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Abstract

As large language models (LLMs) become ubiqui-
tous, parameter-efficient fine-tuning methods and
safety-first defenses have proliferated rapidly. How-
ever, the number of approaches and their recent in-
crease have resulted in diverse evaluations—varied
datasets, metrics, and inconsistent threat settings,
making it difficult to fairly compare safety, util-
ity, and robustness across methods. To this end,
we introduce SafeTuneBed, a benchmark and
toolkit unifying fine-tuning and defense evaluation.
SafeTuneBed (i) curates a diverse repository of
multiple fine-tuning datasets spanning sentiment
analysis, question-answering, multi-step reasoning,
and open-ended instruction tasks, and allows for
the generation of harmful-variant splits; (ii) allows
for integration of state-of-the-art defenses cover-
ing alignment-stage immunization, in-training safe-
guards, and post-tuning repair; and (iii) provides
evaluators for safety (attack success rate, refusal con-
sistency), and utility. Built on Python-first, dataclass-
driven configs and plugins, SafeTuneBed re-
quires minimal additional code to specify any fine-
tuning regime, defense method, and metric suite
while ensuring end-to-end reproducibility. We
showcase its value by benchmarking representa-
tive defenses across varied poisoning scenarios and
tasks. By standardizing data, code, and metrics,
SafeTuneBed is the first focused toolkit of its
kind to accelerate rigorous and comparable research
in safe LLM fine-tuning.

1 Introduction

Large language models (LLMs) have achieved remarkable
performance across Natural Language Processing (NLP) tasks
Brown et al. [2020], yet their deployment hinges on robust
safety alignment: the ability to refuse or safely handle harmful
or unethical inputs [Zou et al., 2023]. Contemporary align-
ment pipelines employ a mix of Supervised Fine-Tuning (SFT)
methods [Wei e al., 2022] and Reinforcement Learning From
Human Feedback (RLHF) [Ouyang er al., 2022] or Direct
Preference Optimization (DPO) [Rafailov ef al., 2023] to in-
still these safeguards. Such alignment is now standard in both
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closed-source chatbots and open models [Touvron et al., 2023;
OpenAl et al., 2024; Team et al., 2023].

Recent works have revealed a troubling fragility in aligned
LLMs: downstream fine-tuning can erode safety [Qi et al.,
2024a]. Some works demonstrate that even benign training
may cause a refusal-capable model to comply with harmful
prompts [Qi et al., 2024b], indicating that safety alignment
is relatively easily overwritten. Worse, adversaries can delib-
erately poison the fine-tuning dataset with a small fraction
of harmful examples to “jailbreak” an aligned model, or im-
plant backdoor triggers that remain undetected by casual safety
checks yet reliably induce unsafe outputs [Wang ez al., 2024].

In response, over twenty safety-alignment preserving fine-
tuning techniques have appeared in the past year [Huang
et al., 2024b]. These defenses intervene at multiple stages:
alignment-stage immunization [Tamirisa et al., 20251, in-
training safeguards, [Li et al., 2025], and post-tuning repair
[Hsu et al., 2024]. Yet these methods tend to be evaluated
under their own bespoke settings—different fine-tuning tasks,
attack models, and safety metrics—rendering fair comparison
and holistic understanding extremely difficult.

To address this gap, we introduce SafeTuneBed, an ex-
tensible toolkit and benchmark for safety-preserving LLM fine-
tuning. SafeTuneBed unifies datasets, defense methods,
and metrics behind a common API and lightweight configura-
tion system, enabling researchers to evaluate defense methods
on different fine-tuning scenarios with minimal boilerplate.
We demonstrate its effectiveness by benchmarking represen-
tative defenses across multiple tasks (classification, QA, rea-
soning) and poisoning regimes (benign, low- and high-rate
injection), revealing strengths and trade-offs. Contributions:

1. We curate a broad repository of fine-tuning tasks and
controlled harm variants, supporting evaluation under
both benign and adversarial regimes.

2. We demonstrate the integration of alignment defenses
spanning alignment-stage immunization, in-training
guardrails, and post-tuning repair into SafeTuneBed.

3. We define a standardized evaluation protocol with clear
safety and utility metrics and provide an open-source
framework for reproducible experiments.

By standardizing code, data, and metrics, SafeTuneBed
aims to accelerate rigorous, comparable research in safe LLM
customization.
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Figure 1: Diversity of Experimental Set-ups in Recent Harmful-Fine-Tuning Defenses. Among 24 alignment-preserving defense methods
published in the past year as mentioned in Sectionl, over 60% were evaluated on a dataset combination used by no other method. This
proliferation of one-off experimental setups makes it impossible to compare safety and utility across approaches, highlighting the urgent need
for a unified benchmarking framework like SafeTuneBed. All of the datasets mentioned are integrable into the toolkit, with dark green ticks
used for demonstration in Section 5. Code is available at: https://github.com/criticalml-uw/SafeTuneBed

2 Background

LLM-as-a-Service pipeline. Commercial providers generally
first align a raw language model with supervised instruction
tuning [Wei et al., 2022] and RLHF [Ouyang et al., 2022]. The
resulting “base chat” model is hosted behind an API. End-users
upload their own training file, and the service performs a
lightweight second pass of fine-tuning—typically with LoRA
[Hu et al., 2022] or similar adapters to tailor the model to
a private domain task. As the expensive RLHF step is not
repeated, there is an assumption that refusal behavior will
survive downstream fine-tuning.

Threat landscape. Benign domain data may inadvertently
shift the model away from its refusal policy [Qi et al., 2024b],
and a malicious user can amplify the effect by blending even
a small proportion of harmful instruction—response pairs into
the upload [Qi et al., 2024b]. The situation mirrors classic
data-poisoning attacks [Steinhardt ef al., 2017]: tainted exam-
ples are not easily distinguishable at training time, yet they
overwrite previously learned constraints and re-enable disal-
lowed content generation.

Defense Goals. Platforms retain control over the align-
ment corpus and keep an internal set of harmful prompts
for defence design. A robust counter-measure must minimize
harmful-response rate affer user fine-tuning (resistance) while
maintaining a normal task accuracy (stability) [Rosati et al.,
2024]. Thus, works in this field tend to report measures per-
taining to two properties: the harmfulness of a model’s reply
to unseen red-team prompts, which is generally measured by
LLM-judges [Wang et al., 2024; Qi et al., 2024b], and on

fine-tune accuracy [Huang er al., 2024d; Huang et al., 2025;
Liu et al., 2025] on the customer’s task or a measure of an
LLM’s overall performance [Li et al., 2025].

Alignment-stage defenses. Methods like these [Huang et al.,
2024d; Tamirisa et al., 2025; Zhao et al., 2025] harden the
base model during its original alignment so that later fine-
tuning—benign or malicious—cannot easily override safety
knowledge. In practice this means augmenting the initial
SFT/RLHF phase with adversarial or contrastive signals (e.g.
small perturbations, injected harmful examples, simulated fine-
tune steps) so that the model learns representations inherently
resistant to downstream drift.

Fine-tuning-stage and Post-tuning defenses These ap-
proaches [Huang et al., 2024c; Wang ef al., 2024; Du et al.,
2025] interpose during the user’s custom SFT pass, actively
steering the learning dynamics. Examples include periodic
mixing in of alignment data or auxiliary safety losses that pre-
vent the fine-tune from erasing core refusal behavior. When
misalignment has already occurred, post-hoc methods [Hsu er
al., 2024; Huang et al., 2024a] detect and correct it without
full retraining. Typical tactics are brief adversarial realignment
passes and surgical repair of weight deltas.

Harmful fine-tuning defense surveys and toolkits. There
exists works that survey the harmful fine-tuning landscape
[Huang et al., 2024b] as well as methods that publish their
implementations [Wang ef al., 2024; Qi et al., 2024b], along
with evaluation code, however there are limitations pertaining
to the extensibility of the code, ability to easily onboard new
methods, breadth of the fine-tuning datasets and scenarios, etc.
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3 The SafeTuneBed Toolkit

SafeTuneBed is a minimal, opinionated layer [Branden-
burg, 2019] on top of PyTorch & HuggingFace that extracts
the recurring patterns in safe fine-tuning research. It is com-
posed of three components:

Core Registry: A centralized catalog of plug-ins for every
building block: DATASETS, METHODS, and METRICS. Each
plug-in lives in its own module, and is instantly discoverable
both in code and in CLI completion. This makes baselines and
extensions equally easy to list, inspect, and compare.

Declarative Runtime: Every experiment is defined by a series
of Python DATACLASSES (model, data splits, method, hyper-
parameters, evaluation suites). The safetune launcher con-
sumes these configs, instantiates tokenizers, data-loaders, and
adapters, and executes reproducible runs where the full config
& code used to run experiments is known. No imperative
scripts or hidden knobs remain.

Utility Layer: A collection of ready-made helpers for the
most common workflows such as evaluation sweeps that
enable comprehensive and confident assessments of safety-
preservation of fine-tuning methods across a wide array of
specified datasets covering numerous fine-tuning situations.

3.1 Design Principles

Underpinning SafeTuneBed is a set of core philosophies
that guide API design decision, ensuring we solve researchers’
real pain points rather than adding layers of complexity.

i MODULARITY: Clarity emerges when each con-
cept—datasets, methods, metrics—occupies its own
well-defined space. By enforcing module-level boundaries,
users never confront tangled scripts; they only engage with
the piece they intend to extend or inspect.

ii CONFIGURABILITY: Experiment logic should be visi-
ble, versionable, and diff-able. By encoding every
choice—model architecture, data split, adapter hyperpa-
rameters, evaluation criteria—in plain dataclasses, we
eliminate hidden side-effects and empower reproducibility.

iii. MINIMAL SURFACE AREA: Adding a new defense or
dataset must feel as trivial as dropping a file and adding one
enum entry. We resist feature bloat in the core—if a use
case isn’t common across papers, it belongs in a plug-in,
not in the framework’s heart.

iv. REPRODUCIBILITY: True reproducibility requires no man-
ual bookkeeping. Built on a config-based system, every
run transparently captures the most relevant metadata such
that “re-running the same algorithm” is not a great matter
of uncertainty.

v EASED EXPERIMENTATION: Our mission is to shrink the
gap between idea and insight. Common patterns—multi-
suite evaluations and sweeps, fetching datasets, etc. are
available as single commands. Researchers remain focused
on hypothesis and analysis, never on orchestration.

Together, these principles compress the “time from idea to
result,” ensuring that SafeTuneBed users spend their effort
on modeling and analysis rather than boilerplate engineering.

4 Dataset and Benchmark Collection

Table 1: Seven Downstream Fine-tuning Corpora

Domain Corpus Size
Sentiment SST?2 [Socher et al., 2013] 5000
News AGNews [Zhang et al., 2015] 5000
Math GSMSK [Cobbe et al., 2021] 5000
Dialogue sum. SAMSum [Gliwa et al., 2019] 1000
SQL Gen. SQL-Gen [Zhong et al., 2017] 1000
Instructional Alpaca [Taori et al., 2023] 50098
QA Dolly [Dolly, 2023] 14624

Choice of Finetuning Corpora: We chose these
seven fine-tuning datasets to span diverse application do-
mains—classification, reasoning, dialogue summarization,
code generation, and open-ended instruction. The SST-2, AG-
News, and GSMS8K datasets were set to be limited to 5000
datapoints as done in other works [Huang et al., 2024c]. The
Dialog Summarization and SQL Generation datasets are lim-
ited to 1000 datapoints, using the splits outlined in [Wang
et al., 2024], whereas the Alpaca and Dolly datasets are left
unlimited as per [Qi er al., 2024b]. BeaverTails was selected
as our primary harmful corpus because it supports controlled
injection at varied poison ratios, and can be used to control
proportions up to 30% for the mentioned datasets as is done
in [Huang et al., 2024c].

Table 2: Evaluation Suites for Safety and Utility

Benchmark Purpose  Metric
MMLU [Hendrycks ef al., 2021]  Utility Accuracy
MT-Bench [Zheng et al., 2023]  Utility ~ Score
AdvBench [Zou et al., 2023] Safety ASR, HS
PolicyEval [Qi et al., 2024b] Safety ASR, HS

Utility metrics We evaluate on two large-scale LLM bench-
marks. On the MMLU dataset we measure zero-shot accuracy
across the 57 subject areas [Hendrycks er al., 2021]. On
MT-Bench [Zheng er al., 2023] we use GPT-40-mini as an
automated judge to assign a win-rate percentage over a diverse
suite of open-ended conversational tasks that results in a score
out of 10. Together, these metrics reveal whether fine-tuning or
defenses impair the model’s core capabilities, and highlights
how effective the technique is as it pertains to LLM utility.

Safety metrics To quantify residual harmful behavior we
employ two metrics on two red-team suites. First, we compute
a GPT-4o-mini—evaluated Harmfulness Score (HS) by sam-
pling 150 prompt-response pairs from each of AdvBench [Zou
et al., 2023] and the policy-oriented safety benchmark intro-
duced in [Qi er al., 2024b]. Each pair is rated on a 1-5 Likert
scale against a combined Meta/OpenAl usage policy rubric,
then averaged to yield a continuous safety rating. Second, we
also report Attack Success Rate (ASR) on the full AdvBench
and policy benchmark sets: any generation lacking a refusal
keyword is counted as a successful attack. Since even aligned
LLMs occasionally produce non-refusal outputs, ASR may
be nonzero in the benign setting; rising ASR under poisoning
indicates weakening alignment.
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Figure 2: Benchmark results of the safety subset under benign, low and high-harm finetuning conditions. ASR is from AdvBench [Zou et al.,
2023] & Harmfulness Score is from the Policy Oriented Safety Evaluations [Qi et al., 2024b].

5 Benchmark Experiments

We now turn to a demonstration of the toolkit that applies the
safety subset of the SafeTuneBed benchmarking protocol to
three representative defenses: standard LoRA fine-tuning, Lisa
[Huang et al., 2024c], and the Vaccine [Huang et al., 2024d]
and SafeLora [Hsu et al., 2024] across seven downstream tasks
under benign, low (5%) and high-level (30%) proportions
of harmfully poisoning data. We evaluate the safety of each
checkpoint on the suites mentioned in Section 4.

5.1 Safety Outcomes on Red-Team Suites

Figure 2 compare model safety on AdvBench and the policy-
oriented benchmark across benign, low-harm (5%), and high-
harm (30%) poisoning regimes. Under the benign setting,
LoRA and Vaccine both maintain low average harmfulness
(1.84 — 2.64) and modest ASR (12% — 25%), whereas LISA’s
harmlessness degrades significantly (harmfulness 1.91 — 3.04;
ASR up to 39%). As poisoning increases, all methods see
rising harmfulness and ASR, but LISA consistently outper-
forms LoRA and Vaccine at high poison ratios—e.g. at 30%
harm LISA achieves 2.01 average harmfulness on Alpaca (vs.
LoRA: 3.53, Vaccine: 3.28) and ASR of 18.6% (vs. LoRA:
38.5%, Vaccine: 38.5%).

5.2 Attack Success Rate and Harmfulness Trends

Across both red-team suites, ASR and continuous harmfulness
track the weakening of alignment as poison ratio rises. LoORA
exhibits a steep climb in ASR from 13% (benign) to over 62%
(high harm) on AdvBench, and from 1.85 harmfulness score

to 3.5 harmfulness on the Policy Oriented Safety Benchmark.
Vaccine’s ASR grows more slowly under light poisoning but
converges with LoRA at 30% (41%-58%). LISA demonstrates
the gentlest slope: its ASR on AdvBench increases from 17%
to 49%. Average harmfulness scores show the same ordering:
LISA’s ratings remain closer to the refusal-level floor even as
poison increases, whereas LoRA and Vaccine cross into the

“moderately harmful” range by 30% injection.

6 Conclusion and Future Directions

In this work, we introduced SafeTuneBed, the first unified,
extensible toolkit for benchmarking safety-preserving fine-
tuning methods for large language models. By combining a
modular dataset manager, a plugin-based method registry, and
a consistent evaluation suite, SafeTuneBed standardizes
the process of defining, running, and reproducing experiments
across a diverse set of tasks and harmful data regimes. We plan
to extend SafeTuneBed in future work by opensourcing the
code to invite community contributions of additional datasets
and algorithms, and facilitate leaderboarding to track safety
and utility performance. By reducing the overhead of integrat-
ing new baselines and benchmarks, we aim to create a living
repository that evolves with the field and fosters reproducible,
comparable research. !

'SafeTuneBed code is available at: https://github.com/criticalml-
uw/SafeTuneBed
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