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ABSTRACT

Despite the rise to dominance of deep learning in unstructured data domains, tree-
based methods such as Random Forests (RF) and Gradient Boosted Decision Trees
(GBDT) are still the workhorses for handling discriminative tasks on tabular data.
We explore generative extensions of these popular algorithms with a focus on
explicitly modeling the data density (up to a normalization constant), thus enabling
other applications besides sampling. As our main contribution we propose an
energy-based generative boosting algorithm that is analogous to the second order
boosting implemented in popular packages like XGBoost. We show that, despite
producing a generative model capable of handling inference tasks over any input
variable, our proposed algorithm can achieve similar discriminative performance
to GBDT on a number of real world tabular datasets, outperforming alternative
generative approaches. At the same time, we show that it is also competitive with
neural network based models for sampling.

1 INTRODUCTION

Generative models have achieved tremendous success in computer vision and natural language
processing, where the ability to generate synthetic data guided by user prompts opens up many
exciting possibilities. While generating synthetic table records does not necessarily enjoy the same
wide appeal, this problem has still received considerable attention as a potential avenue for bypassing
privacy concerns when sharing data. Estimating the data density, p(x), is another typical application
of generative models which enables a host of different use cases that can be particularly interesting
for tabular data. Unlike discriminative models which are trained to perform inference over a single
target variable, density models can be used more flexibly for inference over different variables or for
out of distribution detection. They can also handle inference with missing data in a principled way by
marginalizing over unobserved variables.

The development of generative models for tabular data has mirrored its progression in computer
vision with many of its Deep Learning (DL) approaches being adapted to the tabular domain (Jordon
et al., 2018; Xu et al., 2019; Engelmann & Lessmann, 2021; Fan et al., 2020; Zhao et al., 2021;
Kotelnikov et al., 2023). Unfortunately, these methods are only useful for sampling as they either do
not model the density explicitly or can not evaluate it due to untractable marginalization over high
dimensional latent variable spaces. Furthermore, despite growing in popularity, DL has still failed to
displace tree-based ensemble methods as the tool of choice for handling tabular discriminative tasks
with gradient boosting still being found to outperform neural-network-based methods in many real
world datasets (Grinsztajn et al., 2022; Borisov et al., 2022a).

While there have been recent efforts to extend the success of tree-based models to generative modeling
(Correia et al., 2020; Wen & Hang, 2022; Nock & Guillame-Bert, 2022; Watson et al., 2023; Nock &
Guillame-Bert, 2023; Jolicoeur-Martineau et al., 2024; McCarter, 2024), direct extensions of Random
Forests (RF) and Gradient Boosted Decision Trees (GBDT) are still missing. It is this gap that we
try to address, seeking to keep the general algorithmic structure of these popular algorithms but
replacing the optimization of their discriminative objective with a generative counterpart. Our main
contributions in this regard are:

• We propose NRGBoost, a novel energy-based generative boosting model that is trained to
maximize a local second order approximation to the likelihood at each boosting round.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Sample Pool Training Data

Fit Tree

Add

Gibbs
Sampling

Weak Learner

Current Model

Drop 
Samples

1 2

34

Figure 1: Overview of a NRGBoost training iteration. 1) Draw new samples from a current ensemble
of trees model representing an energy function f . 2) Fit a new weak learner (tree) representing a
model update δf . 3) Drop samples that are less conforming to new model with rejection sampling. 4)
Update model.

• We propose an amortized sampling approach that significantly reduces the training time
of NRGBoost, which, like other energy-based models, is often dominated by the sampling
required for training.

• We explore the use of bagged ensembles of Density Estimation Trees (DET) (Ram & Gray,
2011) with feature subsampling as a generative counterpart to Random Forests.

The longstanding popularity of GBDT models in machine learning practice can, in part, be attributed
to the strength of its empirical results and the efficiency of its existing implementations. We therefore
focus on an experimental evaluation in real world datasets spanning a range of use cases, number
of samples and features. On smaller datasets, our implementation of NRGBoost 1 can be trained
in a few minutes on a typical consumer CPU and achieves similar discriminative performance to a
standard GBDT model, while remaining competitive with other generative models for sampling.

2 ENERGY BASED MODELS

An Energy-Based Model (EBM) parametrizes the logarithm of a probability density function directly
(up to an unspecified normalizing constant):

qf (x) =
exp (f(x))

Z[f ]
. (1)

Here f(x) : X → R is a real function over the input domain.2 We will avoid introducing any
parametrization, instead treating the function f ∈ F(X ) lying in an appropriate function space over
the input space as our model parameter directly. Z[f ] =

∑
x∈X exp (f(x)), known as the partition

function, is then a functional of f giving us the necessary normalizing constant.

This is the most flexible way one could represent a probability density function making essentially
no compromises on its structure. It can seamlessly handle input domains comprising a mixture of
continuous and categorical features, making it a natural choice for tabular data. The downside to
this is that for most interesting choices of F , computing or estimating this normalizing constant is
untractable which makes training these models difficult. Their unnormalized nature, however, does
not prevent EBMs from being useful in a number of applications besides sampling. They can be used
to perform joint inference over small enough groups of variables. Partitioning the input space into a
set of observed variables xo and unobserved variables xu we have

qf (xu|xo) =
exp (f(xu,xo))∑
x′
u
exp (f(x′

u,xo))
, (2)

1Please see the supplementary material for the source code which we will release as an open-source library.
2We will assume that X is finite and discrete to simplify the notation and exposition but everything is

applicable to bounded continuous input spaces, replacing the sums with integrals as appropriate.
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which only involves normalizing (i.e., computing a softmax) over the possible values of the un-
observed variables. They can also handle inference with missing data in a principled manner, by
marginalizing over unobserved variables. Furthermore, for anomaly or out of distribution detection,
knowledge of the normalizing constant is not necessary.

One common way to train an energy-based model to approximate a data generating distribution, p(x),
is to minimize the Kullback-Leibler divergence between p and qf , or equivalently, maximize the
expected log likelihood functional:

L[f ] = Ex∼p log qf (x) = Ex∼pf(x)− logZ[f ] . (3)

This optimization is typically carried out by gradient descent over the parameters of f , but due to
the untractability of the partition function, one must rely on Markov Chain Monte Carlo (MCMC)
sampling to estimate the gradients (Song & Kingma, 2021).

3 NRGBOOST

Expanding the increase in log-likelihood in equation 3 due to a variation δf around an energy function
f up to second order we have (see Appendix A)

L[f + δf ]− L[f ] ≈ Ex∼pδf(x)− Ex∼qf δf(x)−
1

2
Varx∼qf δf(x) =: ∆Lf [δf ] . (4)

The δf that maximizes this quadratic approximation should thus have a large positive difference
between the expected value under the data and under qf while having low variance under qf . We note
that just like the original log-likelihood, this Taylor expansion is invariant to adding an overall constant
to δf (i.e., ∆Lf [δf + c] = ∆Lf [δf ] for a constant function c). This means that, in maximizing
equation 4 we can consider only functions that have zero expectation under qf in which case we can
simplify ∆Lf [δf ] as

∆Lf [δf ] = Ex∼pδf(x)−
1

2
Ex∼qf δf

2(x) . (5)

We thus formulate our boosting algorithm as modeling the data density with an additive energy
function. At each boosting iteration, t, we improve upon the current energy function ft by finding an
optimal step δf∗

t that maximizes ∆Lft :

δf∗
t = arg max

δf∈Ht

∆Lft [δf ] , (6)

where Ht is an appropriate space of functions (satisfying Ex∼qft
δf(x) = 0 if equation 5 is used).

The solution to this problem can be interpreted as a Newton step in the space of energy functions.
Because for an EBM, the Fisher Information matrix with respect to the energy function and the
hessian of the expected log-likelihood are the same, we can also interpret the solution to equation
6 as a natural gradient step (see Appendix A). This approach is analogous to the second order step
implemented in modern discriminative gradient boosting libraries such as XGBoost (Chen & Guestrin,
2016) and LightGBM (Ke et al., 2017) and which can be traced back to Friedman et al. (2000).

In updating the current iterate, ft+1 = ft + αt · δf∗
t , we scale δf∗

t by an additional scalar step-size
αt. This can be interpreted as a globalization strategy to account for the fact that the quadratic
approximation in equation 4 is not necessarily valid over large steps in function space. A common
strategy in nonlinear optimization would be to select αt via a line search based on the original
log-likelihood. Common practice in discriminative boosting however is to interpret this step size
as a regularization parameter and to select a fixed value in ]0, 1] with (more) smaller steps typically
outperforming fewer larger ones when it comes to generalization. We choose to adopt a hybrid
strategy, first selecting an optimal step size by line search and then shrinking it by a fixed factor. We
find that this typically accelerates convergence allowing the algorithm to take comparatively larger
steps that increase the likelihood in the initial phase of boosting.

For a starting point, f0, we can choose the logarithm of any probability distribution over X as long
as it is easy to evaluate. Sensible choices are a uniform distribution (i.e., f ≡ 0), the product of
marginals for the training set, or any mixture distribution between these two. In Figure 2 we show an
example of NRGBoost starting from a uniform distribution and learning a toy 2D data density.
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Model, t = 1 Model, t = 3 Model, t = 10 Model, t = 100 Data

Figure 2: Density learned by NRGBoost at different boosting iterations (1, 3, 10 and 100), starting
from a uniform distribution. The data distribution is depicted on the right (see Appendix D.1 for
details). Weak learners are piecewise constant functions given by binary trees with 16 leaves.

3.1 WEAK LEARNERS

As a weak learner we will consider piecewise constant functions defined by binary trees over the
input space. Letting

⋃J
j=1 Xj = X be the partitioning of the input space induced by the leaves of a

binary tree whose internal nodes represent a split along one dimension into two disjoint partitions,
we take asH the set of functions such as

δf(x) =

J∑
j=1

wj1Xj (x) , (7)

where 1X denotes the indicator function of a subset X and wj are values associated with each
leaf j ∈ [1..J ]. In a standard decision tree these values would typically encode an estimate of
p(y|x ∈ Xj), with y being a special target variable that is never considered for splitting. In our
generative approach they encode unconditional densities (or more precisely energies) over each leaf’s
support and every variable can be used for splitting. Note that our functions δf are thus parametrized
by the values wj as well the structure of the tree and the variables and values for the split at each
node which ultimately determine the Xj . We omit these dependencies for brevity.

Replacing the definition in equation 7 in our objective (equation 5) we get the following optimization
problem to find the optimal decision tree:

max
w1,...,wJ ,X1,...,XJ

J∑
j=1

(
wjP (Xj)−

1

2
w2

jQf (Xj)

)

s.t.
J∑

j=1

wjQf (Xj) = 0 ,

(8)

where P (Xj) and Qf (Xj) denote the probability of the event x ∈ Xj under the respective distribution
and the constraint ensures that δf has zero expectation under qf . With respect to the leaf weights this
is a quadratic program whose optimal solution and objective values are respectively given by

w∗
j =

P (Xj)

Qf (Xj)
− 1 , ∆L∗

f (X1, . . . , XJ) =
1

2

 J∑
j=1

P 2(Xj)

Qf (Xj)
− 1

 . (9)

Because carrying out the maximization of this optimal value over the tree structure that determines
the Xj is hard, we approximate its solution by greedily growing a tree that maximizes it when
considering how to split each node individually. A parent leaf with support XP is thus split into two
child leaves, with disjoint support, XL ∪XR = XP , so as to maximize over all possible partitionings
along a single dimension, P (XP ), the following objective:

max
XL,XR∈P(XP )

P 2(XL)

Qf (XL)
+

P 2(XR)

Qf (XR)
− P 2(XP )

Qf (XP )
. (10)

Note that, when using parametric weak learners, computing a second order step would typically
involve solving a linear system with a full Hessian. As we can see, this is not the case when the
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weak learners are decision trees where the optimal value to assign to a leaf j does not depend on
any information from other leaves and, likewise, the optimal objective value is a sum of terms, each
depending only on information from a single leaf. This would have not been the case had we tried to
optimize the likelihood functional in Equation 3 directly instead of its quadratic approximation.

3.2 AMORTIZED SAMPLING

To compute the leaf values in equation 9 and the splitting criterion in equation 10 we would have to
know P (X) and be able to compute Qf (X) which is infeasible due to the untractable normalization
constant. We therefore estimate these quantities, with recourse to empirical data for P (X) and to
samples approximately drawn from the model with MCMC. Because, even if the input space is not
partially discrete, f is still discontinuous and constant almost everywhere, we can not use gradient
based samplers; we therefore rely on Gibbs sampling instead. This only requires evaluating each ft
along one dimension at a time, while keeping all others fixed which can be computed efficiently for a
tree by traversing it only once. However, since at boosting iteration t our energy function is a sum of
t trees, this computation scales linearly with the iteration number. This makes the overall time spent
sampling quadratic in the number of boosting iterations and thus precluding us from training models
with a large number of trees.

In order to reduce the burden associated with this sampling, which dominates the runtime of training
the model, we propose a new sampling approach that leverages the cumulative nature of boosting.
The intuition behind this approach is that the set of samples used in the previous boosting round are
(approximately) drawn from a distribution that is already close to the new model distribution. It could
therefore be helpful to keep some of those samples, especially those that conform the best to the new
model. Rejection sampling allows us to do just that. The boosting update in terms of the densities
takes the following multiplicative form:

qt(x) = kt qt−1(x) exp (αtδft(x)) . (11)

Here, kt is an unknown multiplicative constant and since δft is given by a tree, we can easily bound
the exponential factor by finding the leaf with the largest value. We can therefore use the previous
model, qt−1(x), as a proposal distribution for which we already have a set of samples and keep each
sample, x, with an acceptance probability of:

paccept(x) = exp
[
αt

(
δft(x)−max

x
δft(x)

)]
. (12)

We note that knowledge of the constant kt is not necessary to compute this probability.

Our proposed sampling strategy is to maintain a fixed size pool of approximate samples from the
model. At the end of each boosting round, we use rejection sampling to remove samples from the
pool and draw new samples from the model using Gibbs sampling. Figure 1 depicts a representation
of the training loop with this amortized sampling approach. Note that q0 is typically a simple model
for which we can both directly evaluate the desired quantities (i.e., Q0(X) for a given partition X)
and cheaply draw exact samples from. As such, no samples are required for the first iteration of
boosting and for the second we can initialize the sample pool by drawing exact samples from q1 with
rejection sampling using q0 as a proposal distribution. Please refer to Algorithm 1 in Appendix A.3
for a high level algorithmic description of the training process.

This approach works better when the range of δft and/or the step sizes αt are small as this leads
to larger acceptance probabilities. Note that in practice it can be helpful to independently refresh a
fixed fraction of samples, prefresh, at each round of boosting in order to encourage more diverse
samples between rounds. This can be accomplished by keeping each sample with a probability
paccept(x)(1− prefresh) instead.

3.3 REGULARIZATION

The simplest way to regularize a boosting model is to stop training when overfitting is detected by
monitoring a suitable performance metric on a validation set. For NRGBoost this could be the increase
in log-likelihood at each boosting round. However, estimating this quantity would require drawing
additional validation samples from the model (see Appendix A.1). An alternative viable validation
strategy which needs no additional samples is to simply monitor a discriminative performance metric.
This amounts to monitoring the quality of qf (xi|x−i) instead of the full qf (x).
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Besides early stopping, the decision trees themselves can be regularized by limiting the depth or total
number of leaves in each tree. Additionally, we can rely on other strategies such as disregarding splits
that would result in a leaf with too little training data, P (X), model data, Qf (X), volume V (X) or
too high of a ratio between training and model data P (X)/Qf (X). We found the latter to be the most
effective of these, not only yielding better generalization performance than other approaches, but also
having the added benefit of allowing us to lower bound the acceptance probability of our rejection
sampling scheme. Furthermore, as we show in Appendix A.2, limiting this ratio guarantees that a
small enough step size produces an increase in likelihood at each round of boosting.

4 RELATED WORK

Generative Boosting Most prior work on generative boosting focuses on unstructured data and
the use of parametric weak learners and is split between two approaches: (i) Additive methods that
model the density function as an additive mixture of weak learners such as Rosset & Segal (2002);
Tolstikhin et al. (2017). (ii) Those that take a multiplicative approach modeling the density function as
an unnormalized product of weak learners. The latter is equivalent to the energy based approach that
writes the energy function (log density) as an additive sum of weak learners. Welling et al. (2002) in
particular also approach boosting from the point of view of functional optimization of the likelihood
or the logistic loss of an energy-based model. However, they rely on a first order local approximation
of the objective since they focus on parametric weak learners such as restricted boltzman machines
for which a second order step would be impractical.

Another more direct multiplicative boosting framework was first proposed by Tu (2007). At each
boosting round a discriminative classifier is trained to distinguish between empirical data and data
generated by the current model by estimating the likelihood ratio p(x)/qt(x). This estimated ratio is
used as a direct multiplicative factor to update the current model qt (after being raised to an appropriate
step size). In ideal conditions this greedy procedure would converge in a single iteration if a step size
of 1 would be used. While Tu (2007) does not prescribe a particular choice of classifier, Grover &
Ermon (2018) proposes a similar concept where the ratio is estimated based on an adversarial bound
for an f -divergence and Cranko & Nock (2019) provides additional analysis on this method. We note
that the main difference between this greedy approach and NRGBoost is that the latter attempts to
update the current density proportionally to an exponential of the likelihood ratio, exp (αt · p(x)/qt(x)),
instead of (p(x)/qt(x))

αt directly. In Appendix C we explore the differences between NRGBoost and
this approach when it is adapted to use trees as weak learners.

Tabular Energy-Based Models Ma et al. (2024) proposes reinterpreting the logits of a TabPFN
(Hollmann et al., 2022) classifier as an energy function over the input space. Similarly, Margeloiu
et al. (2024) defines an auxiliary classification task per class, interpreting the logits of the classifiers as
class conditional energy functions. These approaches, while not as principled as maximum likelihood,
avoid the need for MCMC sampling, and were shown to work well empirically. However, their
reliance on TabPFN can limit their applicability to larger datasets. Furthermore, both classification
tasks rely on having a categorical target variable which further limits their applicability and could
introduce an inherent bias since this variable is not treated in the same way as the others.

Tree-Based Density Models Density Estimation Trees (DET) were proposed by Ram & Gray
(2011) as an alternative to histograms and kernel density estimation. They model the density function
as a constant value over the support of each leaf in a binary tree, q(x) =

∑J
j=1

P̂ (Xj)
V (Xj)

1Xj
(x), with

V (X) denoting the volume of X . The partitioning of the input space is determined directly by greedy
optimization of a generative objective (ISE). Despite allowing for efficient exact sampling, DETs
have received little attention as generative models. In Appendix B we explore extensions of this
method to maximum likelihood estimation and in our experiments section we also test the natural
idea to ensemble DET models through bagging, leading to an algorithm analogous to Random Forests
for generative modeling.

Other authors have proposed similar tree-based density models (Nock & Guillame-Bert, 2022) or
additive mixtures of tree-based models (Correia et al., 2020; Wen & Hang, 2022; Watson et al., 2023).
Distinguishing features of some of these alternative approaches are: (i) Not relying on a density
estimation goal to drive the partitioning of the input space. Correia et al. (2020) leverages a standard
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discriminative Random Forest, therefore giving special treatment to a particular input variable whose
conditional estimation drives the choice of partitions and Wen & Hang (2022) proposes using a
mid-point random tree partitioning. (ii) Leveraging more complex models for the data in the leaf of a
tree instead of a uniform density (Correia et al., 2020; Watson et al., 2023). This can allow for the
use of trees that are more representative with a smaller number of leaves. (iii) Nock & Guillame-Bert
(2022) and Watson et al. (2023) both propose generative adversarial frameworks where the generator
and discriminator are both a tree or an ensemble of trees respectively. While this also leads to an
iterative approach, unlike with boosting or bagging, the new model trained at each round doesn’t add
to the previous one but replaces it instead.

Nock & Guillame-Bert (2023) proposes a different ensemble approach where each tree does not
have its own leaf values that get added or multiplied to produce the final density, but instead serve
to collectively define the partitioning of the input space. To train such models the authors propose
a framework where, rather than adding a new tree to the ensemble at every iteration, the model is
initialized with a fixed number of tree root nodes and each iteration adds a split to an existing leaf node.
Jolicoeur-Martineau et al. (2024) propose diffusion and conditional flow matching approaches where
a tree-based model (e.g., GBDT) is used to learn the score function or vector field. These approaches
do not support density estimation however. McCarter (2024) leverages the autoregressive framework
of TabMT (Gulati & Roysdon, 2024), replacing transformers with XGBoost based predictors. While
this approach is capable of density estimation it requires training one predictor (consisting of one or
more XGBoost models) per input variable. Furthermore, these models are trained on datasets created
from multiple copies of the original dataset with different missing data patterns which could limit
their applicability to larger datasets.

5 EXPERIMENTS

We evaluate NRGBoost on 5 tabular datasets from the UCI Machine Learning Repository (Dheeru &
Karra Taniskidou, 2017): Abalone (AB), Physicochemical Properties of Protein Tertiary Structure
(PR), Adult (AD), MiniBooNE (MBNE) and Covertype (CT) as well as the California Housing
(CH) dataset available through scikit-learn (Pedregosa et al., 2011). We also include a downsampled
version of MNIST (by 2x along each dimension) which allows us to visually assess the quality of
individual samples, something that is generally difficult with structured tabular data. More details
about these datasets are given in Appendix D.1.

We split our experiments into two sections, the first to evaluate the quality of density models directly
on a single variable inference task and the second to investigate the performance of our proposed
model when used for sampling against more specialized models.

5.1 SINGLE VARIABLE INFERENCE

We test the ability of a generative model, trained to learn the density over all input variables, q(x),
to infer the value of a single one (i.e., we evaluate the quality of its estimate of q(xi|x−i)). For this
purpose we pick xi = y as the original target of the dataset, noting that the models that we train
do not treat this variable in any special way, except for the selection of the best model in validation.
As such, we would expect that the model’s performance in inference over this particular variable is
indicative of its strength on any other single variable inference task and also indicative of the quality
of the full q(x) from which the conditional probability estimate is derived.

We use XGBoost (Chen & Guestrin, 2016) as a baseline for what should be achievable by a strong
discriminative model. Note that this model is trained to maximize the discriminative likelihood,
Ex∼p log q(xi|x−i), not wasting model capacity in learning other aspects of the full data distribution.
Because for the regression datasets the generative models can provide an estimate of the full condi-
tional distribution and are thus capable of uncertainty estimation, we also include NGBoost (Duan
et al., 2020) as another discriminative baseline on these datasets. Note, however, that NGBoost relies
on a parametric assumption about p(y|x) that needs to hold for any x. We use the default assumption
of a Normal distribution for all datasets.

We compare NRGBoost against a bagging ensemble of DET models (Ram & Gray, 2011) which
we call Density Estimation Forests (DEF), trained both for minimizing ISE and KL divergence (see
Appendix B). We also include two other tree-based generative baselines: RFDE (Wen & Hang, 2022)
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Table 1: Discriminative performance of different methods at inferring the value of a target variable.
We use R2 for regression tasks, AUC for binary classification and accuracy for multiclass classifi-
cation. The reported values are means and standard errors over 5 cross-validation folds. The best
generative method for each dataset is highlighted in bold and other methods that are not significantly
worse (as determined by a paired t-test at a 95% confidence level) are underlined.

R2 ↑ AUC ↑ Accuracy ↑
AB CH PR AD MBNE MNIST CT

XGBoost 0.552 ±0.035 0.849 ±0.009 0.678 ±0.004 0.927 ±0.000 0.987 ±0.000 0.976 ±0.002 0.971 ±0.001

NGBoost 0.546 ±0.040 0.829 ±0.009 0.621 ±0.005 - - - -

RFDE 0.071 ±0.096 0.340 ±0.004 0.059 ±0.007 0.862 ±0.002 0.668 ±0.008 0.302 ±0.010 0.679 ±0.002

ARF 0.531 ±0.032 0.758 ±0.009 0.591 ±0.007 0.893 ±0.002 0.968 ±0.001 -∗ 0.938 ±0.005

DEF (ISE) 0.467 ±0.037 0.737 ±0.008 0.566 ±0.002 0.854 ±0.003 0.653 ±0.011 0.206 ±0.011 0.790 ±0.003

DEF (KL) 0.482 ±0.027 0.801 ±0.008 0.639 ±0.004 0.892 ±0.001 0.939 ±0.001 0.487 ±0.007 0.852 ±0.002

NRGBoost 0.547 ±0.036 0.850 ±0.011 0.676 ±0.009 0.920 ±0.001 0.974 ±0.001 0.966 ±0.001 0.948 ±0.001

∗ Due to the discrete nature of the MNIST dataset and the fact that the ARF algorithm tries to fit continuous
distributions for numerical variables at the leaves, we could not obtain a reasonable density model for this
dataset.

and ARF (Watson et al., 2023). The former allows us to gauge the impact of the guided partitioning
used in DEF models over a random partitioning of the input space.

We use random search to tune the hyperparameters of the XGBoost model and a grid search to tune
the most important hyperparameters of each generative density model. We employ 5-fold cross-
validation, repeating the hyperparameter tuning on each fold. For the full details of the experimental
protocol please refer to Appendix D.

We find that NRGBoost outperforms the remaining generative models (see Table 1), even achieving
comparable performance to XGBoost on the smaller datasets and with a small gap on the three larger
ones (MBNE, MNIST, CT). Furthermore, in Appendix E.3, we show that NRGBoost can outperform
XGBoost with popular imputation strategies for the same tasks but in the presence of a missing
covariate due to its principled handling of missing data through marginalization.

5.2 SAMPLING

We evaluate two different aspects of the quality of generated samples: their utility for training a
machine learning model and how distinguishable they are from real data. Besides the previous ARF
and DEF (KL) baselines, we compare to TVAE (Xu et al., 2019) and TabDDPM (Kotelnikov et al.,
2023), two deep learning based generative models, as well as Forest-Flow (Jolicoeur-Martineau et al.,
2024), a tree-based diffusion model.

Machine Learning Efficiency Machine learning (ML) efficiency has been a popular way to
measure the quality of generative models for sampling (Xu et al., 2019; Kotelnikov et al., 2023;
Borisov et al., 2022b). It relies on using samples from the model to train a discriminative model
which is then evaluated on real data, and is thus similar to the single variable inference performance
that we use to compare density models in Section 5.1. In fact, if the density model’s support covers
that of the full data, one would expect the discriminative model to recover the generator’s q(y|x), and
therefore its performance, in the limit where infinite generated data is used to train it.

We use an XGBoost model as the discriminative model and train it on the same number of training
samples as the original data. For the density models, we generate samples from the best model found
in the previous section and for TVAE and TabDDM we select their hyperparameters by evaluating
the ML Efficiency in the real validation set (full details of the hyperparameter tuning are provided
in Appendix D.2). Note that this leaves the sampling models at a potential advantage since the
hyperparameter selection is based on the metric that is being evaluated.

We repeat all experiments 5 times, with different generated datatsets from each model and report the
performance of the discriminative model in Table 2. We find that NRGBoost and TabDDPM alternate
as the best-performing model depending on the dataset (with two inconclusive cases), and NRGBoost
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Table 2: Performance of an XGBoost model trained on synthetic data and on real data (for reference).
For consistency, we use the same discriminative metrics as in Table 1 for evaluating its performance.
Reported values are the averages and standard errors over 5 synthetic datasets generated by the same
generative model. The best generative method for each dataset is highlighted in bold and methods
that are not significantly worse (as determined by a t-test at a 95% confidence level) are underlined.

R2 ↑ AUC ↑ Accuracy ↑
AB CH PR AD MBNE MNIST CT

Real Data 0.554 0.838 0.682 0.927 0.987 0.976 0.972

TVAE 0.483 ±0.006 0.758 ±0.005 0.365 ±0.005 0.898 ±0.001 0.975 ±0.000 0.770 ±0.009 0.750 ±0.002

TabDDPM 0.539 ±0.018 0.807 ±0.005 0.596 ±0.007 0.910 ±0.001 0.984 ±0.000 - 0.818 ±0.001

Forest-Flow 0.418 ±0.019 0.716 ±0.003 0.412 ±0.009 0.879 ±0.003 0.964 ±0.001 0.224 ±0.010 0.705 ±0.002

ARF 0.504 ±0.020 0.739 ±0.003 0.524 ±0.003 0.901 ±0.001 0.971 ±0.001 0.908 ±0.002 0.848 ±0.002

DEF (KL) 0.450 ±0.013 0.762 ±0.006 0.498 ±0.007 0.892 ±0.001 0.943 ±0.002 0.230 ±0.028 0.753 ±0.002

NRGBoost 0.528 ±0.016 0.801 ±0.001 0.573 ±0.008 0.914 ±0.001 0.977 ±0.001 0.959 ±0.001 0.895 ±0.001
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Figure 3: Joint histogram for the latitude and longitude for the California Housing dataset.

is never ranked lower than second on any dataset. We note also that, despite our best efforts with
additional manual tuning, we could not achieve a reasonable model with TabDDM on MNIST.

Discriminator Measure Similar to Borisov et al. (2022b) we test the capacity of a discriminative
model to distinguish between real and generated data. We use the original validation set as the real
part of the training data for the discriminator in order to avoid benefiting generative methods that
overfit their original training set. A new validation set is carved out of the original test set (20%) and
used to tune the hyperparameters of an XGBoost model which we use as our discriminator.

We report the AUC of this model on the remainder of the real test data in Table 3 which shows that
NRGBoost outperforms other methods except on the PR (with an inconclusive result) and MBNE
datasets.

In Appendix E.1 we report a Wasserstein distance estimate computed using a setup similar to
Jolicoeur-Martineau et al. (2024) as an alternative measure of the statistical distance between real and
model distributions. This evaluation also shows NRGBoost as ranking the best on average across
datasets. Qualitatively speaking, its samples also look visually similar to the real data in both the
Claifornia and MNIST datasets (see Figures 3 and 4).
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Training Data NRGBoost Forest-Flow ARF TVAE

Figure 4: Downsampled MNIST samples generated by the best generative models on this dataset.
Despite this being a simple dataset that would pose no challenges to image models, it is hard for
tabular generative models due to the high dimensionality and complex structure of correlations
between features. We find NRGBoost to be the only tabular model that is able to generate passable
samples.

Table 3: AUC of an XGBoost model trained to distinguish real from generated data (lower means
better). Reported values are the averages and standard errors over 5 synthetic datasets generated by
the same model. The best generative method for each dataset is highlighted in bold and methods that
are not significantly worse (as determined by a t-test at a 95% confidence level) are underlined.

AB CH PR AD MBNE MNIST CT

TVAE 0.971 ±0.004 0.834 ±0.006 0.940 ±0.002 0.898 ±0.001 1.000 ±0.000 1.000 ±0.000 0.999 ±0.000

TabDDPM 0.818 ±0.015 0.667 ±0.005 0.628 ±0.004 0.604 ±0.002 0.789 ±0.002 - 0.915 ±0.007

Forest-Flow 0.987 ±0.002 0.926 ±0.002 0.885 ±0.002 0.932 ±0.002 1.000 ±0.000 1.000 ±0.000 0.985 ±0.001

ARF 0.975 ±0.005 0.973 ±0.004 0.795 ±0.008 0.992 ±0.000 0.998 ±0.000 1.000 ±0.000 0.989 ±0.001

DEF (KL) 0.823 ±0.013 0.751 ±0.008 0.877 ±0.002 0.956 ±0.002 1.000 ±0.000 1.000 ±0.000 0.999 ±0.000

NRGBoost 0.625 ±0.017 0.574 ±0.012 0.631 ±0.006 0.559 ±0.003 0.993 ±0.001 0.943 ±0.003 0.724 ±0.006

6 DISCUSSION

While the additive tree ensemble models like DEF require no sampling to train and are easy to sample
from, we find that in practice they require very deep trees to model the data well and still offer subpar
performance for sampling and density estimation.

In contrast, NRGBoost was able to model the data better while using shallower trees and in fewer
number. Its main downside is that it can only be sampled from approximately using more expensive
MCMC and also requires sampling during the training process. While our fast Gibbs sampling
implementation coupled with our proposed sampling approach were able to mitigate the slow training,
making these models much more usable in practice, they are still cumbersome to use for sampling
due to autocorrelation between samples from the same Markov Chain, making them slow in scenarios
where independent samples are required. We argue however that unlike in image or text generation
where fast sampling is necessary for an interactive user experience, this can be less of a concern for
the task of generating synthetic datasets where the one time cost of sampling is not as important as
faithfully capturing the data generating distribution.

One advantage of the energy-based approach that we did not explore is that it allows for arbitrary
conditional sampling, require only that one clamps the values of conditioning variables during
Gibbs sampling. In contrast, other methods, such as diffusion-based approaches, are less flexible, as
conditioning variables typically need to be predetermined at training time.

7 CONCLUSION

We extend the two most popular tree-based discriminative methods for use in generative modeling.
We find that our boosting approach, in particular, offers generally good discriminative performance
and competitive sampling performance to more specialized alternatives. We hope that these results
encourage further research into generative boosting approaches for tabular data, in particular exploring
other applications besides sampling that are enabled by density models.
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A THEORY

The expected log-likelihood for an energy-based model (EBM),

qf (x) =
exp (f(x))

Z[f ]
, (13)

is given by

L[f ] = Ex∼p log qf (x) = Ex∼pf(x)− logZ[f ] . (14)

The first variation of L can be computed as

δL[f ; g] :=
dL[f + ϵg]

dϵ

∣∣∣∣
ϵ=0

= Ex∼p g(x)− δ logZ[f ; g] = Ex∼p g(x)− Ex∼qf g(x) . (15)

This is a linear functional of its second argument, g, and can be regarded as a directional derivative
of L at f along a variation g. The last equality comes from the following computation of the first

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

variation of the log-partition function:

δ logZ[f ; g] =
δZ[f ; g]

Z[f ]
(16)

=
1

Z[f ]

∑
x

exp′ (f(x)) g(x) (17)

=
∑
x

exp (f(x))

Z[f ]
g(x) (18)

= Ex∼qf g(x) . (19)

Analogous to a Hessian, we can differentiate Equation 15 again along a second independent variation
h of f yielding a symmetric bilinear functional which we will write as δ2L[f ; g, h]. Note that the
first term in equation 14 is linear in f and thus has no curvature, so we only have to consider the log
partition function itself:

δ2L[f ; g, h] :=
∂2L[f + ϵg + εh]

∂ϵ∂ε

∣∣∣∣
(ϵ,ε)=0

(20)

= −δ2 logZ[f ; g, h] = −δ {δ logZ[f ; g]} [f ;h] (21)

= −δ

{
1

Z[f ]

∑
x

exp (f(x)) g(x)

}
[f ;h] (22)

=
δZ[f ;h]

Z2[f ]

∑
x

exp (f(x)) g(x)− 1

Z[f ]

∑
x

exp′ (f(x)) g(x)h(x) (23)

=
δZ[f ;h]

Z[f ]
· Ex∼qf g(x)−

1

Z[f ]

∑
x

exp (f(x)) g(x)h(x) (24)

= Ex∼qfh(x) · Ex∼qf g(x)− Ex∼qfh(x)g(x) (25)

= −Covx∼qf (g(x), h(x)) . (26)

Note that this functional is negative semi-definite for all f , i.e. δ2L[f ;h, h] ≤ 0, meaning that the
log-likelihood is a concave functional of f .

Using these results, we can now compute the Taylor expansion of the increment in log-likelihood L
from a change f → f + δf up to second order in δf :

∆Lf [δf ] = δL[f ; δf ] +
1

2
δ2L[f ; δf, δf ] (27)

= Ex∼pδf(x)− Ex∼qf δf(x)−
1

2
Varx∼qf δf(x) . (28)

As an aside, defining the functional derivative, δJ[f ]
δf(x) , of a functional J implicitly by:∑

x

δJ [f ]

δf(x)
g(x) = δJ [f ; g] , (29)

we can formally define, by analogy with the parametric case, the Fisher Information "Matrix" (FIM)
at f as the following bilinear functional of two independent variations g and h:

F [f ; g, h] := −
∑
y,z

[
Ex∼qf

δ2 log qf (x)

δf(y)δf(z)

]
g(y)h(z) (30)

=
∑
y,z

δ2 logZ[f ]

δf(y)δf(z)
g(y)h(z) (31)

= δ2 logZ[f ; g, h] . (32)
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The only difference to the second-order variation of 14 computed in equation 20 would be that the
expectation is taken under the model distribution, qf , instead of the data distribution p. However,
because the only term in log qf (x) that is non-linear in f is the log-partition functional, which is not
a function of x, this expectation plays no role in the computation and we get the result that the Fisher
Information is the same as the negative Hessian of the log-likelihood for these models.

A.1 APPLICATION TO PIECEWISE CONSTANT FUNCTIONS

Considering a weak learner such as

δf(x) =

J∑
j=1

wj1Xj
(x) , (33)

where the subsets Xj are disjoint and cover the entire input space, X , we have that

Ex∼qδf(x) =
∑
x∈X

q(x)

J∑
j=1

wj1Xj
(x) (34)

=

J∑
j=1

wj

∑
x∈Xj

q(x) =
J∑

j=1

wjQ(Xj) . (35)

Similarly, making use of the fact that 1Xi(x)1Xj (x) = δij1Xi(x), we can compute

Ex∼qδf
2(x) =

∑
x∈X

q(x)

 J∑
j=1

wj1Xj
(x)

2

=

J∑
j=1

w2
jQ(Xj) . (36)

In fact, we can extend this to any ordinary function of δf :

Ex∼q g (δf(x)) =
∑
x∈X

q(x)

J∑
j=1

1Xj
(x)g (δf(x)) (37)

=

J∑
j=1

∑
x∈Xj

q(x)g(wj) (38)

=

J∑
j=1

g(wj)Q(Xj) , (39)

where we made use of the fact that the 1Xj constitute a partition of unity:

1 =

J∑
j=1

1Xj
(x) . (40)

Finally, we can compute the increase in likelihood from a step f → f + α · δf as
L[f + α · δf ]− L[f ] = Ex∼p [α · δf(x)]− logZ[f + α · δf ] + logZ[f ] (41)

= αEx∼pδf(x)− logEx∼qf exp(αδf(x)) (42)

= α

J∑
j=1

wjP (Xj)− log

J∑
j=1

Qf (Xj) exp (αwj) , (43)

where in equation 42 we made use of the equality:

logZ[f + α · δf ]− logZ[f ] = log

∑
x exp(f(x) + αδf(x))

Z[f ]
= log

∑
x

qf (x) exp(αδf(x)) ,

(44)
and of the result in equation 39 in the final step.

This result can be used to conduct a line search over the step size using training data and to estimate
an increase in likelihood at each round of boosting for the purpose of early stopping, using validation
data.
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A.2 A SIMPLE CONVERGENCE RESULT

We can take the results from the last subsection to show that each boosting round improves the
likelihood of the model under ideal conditions. Substituting the NRGBoost leaf values wj =
P (Xj)/Qf (Xj)− 1 in Equation 43 we get:

L[f + α · δf ]− L[f ] = α

 J∑
j=1

P 2 (Xj)

Qf (Xj)
− 1

− log

J∑
j=1

Qf (Xj) exp

[
α

(
P (Xj)

Qf (Xj)
− 1

)]
(45)

= αχ2(P∥Qf )− logE exp (αW ) , (46)

where, with some abuse of notation, we denote by χ2(P∥Qf ) the χ2-divergence between two discrete
distributions over [1..J ] induced by the partitioning obtained in the current boosting round. This
value is always non-negative, and can only be zero if P (Xj) = Qf (Xj) for all leaves. It therefore
corresponds to an increase in likelihood that is as large as one can make the difference between the
induced P and Qf distributions by a judicious choice of Xj . Note that this quantity is precisely the
objective that NRGBoost tries to greedily maximize with its choice of Xj (see Equation 9).

The second term in Equation 46 can be interpreted as the log of a moment generating function for
a centered random variable W that takes values in {P (Xj)/Qf (Xj)− 1}j∈[1..J] (i.e., the set of the
leaf values), with probabilities {Qf (Xj)}j∈[1..J]. With our proposed regularization approach, we
limit the ratio P (Xj)/Qf (Xj) in our choice of Xj to a maximum value R and therefore we have that
W ∈ [−1, R− 1].

Since W is bounded, by Hoeffding’s Lemma (1963), it is sub-gaussian with variance proxy R2/4
and the log of its moment generating function is thus upper bounded by:

logE exp (αW ) ≤ α2R2

8
. (47)

As a result, we have the following lower bound on the variance increase:

L[f + α · δf ]− L[f ] ≥ α

[
χ2(P∥Qf )− α

R2

8

]
. (48)

As long as in the current round of boosting a partitioning of the input space can be found that yields a
non-zero χ2(P∥Qf ), the likelihood is guaranteed to increase as long as we choose a small enough
step-size: α < 8

R2χ
2(P∥Qf ). In particular, choosing a step size α = 4

R2χ
2(P∥Qf ) produces an

increase in likelihood of at least 2
[
χ2(P∥Qf )/R

]2
.

We note that this result, while insightful, assumes that one uses the exact probabilities under the
model distribution in the NRGBoost update. In practice, we would only be able to approximately
estimate these with MCMC. We leave further analysis for future work.

A.3 ALGORITHM

In Algorithm 1 we provide a high-level overview of the training loop for NRGBoost.

B DENSITY ESTIMATION TREES AND DENSITY ESTIMATION FORESTS

Density Estimation Trees (DET) (Ram & Gray, 2011) model the density function as a piecewise
constant function,

q(x) =

J∑
j=1

vj1Xj
(x) , (49)

where the Xj are given by a partitioning of the input space X induced by a binary tree and the vj
are the density values associated with each leaf that, for the time being, we will only require to be
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Algorithm 1 NRGBoost training

Input: Empirical training distribution p̂, initial model distribution q0, size of the sample pool M ,
fraction of samples to independently drop at each round prefresh ∈ [0, 1], number of boosting
rounds T , maximum number of leaves in each tree J , maximum probability ratio in each leaf
R > 1, shrinkage parameter γ ∈ ]0, 1].

Output: Energy function f .
f ← log q0
for t← 1 to T do

if t = 1 then ▷ No sampling needed since q0 is normalized
q̂ ← q0

else if t = 2 then ▷ Initialize sample pool
q̂ ← {xi}i∈[M ] ∼iid exp f ▷ By rejection sampling using q0 as a proposal distribution

else
q̂ ← Drop samples from q̂ randomly with probability prefresh
q̂ ← Keep each sample, xi, from q̂ with probability given by Equation 12 using δft−1

q̂ ← Add M − |q̂| samples to q̂ by Gibbs sampling from exp f
end if
δft ← FitTree(p̂, q̂; J,R) ▷ Greedily grow tree using Equation 10 as a splitting criterion
αt ← argmaxα ∆Lf [α · δft] ▷ Line search on training likelihood (Equation 43)
f ← f + γ · αt · δft

end for

such that q(x) sums to one. Note that it is possible to draw an exact sample from this type of model
by randomly selecting a leaf, j ∈ [1..J ], given probabilities vj , and then drawing a sample from a
uniform distribution over Xj .

To fit a DET, Ram & Gray (2011) propose optimizing the Integrated Squared Error (ISE) between the
data generating distribution, p(x) and the model:

min
q∈Q

∑
x∈X

(p(x)− q(x))
2
. (50)

Noting that
⋃J

j=1 Xj = X , we can rewrite this as

min
v1,...,vJ ,X1,...,XJ

∑
x∈X

p2(x) +

J∑
j=1

∑
x∈Xj

(
v2j − 2vjp(x)

)
s.t.

J∑
j=1

∑
x∈Xj

vj = 1 .

(51)

Since the first term in the objective does not depend on the model this optimization problem can be
further simplified as

min
v1,...,vJ ,X1,...,XJ

J∑
j=1

(
v2jV (Xj)− 2vjP (Xj)

)
s.t.

J∑
j=1

vjV (Xj) = 1 ,

(52)

where V (X) denotes the volume of a subset X . Solving this quadratic program for the vj we obtain
the following optimal leaf values and objective:

v∗j =
P (Xj)

V (Xj)
, ISE∗ (X1, . . . , XJ) = −

J∑
j=1

P 2(Xj)

Vf (Xj)
. (53)

One can therefore grow a tree by greedily choosing to split a parent leaf with support XP into two
leaves with supports XL and XR so as to maximize the following criterion:

max
XL,XR∈P(XP )

P 2(XL)

V (XL)
+

P 2(XR)

V (XR)
− P 2(XP )

V (XP )
. (54)
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This leads to a similar splitting criterion to Equation 10 but replacing the previous model’s distribution
with the volume measure V which can be interpreted as the uniform distribution on X (up to a
multiplicative constant).

Maximum Likelihood Often generative models are trained to maximize the likelihood of the
observed data,

max
q

Ex∼p log q(x) , (55)

rather than the ISE. This was left for future work in Ram & Gray (2011) but, following a similar
approach to the above, the optimization problem to solve is:

max
v1,...,vJ ,X1,...,XJ

J∑
j=1

P (Xj) log vj

s.t.
J∑

j=1

vjV (Xj) = 1 .

(56)

This is, again, easy to solve for vj since it is separable over j after removing the constraint using
Lagrange multipliers. The optimal leaf values and objective are in this case:

v∗j =
P (Xj)

V (Xj)
, L∗ (X1, . . . , XJ) =

J∑
j=1

P (Xj) log
P (Xj)

Vf (Xj)
. (57)

The only change is therefore to the splitting criterion which should become:

max
XL,XR∈P(XP )

P (XL) log
P (XL)

V (XL)
+ P (XR) log

P (XR)

V (XR)
− P (XP ) log

P (XP )

V (XP )
. (58)

This choice of minimization criterion can be seen as analogous to the choice between Gini impurity
and Shannon entropy in the computation of the information gain in decision trees.

Bagging and Feature Subsampling Following the common approach in decision trees, Ram &
Gray (2011) suggest the use of pruning for regularization of DET models. Practice has however
evolved to prefer bagging as a form of regularization rather than relying on single decision trees. We
employ same principle to DETs by fitting many trees on bootstrap samples of the data. We also adopt
the common practice from Random Forests of randomly sampling a subset of features to consider
when splitting any leaf node in order to encourage independence between the different trees in the
ensemble. The ensemble model, which we call Density Estimation Forests (DEF) in the sequel,
is thus an additive mixture of DETs with uniform weights, therefore still allowing for normalized
density computation and exact sampling.

C GREEDY TREE-BASED MULTIPLICATIVE BOOSTING

In multiplicative generative boosting an unnormalized current density model, q̃t−1(x), is updated at
each boosting round by multiplication with a new factor δqαt

t (x):

q̃t(x) = q̃t−1(x) · δqαt
t (x) . (59)

For our proposed NRGBoost, this factor is chosen in order to maximize a local quadratic approx-
imation of the log likelihood around qt−1 as a functional of the log density (see Section 3). The
motivation behind the greedy approach of Tu (2007) or Grover & Ermon (2018) is to instead make
the update factor δqt(x) proportional to the likelihood ratio rt(x) := p(x)/qt−1(x) directly, which
under ideal conditions would mean that the method converges immediately when choosing a step
size αt = 1. In a more realistic setting, however, this method has been shown to converge under
conditions on the performance of the individual δqt as discriminators between real and generated
data (Tu, 2007; Grover & Ermon, 2018; Cranko & Nock, 2019).

While in principle this desired rt(x) could be derived from any binary classifier that is trained to
predict a probability of a datapoint being generated (e.g., by training it to minimize a strictly proper
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Table 4: Comparison of splitting criterion and leaf weights for the different versions of boosting.

Splitting Criterion Leaf Values (Density)

Greedy (KL) P log (P/Q) P/Q
Greedy (χ2) P 2

/Q P/Q
NRGBoost P 2

/Q exp (P/Q− 1)

loss) and Tu (2007) does not prescribe any particular choice, Grover & Ermon (2018) propose relying
on the following variational bound of an f -divergence to derive an estimator for this ratio:

Df (P∥Qt−1) ≥ sup
u∈Ut

[
Ex∼p u(x)− Ex∼qt−1f

∗(u(x))
]
. (60)

Here f∗ denotes the convex conjugate of f . This bound is tight, with the optimum being achieved for
u∗
t (x) = f ′(p(x)/qt−1(x)), if Ut is capable of representing this function. (f ′)

−1
(u∗

t (x)) can thus be
interpreted as an approximation of the desired rt(x).

Adapting this method to use trees as weak learners can be accomplished by considering Ut in Equation
60 to be defined by tree functions u = 1/J

∑J
j=1 wj1Xj

with leaf values wj and leaf supports Xj .
At each boosting iteration a new tree, u∗

t can thus be grown to greedily optimize the lower bound in
the r.h.s. of Equation 60 and setting δqt(x) = (f ′)

−1
(u∗

t (x)) which is thus also a tree with the same
leaf supports and leaf values given by vj := (f ′)

−1
(wj). This leads to the separable optimization

problem:

max
w1,...,wJ ,X1,...,XJ

J∑
j

[P (Xj)wj −Q(Xj)f
∗(wj)] . (61)

Note that we drop the iteration indices from this point onward for brevity. Maximizing over wj with
the Xj fixed we have that w∗

j = f ′ (P (Xj)/Q(Xj)) which yields the optimal value

J∗(X1, . . . , Xj) =
∑
j

[
P (Xj)f

′
(
P (Xj)

Q(Xj)

)
−Q(Xj)(f

∗ ◦ f ′)

(
P (Xj)

Q(Xj)

)]
(62)

In turn, this determines the splitting criterion as a function of the choice of f . Finally, the optimal
density values for the leaves are given by

v∗j = (f ′)
−1

(w∗
j ) =

P (Xj)

Q(Xj)
. (63)

It is interesting to note two particular choices of f -divergences. For the KL divergence, f(t) = t log t

and f ′(t) = 1 + log t = (f∗)
−1

(t). This leads to

JKL(X1, . . . , Xj) =
∑
j

P (Xj) log
P (Xj)

Q(Xj)
(64)

as the splitting criterion. The Pearson χ2 divergence, with f(t) = (t− 1)2, leads to the same splitting
criterion as NRGBoost. Note however that for NRGBoost the leaf values for the multiplicative update
of the density are proportional to exp (P (Xj)/Q(Xj)) instead of the ratio directly. Table 4 summarizes
these results.

Another interesting observation is that a DET model can be interpreted as a single round of greedy
multiplicative boosting starting from a uniform initial model. The choice of the ISE as the criterion to
optimize the DET corresponds to the choice of Pearson’s χ2 divergence and likelihood to the choice
of KL divergence.

D REPRODUCIBILITY

D.1 DATASETS

We use 5 datasets from the UCI Machine Learning Repository (Dheeru & Karra Taniskidou, 2017):
Abalone, Physicochemical Properties of Protein Tertiary Structure (from hereon referred to as
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Protein), Adult, MiniBooNE and Covertype. We also use the California Housing dataset which was
downloaded through the Scikit-Learn package Pedregosa et al. (2011) and a downsampled version of
the MNIST dataset Deng (2012). Table 5 summarizes the main details of these datasets as well as the
approximate number of samples used for train/validation/test for each cross-validation fold.

Table 5: Dataset Information. We respect the original test sets of each dataset when provided,
otherwise we set aside 20% of the original dataset as a test set. 20% of the remaining data is set aside
as a validation set used for hyperparameter tuning.

Abbr Name Train + Val Test Num Cat Target Cardinality

AB Abalone 3342 835 7 1 Num 29
CH California Housing 16512 4128 8 0 Num Continuous
PR Protein 36584 9146 9 0 Num Continuous
AD Adult 32560 16280∗ 6 8 Cat 2
MBNE MiniBooNE 104051 26013 50 0 Cat 2
MNIST MNIST (downsampled) 60000 10000∗ 196 0 Cat 10
CT Covertype 464810 116202 10 2 Cat 7

∗ Original test set was respected.

The toy data distribution used in Figure 2 consists of a mixture of eight isotropic Gaussians with
standard deviation of 1, placed around a circle with a radius of 8. To obtain a discrete input domain,
we discretize the input space in 100 equally spaced bins between [−11, 11].

D.2 DEF AND NRGBOOST IMPLEMENTATION DETAILS

Discretization In our practical implementation of tree based methods we first discretize the input
space by binning continuous numerical variables by quantiles. Furthermore we also bin discrete
numerical variables in order to keep their cardinalities smaller than 256. This can also be interpreted
as establishing a priori a set of discrete values to consider when splitting on each numerical variable
and is done for computational efficiency, being inspired by LightGBM (Ke et al., 2017).

Categorical Splitting For splitting on a categorical variable we once again take inspiration from
LightGBM. Rather than relying on one-vs-all splits we found it better to first order the possible
categorical values at a leaf according to a pre-defined sorting function and then choose the optimal
many-vs-many split as if the variable was numerical. The function used to sort the values is the leaf
value function. E.g., for splitting on a categorical variable xi we order each possible categorical value
k by P̂ (xi=k,X−i)/Q̂(xi=k,X−i) where X−i denotes the leaf support over the remaining variables.

Tree Growth Strategy We always grow trees in best first order, i.e., we always split the current
leaf node that yields the maximum gain in the chosen objective value.

Line Search As mentioned in Section 3, we perform a line search to find the optimal step size after
each round of boosting in order to maximize the likelihood gain in Equation 43. Because evaluating
multiple possible step sizes, αt, is inexpensive, we simply do a grid search over 101 different step
sizes, split evenly in log space over [10−3, 10].

Code Our implementation of the proposed tree-based methods is mostly Python code using the
NumPy library (Harris et al., 2020). We implement the tree evaluation and Gibbs sampling in C,
making use of the PCG library (O’Neill, 2014) for random number generation.

D.3 HYPERPARAMETER TUNING

D.3.1 XGBOOST

To tune the hyperparameters of XGBoost we use 100 trials of random search with the search space
defined in Table 6.
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Table 6: XGBoost hyperparameter tuning search space. δ(0) denotes a point mass distribution at 0.

Parameter Distribution or Value

learning_rate LogUniform
([
10−3, 1.0

])
max_leaves Uniform ({16, 32, 64, 128, 256, 512, 1024})
min_child_weight LogUniform

([
10−1, 103

])
reg_lambda 0.5 · δ(0) + 0.5 · LogUniform

([
10−3, 10

])
reg_alpha 0.5 · δ(0) + 0.5 · LogUniform

([
10−3, 10

])
max_leaves 0 (we already limit the number of leaves)
grow_policy lossguide

tree_method hist

Each model was trained for 1000 boosting rounds on regression and binary classification tasks. For
multi-class classification tasks a maximum number of 200 rounds of boosting was used due to the
larger size of the datasets and because a separate tree is built at every round for each class. The
best model was selected based on the validation set, together with the boosting round where the best
performance was attained. The test metrics reported correspond to the performance of the selected
model at that boosting round on the test set.

D.3.2 NGBOOST

To tune the hyperparameters of NGBoost we use 100 trials of random search with the search space
defined in Table 7. We use a maximum of 500 rounds of boosting and early stopping with a patience
of 50 rounds. We select the model that achieves the best R2 score in validation for consistency with
the other hyperparameter tuning setups.

Table 7: NGBoost hyperparameter tuning search space.

Parameter Distribution

learning_rate LogUniform
([
10−3, 1.0

])
max_depth Uniform ([2..10])

min_samples_leaf Uniform ([1..10])

D.3.3 RFDE

We implement the RFDE method (Wen & Hang, 2022) after quantile discretization of the dataset
and therefore split at the midpoint of the discretized dimension instead of the original one. When a
leaf support has odd cardinality over the splitting dimension a random choice is made over the two
possible splitting values. Finally, the original paper does not mention how to split over categorical
domains. We therefore choose to randomly split the possible categorical values for a leaf evenly as
we found that this yielded slightly better results than a random one vs all split.

For RFDE models we train a total of 1000 trees. The only hyperparameter that we tune is the
maximum number of leaves per tree for which we test the values [26, 27, . . . , 214]. For the Adult
dataset, due to limitations of our tree evaluation implementation we only test values up to 213.

D.3.4 ARF

For ARF we used the official python implementation of the algorithm (Blesch & Wright, 2023). Due
to memory (and time) concerns we train models with a maximum of 100 trees for up to 10 adversarial
iterations. We use a similar grid-search setup to DEF, tuning only the following two parameters:

• The maximum number of leaves per tree for which we test the values [26, 27, . . . , 212,∞]
(∞ denotes unconstrained).
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• The minimum number of examples falling on each leaf for which we test the values
[3, 5, 10, 30, 50, 100]. If one value of this parameter doesn’t improve upon the previous, we
move on to the next value of the maximum number of leaves (i.e., we exit this loop early).

D.3.5 DEF

We train ensembles with 1000 DET models. Only three hyperparameters are tuned, using three nested
loops, each loop running over the possible values of a single parameter in a pre-defined order. These
are, in order of outermost to innermost:

• The maximum number of leaves per tree for which we test the values
[16384, 4096, 1024, 256]. If the best model for one value of the maximum number
of leaves (over the remaining inner-loop parameters) doesn’t improve upon the previous, we
stop the hyperparameter tuning.

• The fraction of features to consider when splitting a node. We test the values
[d−1/2, d−1/4, 1] with d being the dimension of the dataset. If the best model for one
value of this parameter doesn’t improve upon the best model for the previous value, we
move on to the next value of the maximum number of leaves (i.e., we exit this loop early).

• The minimum number of data points that need to be left in each leaf for a split to be
considered. We test the values [0, 1, 3, 10, 30]. If one value of this parameter doesn’t
improve upon the previous, we move on to the next value of fraction of features.

D.3.6 NRGBOOST

We train NRGBoost models for a maximum of 200 rounds of boosting. We only tune two parameters
for NRGBoost Models:

• The maximum number of leaves for which we try the values [64, 256, 1024, 4096] in order,
stopping if performance fails to improve from one value to the next. For the CT dataset we
also include 16384 in the values to test.

• The constant factor by which the optimal step size determined by the line search is shrunk
at each round of boosting. This is essentially the "learning rate" parameter. To tune it we
perform a Golden-section search for the log of its value using a total of 6 evaluations. The
range we use is [0.01, 0.5].

For regularization we limit the ratio between empirical data density and model data density on each
leaf to a maximum of 2. We noticed that smaller values of this regularization parameter tend to work
better but that it otherwise plays a similar role to the shrinkage factor so we opt to tune only the latter.

For sampling we use a sample pool of 80000 samples for all datasets except for Covertype where
we use 320000. These values are chosen so that the number of samples in the pool are at minimum
similar to the training set size which we found to be a good rule of thumb. At each round of boosting,
samples are removed from the pool according to our rejection sampling approach (using Equation
12) after independently removing 10% at random. These samples are replaced by samples from the
current model using Gibbs sampling.

The starting point of each NRGBoost model was selected as a mixture model between a uniform
distribution (10%) and the product of training marginals (90%) on the discretized input space. We
observed that this mixture coefficient does not have much impact on the results however.

D.3.7 TVAE

We use the implementation of TVAE from the SDV package.3 To tune its hyperparameters we use 50
trials of random search with the search spaces defined in Table 8.

3https://github.com/sdv-dev/SDV
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Table 8: TVAE hyperparameter tuning search space. We set both compress_dims and
decompress_dims to have the number of layers specified by num_layers, with hidden_dim
hidden units in each layer. We use larger batch sizes and smaller number of epochs for the larger
datasets (MBNE, MNIST, CT) since these can take significantly longer to run a single epoch.

Parameter Datasets Distribution or Value

epochs small Uniform ([100..500])

large Uniform ([50..200])

batch_size small Uniform ({100, 200, . . . , 500})
large Uniform ({500, 1000, . . . , 2500})

embedding_dim all Uniform ({32, 64, 128, 256, 512})
hidden_dim all Uniform ({32, 64, 128, 256, 512})
num_layers all Uniform ({1, 2, 3})
compress_dims all (hidden_dim,) * num_layers

decompress_dims all (hidden_dim,) * num_layers

D.3.8 TABDDPM

We used the official implementation of TabDDPM4 adapted to use our datasets and validation setup.
To tune the hyperparameters of TabDDPM we use 50 trials of random search with the same search
space that the original authors report in their paper (Kotelnikov et al., 2023).

D.3.9 FOREST-FLOW

We use the official implementation of Forest-Flow.5 The only hyperparameters with impact on
performance that the Forest-Flow documentation recommends tuning are the number of diffusion
timesteps for which a recommended default value of 50 is offered and the number of noise values
per sample for which the default value is 100. Due to the fact that Forest-Flow models already take
significantly longer to train than the other models, and that that increasing either value would lead to
slower training we opted to use these default values.

D.4 EVALUATION SETUP

Single variable inference For the single variable inference evaluation, the best models are selected
by their discriminative performance on a validation set. The entire setup is repeated five times with
different cross-validation folds and with different seeds for all sources of randomness. For the Adult
and MNIST datasets the test set is fixed but training and validation splits are still rotated.

Sampling For the sampling evaluation we use a single train/validation/test split of the real data
(corresponding to the first fold in the previous setup) for training the generative models. The density
models used are those previously selected based on their single variable inference performance on
the validation set. For the sampling models (TVAE and TabDDPM) we directly evaluate their ML
Efficiency using the validation data.

ML Efficiency For each selected model we sample a train and validation sets with the same number
of samples as those used on the original data. For NRGBoost we generate these samples by running
64 chains in parallel with 100 steps of burn in and downsampling their outputs by 30 (for the smaller
datasets) or 10 (for MBNE, MNIST and CT). For every synthetic dataset, an XGBoost model is
trained using the best hyperparameters found on the real data and using a synthetic validation set to
select the best stopping round for XGBoost. The setup is repeated 5 times with different datasets
being generated for each method and dataset.

4https://github.com/yandex-research/tab-ddpm
5https://github.com/SamsungSAILMontreal/ForestDiffusion
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Table 9: Wasserstein distance between empirical train distribution and synthetic samples. Reported
results are averages and standard errors over 5 repeated experiments. Smaller is better.

AB CH PR AD MBNE MNIST CT

TVAE 0.299 ±0.005 0.195 ±0.010 0.274 ±0.011 1.075 ±0.024 0.366 ±0.055 20.59 ±0.041 0.808 ±0.029

TabDDPM 0.467 ±0.021 0.153 ±0.007 0.190 ±0.005 0.895 ±0.019 109.6 ±93.14 - 0.640 ±0.016

Forest-Flow 0.234 ±0.020 0.192 ±0.007 0.238 ±0.009 1.239 ±0.024 4.214 ±3.683 20.73 ±0.574 0.896 ±0.022

ARF 0.199 ±0.015 0.233 ±0.009 0.232 ±0.007 1.363 ±0.018 0.698 ±0.684 18.14 ±0.060 0.703 ±0.019

DEF (KL) 0.320 ±0.006 0.199 ±0.012 0.260 ±0.010 1.682 ±0.024 18.21 ±14.92 261.0 ±15.60 0.933 ±0.025

NRGBoost 0.509 ±0.047 0.170 ±0.012 0.230 ±0.011 1.028 ±0.015 22.25 ±20.09 15.60 ±0.212 0.600 ±0.016

Discriminator Measure We create the training, validation and test sets to train an XGBoost model
to discriminate between real and generated data using the following process:

• The original validation set is used as the real part of the training set in order to avoid
benefiting generative methods that overfit their training set.

• The original test set is split 20%/80%. The 20% portion is used as the real part of the
validation set and the 80% portion as the real part of the test set.

• To form the generated part of the training, validation and test sets for the smaller datasets
(AB, CH, PR, AD) we sample data according to the original number of samples in the train,
validation and test splits on the real data respectivelly. Note that this makes the ratio of
real to synthetic data 1:4 in the training set. This is deliberate because for these smaller
datasets the original validation has few samples and adding extra synthetic data helps the
discriminator.

• For the larger datasets (MBNE, MNIST, CT) we generate the same number of synthetic
samples as there are real samples on each split, therefore making every ratio 1:1 because the
discriminator is typically already too powerful without adding additional synthetic data.

Because, in contrast to the previous metric, having a lower number of effective samples helps rather
than hurts we take extra precautions to not generate correlated data with NRGBoost. We draw each
sample by running its own independent chain for 100 steps starting from an independent sample from
the initial model which is a rather slow process. The setup is repeated 5 times with 5 different sets of
generated samples from each method.

D.5 COMPUTATIONAL RESOURCES

The experiments were run on a machine equipped with an AMD Ryzen 7 7700X 8 core CPU and 32
GB of RAM. The comparisons with TVAE and TabDDPM further made use of a GeForce RTX 3060
GPU with 12 GB of VRAM.

E ADDITIONAL RESULTS

E.1 STATISTICAL DISTANCE MEASURE

As an additional measure of the statistical dissimilarity between data and model distributions we
evaluate a Wasserstein distance using a similar setup to Jolicoeur-Martineau et al. (2024). Namely, we
min-max scale numerical variables, and one-hot encode categoricals and scale them by 1/2. We use a
L1 distance in the formulation of the optimal transport problem which we solve using the POT python
library. Due to the worst case cubic scaling with the sample size of finding the optimal solution we
sub-sample a maximum of 5000 samples from the original train or test sets and use an equal number
of synthetic samples. We repeat the evaluation for each method and dataset 5 times using different
synthetic data and also different subsampling seeds for the real data (where applicable). Our results
for the distance between empirical training and test distribution and synthetic samples from each
model are reported in Tables 9 and 10 respectively.

We found these results to be somewhat sensitive to the choice of normalization of the numericals and
categoricals, as well as to the choice of distance in this normalized space. Despite NRGBoost not
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Table 10: Wasserstein distance between empirical test distribution and synthetic samples. Reported
results are averages and standard errors over 5 repeated experiments. Smaller is better.

AB CH PR AD MBNE MNIST CT

TVAE 0.302 ±0.005 0.206 ±0.010 0.274 ±0.008 1.086 ±0.023 0.425 ±0.032 20.61 ±0.042 0.807 ±0.023

TabDDPM 0.500 ±0.023 0.169 ±0.009 0.195 ±0.003 0.938 ±0.029 109.5 ±93.13 - 0.646 ±0.022

Forest-Flow 0.248 ±0.020 0.205 ±0.009 0.231 ±0.008 1.243 ±0.029 4.295 ±3.697 20.73 ±0.574 0.893 ±0.021

ARF 0.218 ±0.015 0.240 ±0.009 0.238 ±0.006 1.378 ±0.020 0.732 ±0.664 18.14 ±0.060 0.709 ±0.018

DEF (KL) 0.337 ±0.006 0.210 ±0.012 0.264 ±0.011 1.696 ±0.023 18.29 ±14.90 261.0 ±35.01 0.935 ±0.024

NRGBoost 0.502 ±0.045 0.178 ±0.011 0.225 ±0.010 1.051 ±0.013 22.33 ±20.11 15.70 ±0.188 0.602 ±0.015

being as dominant as in the discriminator measure, it still fares well, obtaining the best average rank
over all datasets and experiments.

E.2 UNCERTAINTY ESTIMATION IN REGRESSION TASKS

One advantage of density models over discriminative regression models like XGBoost is that they
provide an estimate of the full conditional distribution p(y|x) rather than a point estimate. In Section
5.1 we did not explore this aspect of NRGBoost since we focused on a metric that evaluates the
point estimate E[y|x]. To further evaluate the quality of probabilistic predictions we report two other
metrics for the models trained in Section 5.1 in Table 11:

• MAE: We compute the average Mean Absolute Error to a point estimate of y. For NGBoost
and NRGBoost, we use the median of the estimated q(y|x) since this is the point estimate
that minimizes MAE. Note that, while it is possible to train XGBoost to directly optimize
this metric instead of MSE, models estimating q(y|x) can accomplish the same for free by
simply using the appropriate point estimate.

• (C)RPS: The Continuous Ranked Probability Score is a proper scoring rule commonly
used to evaluate a probabilistic forecast (Gneiting & Raftery, 2007). For both NGBoost
and NRGBoost we evaluate this score analytically for the forecasted q(y|xi) of every test
point. Because the Abalone dataset has discrete numerical targets, we compute RPS for this
dataset instead. For this purpose, the continuous distribution obtained with NGBoost is first
discretized by rounding to the nearest discrete value within the domain of the target.

Note that we omit the results for ARF from this analysis because the Python implementation does not
provide neither conditional nor unconditional density evaluation at the time of writing. For the results
reported in Table 1, we had to implement our own evaluation of E[y|x] for these models. Extending
this implementation to compute the median or the CRPS analytically is, however, not trivial due to
ARF fitting more complex continuous distributions at the leaves than the other tree-based models.

On MAE, we find that NRGBoost outperforms XGBoost convincingly in the California Housing
and Protein datasets, in part due to the use of a better point estimate for this metric. The Abalone
dataset is the only dataset where predicting the mean of the forecasting distribution would outperform
the median for MAE. We also find that NRGBoost achieves a lower CRPS than NGBoost on all
datasets, a fact that we attribute to the parametric choice made for NGBoost not necessarily being the
most suited for these datasets. This highlights a key drawback of parametric approaches compared to
non-parametric ones: they require some domain expertise to avoid suboptimal results.

E.3 INFERENCE WITH MISSING DATA

Generative density models can be used more flexibly for inference than their discriminative counter-
parts. In this section we present a case study on a problem of inference in the presence of a missing
covariate that highlights this advantage.

For each type of task, we choose a dataset and remove an important feature from the respective
test set (Longitude for the California dataset, education for the Adult dataset and Elevation for the
Covertype dataset). We then attempt to predict the value of the target variable using XGBoost with
the help of several imputation techniques that are popular with data science practitioners:
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Table 11: (C)RPS and MAE results. The reported values are means and standard errors over 5
cross-validation folds. The best method for each dataset is highlighted in bold and other methods that
are not significantly worse (as determined by a paired t-test at a 95% confidence level) are underlined.

AB CH PR

RPS ↓ MAE ↓ CRPS ↓ MAE ↓ CRPS ↓ MAE ↓
XGBoost N/A 1.524 ±0.032 N/A 0.290 ±0.009 N/A 2.282 ±0.045

NGBoost 1.094 ±0.020 1.525 ±0.032 0.238 ±0.013 0.314 ±0.011 1.976 ±0.018 2.665 ±0.057

NRGBoost 1.075 ±0.011 1.569 ±0.025 0.201 ±0.008 0.276 ±0.010 1.490 ±0.023 2.063 ±0.036

Table 12: Results for inference with a missing covariate. The original results of each method when
having access to the full data are also reported for reference. The best approach for dealing with
missing data in each scenario is highlighted in bold.

Model Imputation CH (R2 ↑) AD (AUC ↑) CT (Accuracy ↑)

XGBoost Full Data 0.849 ±0.009 0.927 ±0.000 0.971 ±0.001

Mean -0.283 ±0.107 N/A 0.610 ±0.004

Median/Mode -0.117 ±0.107 0.914 ±0.003 0.621 ±0.002

KNN (K=5) 0.150 ±0.107 0.910 ±0.003 0.883 ±0.001

NRGBoost Full Data 0.850 ±0.011 0.920 ±0.001 0.948 ±0.001

Marginalization 0.773 ±0.010 0.920 ±0.001 0.923 ±0.001

• Mean and median imputation (for a missing numerical feature).

• Mode imputation (for a missing categorical feature).

• Imputation with the mean or mode of the 5 nearest neighbors on the training data. Note that
this imputation requires one to have access to the entire training set at test time.

NRGBoost can handle this type of problem in a principled manner by marginalizing over the possible
values of the missing feature instead of relying on ad-hoc imputation. Our results, in Table 12,
show that this approach is able to outperform imputation, even on datasets where a performance gap
between NRGBoost and XGBoost existed on the full data,

E.4 TESTING THE LIMITS OF NRGBOOST

In order to test the limits of NRGBoost, we compare NRGBoost to XGBoost on the following two
challenging tasks taken from Gorishniy et al. (2021):

• ALOI: This is an image classification dataset with 128 features and 100k examples dis-
tributed evenly over 1000 classes. Because our implementation of NRGBoost is limited to
variables with a cardinality of 255 we consider only data for the first 250 classes. This still
constitutes 25 times more classes than MNIST, presenting a challenge to both discriminative
and generative models.

• Microsoft: This regression task contains both a large number of samples (1.2M) and features
(136), making it one order of magnitude larger than MNIST and Covertype in terms of the
product of the two. Due to this, we found our usual hyperparameter tuning protocol for
NRGBoost impractical and had to resort to manual tuning instead. The best model we found
had 256 leaves and was trained for 500 boosting iterations with a learning rate of 0.1 and a
maximum ratio in each leaf of 4.

We use the same train, validation and test splits used in Gorishniy et al. (2021) and report the same
metrics in Table 13. We find that NRGBoost actually outperforms XGBoost in the ALOI dataset but
there is still a significant gap between the best NRGBoost model that we were able to find on the
Microsoft dataset and XGBoost.
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Table 13: Comparison of XGBoost and NRGBoost on ALOI and Microsoft datasets.

ALOI (Accuracy ↑) Microsoft (RMSE ↓)

XGBoost 0.943 0.744
NRGBoost 0.962 0.787

Figure 5: Downsampled MNIST samples generated by Gibbs sampling from a NRGBoost model.
Each row corresponds to an independent chain initialized with a sample from the initial model f0
(first column). Each column represents a consecutive sample from the chain.

E.5 MCMC CHAIN CONVERGENCE ON MNIST

In Figure 5 we show the convergence of a Gibbs sampler sampling from a NRGBoost model. In
only a few samples each chain appears to have converged to the data manifold after starting at a
random sample from the initial model (a mixture between the product of training marginals and a
uniform). Note how consecutive samples are autocorrelated. In particular it can be rare for a chain
to switch between two different modes of the distribution (e.g., switching digits) even though a few
such transitions can be observed.

E.6 COMPUTATIONAL EFFORT

E.6.1 TRAINING

In Figure 6 we show the training times for NRGBoost as well as the other methods for the best model
selected by hyperparameter tuning. We do not report the training times for the RFDE method because
it is virtually free when compared to the other methods since the splitting process is random and
depends only on the input domain. The data itself is only required for computing leaf probabilities
which is inexpensive.

Note that the biggest computational cost for training a NRGBoost model is the Gibbs sampling
(accounting for roughly 70% of the training time on average). This could potentially be improved by
leveraging higher parallelism than what we used in the experiments (16 virtual cores).

We note also that we believe there is still plenty of margin for optimizing the tree-fitting code used
for DEF models. As such, the results presented are merely indicative.

The computational effort for fitting a tree-based model should scale linearly both in the number of
samples and the number of features and this is the main source of variation for the training times
between datasets. However, we note that larger datasets can benefit more from larger models (e.g.,
with a larger number of leaves) which are also slower to train.
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Figure 6: Wall time required to train the best model for each method.

Table 14: Time required to draw 10000 independent samples in seconds. The last columns shows
how much faster a method is compared to NRGBoost in the median case.

AB CH PR AD MBNE MNIST CT × Faster (Median)

TVAE 0.06 0.05 0.04 0.05 0.22 1.33 0.07 984.0
TabDDPM 42.3 7.36 6.82 1.68 1.13 - 9.69 9.67
ARF 0.38 0.22 0.40 2.62 3.84 - 4.47 55.7

NRGBoost 23.1 49.2 54.6 65.0 194.2 622.4 109.9 -

E.6.2 SAMPLING

In Table 14 we report the time required to draw 10000 independent samples from each model on each
dataset.

For NRGBoost, independent samples are generated by starting from an independent sample from q0
and then running a fixed number, B, of Gibbs sampling iterations, taking only the last iteration as a
sample. This process, however, only draws an approximate sample from the energy model, being
biased by the initial sample being drawn from an incorrect distribution. The larger B is compared to
the Markov Chain’s mixing time, the more independent the final sample is from the initial one and
the smaller this bias. This parameter therefore trades-off correctness for computational time which
scales linearly with B.

In our experiments we always set B to 100 but this may be excessive for some datasets, and we find
that 30 already leads to similar ML Efficiency results on most datasets while cutting down sampling
times 3 fold. Note also that the process of drawing samples is embarrassingly parallel. The numbers
we report correspond to running 16 chains in parallel at all times on a CPU with 16 virtual cores. But
if we were to leverage a CPU with higher core count we could similarly cut down on sampling times.

We do not report sampling times for DEF models because our current implementation of this procedure
is very suboptimal, taking even longer than sampling from NRGBoost. We believe however, that a
more optimized approach would at most be somewhat slower than sampling from ARF models since
the DEF ensembles are larger.

We find that TabDDPM, the only method that realistically competes with NRGBoost in sample quality
is, in the median case, 10x faster for sampling.
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