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ABSTRACT

Classifier guidance diffusion models have advanced conditional image genera-
tion by training a time-dependent classifier on noisy data from every diffusion
timestep to guide denoising process. We revisit this paradigm and show that
such dense guidance is unnecessary: a small set of time-independent classifiers,
trained on data from selected timesteps, suffices to produce high-quality, class-
consistent samples. Theoretically, we first analyze the feasibility of using a single
time-independent classifier trained on clean data to guide generation under cer-
tain conditions which are unrealistic in practice. To address the limitations of
real-world image data, we then extend this approach to a small set of classifiers
trained on noisy data from some timesteps and derive a convergence bound that
depends on the number of classifiers employed. Experiments on both synthetic
and real-world datasets demonstrate that guiding an unconditional diffusion model
with only a few time-independent classifiers achieves performance comparable to
models guided by a fully time-dependent classifier.

1 INTRODUCTION

In recent years, denoising diffusion probabilistic models (DDPMs) (Ho et al.,[2020; Nichol & Dhari-
wall 2021} Sohl-Dickstein et al.,|2015;Song et al., [2020) have emerged as powerful generative mod-
els capable of producing data of quality comparable to that of GANs (Brock et al.l |2018;|Goodfellow
et al.,2014; Karras et al.,2019), spanning modalities such as images (Zhang et al.,2023; Ho & Sal-
1mans, |2022; [Dhariwal & Nichol, 20215 Ramesh et al., [2021])), videos (Ho et al., 2022bta), and audio
(Kong et al.| 2020). A DDPM consists of a forward process that gradually perturbs clean training
data by increasing the noise scale, and a reverse process that reconstructs the original data distribu-
tion. As a result, DDPMs can generate high-quality novel samples by initiating the reverse process
from standard Gaussian noise (Ho et al.| [2020).

Conditional generation (Song et al.}2021; Dhariwal & Nichol, 2021;[Ho & Salimans} 2022) is a key
problem in DDPMs, enabling condition-consistent sample generation such as class-specific images.
A representative approach is the classifier-guided diffusion model (CGDM) (Dhariwal & Nichol,
2021)), which uses a time-dependent classifier to guide the generation process. Specifically, |[Song
et al.| (2021)) proposed constructing intermediate conditional distributions p;(x | y) in the reverse
process using conditional score functions, so that it can finally generate the target conditional distri-
bution po(x | y). CGDM employs this idea by decomposing the conditional score function into an
unconditional score function together with a guidance term provided by a time-dependent classifier
pe(y | ). Although this strategy enables high-quality conditional generation, it requires training the
classifier on noisy data at every timestep of the forward process, which is computationally expensive
and labor-intensive.

In this paper, we investigate whether training a single time-independent classifier on clean data,
or a small set of time-independent classifiers on noisy data from a few timesteps, can still provide
sufficient guidance for conditional generation. Our key observation is that the target conditional
distribution can be expressed as po(x | y) x po(x)po(y | x), which suggests that it suffices to
generate intermediate distributions of the form p;(x)po(y | ) in the reverse process, rather than
the full conditional distributions p;(x | y) « pi(x)p:(y | x). To achieve this, under DDPM
framework in discrete settings, we construct a transition probability and show that it can guide the
reverse process generating €:—1 ~ pt—1(x+—1)po(y | ®r—1) if T+ ~ pr(a)po(y | x+). Crucially,
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Figure 1: The confidence scores of classifiers during the reverse diffusion process and the generated
images of 256 x 256 resolution by an unconditional diffusion model are guided by classifiers of (1,
2,4, 8, 16, all) timesteps, where all is 1000, with each classifier represented by a different color. The
class is "ocean liner".

this transition probability depends only on the time-independent classifier po(y | ), making it the
single classifier required to generate the target conditional distribution.

However, the above analysis requires sampling 1 ~ pr(x1)po(y | @) for initializing the reverse
process, which is intractable. Although pr(z) ~ N (z;0,I) for large T, the complexity of the
classifier po(y | =) makes it impossible to sample directly from N (x; 0, I)po(y | ). This raises
the question of whether we can instead sample x7 ~ N (z7;0, 7). Under a mild smoothness as-
sumption on the unconditional score function, we prove that if the classifier po(y | @) is strongly
log-concave, then starting from N (; 0, I) can still converge to the target conditional distribution
exponentially in 7. Furthermore, experiments on both synthetic and real-world image datasets cor-
roborate this result.

In practice, an additional challenge arises. The above analysis requires po(y | -) to be defined on the
entire space R so that it can provide guidance even for noisy data. However, this condition does not
hold in real-world scenarios due to the manifold hypothesis (Bengio et al.l [2013)), which states that
real-world data typically lie on a low-dimensional submanifold My C R™. As a result, po(y | -)
is only meaningful in a neighborhood of the data manifold M, and fails to provide informative
guidance for noisy data far from M. To address this limitation, we propose training a small number
of time-independent classifiers on noisy data at selected timesteps so that they remain informative
for noisy inputs. Theoretically, we show that the total variation distance between the distribution
generated by our model guided by k classifiers and the target conditional distribution is bounded
by O(1/k). In practice, k can be chosen much smaller than the number of diffusion timesteps 7.
For example, experiments on ImageNet-1K (Deng et al., |2009) demonstrate that with only & = 8
classifiers, the reverse process still produces high-quality samples, and evaluation metrics such as
FID and sFID remain comparable to those achieved by CGDM with T" = 1000 classifiers.

In conclusion, our contributions include the following three aspects.

(i) We theoretically prove that only using the time-independent classifier po(y | @) trained on
clean data can also guide the reverse process to generate the conditional distribution if we can
sample 1 ~ pr(xr)po(y | 1), and also our synthetic experiment shows the validity of this
result.

(i) To relax the initialization requirement, we analyze the possibility of drawing the initial sam-
pling from A (z; 0, I'). Under a smoothness assumption of unconditional score function, theo-
retical result shows that if po(y | -) is strongly log-concave, then initialization from N (x; 0, I)
still ensures reliable generation. Experiments on both synthetic and real-world datasets con-
firm this result.

(iii) To deal with real-world image datasets, because of the manifold hypothesis, we propose to
train a few time-independent classifiers on noisy data of some timesteps to guide the gener-
ation. Theoretically, we derive an upper bound on the total variation distance between the
generated distribution and the target distribution in terms of the number of classifiers. Empir-
ically, experiments on ImageNet-1K show that even with a small number of classifiers, our
method achieves competitive performance.
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Figure 2: For ¢ = 1,2, reverse diffusion process that initially samples from the distributions
N (x;0, Ipo(y;|x), and the classifier guided diffusion model reconstructs the conditional distri-
bution po (xly — ;).

2 RELATED WORKS

Diffusion Model. Denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein et al.,[2015;
Ho et al., 2020) have become a powerful paradigm for data generation (Zhang et al., 2023} Rom-
bach et al., [2022). Score-based generative models (Song & Ermonl 2019) estimate data gradients
and sample with Langevin dynamics, and Song et al.|(2021)) unified them with DDPMs via stochas-
tic differential equations. While DDPMs produce high-quality images, they require many steps,
leading to high computational costs. To improve efficiency, |[Song et al.| (2020) proposed denois-
ing diffusion implicit models (DDIMs), which generalize DDPMs with non-Markovian processes
while preserving the same training objective. DDIMs achieve comparable quality with fewer steps.
Building on these foundations, recent works (Zhang et al., 2023} |Ho & Salimans| |2022; |Dhariwal &
Nicholl [2021; [Rombach et al., 2022; |Peebles & Xie}, 2023} [Styputkowski et al.| 2024} [Tevet et al.
2022; |Ramesh et al.| [2022) have demonstrated the broad applicability of diffusion models across
diverse domains.

In theoretical analysis, many works research the distance between the target distribution and the gen-
erated distribution. These works study the convergence guarantees for ODE-based samplers(Huang
et al.| [2024; |Chen et al.| [2023b) and SDE-based samplers (Bortoli et al.l 2021} [Li & Yan| [2024).
Moreover, they propose many techniques for relaxing the assumptions. Especially, in order to
weaken the assumptions of smoothness, the technique of applying Girsanov’s theorem (Chen et al.,
2023c)) has been proposed for analyzing SDE-based samplers.

Conditional Generation. Conditional generation is a key task in diffusion models. [Dhariwal &
Nichol| (2021) introduced the classifier-guided diffusion model (CGDM), which uses an auxiliary
time-dependet classifier to guide the reverse process and improves class-conditional sampling qual-
ity. However, the classifier must be trained on noisy samples from every timestep, which is costly.
Our work shows that this is unnecessary: classifiers from only a few timesteps—or even timestep
zero—are sufficient for conditional generation.

Ho & Salimans| (2022) proposed classifier-free guidance, which removes the classifier by approxi-
mating classifier gradients with score function differences, but still requires labeled data for training.
Other approaches, such as off-the-shelf and plug-and-play methods (Ma et al.|[2023;|Go et al., 2023}
Graikos et al.| [2022; [Nguyen et al., 2017} |Chao et al., 2022; |Huang et al. |2022), reduce classifier
training by reusing pretrained models, though their focus lies beyond the scope of our work.

3 INVESTIGATION OF THE CLASSIFIER GUIDANCE

3.1 PRELIMINARIES

Diffusion model. Diffusion model (Ho et al.}|2020) is a method for generating new samples & ~
p(x). It first draws sample g ~ po(xg) = p(xo) and then gradually add noise to o so that
after sufficient steps the &1 approximately obeys N (zr;0,I). Formally, x; ~ p;(x;) is given by
p(xy | @i—1) = N(@;+/1 = Bray—1, BtI). Next, the denoising process is to gradually generate
clean samples by learning p(z:—1 | @) = N(xi—1; pe(xt),071), where p(x;) is obtained by
removing the noise €;(x;) from x;, i.e., pu(x;) = \/117@ (e — 16:5% (@), @ = [y (1—5s).
So after T steps of denoising, x( can be recovered. These two processes can also be expressed by
using stochastic differential equation (SDE) framework (Song et al., 2021); see more details in
Appendix [B]
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Figure 3: Generated images of 256 x 256 resolutions under the guidance of the different number
of classifiers. Left: no classifiers guidance (FID 26.21), middle: 8 classifiers guidance (FID 12.90),
right: 1000 classifier guidance (FID 12.00). The ground truth labels are "Maltese dog", "monarch
butterfly”, "balloon", and "cheeseburger".

Classifier guidance. Classifier guidance diffusion models (CGDM) (Dhariwal & Nichol, 2021]))
generate samples © ~ po(x | y) by using an additional classifier to guide the reverse process.
Specifically, in CGDM, the goal is to generate all intermediate conditional distribution p;(x | y).
Since pr—1(zi—1 | y) = [ pe(xs | y)p(2i—1 | @+, y)da,, it needs to obtain the transition probability
p(xs—1 | 24, y),

p(@i—1 | ®)p(y | -1, @4) pe—1(y | 1)

pe(y | ) pe(y | xt)
where we use the fact that p(y | @i—1,%¢) = pi—1(y | @:—1) (Dhariwal & Nicholl [2021).
SThis transition consists of two terms: the unconditional transition p(x;—1 | x;) and the ratio

pi—1(y | 1—1)/p:(y | +), which introduces the new term V log p:(y | @) in the reverse process.
Consequently, the reverse process is

p(fﬂtq | wuy) = = P(ﬂft—1 | iBt)

@1 = () + 07V logpi(y | @) + owe, € ~ N(0,1), (D

where the classifier guidance V, log p:(y | @) is time-dependent and requires training classifiers on
noisy data for all timestep .

3.2 TIME-INDEPENDENT CLASSIFIER GUIDANCE

Let us reconsider the reverse process in CGDM. The main technique is applying the transition prob-
ability p(x¢—1 | ¢, y) that can generate @;—1 ~ pi_1(xi—1 | y) from x; ~ pi(xy | y) step
by step, ultimately yielding po(x | y). However, the goal is to generate po(x | y), instead of
all p;(x | y). Noting that po(x | y) < po(x)po(y | x), we observe that it suffices to generate
i1 ~ pr—1(xi—1)po(y | Ti—1) from x; ~ pi(a)po(y | x¢), then it can complete the goal of
generating po(x | y). This perspective motivates the construction of a new transition probabil-
ity p(x¢—1 | x¢,y). The following theorem provides a general framework for constructing such a
transition probability; see Appendix [A-T]for the proof.
Theorem 3.1. For a fixed classifier hy(x), if we draw x; ~ Z;p,(x,)h, () and generate x,_1 by
applying the transition probability
- . hy(xi—1)
pxe—1| e, y) == p(xi—1 | x1) by (2)

then the generated
i1~ Zi_1pr—1(Te—1)hy(x4-1),

where Z; and Z;_1 are normalization terms.
Therefore, if we set the classifier by, := po(y | -) in Theorem and draw

xp ~ Zrpr(zr)po(y | ®r) = ®r_1 ~ Zr_1ipr—1(xr—1)po(y | ®T-1),
j PN s
= g ~ Zopo(xo)po(y | xo) = po(xo | y),
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Algorithm 1 Sampling using diffusion (pg(x:), X (x¢)) and k classifiers py, (y | @)

Input: class label y, gradient scale s
@ < sample from N (x7;0, ) and compute time interval t* < T'/k
for all ¢ from T"to 1 do
i< [t/t*]
H, ¥ u@(wt)a E@(xt)
Ty1 — N+ sEVy, logpi(y | ), %)
end for
return x

then we can successfully recover po(x | y). The intermediate x; just needs to obey p:(x+)po(y | +)
for all ¢, which can be achieved by applying the transition probability p(;—1 | «,y). Impor-
tantly, this transition probability requires only the knowledge of the single time-independent classi-
fier po(y | -). More specifically, the reverse process is characterized by the following proposition
and the proof is provided in Appendix

Proposition 3.2. Using the same notations as in Theorem if e ~ Zipe(xs)hy () and gener-
ating 1 by

x_ 1 = p(xy) + 02Vylog hy(x¢) + ore, € ~ N(0,1), 2)

then xy_1 ~ Zy_1pi—1(@i—1)hy(@1_1), where Z; and Z;_1 are normalization terms.

By comparing the reverse dynamics in (Z) and (I), we can see that the classifier guidance term
Vzlogpo(y | «) in our model is time-independent and can be trained solely on clean data. We
construct a synthetic experiment to test the validity of the reverse dynamics (2); see the results in
Section .11

3.3 INITIAL SAMPLING AND CONTRACTIVE PROPERTY

The next challenge is handling the initial sampling @7 ~ pr(x7r)po(y | ®r). Although pr(x)
approximates N (z; 0, I'), the complexity of py(y | =) results in sampling from N (z; 0, po(y | =)
intractable. This raises the question of whether we can instead directly sample 7 ~ N (x7;0,I).
To answer this question, we analyze the contractive property of the reverse dynamics (2) in the
following theorem. A more formal statement of Theorem along with its proof, is provided in
Appendix [B.T]

Theorem 3.3 (Informal). Under a mild smoothness assumption on the unconditional log p,, if the
time-independent classifier hy is M-strongly log-concave, i.e., —N2loghy(x) = MI for some
constant M > 0, then even when xr ~ N (xr;0,1) is used as the initialization in the reverse
process (2), the generated distribution converges to the target distribution exponentially in T

The main idea of Theorem [3.3]is to establish a contractive inequality for (2, given by
& — &> < e KT |zp — 27 |?, 3)

where &; and &, are generated by (2) from different initializations 7 and &, respectively. Owing
to the smoothness of log p; and the strong log-concavity of po(y | -), we can ensure the existence
of a positive constant K > 0. Inequality then implies that the distance between &; and &;
decays exponentially in 7. Consequently, sampling 7 ~ N (@7;0, I) has little impact on the final
generation compared with 7 ~ pr(x7r)po(y | 1)

For the strong log-concavity of the classifier h,, a simple example is the “Gaussian-like” classifier
of the form hy(x) = exp(—|l& — p,|*/02), which has been used in the noise inverse problem

(Dhariwal & Nichol| 2021). It is clear that such an h,, is 1/ az-strongly log-concave. Using this type
of classifier, we construct synthetic datasets to verify the results of Theorem 3.3} see Appendix [D.1]
for details. For real-world image datasets, although the strong log-concavity of the classifier cannot
be guaranteed, our experiments demonstrate that initialization with A/(x;0, I) remains valid; see
Section[4.2] We also empirically evaluate the contractive property on real-world image datasets, and
the results are shown in Section 4.3]



Under review as a conference paper at ICLR 2026

3.4 MANIFOLD HYPOTHESIS AND MORE CLASSIFIERS

In previous analysis, we omitted an important assumption that po(y | -) is meaningful even for
noisy data x; at large t. However, this assumption is generally not satisfied for real-world image
datasets. High-dimensional data typically concentrate on a much lower-dimensional submanifold, a
phenomenon known as the manifold hypothesis (Bengio et al.l [2013)), which has been extensively
examined in both theory (Fefferman et al.,2016) and experiments (Brown et al.|[2022)). Since clean
data in R"™ lie on a low-dimensional submanifold My C R™, a classifier po(y | -) trained on clean
data is only meaningful within a small neighborhood of M. Consequently, po(y | -) cannot provide
reliable guidance for noisy samples «; far from the data manifold M.

Our next goal is to address this limitation. Motivated by the approach of |Song & Ermon| (2019), we
train a small number of time-independent classifiers on noisy data from different timesteps of the
forward diffusion process so that they remain informative even for noisy inputs. Let 7' = o > ¢; >

- >ty = 0. For each t;, we train a classifier h, := p;, (y | -) on noisy data ;,, fori = 1,2, ..., k.
Durlng generation, from step ¢;_; to step t;, we employ hZ to guide sampling according to the
reverse dynamics (2).

However, two additional issues must be addressed: how to design the transition probability at each
step t; when the classifier changes, and how to modify the reverse dynamics (2) at ¢;. First, for
i=1,2,...,k — 1, the transition probability at ¢; can be defined as

hitt(xy,) P (| )
y i tiv1 \Y ti

L = (@, | Ty 1)
hi(xt,+1) SR )Pti (Y| Te,41)

“4)

Do, (e, | ®e,41,Y) = (Xt | Tt 41)

Under this transition probability, when @, 1 ~ D, +1(®t,+1)Dt, (y | T, 4+1), it follows that x;, ~
Pt, (¢, )Pt, 1 (Y | ;). The reasoning is analogous to the proof of Theorem see Appendix
Based on this transition probability, the reverse dynamics is formulated in the following proposition,
with proof provided in the Appendix

Proposition 3.4. Using the same notations as the above, the desired x., can be generated from
Tt +1 by
2
@y, = p(T4,41) + 07,1 Ve logpe, (y | @4, 41) + 01,418

Except at the timesteps ¢; where the guidance changes, the transition from x4, ; to generate oy, ,
follows the same reverse dynamics as in (2), guided by p;,,,(y | «). In other words, the term
Vzlogpe, (y | «) is used from step ¢;_1 — 1 to step ¢;, while the term Vg logp,,, (y | ) is used
from step ¢; — 1 to step t;1. The complete sampling pipeline is summarized in Algorithm[I] where
we also introduce a guidance scale s to control the strength of guidance.

The next question is how to determine the number £ of classifiers. To this end, we investigate
whether it is possible to establish an upper bound on the distance between the distribution gener-
ated with k classifiers and the target conditional distribution. To address this, we apply Girsanov’s
theorem (Liptser & Shiryaev, 2013) to bound the total variation between the target distribution
py = p(- | y) and the generated distribution p,. A formal statement of the following theorem
and its proof are provided in Appendix [B.2]

Theorem 3.5 (Informal). Under some assumptions, we have that
1
TV(py,by) <O ¢

Here, we outline the key ideas in the proof of this theorem, which consists of two parts. First,
Girsanov’s theorem is applied to relate the total variation (TV) to the difference in guidance terms,
ie.,

ti—1

Vpy.5,) <Z/ E [Jlpe, (v | ) — pily | 2)]?] dt

an idea inspired by [Bortoli et al.| (2021)); |Chen et al.| (2023c). However, we employ another proof
without considering the Wiener space as the previous works did. Second, to obtain an upper bound
for the term on the right-hand side, we apply Gronwall’s Inequality under suitable assumptions on
the target conditional distribution.
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Table 1: Comparison between the different numbers of classifier guidance on sample quality.

S1ZE  CONDITIONAL  CLASSIFIERS FID SFID

256 X 0 26.21 6.35
256 X 4 14.81 8.51
256 X 8 12.90 11.09
256 X 16 12.33 11.43
256 X 1000 12.00 10.40
256 v 0 10.94 6.02
256 v 8 4.78 5.22
256 v 1000 4.59 5.25
128 v 0 5.91 5.09
128 v 8 3.05 5.18
128 v 1000 2.97 5.09
64 v 8 4.79 6.07
64 v 1000 4.14 5.82

Experimentally, we investigate the confidence score of the generated results guided by different
number of time-independent classifiers provided by |[Nichol & Dhariwal (2021)). As shown in Figure
[Il the model fails to provide meaningful guidance when only a single classifier at timestep 0 is
used. This is because one classifier cannot provide reliable guidance for noisy data far from the data
manifold M, as discussed earlier. In contrast, when the number of classifiers increases to k = 8 or
k = 16, the reverse process produces results with performance comparable to CGDM, which relies
on all 1000 classifiers. These findings empirically validate our approach.

4 EXPERIMENTAL RESULTS

In this section, we present experiments on both synthetic and real-world datasets to validate the
proposed theory, with implementation details provided in Appendix [C|

4.1 ONE CLASSIFIER GUIDANCE FOR SYNTHETIC DATA

As discussed in Theorem [3.1] one classifier can be sufficient for conditional generation guidance, if
the initial sampling condition can be satisfied and the classifier is meaningful even for noisy data. In
this subsection, we experiment on 2-dimensional toy datasets to verify this.

Let the clean data be drawn from po(x) = N (x; po, X). Suppose it has two classes y € {y1,y2}
with classifiers set by po(y = y1 | ) = N(z; 1, 2) and po(y = y2 | ©) = N(x; pe, X), where
X =1, po = (-6,0), py = (0,6), and po = (0,—6). Under these settings, by po(x | y) x
po(x) - po(y | x), the objective conditional distributions po(x | y = y1) and po(x | y = y=) are
also normal distributions with expectations ftg|,, = (to + p1)/2 and gy, = (o + p2)/2 and
variances Y|y, = Y|y, = /2.

We randomly sampled 30k two-dimensional points from po(x) as training data to train an uncon-
ditional diffusion model with 7" = 1000. For the reverse process, we sampled 2k two-dimensional
points for each class y; from the distribution N (x; 0, )po(y; | x), for ¢ = 1,2. This sampling
is tractable because they are also normal distributions. The final generation results are shown in
Figure 2] Both groups of data run the reverse diffusion process guided by their corresponding fixed
classifiers po(y; | @) and successfully reconstruct the distributions po(xo | ¥ = ;). This veri-
fies Theorem [3.1] demonstrating that the information provided by the classifier po(y | =) alone is
sufficient to generate the final conditional distribution.

4.2 QUANTITATIVE COMPARISON

Theorem [3.1] shows that guided diffusion does not require a time-dependent classifier trained on
noisy data from all timesteps. For real-world image datasets, as discussed in Section[3.4] a small set
of time-independent classifiers trained on noisy data from a few timesteps (e.g., 8 timesteps instead



Under review as a conference paper at ICLR 2026

Figure 4: Classifier guided samples on CIFAR-10, each column corresponds to different classes.
The upper 5 rows are guided by 1000 classifiers, and the lower 5 rows are guided by 10 classifiers.

Table 2: Samples quality guided by 10 and 1000 classifiers on CIFAR10 dataset.

CLASSIFIERS  TRAINING ITER FID SFID

1000 100k 19.36  18.22
10 30K 7.36 6.91

of all 1000) can also guide the diffusion model to reconstruct po(x | ). In this subsection, we
conduct experiments on ImageNet-1K to quantitatively verify this idea. For simplicity, we refer to
the use of time-independent classifiers trained on noisy data from & timesteps as "using k classifiers."

We report experimental results using a diffusion model (Nichol & Dhariwall, 2021) trained on
ImageNet-1K, with classifiers (Nichol & Dhariwall 2021) trained on & = 8 different timesteps.
The total number of timesteps is set to 7" = 1000, and the reverse diffusion process is executed
according to Algorithm[T]to guide an unconditional diffusion model in sample generation.

Figure 3] presents images generated by an unconditional diffusion model with the guidance of 0, 8,
and 1000 classifiers. The leftmost images show that using 0 classifiers yields poor class consistency,
as the diffusion model generates samples without guidance. In contrast, when following the strat-
egy of Algorithm 1} class consistency improves substantially with classifier guidance. The middle
images in Figure [3] generated with 8 classifiers, demonstrate that even this small number of clas-
sifiers is sufficient to produce high-quality, class-consistent samples. Moreover, the visual quality
and detail of these samples are comparable to those generated with 1000 classifiers, i.e., using a
time-dependent classifier trained on noisy data from all timesteps. More experiments with larger
figure are provided in Appendix [E]

To quantitatively demonstrate the performance, we evaluate multiple metrics, including Fréchet In-
ception Distance (FID) (Heusel et al [2017), sliding FID, Inception Score (IS) (Szegedy et al.
[2016), recall, and precision (Kynkéénniemi et all, 2019). As shown in the top rows of Table []
the unconditional diffusion model without classifier guidance fails to generate high-quality samples,
whereas models with classifier guidance achieve substantial improvements. Guidance with as few as
4 classifiers leads to significant gains across all metrics, and using 8 classifiers yields performance
comparable to guidance with all 1000 classifiers. Increasing the number of classifiers to 16 results
in only marginal improvements, with performance effectively saturated at the level of 1000 clas-
sifiers. Experiments with conditional diffusion report similar results across all image resolutions.
These findings validate our theory that only a small number of classifiers are sufficient for effective
conditional generation.

We further validate our theory by training classifiers from scratch for an unconditional diffusion
model with 1000 timesteps and with 10 timesteps on the CIFAR-10 dataset (Krizhevskyl [2009).
As shown in Figure [ the upper 5 rows display results generated with classifiers corresponding to
all 1000 diffusion timesteps (trained with batch size 64 for 100k iterations), while the lower 5 rows
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Figure 5: Left: Confidence score of classifiers with different classifiers scales from 0.0 to 10.0:
Given the bias p = —0.03 - 1 on the initial sampling, the generated images for class "peacock".

visualize results guided by classifiers corresponding to only 10 timesteps (trained for 30k iterations).
The quantitative results are reported in Table[2] Both models achieve comparable image quality, but
our approach substantially reduces computational cost by requiring far fewer classifiers.

4.3  VERIFYING CONTRACTIVE PROPERTY

Theorem [3.3]investigates the contractive property of the reverse dynamics (2)) under the smoothness
assumption of the unconditional score function and the strong log-concavity of the classifier. To test
its validity, we first conduct a synthetic experiment on a toy dataset by setting the initial distribution
as either a standard Gaussian or an arbitrary Gaussian, as shown in Appendix [D.1]

To verify the contraction property discussed in Theorem [3.3]on real-world datasets, we test the con-
ditional diffusion model by incrementally increasing the classifier guidance scale. The motivation is
that, under the assumptions of Theorem@ i.e., the smoothness of the unconditional score function
and the strong log-concavity of the classifier, increasing the guidance scale to a suitable value can
make the contractive inequality hold, as discussed in Remark 3]

In this case, we initially samples x1 ~ N (x7; p, I) with the bias u = —0.03 - 1.

As shown in Figure 5] the classifier guidance scale increases from 0.0 to 10.0 from left to right.
When the scale is 0, the samples generated by the conditional diffusion model without guidance are
of poor quality. As the scale increases, the generated images gradually improve, ranging from nearly
blank outputs to realistic bird images. This validates the contractive property of the reverse dynamics
(2) even on real-world datasets. Moreover, this contractive property enhances the robustness of the
diffusion model against distribution shifts in the initial sampling. Additional experimental results
are provided in Appendix [D.2]

4.4 COMPARISON TO CLASSIFIER-FREE GUIDANCE MODEL

Our idea can be directly applied to classifier-free guidance model (CFG), because CFG and classifier
guidance model (CG) are theoretically equivalent. Note that the main goal of these two approaches
is to estimate the guidance term V log p;:(y | ). In classifier guidance, a time-dependent classifier
is trained to approximate p;(y | -) on all noisy data. In classifier-free guidance, a new neural
network s¢(t, 2, y) is trained to estimate the conditional score Vg, logp,(x | y), while s, (¢, z, )
approximates the unconditional score V4 log p;(x). The guidance term is then computed as

vm Ingt(y | m) ~ s¢(t,w,y) - S¢7(t7 €Z, (Z))
So the main goal of CFG is to train time-dependent s4(t, z,y). Based on our theoretical analysis,
in stead of training a time-dependent s¢ (¢, ¢, y), we can train k time-independent
Sy (mtl ) y), T So (mtk ) y)»

because according to Proposition we only need guidance at ¢y, - - - , g, i.e., training s¢, (€, y)
such that

Va Ingti (y | :II) ~ S¢; (.’1}, y) — S¢; (ma (D)
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Figure 6: Class-conditional samples generated by our classifier-free guided diffusion model using
only k£ = 10 conditional score sy, (x+,,y) with guidance scale s = 1.3 at selected timesteps ¢ €
[0, 100, 200, ...900].

For sampling, we only need to replace Vg log ps, (y | ) by s4,(x,y) — sS4, (x,0) in Algorithm

Here, we demonstrate the qualitative results obtained by our classifier-free guidance diffusion model
using k& = 10 learned guidance heads. As shown in Figure [6] our approach is able to generate
visually compelling class-conditional samples across a wide range of CIFAR-10 categories. Even
though guidance is only provided at a limited set of time steps, the model still achieves strong
semantic control while preserving high-frequency image details.

Compared with standard classifier-free guidance, our method significantly reduces the complexity of
conditional score learning. Instead of modeling the conditional distribution over the entire diffusion
trajectory, guidance networks are only instantiated at the selected key times {t;}¥_,, thus lowering
both training cost and memory usage. This supports our theoretical conclusion that the guidance
signal does not need to be time-dense to effectively steer the reverse diffusion process.

In summary, these results validate that our proposed sparse-time guidance strategy is compatible
with classifier-free guidance (CFG), and that only a few conditional score function are sufficient to
achieve high-quality, class-consistent generation.

5 CONCLUSION

This paper explores the possibility of training a time-independent classifier to guide an uncondi-
tional diffusion model in generating target conditional distributions. We theoretically show that a
single time-independent classifier trained on clean data can enable conditional generation under cer-
tain conditions. However, since real-world data often fails to satisfy these conditions, we propose
two techniques to address this limitation. First, the initial sampling condition is intractable; we re-
solve this by simplifying the initialization to a standard Gaussian through analysis of the contractive
property of the reverse process guided by a suitable classifier. Second, due to the manifold hy-
pothesis, a single classifier lacks sufficient information for guidance; therefore, we employ a small
number of time-independent classifiers trained at different noise levels to guide conditional genera-
tion on real-world data. To analyze the effect of the number of classifiers, we provide a theoretical
convergence analysis and establish an upper bound in terms of the number of classifiers. More-
over, experiments on both synthetic and real-world datasets confirm our conclusion that using only
a few time-independent classifiers achieves performance comparable to CGDM, which requires a
time-dependent classifier trained on noisy data at all timesteps.
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A PROOFS

A.l PROOF OF THEOREM [3.1]

Proof. If ¢y ~ py(xs | y) o pe(xe)hy(xy) and p(xi—1 | x4, y) is defined as the theorem, then
Pr—1(zi—1 | y)is

/ﬁt(wt | y);ﬁ(wt,1 | wtvy)dmt o8 /pt(wt)hy(wt)p(mtfl | xt)h;/lfj;t)l)dwt
= /pt(mt)p(xt—l | @) hy(e—1)dy
= hy(33t—1) Pt(ﬂ?t)p(mt—l | -’Bt)dict
= pr—1(®i—1)hy(2i-1).
Soxi_ 1~ Pr1(xi—1 | y) < pr_1(xs—1)hy(Ts_1). O

A.2 PROOF OF PROPOSITION[3.2]

Proof. First, by the reverse process of the unconditional diffusion model, we know
oy — ()|
207

).

p(wi_y | ) = N(i—1; pe(e), 07 1) o< exp(

Because the transition probability is

hy (¢-1)

hy (2) = p(xi—1 | ;) exp(log hy (1) — log hy(x))

P(ei—1 | T4,y) = plxi-1 | 1)

and by the Taylor formula at =,

log hy(xi—1) —log hy () = (21—1 — xt) Vg log hy (x4)
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we can get
. i1 — ()|
p(e—1 | T, y) < exp ( e 2;?( 2l + (x4—1 — @) Vg log hy(mt)>
?
[e—1 — pe(@e) — 07 Vg log hy (¢)]|*
o exp( 207 ).
Therefore, we have x;_1 = p(z;) + 07V log hy(z:) + ore, € ~ N(0,1). O

A.3 PROOF OF PROPOSITION[3.4]

Proof. Similarly as the proof in Theorem 3.1 if @, 11 ~ ps,+1(¢,+1)pr, (Y | ®1,41), then with the
transition probability py, (@, | ©4,+1,y) defined in (), x,, obeys

Ptipq (y | wti)

day, 11
Pt (Y | Te,41)

/ Proer (e, 20)pe (0 | Teoe)p(@r, | Zep)

= Py | 21) / P 1 (0,4 )p(@e, | Troir)die 4

=P (mti)pti+1 (y | wti)'
So this transition probability is valid. And when viewing p;(y | @) as two variables function of
(t, ), by the Taylor formula,
logpti+1 (y | wtz) - logpti (y | wtri—l) ~ (xti - wtﬁ-l)vw 1ngti (y I wtﬁ-l) + Cv
where C' is independent with x;,. Similarly as the proof of Proposition 3.2}
@0, — p(@e41)]?
207 14

fjti (wti wti+17y) X exp <_ + (:I:ti - thrl)vm Ingti (y | wtiJrl))
e — @) = 0f 1 Valogpy (y | 40|

2
204,41

).

o exp(

Therefore, generating

i, = p(@e41) + 0441V 10g e, (Y | T441) + 01,116 O

B PROOFS BY APPLYING SDE FORMULAS
Song et al.| (202 1)) provided a stochastic differential equation (SDE) framework to explain the diffu-
sion model, which is helpful for us to obtain the results of Theorem [3.3]and Theorem 3.5]

To simplify the following analysis, let’s choose the forward process to be the Ornstein—Uhlenbeck
(OU) process, for t € [0,T] (Note that here we use 7' to be the endpoint of the diffusion interval,
instead of the time-steps of discrete diffusion model, because in this section we won’t consider the
discrete version of the diffusion process),

dr; = —xdt + \/ﬁdBt, xo ~ P,

where (Bi):ec[o,7) is a standard Brownian motion on R?. So it is a particular case of our above
practical settings, by
Ge=2, Vtel0,T].

The OU process has an analytic solution

z L Nxo + oW, W~ N(0, 1),

with \y = e~% and 0y, = v/1 — e~ 2¢, where 4 means the random variables of the RHS and the LHS
have the same distribution function.

Now, to be more clear in notations, let denote (H_St)te[o,T] be the reverse process, that is,

Ty = TT_¢.
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Then (Z).c[o,7] satisfies the SDE

dx; = (& + 2V logpr—(&:)) dt + V2dB;, %o ~ pr, (5)

where (By)ic[0,7] is the Brownian motion in reverse time, and p; = Law(z,), the density function
of x;.

By|Song et al.|(2021)), we can use the reverse process to generate the conditional distribution p(z | y)
by replacing V log pr_.(x) with

Valogpr_i(x | y) = Vg logpr—i(x) + Vg logpr—i(y | ).

Therefore, let (y;)¢c[o,7) be the conditional reverse process for generating p(x | ), so it satisfies
the following SDE, for ¢ € [0, T,

dy; = (y: + 2V logpr—i(ye) + 2V log hy(t, ye)) dt + V2dBy, yo ~pr(-|y), (6)

where hy(t, z) := pr—(y | ). Along this process, it can generate yr ~ p(- | y) =: py.

B.1 CONTRACTIVE PROPERTY
In our setting, instead of choosing hy (¢, ) = pr_.(y | ), we let

hy(x) = po(y | x),

which is a time-independent classifier trained the clean dataset. Therefore, the SDE formula of our
reverse process (2)) is defined as

Ay, = (¢ + 2V log pr—i(9s) + 2V log hy (g:)) dt +V2dBy,  go ~ Zrpr()poly | -).

Remark 1. In practice, there exists a scale s to control the strength of guidance, that is replacing
V. log hy(g:) by sV log hy (7). Here to simplify the analysis, we set s = 1.

As mentioned before, it is intractable to draw gy ~ Zrpr(-)pe(y | -) or its approximated version
Yo ~ ZrN(0,I)po(y | -). Instead, we consider

dy, = (?;/t + 2V, IngTft('!:/t) +2Vzlog hy (?gt)) dt + \/idBta Yo ~ N(07 I)-

The problem is what is the distance between y ~ p, and g ~ p,. Here we choose the Wasserstein
distance to measure the distance, which coincides with the FID score in practice. For two distribution
P, q, the 2-Wasserstein distance between p and q is

Wi(p,q)* = inf {/le —y|ldvy(z,y): v € D(p, q)}
—inf {E[|X -Y|?]: X ~p, Y ~q},

where I'(p, q) is the set of all joint distributions with marginal distributions p and ¢; see more details
in|Chewi et al.| (2024).

Assumption 1. There exists L, > 0 such that log p; () is L,-smooth, i.e. || V2 log p:(x)|lop < L.

Remark 2. The smoothness condition of score functions is widely used in theoretical analysis (L1
& Yanl 2024; (Chen et al.| 2023bic). In fact, it can be replaced by the smoothness condition of
log po(x); see more details in Chen et al.[(2023a)).

Under Assumption [I] we can provide a formal version of Theorem [3.3]and its proof.

Theorem B.1 (Formal). Using notations as above and under Assumption|l| if for any x
~V2logh,(z) = MI,
where M > 0 such that M > L, +1/2, i.e. hy, is M-strongly log-concave, then

W2(]3y7f7y) < @ (eiT) .
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Proof. First, let K = 4(M — L) —2 > 0. By It6’s formula,
@ (llge = @ulPe™) = Ke g — gullPdt + 2¢5* (g, — g, dg, — di)
= (K +2)e™ |y, — ﬁt“zdt (7)

+ 4eKt (Yt — Ui, Ve logpr—1(y:) — Ve logpr—_i(9:)) dt
+ 45 (g, — G4, Vi log by (G:) — Vg log hy(9:)) dt.

Under Assumption because || V2 log pi(x)lop < Ly, we have

(Yt — Yt, Valogpr—(9:) — Ve logpr—i(9:)) < Lpllys — Qt”z- 8
Moreover, because V2 log hy(x) < —M],
(Gt — U1, Va log hy (1) — Va log hy(90)) < —M||g, — ]| ©)

By Combining (8) and (9) with (7)), we obtain
@ (g~ 9u25Y) < (K + 24 4(L, — M))dt =0,
which implies that
Ige = 9ell* < € llgo = 9ol = E [Ige — 5al1*] < e E [l1go — 5ol*].
Therefore,
Walpyp)? <E[lgr —gr|*] < Ce ¥ = 0 (7). o

Remark 3. Note that even h,(x) is M-strongly log-concave, we cannot guarantee M > L, +
1/2. However, as mentioned before, in practice, we can adjust the guidance scale s to make
—sV2loghy(x) = sMI and sM > L, + 1/2 such that the contractive property can be satis-
fied; see the experiments in Section[4.3]and Appendix[D.2]

B.2 CHOICE OF THE NUMBER OF CLASSIFIERS
In the following, we provide a theoretical analysis of the relationship between the performance and
the number of classifiers k.
In our settings, it first chooses a partition of [0, T,
O=tog<ti < - <tpg=T,

andt;11 —t; =T/kforanyi=0,1,--- , k — 1. Then define ﬁy(t7 x) piecewise as

hy(t7.’13) = hy(ti7.’13)7 Vte (ti7ti+1}-

So the generated process (Yt ):c[o, 7] in our case satisfies the following SDE

dy; = (Z}t + 2V logpr—+(9:) + 2V log ily(ta Qt)) dt +V2dB;, go ~ pr(-|y). (10

Let g7 ~ py. So the main goal is to measure the total variation of p, and generated p,, TV (py, By),
from the SDEs (6) and (I0). Motivated by Bortoli et al.| (2021); |Chen et al| (2023c), we will apply
Girsanov’s theorem to this problem. Therefore, in the following two subsections, we will first intro-
duce Girsanov’s theorem and explain how it can be applied to this kind of problem. Then we will
use the results to analyze the upper bound of TV(p,, p,) with respect to the number of classifiers,
k. First, we need the following three assumptions.

Assumption 2. We assume that m3 := EPCIY) [||-]|2] = E [||lyr||?] < cc.

Assumption 3. For all ¢t € [0,7], log p;(x | y) is L-smooth for some L > 1, that is, | V2 log p;( |
Yllop < L.
Assumption 4. There is an A > 0 such that for all ¢ € [0, T7, ||0; Vg log hy (¢, )|| < Allz].
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Note that V?u means the Hessian of u and |- |p is the operator norm of a matrix.

Remark 4. (1) Assumption [2] is appeared in many works, such as [Li & Yan| (2024); |Chen et al.
(2023bic). But it can be replaced by the bounded support of p (Huang et al., |2024), or L-
smoothness of log po(- | ¥) (Chen et al., 2023a)).

(2) Assumption [3] is not weird because when analyzing SDE (©), it usually assumes the L-
smoothness of log p;, such as|Chen et al.|(2023bic). Here we just replace log p; with log p:(- | y)
for analyzing SDE (6).

Theorem B.2. Using the notations as above and under the Assumption there is a constant
C =C(L,d, T,ms) > 0 such that

B.2.1 GIRSANOV’S THEOREM AND APPROXIMATED TECHNIQUE

In this section, let’s fix a probability space (€2, F,P) and a Brownian motion B = (Bi):e[o, 1], OF
called a P-Brownian motion. Besides, let the probability space be equipped with the natural filtration
induced by B.

Theorem B.3 (Girsanov’s Theorem, Theorem 6.3 of Liptser & Shiryaev|(2013). Fort € [0,T), let
M; = fg 0.,dB,, where B is a P-Brownian motion. Assume that 0; € L?(B), that is

1 T
f/ 16,1%dt| < oc.
2o

Then M is a P-martingale in L2 (P). Moreover, if E¥[E(M)r] = 1, where
t 1 t

E(M); = exp </ 0.dB, — 7/ ||0u||2du> .
0 2 Jo

t
t— Bt —/ Hudu,
0

]EIP’

Then the process

is a Q-Brownian motion for

dQ B ’ L
dIP’_g(M)T_eXp</0 9tdBt—§/O 161t | -

Girsanov’s theorem can be applied to analyze the behaviors of two SDEs with different drifts and the
same noise scale. The following lemma explicitly shows that. This result appeared in [Bortoli et al.
(2021)); (Chen et al.| (2023c)), but they proved it in the path-space (Wiener space). Here we provide
another proof without considering the Wiener space and the Wiener measure.

Lemma B.4. Considering the following two SDEs,
X~ KOOy VEIB, X~
dX? = o2 (x)dt +v2dBy, X ~ po,

and let

6, = % (bﬁ” - b§2>) :

Assume the conditions in the above theorem are satisfied, i.e.

1 T T 1 T
f/ 16,12dt| < 00, EP |exp / thBt—f/ 16,12dt | | = 1.
2 0 0 2 0

Let (V) = (X;i))#IF’ be the distribution ofX(Ti) fori = 1,2. Then we have

]E]P’

1 T
TV, 1u®) < KL u®) < / E” e — 0|12 at.
0
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Proof. For

L (0 x@y _ @ x®@
0 = —= (b0 (x) =P (x))
t \/5 t ( t ) t ( t )
because it satisfies the conditions in Girsanov’s theorem, there is a new probability measure (Q such
that

1 t
We=Bi- / (0 (x2) = b2 (x(2)) du.
0

is a Q-Brownian motion. So
V2B, = v2aw, + (b (X)) b (xP) ) at.
Then replacing dB; by dW; in X (?)’s equation, we have
dx? = v (XP)dt + vV2dB, = b (XP)dt + V24w,
By comparing this equation with the equation of X" w.s.t. dB;,
ax{V = b (xdt +v2dB, X ~ po,
ax® =" (XP)dt + V2w, X8 ~ po,

we can see they have the same formula when considering X on (Q,P) and X on (Q,Q).
Therefore, by the uniqueness of the solution of SDE (Liptser & Shiryaev, 2013)),

p = (X)) 4P,
) = (X)4P = (X7))4Q,
and we have
KL(uO6®) = KL ((X{)4P|| (X1)4Q).
By the following Lemma[B.5] this implies that
KL(uM[|u®) < KL(P|Q).

To calculate the right-hand side, by Girsanov’s theorem, we have

dQ T T dP T 1T
Ee _ B, — - @ _ - B+ - .
p = P (/0 0,dB; 2/0 16:]]7dt | = a0 exp /0 0:dB; + 2/0 |16~ dt

Therefore,
(W) 42 P [1og IF
KL(uW|p'®) <KL(P|Q) = E log 45
T 1 (T
_ P _/ 01dB; + f/ 16,12t
0 2 Jo
17 1), (2 2) /(2
=1 [ B (I ) - o e )
by the fact that EF [f fOT 0y dBt} = 0. Finally, by Pinsker’s inequality, TV? < KL. O

The following lemma is basically a particular case of data processing inequality (Lemma 9.4.5 in
Ambrosio et al.[(2008))). Here we provide easy proof for the sake of completeness.

Lemma B.5. Ler (Q, F) be a measurable space and P < Q be two probability measures on it. Let
X : Q — R? be a random variable with Px = X4P,Qx = X4Q. Then we have

KL(Px|Qx) < KL(P|Q).

18
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Proof. First, P <« QQ implies Px < Qx by definition. Next, we prove that

o[ dP ] dPx
E {d@ o(X)| = gg, o X

First, because E¢ {% o(X )} is o(X)-measurable, there is a measurable function h: RY — R

such that EQ {d(@ U(X>i| = h(X). Then for any B € R? (Borel sets of R?),
dP
/ ]lBiXdQX = / 15dPx
Rd

dQx
:/]lBon]P
o

dP
/Q(]IB 0 X) g0

Clearly, 15 o X is o(X)-measurable so

dP dP
Q il - Q| 22
E |:(]lBOX) a0 O’(X):| (Ipo X)E {d@ O’(X):|,
and by Q € o(X),
dPx dap
[ 1nggdex = [ (1a0x)J5d0
:/E@ {(]lBoX) dP (X)] dQ
Q
P
:/(]lBoX)EQ [d a(X)] dQ
Q
:/(]lBoX)(hoX)dQ
Q
:/ 15hdQx.
Rd
Therefore, Qx-surely we have h = % and thus we have the desired result. By this

and the Jensen’s inequality of the conditional expectation for the convex function n(x) =
(7log )19 00) () defined on R, we have

KLEx Q) = [ 0 (G55 )avs = [ oG55 ex)au= [ (5% 55

<[5 [n(5)] 7] a0= [ () de=10mi@)

Lemma [B.4] provides us with a method to measure the distance of generated distributions from two
SDEs with different drifts. But in order to apply Girsanov’s theorem, we need the following two
conditions

o)) ) a2

EF [/T||9t||2dt] < oo, EF[E(M)r]=1.
0

For practical problems, the first condition is usually satisfied. But we cannot guarantee the second
condition EF[€(M)r] = 1, or equivalently £(M) a P-martingale. So we use the approximation
technique introduced in |Chen et al.| (2023c). Also, they considered this problem in the Wiener
space. Here we slightly modify their proofs to omit their settings in the Wiener space.

Lemma B.6. Let the settings be the same as Lemma but with only one assumption

g 1 Lo @
EP / l6.]dt| = LBF / 16D = 2 |2dt| < M < o0,
0 0

TV2(,u(1),,u(2)) < M.

Then it still has

19



Under review as a conference paper at ICLR 2026

Proof. First, by the (3.4)Proposition of Chapter IV in Revuz & Yor| (2013)), we have known £ (M)
is a local martingale, which means there is a nondecreasing sequence of stopping times 7,, with the
property T}, 1 T such that (£(M)¢ar, )iejo,7,,] is @ P-martingale(see the (1.5)Definition of Chapter

IV in[Revuz & Yor| (2013)). Besides, let M™ = M ™=, that is

t
tATy, »/O eudBuv t < Tn
(Mn)t = Mt/\T,L :/ 9udu = T,
0

0.dB,, t>T,
0

Therefore. by the definition of the exponential of a martingale,

t 1 t
exp </ GudBuff/ ||¢9u||2du>, t<T,
0 2 0
= Tn 1 Tn
exp / GudBu—f/ 0u)du |, t>T,
0 2 0

and so E(M™); = E(M)iaT, - Note that

(S'(be)t

tAT), t
Mr = / 0,dB, = / 0uicio.1, 4B
0 0

So martingale M™ satisfies the conditions of Girsanov’s Theorem. There is a probability measure
Q™ on €2 such that

t 1 t
Wi =B — / Oulicpo, T, du = By — (bq(}) - bq(f)) Liepo, 7,1 (uw)du.

0 \/i 0

is a Brownian motion and we have

aQr ’ I
p = OXP (/0 Ol cio,1,)dB: — 5/0 1001”1 sep0,7,1dt

Tn 1 Tn
— exp 9tdBt—§/ 16,7t ) .
0 0

dP T
KL (P|Q") = EF [log d@,b] = [ Lo a

I 1 2
=1 [ (1 =]

1 T
< 1/ E? [Hbi” - b§2)||2] dt < M.
0

which implies

Next, reconsidering the second SDE
dx® =v?(xP)dt + v24B,
= bgl)(Xt(Z))]lte[o,Tn](t)dt + b§2)(Xt(2))]1te[Tn,T] (t)dt +V2dW, X5 ~ po.
and the equation
AX{ = by (X iepo,r, ) (Dt + 07 (X Lier, 1y (8)dt +V2dB,, - X§ ~ po.

Let ,M(}) be the distribution of X7 under P. But we can see it has the same formula as Xt(2

Q™. So

) under

n® = (X5 4P
pV = (X3 uP = (X)) Q"
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And by the decreasing property of the relative entropy under the push-forward map,
KL (1)) < KL(P|Q") < M.

Note that for all t < T,,, XJ* = Xt(l) by the uniqueness of solution of SDE. By the Lemma 13 in
Chen et al.| (2023c)), for any € > 0,

n &
(Xt/\(Tfs))te[O’T] — (X“\(T*E)>te[o,T] a.s., asn — oo.
Therefore, X7.__ — X(Tlls a.s. asn — oo. Let MS)E = (X}_.)xPand p(l) (X;l)s)#]P’ Then
for any continuous and bounded f define on R¢,
/ Fpl) / foXp _dP — / fox{ dp = fdp(l)

as n — oo, which means ,ugz)g — ,ué ) weakly as n — oo. Besides, let ,u(Q) (X;QZE)#]P’. Then by

the lower semicontinuity of KL divergence (Lemma 9.4.3 in|Ambrosio et al.|(2008))),
KL (M?)HMS)) < liminf KL ( (Q)HM(D) .
n—oo
Similarly as above, by comparing the equation in W;* and B,

pl = (XB_ )P = (X)) Q"
So we have
. . 2 2 n
KL () < timinf KL (X)) 4 PII(X{2,) Q")
< liH_1>inf KL (P||Q™)
< M.
(4)
£

And because X:(Fi)_6 — X¥) as. ase — 01, pe’ — p weakly for i = 1,2. Using the same

property, we have
KL(p®p) < lim inf KL (u?)llu&”) < M.
e—0

Finally, by Pinsker’s inequality, TV? < KL. O

B.2.2 UPPER BOUND OF TOTAL VARIATION

Proof of Theorem|B.2] We can apply Lemma [B.6| to our problem for bounding TV(p,, p,) from
equation (6) and (I0). If the condition in Lemma[B.6]is satisfied, then

T
TV, 5) < [ B[V loghy(t. ) — Valogh, (tui)|Pdt]
0

So the main goal is to estimate the bound of I (note that the boundedness of I is also the condition
in Lemma|[B.6 we need)

T
1:/ E [V log oy (1,91) — Vi log hy (1,32 ]
0
H»l
< Z/ [V log by (t;,y1) — Va log by (t, 1) ||?] dt

A direct result of Assumption[]is ||V log hy (t, ) — Vg log hy (s, )| < Al|x|| [t — s|. Therefore,

k—1 tit1
I< Z/ E [|Vglog hy(ti, ye) — Valog hy(t, y:)||*] dt

i=0 /i

k=1 .t
< A% sup E[|y? Z/ (t —t;)%dt
te[0,7] i—o Y ti

AT

T3 SUP]E[HytH }
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Then the next mission is to estimate E [[|y;]|?]. Recall y; satisfy the equation (6, so

t
Y =yr+ / Ys + 2V log ps(ys | y)ds + V2(B, — Br).
T

And thus ,
E [[ly]] <E [lyrl?] + (T — 1) /T E [[ly.]|?] ds

+4(0 1) [ B (192 logpu (o [ 9)I] ds + 2407 1)

t
<E [|lyr|?] +T/ E [||ys|[?] ds + 4LdT? + 2dT.
T

by the fact ||fj F(x)dz||*> < (b —a) f;HF(z)HQdI and the following Lemma By setting
u(t) = E [||lye]|*]. A(t) = 4LdT? + 2dT and p(t) = T in Gronwall’s Inequality (Lemma|B.8), we
have
sup E[||ly:]?] < (ALdT? + 2dT)e™ + ml.
t€[0,T]

and therefore we get our final result,

A2 1
TV2(p,. ) < ST ((4LdT2 +24T)e" mg) : O

ﬁ.
Lemma B.7 (Chen et al.|(2023c)). For any probability density function p on R?, iflog p is L-smooth,
ie. |V2logpllop < L, then

EP [||Vlogp|?] < Ld.

Proof. First, because log p is L-smooth,
|Alogp| = |tr(V2 logp)| < Ld.

Then by the divergence theorem, we have [, (Vf, Vg) dz = — [, fAgdz forany f,g € C*(R?).
Therefore,

E? [[|[V log p||?] =/ <V10gp7V10gp>pdw=/ (Vlogp, Vp) dx
Rd Rd D
= —/ pAlogpdx < Ld.
]Rd

Lemma B.8 (Gronwall’s Inequality). Ler u(t), A(t), pu(t) € C(la,b]). If u(t) > 0 forall t € [a, b

and
t

u(t) < A(t) + / (s)u(s)ds,

a
then we have

ult) < A(H) + /: A(s)1a(s) exp (/:u(T)dT> ds.

In particular, if \(t) is nondecreasing, then

u(t) < A(t) exp ( / t u(s)ds) .

C IMPLEMENTATION DETAILS

C.1 SETTING OF THE EXPERIMENT ON SYNTHETIC DATASET

For the synthetic data experiments, we train a multilayer perceptron (MLP) to model the score
function at each timestep, V, log p;, (). We do not train a neural network classifier, since we adopt
a simple Gaussian distribution as guidance, V logp:(y | ) = N(z; p, X), whose gradient is
tractable and can be computed analytically. Furthermore, the guidance parameter A (x; p, 2) is
kept time-invariant across all synthetic experiments.
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C.2 PRETRAINED MODELS AND REFERENCE SET

For the ImageNet-1K experiments, we adopt the unconditional diffusion model and classifiers pro-
vided by OpenAl, pretrained on ImageNet-1K at a resolution of 256 x 256, as well as conditional
diffusion models at resolutions of 64 x 64, 128 x 128, and 256 x 256. To evaluate our generated
samples, we compute FID, sFID, recall, and precision using reference batches of 10, 000 real images
from ImageNet-1K, also provided by OpenAl.

C.3 HYPERPARAMETERS

We first conducted experiments on synthetic data using a single NVIDIA RTX 4090 GPU for model
training and sample generation. For real-world experiments, we employed four NVIDIA Tesla A100
GPUs (40GB) to generate samples from the ImageNet-1K dataset for quantitative evaluation. The
hyperparameters for model training and sample generation are summarized in Table 3] Table ] and
Table

Table 3: The hyperparameter settings of guided diffusion of synthetic data.

Config Value
training samples 30000
generated samples 2000
diffusion timesteps 1000
timestep respace 250

noise scheduler cosine
optimizer Adam
learning rate 0.001
training epoch 2000
classifier scale 10.0

batch size per GPU 1024

Table 4: The training and generation hyperparameter settings of guided diffusion of CIFAR10.

Config Value
training samples 50000
training iterations of 1k classifiers 100,000
training iterations of 10 classifiers 30,000
batchsize 64
diffusion timesteps 1000
timestep respace 250
noise scheduler cosine
optimizer Adam
learning rate 0.001
classifier scale 10.0

D EXPERIMENTS FOR THE CONTRACTIVE PROPERTY

D.1 TEST CONTRACTIVE PROPERTY ON TOY DATASETS

We set the synthetic datasets as same as the one in Section that is, the target distribution &y ~
N (xo; o, X) with two classes {y1, y2 } and the corresponding classifiers are set by po(y = y1|z) =
N(z;p1,X) and po(y = y2|x) = N(x; p2, ), where ¥ = I, po = (—6,0), u1 = (0,6), and
w2 = (0, —6). So the conditional distributions are

Mo+ p1 X Mo+ po X
po(aly =) = N (w; 272) . polaly =y2) =N ("”;2’ 2) .
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Table 5: The hyperparameter settings of guided diffusion of ImageNet-1k.

Config Value
generated samples 50000
reference samples 10000
diffusion timesteps 1000
noise scheduler cosine
attention resolutions 32,16,8
batch size per GPU 4
learn sigma true
guidance scale 1.0
the number of fully connected layers 4
the number of hidden dimensions 128
use scale shift norm true

Pr=790(X|y1), Pe=790(X|y2)  Pt=ad0(X|y1), pt=aao(X|y>) Pr=o(X|Y1), Pr=o(X|Y2)

plylx)

Pt =1000(X|Y1), Pt = 1000(X]y2)
plys|x)

plxi)

P X' (0:0)

plxdy1) %

p(x. (040

POdy;)

p(,‘ 00

Pixiye)

POdy2) POdy2)

plyz1%) plys|x)

plya[x)

Figure 7: The reverse process which initially samples from the distribution A (z; 0, I).

Under these settings, because the classifiers are Gaussian-like, i.e.

hy, (x) = po(y = y1]®) < exp(—|lz — pa|?),
hy, () = po(y = y2|®) < exp(—|lz — p2|?),

V2 log hy, = —1,1.e. hy, is 1-strongly log-concave. But it still cannot guarantee the contractive
inequality in Theorem However, we can introduce a suitable guidance scale s as mentioned in
Remark [3]to make the contractive inequality valid.

To evaluate the contractive property, we consider two different initial sampling strategies.

First, we draw @ from the standard Gaussian distribution A (zr; 0, I) to generate po(x | y1) and
po(x | y2) with different guidance po(y = y1|x) and po(y = ya|x), respectively. The results are
shown in Figure[7, where the final plot illustrates that the generated samples converge to the desired
distribution. Comparing this result with Figure[2} where the initial sampling is N'(z; 0, I)po(y | )
to satisfy the condition in Theorem[3.1] we observe that sampling directly from A/ (z; 0, I) still leads
to the target conditional distribution due to the contractive property of (2).

Second, we initialize sampling from two arbitrary Gaussian distributions to further verify the con-
tractive property. The results, shown in Figure [§] demonstrate that even with arbitrary Gaussian
initializations, the contractive property of (2) ensures that the final generation converges to the tar-
get conditional distribution.

D.2 TEST CONTRACTIVE PROPERTY ON THE IMAGENET-1K

We shift the initial sampling by adding a bias to the mean of the Gaussian distribution, resulting
in samples from N (u, I). To evaluate class-conditional generation, we compare an unconditional
diffusion model with classifier guidance against a conditional diffusion model without guidance,
as shown in Figure 0] With a bias of = 0.03 - 1 or p = —0.03 - 1 added to the standard
Gaussian distribution, the classifier-guided diffusion model continues to generate class-consistent
images. In contrast, the conditional diffusion model without guidance produces images that are
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Figure 8: This initially samples from two arbitrary Gaussian distributions, both reverse processes
can reconstruct the po (¢ | y;) under the guidance of po(y; | ).

Figure 9: The images are sampled by adding positive bias N (x;0,+u) and negative bias
N (x;0, —p) onto the final distribution Pr(x). The left 8 images are generated using an uncon-
ditional diffusion model with classifier guidance at eight timesteps, and the left 8 failed samples are
generated using a conditional diffusion model without guidance. Class: snow leopard

either overly bright or overly dark, both of poor quality. These results demonstrate that classifier
guidance improves the robustness of diffusion models to shifts in the initial distribution.

In addition, by setting the positive bias u+ = 0.015 - 1 and the negative bias u— = —0.03 - 1,
we generate samples using an unconditional diffusion model guided by classifiers corresponding to
8 timesteps. In each subfigure, the classifier guidance scale increases from left to right in the order
0, 1, 2.5, 5, 7.5, 10, as shown in Figures[I0] [TT] and[I2} The bright samples correspond to the
positive bias p+, while the dark samples correspond to the negative bias p—. As illustrated by the
generated results, sample quality consistently improves as the classifier scale increases.

E MORE EXPERIMENTS ON IMAGENET-1K

The Figure [I3] shows the samples generated with an unconditional diffusion model guided by clas-
sifiers p; (y|x) corresponding to 8 timesteps: ¢ = 875, 750, 625, 500, 375, 250, 125, 0.

F USE OF LARGE LANGUAGE MODELS

For writing this manuscript, we used OpenAI’'s GPT-5 (ChatGPT) solely for language polishing and
minor stylistic improvements. All technical content, results, derivations, and experiments were de-
veloped independently by the authors. No scientific content, data, proofs, or results were generated
or altered by the model.
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SO0
s~ v

Figure 10: Adding negative bias(left) and positive bias(right) on the initial sampling. In each row,
for each of the six left images (positive bias) and the six right images (negative bias), the classifier
scale corresponds to (0, 1.0, 2.5, 5.0, 7.5, 10). The class is 997: bolete.
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Figure 11: The top 3 rows correspond to the result of adding negative and the bottom 2 rows cor-
respond to positive bias on the initial sampling. For six images in each row, the classifier scale

AW } 7

Figure 12: The result of adding negative and positive bias on the initial sampling. In each row, the
classifier scale gradually increases from 0.0 to 10.0 from left to right, class is 8: hen.
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Figure 13: Generated samples guided by classifiers correspond to eight timesteps (FID: 12.90).
Classes are 9: ostrich, 31: tree frog, 134: crane, 281: tabby cat, 930: French loaf, 511: check, 978:
seashore, 992: agaric, 963: pizza, 207: golden retriever, 15: robin, 484: catamaran.
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