). Motivated by Bortoli et al. (2021); Chen et al. (2023c), we will apply 856 Girsanov's theorem to this problem. Therefore, in the following two subsections, we will first introduce 857 Girsanov's theorem and explain how it can be applied to this kind of problem. Then we will 858 use the results to analyze the upper bound of $\text{TV}(p_y, \tilde{p}_y)$ with respect to the number of classifiers, 859 k . First, we need the following three assumptions.

860 **Assumption 2.** We assume that $\mathbf{m}_2^2 := \mathbb{E}^{p(\cdot | y)} [\|\cdot\|^2] = \mathbb{E} [\|\mathbf{y}_T\|^2] < \infty$.

861 **Assumption 3.** For all $t \in [0, T]$, $\log p_t(\mathbf{x} | y)$ is L -smooth for some $L \geq 1$, that is, $\|\nabla^2 \log p_t(\mathbf{x} | y)\|_{\text{op}} \leq L$.

863 **Assumption 4.** There is an $A > 0$ such that for all $t \in [0, T]$, $\|\partial_t \nabla_{\mathbf{x}} \log h_y(t, \mathbf{x})\| \leq A \|\mathbf{x}\|$.

864 Note that $\nabla^2 u$ means the Hessian of u and $\|\cdot\|_{\text{op}}$ is the operator norm of a matrix.

865 *Remark 4.* (1) Assumption 2 is appeared in many works, such as Li & Yan (2024); Chen et al.
866 (2023b;c). But it can be replaced by the bounded support of p (Huang et al., 2024), or L -
867 smoothness of $\log p_0(\cdot | y)$ (Chen et al., 2023a).

868 (2) Assumption 3 is not weird because when analyzing SDE (5), it usually assumes the L -
869 smoothness of $\log p_t$, such as Chen et al. (2023b;c). Here we just replace $\log p_t$ with $\log p_t(\cdot | y)$
870 for analyzing SDE (6).

871 **Theorem B.2.** *Using the notations as above and under the Assumption 2, 3, 4, there is a constant
872 $C = C(L, d, T, \mathfrak{m}_2) > 0$ such that*

$$873 \quad \text{TV}(p_y, \tilde{p}_y) \leq \frac{C}{k}.$$

876 B.2.1 GIRSANOV'S THEOREM AND APPROXIMATED TECHNIQUE

877 In this section, let's fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a Brownian motion $B = (B_t)_{t \in [0, T]}$, or
878 called a \mathbb{P} -Brownian motion. Besides, let the probability space be equipped with the natural filtration
879 induced by B .

880 **Theorem B.3** (Girsanov's Theorem, Theorem 6.3 of Liptser & Shiryaev (2013)). *For $t \in [0, T]$, let
881 $M_t = \int_0^t \theta_u dB_u$ where B is a \mathbb{P} -Brownian motion. Assume that $\theta_t \in \mathcal{L}^2(B)$, that is*

$$882 \quad \mathbb{E}^{\mathbb{P}} \left[\frac{1}{2} \int_0^T \|\theta_t\|^2 dt \right] < \infty.$$

883 Then M is a \mathbb{P} -martingale in $\mathcal{L}^2(\mathbb{P})$. Moreover, if $\mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_T] = 1$, where

$$884 \quad \mathcal{E}(M)_t := \exp \left(\int_0^t \theta_u dB_u - \frac{1}{2} \int_0^t \|\theta_u\|^2 du \right).$$

885 Then the process

$$886 \quad t \mapsto B_t - \int_0^t \theta_u du,$$

887 is a \mathbb{Q} -Brownian motion for

$$888 \quad \frac{d\mathbb{Q}}{d\mathbb{P}} = \mathcal{E}(M)_T = \exp \left(\int_0^T \theta_t dB_t - \frac{1}{2} \int_0^T \|\theta_t\|^2 dt \right).$$

889 Girsanov's theorem can be applied to analyze the behaviors of two SDEs with different drifts and the
890 same noise scale. The following lemma explicitly shows that. This result appeared in Bortoli et al.
891 (2021); Chen et al. (2023c), but they proved it in the path-space (Wiener space). Here we provide
892 another proof without considering the Wiener space and the Wiener measure.

893 **Lemma B.4.** *Considering the following two SDEs,*

$$894 \quad dX_t^{(1)} = b_t^{(1)}(X_t^{(1)})dt + \sqrt{2}dB_t, \quad X_0^{(1)} \sim \rho_0, \\ 895 \quad dX_t^{(2)} = b_t^{(2)}(X_t^{(2)})dt + \sqrt{2}dB_t, \quad X_0^{(2)} \sim \rho_0,$$

896 and let

$$897 \quad \theta_t = \frac{1}{\sqrt{2}} \left(b_t^{(1)} - b_t^{(2)} \right).$$

898 Assume the conditions in the above theorem are satisfied, i.e.

$$899 \quad \mathbb{E}^{\mathbb{P}} \left[\frac{1}{2} \int_0^T \|\theta_t\|^2 dt \right] < \infty, \quad \mathbb{E}^{\mathbb{P}} \left[\exp \left(\int_0^T \theta_t dB_t - \frac{1}{2} \int_0^T \|\theta_t\|^2 dt \right) \right] = 1.$$

900 Let $\mu^{(i)} = (X_T^{(i)})_{\#} \mathbb{P}$ be the distribution of $X_T^{(i)}$ for $i = 1, 2$. Then we have

$$901 \quad \text{TV}^2(\mu^{(1)}, \mu^{(2)}) \leq \text{KL}(\mu^{(1)} \| \mu^{(2)}) \leq \frac{1}{4} \int_0^T \mathbb{E}^{\mathbb{P}} \left[\|b_t^{(1)} - b_t^{(2)}\|^2 \right] dt.$$

918 *Proof.* For

$$919 \quad \theta_t = \frac{1}{\sqrt{2}} \left(b_t^{(1)}(X_t^{(2)}) - b_t^{(2)}(X_t^{(2)}) \right),$$

920 because it satisfies the conditions in Girsanov's theorem, there is a new probability measure \mathbb{Q} such
921 that

$$922 \quad W_t = B_t - \frac{1}{\sqrt{2}} \int_0^t \left(b_u^{(1)}(X_u^{(2)}) - b_u^{(2)}(X_u^{(2)}) \right) du.$$

923 is a \mathbb{Q} -Brownian motion. So

$$924 \quad \sqrt{2}dB_t = \sqrt{2}dW_t + \left(b_t^{(1)}(X_t^{(2)}) - b_t^{(2)}(X_t^{(2)}) \right) dt.$$

925 Then replacing dB_t by dW_t in $X^{(2)}$'s equation, we have

$$926 \quad dX_t^{(2)} = b_t^{(2)}(X_t^{(2)})dt + \sqrt{2}dB_t = b_t^{(1)}(X_t^{(2)})dt + \sqrt{2}dW_t.$$

927 By comparing this equation with the equation of $X^{(1)}$ w.s.t. dB_t ,

$$928 \quad dX_t^{(1)} = b_t^{(1)}(X_t^{(1)})dt + \sqrt{2}dB_t, \quad X_0^{(1)} \sim \rho_0,$$

$$929 \quad dX_t^{(2)} = b_t^{(1)}(X_t^{(2)})dt + \sqrt{2}dW_t, \quad X_0^{(2)} \sim \rho_0,$$

930 we can see they have the same formula when considering $X^{(1)}$ on (Ω, \mathbb{P}) and $X^{(2)}$ on (Ω, \mathbb{Q}) .
931 Therefore, by the uniqueness of the solution of SDE (Liptser & Shiryaev, 2013),

$$932 \quad \mu^{(1)} = (X_T^{(1)})_{\#}\mathbb{P},$$

$$933 \quad \mu^{(2)} = (X_T^{(2)})_{\#}\mathbb{P} = (X_T^{(1)})_{\#}\mathbb{Q},$$

934 and we have

$$935 \quad \text{KL}(\mu^{(1)} \parallel \mu^{(2)}) = \text{KL} \left((X_T^{(1)})_{\#}\mathbb{P} \parallel (X_T^{(1)})_{\#}\mathbb{Q} \right).$$

936 By the following Lemma B.5, this implies that

$$937 \quad \text{KL}(\mu^{(1)} \parallel \mu^{(2)}) \leq \text{KL}(\mathbb{P} \parallel \mathbb{Q}).$$

938 To calculate the right-hand side, by Girsanov's theorem, we have

$$939 \quad \frac{d\mathbb{Q}}{d\mathbb{P}} = \exp \left(\int_0^T \theta_t dB_t - \frac{1}{2} \int_0^T \|\theta_t\|^2 dt \right) \Rightarrow \frac{d\mathbb{P}}{d\mathbb{Q}} = \exp \left(- \int_0^T \theta_t dB_t + \frac{1}{2} \int_0^T \|\theta_t\|^2 dt \right).$$

940 Therefore,

$$941 \quad \text{KL}(\mu^{(1)} \parallel \mu^{(2)}) \leq \text{KL}(\mathbb{P} \parallel \mathbb{Q}) = \mathbb{E}^{\mathbb{P}} \left[\log \frac{d\mathbb{P}}{d\mathbb{Q}} \right]$$

$$942 \quad = \mathbb{E}^{\mathbb{P}} \left[- \int_0^T \theta_t dB_t + \frac{1}{2} \int_0^T \|\theta_t\|^2 dt \right]$$

$$943 \quad = \frac{1}{4} \int_0^T \mathbb{E}^{\mathbb{P}} \left[\|b_t^{(1)}(X_t^{(2)}) - b_t^{(2)}(X_t^{(2)})\|^2 \right] dt.$$

944 by the fact that $\mathbb{E}^{\mathbb{P}} \left[- \int_0^T \theta_t dB_t \right] = 0$. Finally, by Pinsker's inequality, $\text{TV}^2 \leq \text{KL}$. \square

945 The following lemma is basically a particular case of data processing inequality (Lemma 9.4.5 in
946 Ambrosio et al. (2008)). Here we provide easy proof for the sake of completeness.

947 **Lemma B.5.** *Let (Ω, \mathcal{F}) be a measurable space and $\mathbb{P} \ll \mathbb{Q}$ be two probability measures on it. Let
948 $X : \Omega \rightarrow \mathbb{R}^d$ be a random variable with $\mathbb{P}_X = X_{\#}\mathbb{P}$, $\mathbb{Q}_X = X_{\#}\mathbb{Q}$. Then we have*

$$949 \quad \text{KL}(\mathbb{P}_X \parallel \mathbb{Q}_X) \leq \text{KL}(\mathbb{P} \parallel \mathbb{Q}).$$

972 *Proof.* First, $\mathbb{P} \ll \mathbb{Q}$ implies $\mathbb{P}_X \ll \mathbb{Q}_X$ by definition. Next, we prove that
 973

$$974 \quad \mathbb{E}^{\mathbb{Q}} \left[\frac{d\mathbb{P}}{d\mathbb{Q}} \mid \sigma(X) \right] = \frac{d\mathbb{P}_X}{d\mathbb{Q}_X} \circ X.$$

976 First, because $\mathbb{E}^{\mathbb{Q}} \left[\frac{d\mathbb{P}}{d\mathbb{Q}} \mid \sigma(X) \right]$ is $\sigma(X)$ -measurable, there is a measurable function $h: \mathbb{R}^d \rightarrow \mathbb{R}$
 977 such that $\mathbb{E}^{\mathbb{Q}} \left[\frac{d\mathbb{P}}{d\mathbb{Q}} \mid \sigma(X) \right] = h(X)$. Then for any $B \in \mathcal{R}^d$ (Borel sets of \mathbb{R}^d),
 978

$$979 \quad \int_{\mathbb{R}^d} \mathbb{1}_B \frac{d\mathbb{P}_X}{d\mathbb{Q}_X} d\mathbb{Q}_X = \int_{\mathbb{R}^d} \mathbb{1}_B d\mathbb{P}_X \\ 980 \quad = \int_{\Omega} \mathbb{1}_B \circ X d\mathbb{P} \\ 981 \quad = \int_{\Omega} (\mathbb{1}_B \circ X) \frac{d\mathbb{P}}{d\mathbb{Q}} d\mathbb{Q}.$$

982 Clearly, $\mathbb{1}_B \circ X$ is $\sigma(X)$ -measurable so
 983

$$984 \quad \mathbb{E}^{\mathbb{Q}} \left[(\mathbb{1}_B \circ X) \frac{d\mathbb{P}}{d\mathbb{Q}} \mid \sigma(X) \right] = (\mathbb{1}_B \circ X) \mathbb{E}^{\mathbb{Q}} \left[\frac{d\mathbb{P}}{d\mathbb{Q}} \mid \sigma(X) \right],$$

985 and by $\Omega \in \sigma(X)$,

$$986 \quad \int_{\mathbb{R}^d} \mathbb{1}_B \frac{d\mathbb{P}_X}{d\mathbb{Q}_X} d\mathbb{Q}_X = \int_{\Omega} (\mathbb{1}_B \circ X) \frac{d\mathbb{P}}{d\mathbb{Q}} d\mathbb{Q} \\ 987 \quad = \int_{\Omega} \mathbb{E}^{\mathbb{Q}} \left[(\mathbb{1}_B \circ X) \frac{d\mathbb{P}}{d\mathbb{Q}} \mid \sigma(X) \right] d\mathbb{Q} \\ 988 \quad = \int_{\Omega} (\mathbb{1}_B \circ X) \mathbb{E}^{\mathbb{Q}} \left[\frac{d\mathbb{P}}{d\mathbb{Q}} \mid \sigma(X) \right] d\mathbb{Q} \\ 989 \quad = \int_{\Omega} (\mathbb{1}_B \circ X)(h \circ X) d\mathbb{Q} \\ 990 \quad = \int_{\mathbb{R}^d} \mathbb{1}_B h d\mathbb{Q}_X.$$

991 Therefore, \mathbb{Q}_X -surely we have $h = \frac{d\mathbb{P}_X}{d\mathbb{Q}_X}$ and thus we have the desired result. By this
 992 and the Jensen's inequality of the conditional expectation for the convex function $\eta(x) =$
 993 $(x \log x) \mathbb{1}_{(0,\infty)}(x)$ defined on \mathbb{R} , we have
 994

$$995 \quad \text{KL}(\mathbb{P}_X \parallel \mathbb{Q}_X) = \int_{\mathbb{R}^d} \eta \left(\frac{d\mathbb{P}_X}{d\mathbb{Q}_X} \right) d\mathbb{Q}_X = \int_{\Omega} \eta \left(\frac{d\mathbb{P}_X}{d\mathbb{Q}_X} \circ X \right) d\mathbb{Q} = \int_{\Omega} \eta \left(\mathbb{E}^{\mathbb{Q}} \left[\frac{d\mathbb{P}}{d\mathbb{Q}} \mid \sigma(X) \right] \right) d\mathbb{Q} \\ 996 \quad \leq \int_{\Omega} \mathbb{E}^{\mathbb{Q}} \left[\eta \left(\frac{d\mathbb{P}}{d\mathbb{Q}} \right) \mid \sigma(X) \right] d\mathbb{Q} = \int_{\Omega} \eta \left(\frac{d\mathbb{P}}{d\mathbb{Q}} \right) d\mathbb{Q} = \text{KL}(\mathbb{P} \parallel \mathbb{Q}).$$

1000 \square

1001 Lemma B.4 provides us with a method to measure the distance of generated distributions from two
 1002 SDEs with different drifts. But in order to apply Girsanov's theorem, we need the following two
 1003 conditions
 1004

$$1005 \quad \mathbb{E}^{\mathbb{P}} \left[\int_0^T \|\theta_t\|^2 dt \right] < \infty, \quad \mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_T] = 1.$$

1006 For practical problems, the first condition is usually satisfied. But we cannot guarantee the second
 1007 condition $\mathbb{E}^{\mathbb{P}}[\mathcal{E}(M)_T] = 1$, or equivalently $\mathcal{E}(M)$ a \mathbb{P} -martingale. So we use the approximation
 1008 technique introduced in Chen et al. (2023c). Also, they considered this problem in the Wiener
 1009 space. Here we slightly modify their proofs to omit their settings in the Wiener space.
 1010

1011 **Lemma B.6.** *Let the settings be the same as Lemma B.4 but with only one assumption*

$$1012 \quad \mathbb{E}^{\mathbb{P}} \left[\int_0^T \|\theta_t\|^2 dt \right] = \frac{1}{2} \mathbb{E}^{\mathbb{P}} \left[\int_0^T \|b_t^{(1)} - b_t^{(2)}\|^2 dt \right] \leq M < \infty.$$

1013 Then it still has
 1014

$$1015 \quad \text{TV}^2(\mu^{(1)}, \mu^{(2)}) \leq M.$$

1026 *Proof.* First, by the (3.4)Proposition of Chapter IV in Revuz & Yor (2013), we have known $\mathcal{E}(M)$
1027 is a local martingale, which means there is a nondecreasing sequence of stopping times T_n with the
1028 property $T_n \uparrow T$ such that $(\mathcal{E}(M)_{t \wedge T_n})_{t \in [0, T_n]}$ is a \mathbb{P} -martingale(see the (1.5)Definition of Chapter
1029 IV in Revuz & Yor (2013)). Besides, let $M^n = M^{T_n}$, that is
1030

$$1031 \quad (M^n)_t := M_{t \wedge T_n} = \int_0^{t \wedge T_n} \theta_u du = \begin{cases} \int_0^t \theta_u dB_u, & t \leq T_n \\ 1032 \quad \int_0^{T_n} \theta_u dB_u, & t > T_n \end{cases}$$

$$1033 \quad 1034 \quad 1035$$

1036 Therefore. by the definition of the exponential of a martingale,

$$1037 \quad \mathcal{E}(M^n)_t = \begin{cases} \exp \left(\int_0^t \theta_u dB_u - \frac{1}{2} \int_0^t \|\theta_u\|^2 du \right), & t \leq T_n \\ 1038 \quad \exp \left(\int_0^{T_n} \theta_u dB_u - \frac{1}{2} \int_0^{T_n} \|\theta_u\|^2 du \right), & t > T_n \end{cases}$$

$$1039 \quad 1040 \quad 1041 \quad 1042$$

1043 and so $\mathcal{E}(M^n)_t = \mathcal{E}(M)_{t \wedge T_n}$. Note that

$$1044 \quad M_t^n = \int_0^{t \wedge T_n} \theta_u dB_u = \int_0^t \theta_u \mathbb{1}_{t \in [0, T_n]} dB_u.$$

$$1045 \quad 1046$$

1047 So martingale M^n satisfies the conditions of Girsanov's Theorem. There is a probability measure
1048 \mathbb{Q}^n on Ω such that

$$1049 \quad 1050 \quad W_t^n = B_t - \int_0^t \theta_u \mathbb{1}_{t \in [0, T_n]} du = B_t - \frac{1}{\sqrt{2}} \int_0^t (b_u^{(1)} - b_u^{(2)}) \mathbb{1}_{t \in [0, T_n]}(u) du.$$

$$1051$$

1052 is a Brownian motion and we have

$$1053 \quad \frac{d\mathbb{Q}^n}{d\mathbb{P}} = \exp \left(\int_0^T \theta_t \mathbb{1}_{t \in [0, T_n]} dB_t - \frac{1}{2} \int_0^T \|\theta_t\|^2 \mathbb{1}_{t \in [0, T_n]} dt \right)$$

$$1054 \quad 1055 \quad 1056 \quad 1057 \quad 1058$$

$$= \exp \left(\int_0^{T_n} \theta_t dB_t - \frac{1}{2} \int_0^{T_n} \|\theta_t\|^2 dt \right).$$

$$1059 \quad 1060$$

which implies

$$1061 \quad \text{KL}(\mathbb{P} \parallel \mathbb{Q}^n) = \mathbb{E}^{\mathbb{P}} \left[\log \frac{d\mathbb{P}}{d\mathbb{Q}^n} \right] = \int_0^{T_n} \mathbb{E}^{\mathbb{P}} [\|\theta_t\|^2] dt$$

$$1062 \quad 1063 \quad 1064 \quad 1065 \quad 1066$$

$$= \frac{1}{4} \int_0^{T_n} \mathbb{E}^{\mathbb{P}} [\|b_t^{(1)} - b_t^{(2)}\|^2] dt$$

$$\leq \frac{1}{4} \int_0^T \mathbb{E}^{\mathbb{P}} [\|b_t^{(1)} - b_t^{(2)}\|^2] dt \leq M.$$

$$1067$$

1068 Next, reconsidering the second SDE

$$1069 \quad dX_t^{(2)} = b_t^{(2)}(X_t^{(2)}) dt + \sqrt{2} dB_t$$

$$1070 \quad = b_t^{(1)}(X_t^{(2)}) \mathbb{1}_{t \in [0, T_n]}(t) dt + b_t^{(2)}(X_t^{(2)}) \mathbb{1}_{t \in [T_n, T]}(t) dt + \sqrt{2} dW_t^n, \quad X_0^{(2)} \sim \rho_0.$$

$$1071 \quad 1072$$

1073 and the equation

$$1074 \quad dX_t^n = b_t^{(1)}(X_t^n) \mathbb{1}_{t \in [0, T_n]}(t) dt + b_t^{(2)}(X_t^n) \mathbb{1}_{t \in [T_n, T]}(t) dt + \sqrt{2} dB_t, \quad X_0^n \sim \rho_0.$$

$$1075$$

1076 Let $\mu_n^{(1)}$ be the distribution of X_T^n under \mathbb{P} . But we can see it has the same formula as $X_t^{(2)}$ under
1077 \mathbb{Q}^n . So

$$1078 \quad \mu^{(2)} = (X_T^{(2)})_{\#} \mathbb{P}$$

$$1079 \quad \mu_n^{(1)} = (X_T^n)_{\#} \mathbb{P} = (X_T^{(2)})_{\#} \mathbb{Q}^n.$$

1080 And by the decreasing property of the relative entropy under the push-forward map,
 1081
 1082 $\text{KL}(\mu^{(2)} \parallel \mu_n^{(1)}) \leq \text{KL}(\mathbb{P} \parallel \mathbb{Q}^n) \leq M.$
 1083

1084 Note that for all $t \leq T_n$, $X_t^n = X_t^{(1)}$ by the uniqueness of solution of SDE. By the Lemma 13 in
 1085 Chen et al. (2023c), for any $\varepsilon > 0$,
 1086

$$\left(X_{t \wedge (T-\varepsilon)}^n \right)_{t \in [0, T]} \rightarrow \left(X_{t \wedge (T-\varepsilon)}^{(1)} \right)_{t \in [0, T]} \quad a.s., \quad \text{as } n \rightarrow \infty.$$

1088 Therefore, $X_{T-\varepsilon}^n \rightarrow X_{T-\varepsilon}^{(1)}$ a.s. as $n \rightarrow \infty$. Let $\mu_{n,\varepsilon}^{(1)} = (X_{T-\varepsilon}^n)_{\#} \mathbb{P}$ and $\mu_{\varepsilon}^{(1)} = (X_{T-\varepsilon}^{(1)})_{\#} \mathbb{P}$. Then
 1089 for any continuous and bounded f define on \mathbb{R}^d ,
 1090

$$\int_{\mathbb{R}^d} f d\mu_{n,\varepsilon}^{(1)} = \int_{\Omega} f \circ X_{T-\varepsilon}^n d\mathbb{P} \rightarrow \int_{\Omega} f \circ X_{T-\varepsilon}^{(1)} d\mathbb{P} = \int_{\mathbb{R}^d} f d\mu_{\varepsilon}^{(1)}.$$

1093 as $n \rightarrow \infty$, which means $\mu_{n,\varepsilon}^{(1)} \rightarrow \mu_{\varepsilon}^{(1)}$ weakly as $n \rightarrow \infty$. Besides, let $\mu_{\varepsilon}^{(2)} = (X_{T-\varepsilon}^{(2)})_{\#} \mathbb{P}$. Then by
 1094 the lower semicontinuity of KL divergence (Lemma 9.4.3 in Ambrosio et al. (2008)),
 1095

$$\text{KL}(\mu_{\varepsilon}^{(2)} \parallel \mu_{\varepsilon}^{(1)}) \leq \liminf_{n \rightarrow \infty} \text{KL}(\mu_{\varepsilon}^{(2)} \parallel \mu_{n,\varepsilon}^{(1)}).$$

1097 Similarly as above, by comparing the equation in W_t^n and B_t ,
 1098

$$\mu_{n,\varepsilon}^{(1)} = (X_{T-\varepsilon}^n)_{\#} \mathbb{P} = (X_{T-\varepsilon}^{(2)})_{\#} \mathbb{Q}^n.$$

1100 So we have

$$\begin{aligned} \text{KL}(\mu_{\varepsilon}^{(2)} \parallel \mu_{\varepsilon}^{(1)}) &\leq \liminf_{n \rightarrow \infty} \text{KL}((X_{T-\varepsilon}^{(2)})_{\#} \mathbb{P} \parallel (X_{T-\varepsilon}^{(2)})_{\#} \mathbb{Q}^n) \\ &\leq \liminf_{n \rightarrow \infty} \text{KL}(\mathbb{P} \parallel \mathbb{Q}^n) \\ &\leq M. \end{aligned}$$

1105 And because $X_{T-\varepsilon}^{(i)} \rightarrow X_T^{(i)}$ a.s. as $\varepsilon \rightarrow 0^+$, $\mu_{\varepsilon}^{(i)} \rightarrow \mu^{(i)}$ weakly for $i = 1, 2$. Using the same
 1106 property, we have

$$\text{KL}(\mu^{(2)} \parallel \mu^{(1)}) \leq \liminf_{\varepsilon \rightarrow 0^+} \text{KL}(\mu_{\varepsilon}^{(2)} \parallel \mu_{\varepsilon}^{(1)}) \leq M.$$

1109 Finally, by Pinsker's inequality, $\text{TV}^2 \leq \text{KL}$. □

1111 B.2.2 UPPER BOUND OF TOTAL VARIATION

1113 *Proof of Theorem B.2.* We can apply Lemma B.6 to our problem for bounding $\text{TV}(p_y, \tilde{p}_y)$ from
 1114 equation (6) and (10). If the condition in Lemma B.6 is satisfied, then

$$1115 \text{TV}^2(p_y, \tilde{p}_y) \leq \int_0^T \mathbb{E} \left[\|\nabla_{\mathbf{x}} \log \tilde{h}_y(t, \mathbf{y}_t) - \nabla_{\mathbf{x}} \log h_y(t, \mathbf{y}_t)\|^2 dt \right].$$

1117 So the main goal is to estimate the bound of I (note that the boundedness of I is also the condition
 1118 in Lemma B.6 we need)

$$\begin{aligned} 1119 \text{I} &= \int_0^T \mathbb{E} \left[\|\nabla_{\mathbf{x}} \log \tilde{h}_y(t, \mathbf{y}_t) - \nabla_{\mathbf{x}} \log h_y(t, \mathbf{y}_t)\|^2 dt \right] \\ 1120 &\leq \sum_{i=0}^{k-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[\|\nabla_{\mathbf{x}} \log h_y(t_i, \mathbf{y}_t) - \nabla_{\mathbf{x}} \log h_y(t, \mathbf{y}_t)\|^2 \right] dt. \end{aligned}$$

1125 A direct result of Assumption 4 is $\|\nabla_{\mathbf{x}} \log h_y(t, \mathbf{x}) - \nabla_{\mathbf{x}} \log h_y(s, \mathbf{x})\| \leq A \|\mathbf{x}\| |t - s|$. Therefore,
 1126

$$\begin{aligned} 1127 \text{I} &\leq \sum_{i=0}^{k-1} \int_{t_i}^{t_{i+1}} \mathbb{E} \left[\|\nabla_{\mathbf{x}} \log h_y(t_i, \mathbf{y}_t) - \nabla_{\mathbf{x}} \log h_y(t, \mathbf{y}_t)\|^2 \right] dt \\ 1128 &\leq A^2 \sup_{t \in [0, T]} \mathbb{E} [\|\mathbf{y}_t\|^2] \sum_{i=0}^{k-1} \int_{t_i}^{t_{i+1}} (t - t_i)^2 dt \\ 1129 &= \frac{A^2 T^3}{3} \sup_{t \in [0, T]} \mathbb{E} [\|\mathbf{y}_t\|^2]. \end{aligned}$$

1134 Then the next mission is to estimate $\mathbb{E} [\|\mathbf{y}_t\|^2]$. Recall \mathbf{y}_t satisfy the equation (6), so
 1135

$$1136 \mathbf{y}_t = \mathbf{y}_T + \int_T^t \mathbf{y}_s + 2\nabla_{\mathbf{x}} \log p_s(\mathbf{y}_s | y) ds + \sqrt{2}(\bar{B}_t - \bar{B}_T).$$

1138 And thus

$$1139 \mathbb{E} [\|\mathbf{y}_t\|^2] \leq \mathbb{E} [\|\mathbf{y}_T\|^2] + (T-t) \int_T^t \mathbb{E} [\|\mathbf{y}_s\|^2] ds \\ 1140 + 4(T-t) \int_T^t \mathbb{E} [\|\nabla_{\mathbf{x}} \log p_s(\mathbf{y}_s | y)\|^2] ds + 2d(T-t) \\ 1141 \\ 1142 \leq \mathbb{E} [\|\mathbf{y}_T\|^2] + T \int_T^t \mathbb{E} [\|\mathbf{y}_s\|^2] ds + 4LdT^2 + 2dT.$$

1143 by the fact $\|\int_a^b F(x)dx\|^2 \leq (b-a) \int_a^b \|F(x)\|^2 dx$ and the following Lemma B.7. By setting
 1144 $u(t) = \mathbb{E} [\|\mathbf{y}_t\|^2]$, $\lambda(t) = 4LdT^2 + 2dT$ and $\mu(t) = T$ in Grönwall's Inequality (Lemma B.8), we
 1145 have

$$1146 \sup_{t \in [0, T]} \mathbb{E} [\|\mathbf{y}_t\|^2] \leq (4LdT^2 + 2dT)e^{T^2} + \mathfrak{m}_2^2.$$

1147 and therefore we get our final result,

$$1148 \text{TV}^2(p_y, \tilde{p}_y) \leq \frac{A^2}{3} T^3 \left((4LdT^2 + 2dT)e^{T^2} + \mathfrak{m}_2^2 \right) \cdot \frac{1}{k^2}. \quad \square$$

1149 **Lemma B.7** (Chen et al. (2023c)). *For any probability density function p on \mathbb{R}^d , if $\log p$ is L -smooth,
 1150 i.e. $\|\nabla^2 \log p\|_{\text{op}} \leq L$, then*

$$1151 \mathbb{E}^p [\|\nabla \log p\|^2] \leq Ld.$$

1152 *Proof.* First, because $\log p$ is L -smooth,

$$1153 |\Delta \log p| = |\text{tr}(\nabla^2 \log p)| \leq Ld.$$

1154 Then by the divergence theorem, we have $\int_{\mathbb{R}^d} \langle \nabla f, \nabla g \rangle dx = - \int_{\mathbb{R}^d} f \Delta g dx$ for any $f, g \in C^2(\mathbb{R}^d)$.
 1155 Therefore,

$$1156 \mathbb{E}^p [\|\nabla \log p\|^2] = \int_{\mathbb{R}^d} \langle \nabla \log p, \nabla \log p \rangle pdx = \int_{\mathbb{R}^d} \langle \nabla \log p, \nabla p \rangle dx \\ 1157 = - \int_{\mathbb{R}^d} p \Delta \log p dx \leq Ld. \quad \square$$

1158 **Lemma B.8** (Grönwall's Inequality). *Let $u(t), \lambda(t), \mu(t) \in C([a, b])$. If $\mu(t) \geq 0$ for all $t \in [a, b]$
 1159 and*

$$1160 u(t) \leq \lambda(t) + \int_a^t \mu(s)u(s)ds,$$

1161 then we have

$$1162 u(t) \leq \lambda(t) + \int_a^t \lambda(s)\mu(s) \exp \left(\int_s^t \mu(\tau)d\tau \right) ds.$$

1163 In particular, if $\lambda(t)$ is nondecreasing, then

$$1164 u(t) \leq \lambda(t) \exp \left(\int_a^t \mu(s)ds \right).$$

1165 C IMPLEMENTATION DETAILS

1166 C.1 SETTING OF THE EXPERIMENT ON SYNTHETIC DATASET

1167 For the synthetic data experiments, we train a multilayer perceptron (MLP) to model the score
 1168 function at each timestep, $\nabla_{\mathbf{x}} \log p_{t_i}(\mathbf{x})$. We do not train a neural network classifier, since we adopt
 1169 a simple Gaussian distribution as guidance, $\nabla_{\mathbf{x}} \log p_t(y | \mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$, whose gradient is
 1170 tractable and can be computed analytically. Furthermore, the guidance parameter $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is
 1171 kept time-invariant across all synthetic experiments.

1188
1189

C.2 PRETRAINED MODELS AND REFERENCE SET

1190
1191
1192
1193
1194

For the ImageNet-1K experiments, we adopt the unconditional diffusion model and classifiers provided by OpenAI, pretrained on ImageNet-1K at a resolution of 256×256 , as well as conditional diffusion models at resolutions of 64×64 , 128×128 , and 256×256 . To evaluate our generated samples, we compute FID, sFID, recall, and precision using reference batches of 10,000 real images from ImageNet-1K, also provided by OpenAI.

1195

1196

C.3 HYPERPARAMETERS

1197

1198
1199
1200
1201

We first conducted experiments on synthetic data using a single NVIDIA RTX 4090 GPU for model training and sample generation. For real-world experiments, we employed four NVIDIA Tesla A100 GPUs (40GB) to generate samples from the ImageNet-1K dataset for quantitative evaluation. The hyperparameters for model training and sample generation are summarized in Table 3, Table 4, and Table 5.

1202

1203

Table 3: The hyperparameter settings of guided diffusion of synthetic data.

Config	Value
training samples	30000
generated samples	2000
diffusion timesteps	1000
timestep respace	250
noise scheduler	cosine
optimizer	Adam
learning rate	0.001
training epoch	2000
classifier scale	10.0
batch size per GPU	1024

1216

1217

1218

Table 4: The training and generation hyperparameter settings of guided diffusion of CIFAR10.

Config	Value
training samples	50000
training iterations of 1k classifiers	100,000
training iterations of 10 classifiers	30,000
batchsize	64
diffusion timesteps	1000
timestep respace	250
noise scheduler	cosine
optimizer	Adam
learning rate	0.001
classifier scale	10.0

1230

1231

1232

D EXPERIMENTS FOR THE CONTRACTIVE PROPERTY

1233

1234

1235

D.1 TEST CONTRACTIVE PROPERTY ON TOY DATASETS

1236
1237
1238
1239
1240

We set the synthetic datasets as same as the one in Section 4.1, that is, the target distribution $\mathbf{x}_0 \sim \mathcal{N}(\mathbf{x}_0; \boldsymbol{\mu}_0, \Sigma)$ with two classes $\{y_1, y_2\}$ and the corresponding classifiers are set by $p_0(y = y_1|\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \Sigma)$ and $p_0(y = y_2|\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_2, \Sigma)$, where $\Sigma = I$, $\boldsymbol{\mu}_0 = (-6, 0)$, $\boldsymbol{\mu}_1 = (0, 6)$, and $\boldsymbol{\mu}_2 = (0, -6)$. So the conditional distributions are

1241

$$p_0(\mathbf{x}|y = y_1) = \mathcal{N}\left(\mathbf{x}; \frac{\boldsymbol{\mu}_0 + \boldsymbol{\mu}_1}{2}, \frac{\Sigma}{2}\right), \quad p_0(\mathbf{x}|y = y_2) = \mathcal{N}\left(\mathbf{x}; \frac{\boldsymbol{\mu}_0 + \boldsymbol{\mu}_2}{2}, \frac{\Sigma}{2}\right).$$

1242

1243

Table 5: The hyperparameter settings of guided diffusion of ImageNet-1k.

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

Figure 7: The reverse process which initially samples from the distribution $\mathcal{N}(\mathbf{x}; 0, I)$.

Under these settings, because the classifiers are Gaussian-like, i.e.

$$h_{y_1}(\mathbf{x}) = p_0(y = y_1 | \mathbf{x}) \propto \exp(-\|\mathbf{x} - \boldsymbol{\mu}_1\|^2),$$

$$h_{y_2}(\mathbf{x}) = p_0(y = y_2 | \mathbf{x}) \propto \exp(-\|\mathbf{x} - \boldsymbol{\mu}_2\|^2),$$

$\nabla_{\mathbf{x}}^2 \log h_{y_i} \equiv -I$, i.e. h_{y_i} is 1-strongly log-concave. But it still cannot guarantee the contractive inequality in Theorem B.1. However, we can introduce a suitable guidance scale s as mentioned in Remark 3 to make the contractive inequality valid.

To evaluate the contractive property, we consider two different initial sampling strategies.

First, we draw \mathbf{x}_T from the standard Gaussian distribution $\mathcal{N}(\mathbf{x}_T; 0, I)$ to generate $p_0(\mathbf{x} | y_1)$ and $p_0(\mathbf{x} | y_2)$ with different guidance $p_0(y = y_1 | \mathbf{x})$ and $p_0(y = y_2 | \mathbf{x})$, respectively. The results are shown in Figure 7, where the final plot illustrates that the generated samples converge to the desired distribution. Comparing this result with Figure 2, where the initial sampling is $\mathcal{N}(\mathbf{x}; 0, I)p_0(y | \mathbf{x})$ to satisfy the condition in Theorem 3.1, we observe that sampling directly from $\mathcal{N}(\mathbf{x}; 0, I)$ still leads to the target conditional distribution due to the contractive property of (2).

Second, we initialize sampling from two arbitrary Gaussian distributions to further verify the contractive property. The results, shown in Figure 8, demonstrate that even with arbitrary Gaussian initializations, the contractive property of (2) ensures that the final generation converges to the target conditional distribution.

D.2 TEST CONTRACTIVE PROPERTY ON THE IMAGENET-1K

We shift the initial sampling by adding a bias to the mean of the Gaussian distribution, resulting in samples from $\mathcal{N}(\boldsymbol{\mu}, I)$. To evaluate class-conditional generation, we compare an unconditional diffusion model with classifier guidance against a conditional diffusion model without guidance, as shown in Figure 9. With a bias of $\boldsymbol{\mu} = 0.03 \cdot \mathbf{1}$ or $\boldsymbol{\mu} = -0.03 \cdot \mathbf{1}$ added to the standard Gaussian distribution, the classifier-guided diffusion model continues to generate class-consistent images. In contrast, the conditional diffusion model without guidance produces images that are

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Figure 8: This initially samples from two arbitrary Gaussian distributions, both reverse processes
can reconstruct the $p_0(\mathbf{x} | y_i)$ under the guidance of $p_0(y_i | \mathbf{x})$.

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 9: The images are sampled by adding positive bias $\mathcal{N}(\mathbf{x}; \mathbf{0}, +\mu)$ and negative bias $\mathcal{N}(\mathbf{x}; \mathbf{0}, -\mu)$ onto the final distribution $P_T(\mathbf{x})$. The left 8 images are generated using an unconditional diffusion model with classifier guidance at eight timesteps, and the left 8 failed samples are generated using a conditional diffusion model without guidance. Class: snow leopard

either overly bright or overly dark, both of poor quality. These results demonstrate that classifier guidance improves the robustness of diffusion models to shifts in the initial distribution.

In addition, by setting the positive bias $\mu+ = 0.015 \cdot \mathbb{1}$ and the negative bias $\mu- = -0.03 \cdot \mathbb{1}$, we generate samples using an unconditional diffusion model guided by classifiers corresponding to 8 timesteps. In each subfigure, the classifier guidance scale increases from left to right in the order 0, 1, 2.5, 5, 7.5, 10, as shown in Figures 10, 11, and 12. The bright samples correspond to the positive bias $\mu+$, while the dark samples correspond to the negative bias $\mu-$. As illustrated by the generated results, sample quality consistently improves as the classifier scale increases.

E MORE EXPERIMENTS ON IMAGENET-1K

The Figure 13 shows the samples generated with an unconditional diffusion model guided by classifiers $p_t(y|\mathbf{x})$ corresponding to 8 timesteps: $t = 875, 750, 625, 500, 375, 250, 125, 0$.

F USE OF LARGE LANGUAGE MODELS

For writing this manuscript, we used OpenAI’s GPT-5 (ChatGPT) solely for language polishing and minor stylistic improvements. All technical content, results, derivations, and experiments were developed independently by the authors. No scientific content, data, proofs, or results were generated or altered by the model.

Figure 10: Adding negative bias(left) and positive bias(right) on the initial sampling. In each row, for each of the six left images (positive bias) and the six right images (negative bias), the classifier scale corresponds to (0, 1.0, 2.5, 5.0, 7.5, 10). The class is 997: bolete.

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428

1429 Figure 11: The top 3 rows correspond to the result of adding negative and the bottom 2 rows cor-
1430 respond to positive bias on the initial sampling. For six images in each row, the classifier scale
1431 gradually increases from 0.0 to 10.0 from left to right, class is 7: cock.

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446

1447 Figure 12: The result of adding negative and positive bias on the initial sampling. In each row, the
1448 classifier scale gradually increases from 0.0 to 10.0 from left to right, class is 8: hen.

1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 13: Generated samples guided by classifiers correspond to eight timesteps (FID: 12.90). Classes are 9: ostrich, 31: tree frog, 134: crane, 281: tabby cat, 930: French loaf, 511: check, 978: seashore, 992: agaric, 963: pizza, 207: golden retriever, 15: robin, 484: catamaran.