© © N o o B~ W N o=

21
22
23
24
25
26
27
28
29
30
31
32
33

MLIPAudit: A benchmarking tool for Machine
Learned Interatomic Potentials

Anonymous Author(s)
Affiliation
Address

email

Abstract

Machine-learned interatomic potentials (MLIPs) promise to significantly advance
atomistic simulations by delivering quantum-level accuracy for large molecular
systems at a fraction of the computational cost of traditional electronic structure
methods. While model hubs and categorisation efforts have emerged in recent
years, it remains difficult to consistently discover, compare, and apply these models
across diverse scenarios. The field still lacks a standardised and comprehensive
framework for evaluating MLIP performance. We introduce MLIPAudit, an open,
curated and modular benchmarking suite designed to assess the accuracy of MLIP
models across a variety of application tasks. MLIPAudit offers a diverse collection
of benchmark systems, including small organic compounds, molecular liquids,
proteins and flexible peptides, along with pre-computed results for a range of
pre-trained and published models. MLIPAudit also provides tools for users to
evaluate their models using the same standardised pipeline. A continuously updated
leaderboard tracks performance across benchmarks, enabling direct comparison
on downstream tasks. By providing a unified, transparent reference framework
for model validation and comparison, MLIPAudit aims to foster reproducibility,
transparency, and community-driven progress in the development of MLIPs for
complex molecular systems. The library is available on GitHub and on PyPI 14
under the Apache license 2.0.

1 Introduction

The accurate prediction of molecular and material properties is a cornerstone of scientific progress
across disciplines, including drug discovery, functional material design, and process chemistry [[1H3]].
Traditionally, this has been done using classical force fields, which enable efficient simulations of
large systems relying on predefined functional forms and parameters derived from experiments or first-
principles methods [4}l5]. Although computationally inexpensive, classical force fields often struggle
to capture complex chemical interactions or generalise beyond the systems for which they were
parametrised. At the other end of the spectrum, first-principles methods such as density functional
theory (DFT) offer higher accuracy but at significantly greater computational cost, typically limiting
their use to systems with fewer than a few hundred atoms [6} [7]. In recent years, machine-learned
interatomic potentials (MLIPs) have emerged as a compelling middle ground. These models aim to
retain the accuracy of first-principles methods while approaching the efficiency of classical force
fields, by learning the potential energy surface directly from high-level electronic structure data
[8H25]].
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Despite the rapid emergence of diverse MLIP architectures, which have significantly broadened the
scope of atomistic simulations, the field continues to lack a standardised and rigorous framework for
evaluating model performance in downstream applications. Many benchmarks focus on energy and
force errors, which miss aspects like stability, transferability, and robustness. Recent works propose
more holistic evaluations [11} 26434/, which we detail in the Literature Review section. However, all
these studies highlight the need for consistent and reproducible evaluation protocols that go beyond
basic error metrics, aiming to establish benchmarking practices that reflect real-world simulation
demands. Therefore, a universally adopted, comprehensive benchmarking suite that can guide both
model development and deployment remains an open challenge for the community.

To address this gap, we introduce MLIPAudit: an open, curated repository of benchmarks, reference
datasets, and model evaluations for MLIP models applied (in its first version) to the analysis of small
molecules, molecular liquids and biomolecules. MLIPAudit is designed to complement model-centric
testing by shifting the focus to systematic validation and comparison. It provides:

* A diverse set of benchmark systems, including organic small molecules, flexible peptides,
folded protein domains, molecular liquids and solvated systems.

* Pre-computed results for a range of published and pretrained MLIP models, enabling direct,
fair comparisons.

* A continuously updated leaderboard, tracking performance across different tasks.

* A suite of tools for users to submit and evaluate their models within the same benchmarking
pipeline. We support both Jax-based and Torch-based models, as long as they have an ASE
[135 36| calculator.

By providing a shared reference point for assessing accuracy, robustness, and generalisation, MLIPAu-
dit aims to facilitate transparency, reproducibility, and community-wide progress in the development
and deployment of MLIPs for complex molecular systems.

2 Literature Review

MLIP Audit aims to expand the existing methods and tools for benchmarking MLIPs. To put this
work in context, we summarise current efforts for MLIP benchmarking here.

Static regression metrics: The first and most fundamental level of MLIP evaluation involves the
use of standard regression metrics to quantify a model’s ability to reproduce the reference quantum-
mechanical (QM) data it was trained on. The most common benchmarks in this category are the
root-mean-square-error (RMSE) and mean-absolute-error (MAE) calculated for energies and atomic
forces on a held-out validation dataset [37]]. These benchmarks are routinely reported with the release
of new MLIP models, and state-of-the-art models achieve high accuracy on these tests. Although
benchmarks for atomic energies and forces are a necessary baseline for the interpolation accuracy of
the models, they are insufficient to estimate their practical utility. This is demonstrated, for example,
by Gonzales et al. [38]], who found that three models with very similar force validation error show
significant variation in performance on a structural relaxation task.

Assessment of physical and chemical behaviour: Recent MLIP benchmarks generally accompany
model releases and assess performance on physical and chemical properties using QM or experimental
data, typically tailored to specific use cases. For models trained on small organic molecules, standard
tests include dihedral scans, conformer selection, vibrational frequencies, and interaction energies
[32, 139, 40]. Biomolecular benchmarks cover backbone sampling, water properties, and folding
dynamics [32] 40, 41], while models trained on reactivity data are evaluated on their ability to
reproduce product, reactant, and transition state geometries, as well as reaction pathways via string or
NEB methods [33] 42]].

Comparative studies have also emerged, evaluating multiple MLIPs across diverse benchmarks. Fu et
al. [27] propose a suite spanning organic molecules, peptides, and materials, and find that models
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with low force errors may still perform poorly on simulation-based metrics like energy conservation
and sampling. Similarly, Liu et al. [43] report discrepancies in atom dynamics and rare events, even
for models with strong regression accuracy. These findings reflect a growing consensus that static
error metrics alone are insufficient for evaluating MLIPs, and that dynamic and simulation-based
benchmarks are increasingly essential.

Standardised benchmarks: While a great variety of benchmarks for accurate physical and chemical
properties can be collected from individual model releases and MLIP evaluation studies, a need
remains for standardised benchmarks that can be used to compare models on a level playing field and
get a holistic view of their utility regarding practical tasks.

This gap is addressed by leaderboards and standardised frameworks. MLIP Arena [26] is a leaderboard
based on a benchmark platform focused on physical awareness, stability, reactivity, and predictive
power. The framework comprises a small but well-selected suite of benchmarks that address known
problems like data leakage, transferability, and overreliance on specific errors. Matbench Discovery
[44] features a leaderboard and evaluation framework that is easily extendable to additional models
and focused exclusively on materials science. MOFSimBench [45] is a standardised benchmark
specialised on metal-organic frameworks that highlights simulation metrics and bulk properties.
MLIPX [46] provides a framework with a user-centric perspective, providing a set of reusable recipes
that allow users to compose benchmarks for their specific tasks.

These standardised frameworks are valuable tools to evaluate and compare MLIP models. However,
they are limited to a specific domain of application, employ a small number of benchmarks or require
development by the MLIP user.

3 MLIPAudit Benchmarks

To enable a rigorous and meaningful evaluation of MLIP models, MLIPAudit includes a curated and
modular suite of benchmarks that span a range of molecular systems and complexity levels (Figure
[I). These benchmarks are designed to capture both general-purpose and domain-specific challenges
faced by MLIPs in industrial applications. Benchmark subsets each emphasise different aspects
of model performance, such as elemental molecular dynamics stability, non-covalent interactions,
conformational ranking of small organic compounds, or sampling of rotamers in biomolecules. A
description of the rationale for each benchmark on the different categories is given in Appendix
[Al including: (i) general systems designed for molecular dynamics stability and scaling, (ii) small
molecules relevant to materials chemistry, (iii) molecular liquids, and (iv) biomolecules.

Figure 1: Representative molecular systems spanning increasing levels of structural and environmental
complexity, from isolated dimers and drug-like molecules, to condensed-phase molecular liquids and
folded biomolecules.

We have evaluated the performance of the three graph-based MLIPs provided in the open-source mlip
library [25]: MACE [9], NequIP [11]], and ViSNet [41]. All three models were trained on a subset of
the SPICE2 dataset [47], which includes 1,737,896 molecular structures across 15 elements (B, Br, C,
Cl,F H, I, K, Li, N, Na, O, P, S, Si). From now on, MACE-SPICE2, NequIP-SPICE2 and ViSNet-
SPICE2. Training protocols and dataset curation details are available in [25]. We trained versions
of each of these models (MACE-t1x, NequIP-tlx, ViSNet-t1x) using 10% (randomly sampled) of



118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135

136
137
138

140
141
142
143
144

145

146
147
148
149
150
151

152

154
155

the original t1x dataset [48]], containing a total of one million structures and four elements (H, C, N,
0O). Additionally, we have trained two versions of ViSNet using different subsets of SPICE2 and 1
million datapoints from t1x (both taken from the OpenMolecules dataset - OMOL [42])) , respectively,
ViSNet-SPICE2(charged)-t1x, ViSNet-SPICE2(neutral)-t1x (When not specified, the neutral version
is used). The mlipaudit library also supports Torch-based models as long as they have have been
wrapper in an ASE Calculator class [35}136]. For completeness, we have evaluated a non-exhaustive
subset of Torch-based models using their original implementation, namely: MACE-OFF [32], MACE-
MP [9], and UMA-Small [34]. Two comments on these are worth raising: (1) runtime are not optimal
for these models as they rely on ASE instead of JAXMD for simulations, (2) MACE-MP is trained
for materials and at a different level of DFT theory. It is therefore not well suited for the benchmarks
presented in MLIPAudit. We nonetheless added it as it is largely considered a reference model in the
community and as results provide some interesting insights.

To ensure fair and consistent comparison across models, we define a composite score S,, € [0, 1]
that averages soft-thresholded, normalised benchmark metric scores, rewarding models that approach
DFT-level accuracy. Only benchmarks compatible with a model’s element set are included, ensuring
broad applicability without penalising for unsupported systems. Though readers should note that
unless all benchmarks are completed, aggregate scores should be caveated. For full details, see

Appendix

For each benchmark, a set of test cases has been curated (Appendix [C] Table[d). As public datasets
increase, it becomes increasingly challenging to ensure zero overlap between the training data and the
relevant chemistry that one needs to include to ensure the relevance and reliability of the benchmarks.
In Appendix [C} Table 5] we disclose the overlap between the MLIPAudit test cases per benchmark
and the training set for the presented internal models. In most cases, the overlap is either zero or
under 10 %. But, for the conformer selection benchmark, for which two molecules (adenosine and
efivarez) from the Wiggle150 [49] dataset were present in the model’s training set. We do not provide
this information for external open source models. In the following, we will discuss the different
scores and how the overlap may impact ranking.

3.1 Overall ranking

Table [T highlights the generalisation capabilities of the top-performing models. In the following,
we will analyse separately external open-source models run using the original implementation from
our internal models. Some models did not complete all benchmarks; we refer you to Appendix [A}
Table [/] for more information. Missing benchmarks can be due to the availability of elements in
the training set (essentially the models trained on t1x only) or runtime issues due to the reliance of
external models on ASE [35/136].

Table 1: Overall MLIPAudit scores

Source | Rank Model Name Average Score | Benchmarks
External 1 UMA-Small 0.70 12/14
External 2 MACE-OFF 0.63 11/14
External 3 MACE-MP 0.41 9/14
Internal 1 ViSNet-SPICE2 0.70 14/14
Internal 2 NequlIP-SPICE2 0.70 14/14
Internal 3 ViSNet-SPICE2-t1x 0.70 14/14
Internal 4 MACE-SPICE2 0.63 14/14
Internal 4 NequlP-t1x 0.10 4/14
Internal 5 MACE-tlx 0.10 4/14
Internal 6 ViSNet-t1x 0.10 4/14

For the external models, UMA-Small achieves the highest average score (0.70), completing 12/14
benchmarks, followed by MACE-OFF (0.63), completing 11/14 benchmarks. MACE-MP completes
9/14 and scores 0.41; we include this model on purpose as a test for the Physics the benchmarks,
as MACE-MP is trained the MPtrj dataset [S0] and therefore specialised on crystalline matter and
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not condensed matter. All internal models completed the 14 benchmarks. ViSNet-SPICE2-t1x and
ViSNet-SPICE2 attain the strongest performance (0.70), closely followed by NequIP-SPICE2 (0.68)
and MACE-SPICE2 (0.63). The models specifically trained on the t1x dataset [48] score lower (0.1)
and cover only a subset of benchmarks (4/14), reflecting the impact of training data breadth and
domain coverage. Models consistently performing well across domains underscore the benefits of
comprehensive training and robust architectures. However, it is worth noting that model performance
is reflective of training strategy, not solely the model architecture, and it should not be considered an
assessment of the model architecture. It is also important to note that UMA-Small, MACE-OFF, and
MACE-MP may include train—test overlaps, and therefore their scores could be artificially overstated.

3.2 Categorical ranking

In Appendix [C} Table [] we summarise the category-based ranking analysis, which further reveals the
specialisation and limitations of each MLIP model across different chemical domains. In the General
category, which tests for molecular dynamics stability, most models (internal and external) achieve
perfect scores, indicating strong stability for different chemical entities in vacuum and in solution
The picture becomes more differentiated in the Small-molecule benchmarks. For the external
models, UMA-Small leads with a score of 0.56, followed by MACE-OFF (0.50) and MACE-MP
(0.36). The ViSNet-SPICE2-t1x variant is the best internal model in this category (0.65). Among
models trained purely on SPICE2 [47]], ViSNet-SPICE2, NequIP-SPICE2, and MACE-SPICE2
cluster closely together (0.52-0.51), demonstrating consistent performance across gas-phase and
conformational tasks. In contrast, models trained primarily on the t1x dataset [48] exhibit lower
performance (0.11-0.16), consistent with the dataset’s focus on reactive gas-phase chemistry rather
than diverse molecular energetics or equilibrium conformational distributions. The Molecular-liquids
category shows the strongest overall spread. Within the external models, UMA-Small achieves
the highest score (0.98), followed by MACE-OFF (0.73). MACE-MP, trained on inorganic crystal
trajectories, underperforms here (0.45), reflecting the domain shift between crystalline materials and
molecular liquids. The internal models trained on SPICE2 perform similarly with scores around
0.95-0.97. These results highlight that SPICE2-trained models, despite being built from largely
gas-phase and small-molecule electronic-structure data, still transfer effectively to condensed-phase
structure and energetics. Performance diverges further in the Biomolecule category, which probes
larger solvated, flexible, and chemically complex systems. External and Internal models (except
for models trained exclusively on t1x) score very high in this category, around 0.8-1.0. However,
MACE-MP also scores high (0.79), which highlights that the length of the simulation is not enough
to assess the dynamical behaviour of the systems. Simulation length is constrained by computational
resources, as this is the most expensive benchmark to run (more details will follow). tlx-trained
models again unsurprisingly trail behind, consistent with their lack of exposure to biomolecular
chemistry. Overall, these results emphasise the importance of both training data diversity and domain
alignment for robust generalisation across molecular and biomolecular environments, while also
pointing to meaningful architectural and training-strategy differences even within closely related
model families.

3.3 Single benchmark highlighted results
3.3.1 Reactivity benchmarks

Internal models trained exclusively on SPICE2 (ViSNet-SPICE2, NequlP-SPICE2, MACE-SPICE2)
perform notably badly in the reactivity task with scores below 0.1 (Table [2). It is worth noting
that all internal models completed all test cases (100/100 for the nudge elastic band (NEB) bench-
mark, ~12000/12000 for the transition-state-theory (TST) benchmark), indicating that performance
differences stem from modelling accuracy rather than lack of elements in the training set. These
results suggest that, in the context of reactivity benchmarks, domain-specific training still offers a
measurable edge, especially when accurate prediction of reaction energies or barriers is the primary
objective. tlx trained models perform better in this category with scores ranging from 0.4-0.8 in
the TST benchmark and 0.38-0.58 in the nudge-elastic-band (NEB) convergence benchmark, with
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most notably the ViSNet-SPICE2-t1x (charged and neutral) lead this category with 0.8 and 0.58,
respectively.

Table 2: Reactivity Benchmarks Ranking

Source | Rank Benchmark Model Name Score | Test Cases
External 1 Small Molecule Reactivity TST UMA-Small 0.86 | 11961/11961
External 2 Small Molecule Reactivity TST MACE-OFF 0.12 | 11961/11961
External 3 Small Molecule Reactivity TST MACE-MP 0.05 | 11961/11961
Internal 1 Small Molecule Reactivity TST | ViSNET-SPICE2-tlx | 0.77 | 11961/11961
Internal 2 Small Molecule Reactivity TST NequlP-t1x 0.41 11961/11961
Internal 3 Small Molecule Reactivity TST MACE-t1x 0.39 | 11961/11961
Internal 3 Small Molecule Reactivity TST ViSNET-t1x 0.39 | 11961/11961
Internal 4 Small Molecule Reactivity TST MACE-SPICE2 0.1 11961/11961
Internal 5 Small Molecule Reactivity TST ViSNET-SPICE2 0.05 11961/11961
Internal 5 Small Molecule Reactivity TST NequlP-SPICE2 0.05 11961/11961
Internal 1 Small Molecule Reactivity NEB | ViSNET-SPICE2-tlx | 0.58 100/100
Internal 2 Small Molecule Reactivity NEB NequlP-t1x 0.58 100/100
Internal 3 Small Molecule Reactivity NEB MACE-t1x 0.44 100/100
Internal 3 Small Molecule Reactivity NEB ViSNET-t1x 0.38 100/100
Internal 4 Small Molecule Reactivity NEB MACE-SPICE2 0.1 100/100
Internal 4 Small Molecule Reactivity NEB ViSNET-SPICE2 0.1 100/100
Internal 4 Small Molecule Reactivity NEB NequlP-SPICE2 0.1 100/100
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Figure 2: Reactivity benchmark performance. (a—b) Reaction energy profiles for two Grambow
reactions (IDs 008805 and 000433) MLIP predictions to DFT references. (c) MAEs for activation
energies (EA) and reaction enthalpies across the benchmark.

As shown in Figure[2] all t1x-trained models outperform SPICE2 trained MLIPs (and SPICEL in the
case of MACE-OFF), which show much larger errors, especially for activation energies.

From the external models, UMA-Small excels in the reactivity benchmark with a score of 0.86, with
MACE-OFF following behind with a score of 0.12. While remarkable, all our test-cases come from
the Grambow dataset [51]], which is included in the t1x dataset [48]], which is included in full in the
UMA-Small training data.

3.3.2 Molecular liquids benchmark: water radial distribution function

Having a closer look at the single benchmarks, the water radial distribution function (RDF) benchmark
provides a compelling illustration of the strengths of MLIPs over traditional force fields. As shown in
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Figure EL all five internal MLIP models, MACE-SPICE2, ViSNet-SPICE2, ViSNet-SPICE2(neutral)-
t1x, ViSNet-SPICE2(charged)-t1x, ViSNet-SPICE2 and NequlP-SPICE2, reproduce the experimental
RDF profile with high fidelity across the full radial range, accurately reproducing both the first
solvation shell peak and subsequent oscillations. And this is also true for the original implementations
of UMA-Small and MACE-OFF. In contrast, TIP3P and TIP4P [52], two of the most widely used
classical water models, show notable deviations, particularly in the overstructured and exaggerated
height of the first peak, a known artefact in rigid water models [53]]. Notably, MACE-MP produces

a Water Radial Distribution Function
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TIP4P
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Figure 3: Water radial distribution function and angular distribution for the example models, compared
with the experimental observable and two water classical forcefields TIP3P and TIP4P [52]

crystalline water even when simulated at 300 K, indicating that the model remains strongly biased
toward its crystal-structure training data despite liquid-phase simulation conditions. This behaviour is
evident in the radial distribution function (RDF): whereas liquid water shows a broadened first O-O
peak near 2.8 A and damped oscillations characteristic of short-range order, crystalline (ice-like)
water exhibits sharp, well-defined peaks extending to long range, reflecting persistent translational
order. These qualitative differences are well-established in the literature [54]].

This alignment between MLIP predictions and experimental data strongly supports the notion that
learned potentials, trained on accurate quantum data, can capture the subtle balance of hydrogen
bonding and thermal fluctuations that define liquid water structure, without the need for hand-tuned
parametrisation. This not only reflects the higher representational capacity of MLIPs but also
demonstrates their ability to generalise to bulk-phase properties, a capability that classical force fields
struggle to match without introducing complex polarisable terms or many-body corrections.

3.3.3 Small molecules benchmarks: dihedral scans

The dihedral scan benchmark highlights another area where MLIP models show outstanding agree-
ment with quantum reference data. As shown in Figure[d] the energy profiles predicted by all MLIP
models align nearly perfectly with DFT-calculated torsional energy curves across a representative
scan. This agreement is not only qualitative—preserving the positions and heights of barriers, but
also quantitatively precise, with RMSE values all well below the 1.0 kcal/mol DFT-level convergence
threshold. This strong performance is further reflected in the ranking table (Appendix [C| Table[6),
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Figure 4: Dihedral scan benchmark. (a) Dihedral energy profiles for fragment 015 compared to DFT
reference values. (b) MAE and RMSE for each model. DFT-level error threshold (red dashed line).

where ViSNet-SPICE2 and ViSNet-SPICE2-t1x lead the benchmark scoring ~1.0, followed closely
by NequlP-SPICE2 and MACE-SPICE2, MACE-SPICE2-t1x. Notably, all models completed the
full set of 500 fragments, demonstrating not only accuracy but robustness and generalisability across
a diverse chemical space.

The error bars shown on the right panel of Figure ] underscore how consistent the models are,
with MAE values under 0.12 kcal/mol for all methods—well within chemical accuracy. MLIPs
outperform classical parameters like GAFF2 [55]. These results validate the capability of current
MLIPs to accurately model intramolecular potential energy surfaces, a critical requirement for reliable
conformational sampling, molecular docking, or pharmacophore prediction.

Taken together, this benchmark provides a clear example of how MLIPs can match DFT accuracy at a
fraction of the computational cost, making them practical for high-throughput screening or molecular
simulations involving flexible, drug-like molecules.

3.3.4 Small molecules benchmarks: conformer ranking

Figure[6]presents model performance on the conformer benchmark, showing MAE values by molecule
for three general-purpose MLIPs: NequIP-SPICE2, ViSNet-SPICE2, and MACE-SPICE2. All models
were trained on datasets that included adenosine (ADO) and efavirenz (EFA), while benzylpenicillin
(BPN) was excluded from training and thus acts as a stronger generalisation test.

Despite having seen ADO and EFA during training, none of the models reach the DFT-level MAE
threshold of 0.5 kcal/mol, pointing to persistent difficulty in accurately ranking conformers. ADO is
best predicted, while EFA shows higher errors due to its flexibility. BPN, which was unseen during
training, is the most challenging, though MACE-SPICE?2 shows slightly better generalisation. All
models outperform GAFF2 [53]], especially on EFA. Still, as seen in Appendix [C| Figure[7] predicted
vs. DFT energy plots show strong agreement and near-perfect Spearman correlations across all
molecules.

This consistency suggests that while the models may struggle to reproduce exact conformer energy
magnitudes (as seen in the MAE analysis), they are highly effective at preserving the correct energetic
ordering. In practical applications like conformer selection or ranking, such ordinal accuracy can
be more important than precise energetic reproduction, particularly when used in combination with
scoring functions or downstream screening.

Interestingly, the performance gap between in-training-set molecules (ADO, EFA) and the out-of-
distribution case (BPN) is far less pronounced here than in absolute MAE terms—highlighting that
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model generalisation, at least in terms of correlation, is relatively robust. These findings reinforce
the importance of using multiple complementary metrics (e.g., MAE and rank correlation) when
evaluating MLIP performance for conformational energetics.

3.3.5 Biomolecules benchmarks

The biomolecules benchmark (Appendix [C] Table [6) provides a fitting conclusion to our compre-
hensive assessment, highlighting the potential for MLIP models to operate effectively in complex,
biologically relevant regimes. The biomolecules benchmark is the most computationally intensive
one, as it involves solvated systems with 1000 to 4000 atoms in total (Appendix [C| Table 4.

All top models successfully completed the protein folding stability benchmark (6/6 test cases, see
Appendix [C), all models achieve similar scores ~0.525, but there is room for improvement. This level
of agreement underscores the growing maturity of MLIPs for macromolecular tasks. The Protein
Sampling benchmark across different MLIP models shows that models trained on the SPICE2 dataset
(e.g., ViSNet-SPICE2, NequlP-SPICE2, MACE-SPICE2) significantly outperform their t1x-trained
counterparts, with ViSNet-SPICE2 achieving the highest score (0.928) and full coverage (12/12
systems). Taken together, the results from this and all previous benchmarks reinforce a central
conclusion: while task-specific training offers advantages in specialised domains, the leading models
demonstrate strong, transferable performance across molecular scales and properties, setting the stage
for robust deployment in real-world chemistry and biology applications.

3.4 Conclusions and future outlook

The MLIPAudit suite provides a comprehensive and diverse evaluation framework for MLIPs,
spanning small-molecule geometrical and conformational energetics, reactivity, molecular liquids,
and biomolecular stability and sampling. Results show that while specialised models trained on the
tlx dataset excel in targeted tasks such as reaction barrier prediction, general-purpose architectures
like ViSNet-SPICE2, NequIP-SPICE2, and MACE-SPICE2 exhibit strong and transferable accuracy
across a wide range of benchmarks, often surpassing classical force fields and closely matching DFT
reference data in others. Notably, the ViSNet model trained on SPICE2 and t1x from the OMOL
dataset leads the small-molecule benchmarks, highlighting the promise of hybrid training strategies
and possibly reflecting the importance of the underlying level of theory used in data generation.

Despite this progress, performance gaps persist, especially in condensed-phase systems and energeti-
cally subtle regimes, indicating that further improvements are needed. While MLIPAudit establishes
a unified and reproducible evaluation suite, it also has limitations. The current set of models is
biased toward graph neural network architectures, and the benchmarks rely primarily on DFT data
of varying origin, which may introduce systematic bias. Efficiency and robustness-oriented metrics
(e.g., uncertainty calibration and scalability) are not yet fully assessed, and several critical chemical
regimes, such as transition-metal systems, enzyme catalysis, and extreme thermodynamic conditions,
remain under-represented due to limited reference data.

A further challenge lies in maintaining truly blind test sets. As the community continually expands
training datasets, ensuring that future benchmark systems remain unseen becomes increasingly
difficult. In future iterations, we will explore generating dedicated blind datasets and curated QM
reference sets, though this task will remain increasingly complex.

Future releases will introduce more demanding simulation tasks, such as free-energy estimation,
reactive condensed-phase processes, and protein—ligand systems. By evolving alongside the MLIP
community and enabling continuous contribution, MLIPAudit aims not only to benchmark progress
but to support rigorous, open, and scalable development of next-generation ML interatomic potentials.
By continually broadening the scope and complexity of MLIPAudit, we hope to accelerate the
development of MLIPs that are not only accurate but also general, scalable, and ready for real-world
deployment across the chemical sciences.
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A Benchmarks overview

Each benchmark in MLIP-Audit includes a brief introduction that outlines its purpose, helping
users understand the relevance of the task and how it reflects molecular challenges. A link to the
documentation is provided for users who want a deeper explanation of the benchmark’s design,
scientific context, datasets and implementation details. A description of each benchmark’s dataset can
be found in Appendix[C} Table[d] This is followed by key performance metrics for the best-performing
model, along with a summary of results across all analysed MLIP models. Depending on the nature
of the benchmark, additional visualisations may be included, such as radial distribution functions for
molecular liquids or torsion energy profiles for small molecules, which users can explore interactively
or download for further analysis (Figure ).

Radial distribution function

MU function by water molecules. X ps

modeling of water.

7 TIP3P and TIP4P.

radial

Best model summary

The best model is 1416 based on RMSE.

RusE
Water radial distribution 0.039

Select Analysis Category RMSE per model

Download plot

Water radial distribution function

Download plot

Figure 5: MLIPAudit interface

In the following subsections, we describe the composition, rationale, and evaluation criteria for each
benchmark category: (i) general systems designed for molecular dynamics stability and scaling, (ii)
small molecules relevant to pharmaceutical and materials chemistry, and (iii) biomolecules, which
pose unique challenges due to their size, flexibility, and hierarchical structure.

A.1 General benchmarks

The general benchmarks implemented in MLIP Audit are system-agnostic and focus on fundamental
molecular dynamics (MD) stability and performance metrics that are applicable across molecular
systems. Two benchmarks are included in this category:

* Stability: assesses the dynamical stability of an MLIP during an MD simulation for a
diverse set of large biomolecular systems. For each system, the benchmark performs an MD
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simulation using the MLIP model in the NVT ensemble at 300 K for 100,000 steps (100 ps),
leveraging the jax-md engine, as integrated via the mlip library[25]]. The test monitors the
system for signs of instability by detecting abrupt temperature spikes (“explosions’”) and
hydrogen atom drift. These indicators help determine whether the MLIP maintains stable
and physically consistent dynamics over extended simulation times.

* Inference Scaling: evaluates how the computational cost of an MLIP scales with the system
size. By running single, long MD episodes on a series of molecular systems of increasing
size, we systematically assess the relationship between molecular complexity and inference
performance. This benchmark is not used for scoring, but it aims at helping the user to pick
the best model in terms of time-to-solution for the application task.

A.2 Small Molecules

MLIPAudit small-molecule benchmarks focus on the ability of MLIPs to reproduce the properties
and dynamics of small organic molecules, including their conformational sampling and interactions
with other molecules. In order of task complexity:

* Bond Length: evaluates the ability of MLIPs to accurately model the equilibrium bond
lengths of small organic molecules during MD simulations. This is an important test to
understand whether the MLIP respects basic chemistry throughout simulations. Accurate
prediction of bond length is crucial for capturing the structural and electronic properties
of any chemically relevant compounds. For each molecule in the dataset, the benchmark
performs an MD simulation with the same configuration described in the stability benchmark.
Throughout the trajectory, the positions of the bond atoms are tracked, and their deviation
from a reference bond length of the QM-optimised starting structure is calculated. The
average deviation over the trajectory provides a direct measure of the MLIP’s ability to
maintain bond lengths under thermal fluctuations, enabling quantitative comparison to
reference data or other models.

* Ring Planarity: evaluates the ability of MLIPs to preserve the planarity of aromatic
and conjugated rings in small organic molecules during molecular dynamics simulations.
Aromatic rings (e.g., benzene) are inherently planar due to delocalised 7 electrons. Ring
planarity enforcement is crucial in molecular dynamics simulations because it preserves
the correct geometry, electronic structure, and interactions of aromatic and conjugated
systems. Without proper planarity (e.g., via improper torsions), simulations can produce
chemically unrealistic distortions that compromise accuracy in energy, flexibility, and
binding predictions. This is especially important in molecules like benzene, tyrosine side
chains, nucleobases, and drug scaffolds, where planarity governs stacking, hydrogen bonding,
and overall stability. For each molecule in the dataset, the benchmark performs an MD
simulation with the same configuration described in the stability benchmark. Throughout
the trajectory, the positions of the ring atoms are tracked, and their deviation from a perfect
plane is quantified using the root mean square deviation (RMSD) from planarity. The ideal
plane of the ring is computed using a principal component analysis of the ring’s atoms.
The average deviation over the trajectory provides a direct measure of the MLIP’s ability
to maintain ring planarity under thermal fluctuations, enabling quantitative comparison to
reference data or other models.

* Dihedral Scan: evaluates the MLIP’s ability to reproduce torsional energy profiles of
rotatable bonds in small molecules, aiming to approach the quantum-mechanical QM
reference quality. Dihedral scans are essential for mapping how a molecule’s energy changes
as bonds rotate, revealing preferred conformations and energy barriers. Beyond force field
development, they are also used in studying reaction mechanisms, analysing conformational
dynamics in drug discovery, validating quantum chemistry methods, and guiding the design
of flexible or constrained molecules. For each molecule, the benchmark leverages the mlip
library for model inference, comparing the predicted energies along a dihedral scan to QM
reference energy profiles. The reference profile is shifted so that its global minimum is zero,
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and the MLIP profile is aligned to the same conformer. Performance is quantified using
the following metrics: MAE and RMSE. The Pearson correlation coefficient between the
MLIP-predicted and reference datapoints and the mean barrier height error.

Non-covalent Interactions: tests if the MLIP can reproduce interaction energies of molec-
ular complexes driven by non-covalent interactions. Non-covalent interactions are of the
highest importance for the structure and function of every biological molecule. This bench-
mark assesses a broad range of interaction types: London dispersion, hydrogen bonds, ionic
hydrogen bonds, repulsive contacts and sigma hole interactions. Assessing the accuracy of
non-covalent interactions is crucial for evaluating how well computational models capture
key forces like hydrogen bonding, 7-7 stacking, and van der Waals interactions that govern
molecular recognition, binding, and assembly. This is essential not only for force field
development, but also for validating quantum methods, guiding molecular design, modelling
biomolecular interfaces, and studying condensed-phase behaviour such as solvation and
aggregation. The benchmark runs energy inference on all structures of the distance scans
of bi-molecular complexes in the dataset. The key metric is the RMSE of the interaction
energy, which is the minimum of the energy well in the distance scan, relative to the energy
of the dissociated complex, compared to the reference data. For repulsive contacts, the
maximum of the energy profile is used instead. Some of the molecular complexes in the
benchmark dataset contain exotic elements (see dataset section). In case the MLIP has never
seen an element of a molecular complex, this complex will be skipped in the benchmark.

Reference Geometry Stability: assesses the MLIP’s capability to preserve the ground-state
geometry of organic small molecules during energy minimisation, ensuring that initial DFT-
optimised structures remain accurate and physically consistent. Each system is minimised
using the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm (ASE default parameters).
After minimisation, structural fidelity is assessed by computing the RMSD of all heavy
atoms relative to the initial geometry, using the RMSD implementation provided by mdtraj
[56].

Conformer Selection: evaluates the MLIP’s ability to identify the most stable conformers
within an ensemble of flexible organic molecules and accurately predict their relative energy
differences. It focuses on capturing subtle intramolecular interactions and strain effects that
influence conformational energies. These metrics assess both numerical accuracy and the
MLIP’s ability to preserve relative conformer energetics, which is crucial for downstream
applications such as conformational sampling and compound ranking.

Tautomers: assesses the ability of MLIP to accurately predict the relative energies and
stabilities of tautomeric forms of small molecules in vacuum. Tautomers are structural
isomers that interconvert via proton transfer and/or double bond rearrangement, and ac-
curately estimating the energy gap between them is an important measure of chemical
accuracy in the MLIP framework. Tautomer ranking assesses a model’s ability to predict the
relative stability of different tautomeric forms of a molecule, which is critical for accurately
modelling protonation states, reactivity, and binding affinities. It is especially important in
drug discovery, quantum method benchmarking, and cheminformatics, where tautomers
can dramatically affect molecular properties and biological activity. For each molecule, the
benchmark compares MLIP-predicted energies against QM reference data. Performance
is quantified by comparing the absolute deviation of the energy difference between the
tautomeric forms from the DFT data.

Reactivity: assesses the MLIP’s capability to model chemical reactivity. The reactivity-tst
benchmark tests the ability to predict the energy of transition states relative to the reaction’s
reactants and products and thereby the activation energy and enthalpy of a reaction. This
benchmark calculates the energy of reactants, products and transition states of a large dataset
of reactions. From the difference between these states, the activation energy and enthalpy of
formation can be calculated. The performance is quantified using the MAE and RMSE in
activation energy and enthalpy of formation. The reactivity-neb benchmark evaluates the
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716 capability to converge a set of nudged elastic band calculations with a known transition state.
717 The performance is quantified by the percentage of converged calculations.

718 A.3 Molecular Liquids

719 The MLIP Audit molecular liquids benchmark focuses on assessing long-range interactions by
720 computing the radial distribution function for different molecular liquids.

721 * Radial Distribution Function: assesses the ability of MLIP to accurately reproduce
722 the radial distribution function (RDF) of liquids. The RDF characterises the local and
723 intermediate-range structure of a liquid by describing how particle density varies as a
724 function of distance from a reference particle. Accurate modelling of the RDF is essential
725 for capturing both short-range ordering and long-range interactions, which are critical for
726 understanding the microscopic structure and emergent properties of liquid systems. The
727 benchmark performs an MD simulation using the MLIP model in the NVT ensemble at
728 300 K for 500,000 steps, leveraging the jax-md engine from the mlip library. The starting
729 configuration is already equilibrated. For every specific atom pair (e.g., oxygen-oxygen in
730 water), the radial distribution function (RDF or g(r)) is calculated from the simulation, as:
1 N N
g(r) = W<ZZ5(T*TU)> e))
i=1 j#i
731 where: 7 is the distance from a reference particle,p is the average number density, [V is the
732 number of particles, 7;; is the distance between particles and ¢ is the Dirac delta function.
733 Angle brackets denote an ensemble average. For each test case, the benchmark computes
734 Tpeak = argmax g(r) and compares it with the experimental value for the first solvation
735 shell. '
736 * Tetrahedral Order Parameter: evaluates the ability of an MLIP to reproduce the tetrahedral
737 structure of liquid water by computing the tetrahedrality (¢-number) around each water
738 molecule. This descriptor quantifies how closely the local arrangement of neighbouring
739 molecules matches an ideal tetrahedral geometry, a defining feature of hydrogen-bonded
740 water networks and a key determinant of liquid water’s structural and thermodynamic
741 properties. The benchmark performs an MD simulation in the NVT ensemble at 300 K for
742 500,000 steps using the jax-md engine from the m1ip library, starting from an equilibrated
743 configuration. For each oxygen atom, the four nearest oxygen neighbours are identified, and
744 the tetrahedral order parameter ¢ is computed as:
3 . 1\
Q—l—gz Z <005¢jik+3) (@)
J=1 k=j+1

745 where 1);;;, is the angle between vectors r;; and r;; connecting the central oxygen i to
746 neighbours j and k. A value of ¢ = 1 corresponds to a perfect tetrahedral environment,
747 while ¢ = 0 indicates a fully disordered one. For each test case, the benchmark reports the
748 mean tetrahedrality (¢) and compares it against experimental and first-principles reference
749 values, providing a stringent evaluation of a model’s ability to capture hydrogen-bond
750 network structure in liquid water.

751 A.4 Biomolecules

752 MLIP Audit biomolecule benchmarks focus on assessing the properties and dynamics of proteins,
753 including their folding behaviour, structural stability, and conformational sampling.

754 * Protein Folding Stability: evaluates the ability of an MLIP to preserve the structural
755 integrity of experimentally determined protein conformations during MD simulations. It
756 assesses the retention of secondary structure elements and overall compactness across a
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set of known protein structures. This module analyses the folding trajectories of proteins
in MLIP simulations. For each molecule in the dataset, the benchmark performs an MD
simulation with the same configuration described in the stability benchmark. We track how
Root Mean Square Deviation (RMSD), TM Score [57], Dictionary of Secondary Structure
in Proteins (DSSP) [58] and Radius of Gyration change over time.

e Sampling Outlier Detection: Assesses the structural quality of sampled conformations
by computing backbone Ramachandran angles (¢/1) and side-chain rotamer angles (),
and identifying outliers through comparison with reference rotamer libraries [S9]. For
each molecule in the dataset, the benchmark performs an MD simulation with the same
configuration described in the stability benchmark. The outlier detection identifies residues
whose dihedral angles fall outside expected ranges, relying on the fast KDtree [60]] scipy
[61] implementation. The analysis provides a global percentage of outliers for backbone
and rotamers per structure, as well as a more detailed analysis per residue type.

B Benchmarks scoring

To enable consistent and fair comparison across models, we define a composite score that aggregates
performance over all compatible benchmarks. Each benchmark b € B may report one or more metrics
337(:@)1)’ where 1 = 1, ..., N, indexes the N, metrics evaluated for the model m. For each metric, we

compute a normalised score using a soft thresholding function based on a DFT-derived reference
tolerance £\") (see :

1, if 2l <)

(%) o

s = 2 4@ .

mb exp | —o - 2t otherwise
tISL) 9

where « is a tunable parameter controlling the steepness of the penalty (e.g., « = 3). The per-
benchmark score is then computed as the average over all its metric scores:

1 &

_ (i)

Sm,b = ﬁb z; Sm,b
im

Let BB,,, C B denote the subset of benchmarks for which the model m has valid data (i.e., benchmarks
compatible with its element set). The final model score is the mean over all benchmarks on which the
model could be evaluated:

1

m = m Sm,b

This scoring framework ensures that models are rewarded for meeting or exceeding DFT-level
accuracy. In the current version, full benchmarks are skipped if a model does not have all the
necessary chemical elements to run all the test cases. This is true for all benchmarks, but non-covalent
interactions, in which we do a per-test-case exception. Benchmarks with multiple metrics contribute
proportionally, and the result is a single interpretable score S, € [0, 1] that balances physical fidelity,
chemical coverage, and overall model robustness. The thresholds for the different benchmarks have
been chosen based on the literature. In the case of tautomers, energy differences are very small;
therefore, we’ve chosen a stricter threshold of 1-2 kcal/mol, which is not enough for classification.
Thresholds for biomolecules are borrowed from traditional literature in molecular modelling.
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Table 3: Score thresholds across benchmarks.

Benchmark Metric Threshold
Reference Geometry Stability | RMSD (A) 0.075 [62]
Non-covalent Interactions Absolute deviation from reference | 1.0 [62]
interaction energy (kcal/mol)
Dihedral Scan Mean barrier error (kcal/mol) 1.0 [63]
Conformer Selection MAE (kcal/mol) 0.5
RMSE (kcal/mol) 1.5 [64]
Tautomers Absolute deviation (AG) 0.05
Ring Planarity Deviation from plane (A) 0.05 [65]
Bond Length Distribution Avg. fluctuation (A) 0.05 [62]
Reactivity-TST Activation Energy (kcal/mol) 3.0 [66]
Enthalpy (kcal/mol) 2.0 [66]
Reactivity-NEB Final force convergence (eV/A) 0.05 [67]
Radial Distribution Function RMSE (A) 0.1 [68]
Protein Sampling Outliers Ramachandran ratio 0.1
Rotamers Ratio 0.03
Protein Folding Stability min(RMSD) (A) 2.0
max(TM-Score) 0.5

790 C Supporting Figures and Tables
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Table 4: Datasets used for the different benchmarks in MLIPAudit.

Benchmark

Dataset Name

Link/Citation

Content Description

General Stability

In-house dataset

Released with MLIPAu-
dit

3 small molecules in vacuum (1
HCNO-only, 1 with halogens, 1 with
sulfur). 2 peptides in vacuum (Neu-
rotensin PDBid 2LNF and Oxytocin
PDBid 70FG). 1 protein in vacuum
(PDBid 1A7M). 1 peptide in pure
water (Oxytocin). 1 peptide in water
with Cl- counterions (Neurotensin).

Inference Scaling

In-house dataset

Released with MLIPAu-
dit

Proteins in vacuum. PDBids: 1AY3,
1UAO, 1AB7, 1P79, 1BIP, 1ASE,
1A7M, 2BQV, 1J7H, 5KGZ, 1VSQ,
1JRS.

Reference Geometry Stability

OpenFF

(691

200 molecules for the neutral dataset
and 20 for the charged dataset. The
subsets are constructed so that the
chemical diversity, as represented by
Morgan fingerprints, is maximised.

Non-covalent Interactions

NCI-ATLAS subsets:
D442x10, HB375x10,

http://www.nciatlas.org/

QM optimised geometries of dis-
tance scans of bi-molecular com-

HB300SPXx10, plexes, where the two molecules in-
IHB100x10, R739x5, teract via non-covalent interactions
SH250x10 with associated energies.

Dihedral Scan In-house recomputed | [70] 500  structures of  drug-like
TorsionNet 500 dataset molecules and their energy profiles
at wB97M-D3(BJ) around selected rotatable bonds at
DFT-level. wB97M-D3(BJ) DFT-level.

Conformer Selection Wiggle 150 [49] 50 conformers each of three
molecules: Adenosine, Benzylpeni-
cillin, and Efavirenz.

Tautomers In-house recomputed | [71]] 2,792 tautomer pairs sourced from
Tautobase dataset at the Tautobase dataset. After gen-
wB97M-D3(BJ) DFT- eration of the structures and min-
level. imisation at xtb level, the QM en-

ergies were computed in-house us-
ing wB97M-D3(BJ)/def2-TZVPPD
level of theory.

Ring Planarity QM9 subset 172] One representative molecule each,
containing substructures for ben-
zene, furan, imidazole, purine, pyri-
dine and pyrrole.

Bond Length QMO subset 172] One representative molecule each,
containing the bond types C-C, C=C,
C#C, C-N, C-0, C=0 and C-F.

Reactivity Grambow dataset 1511 Reactants, products and transition

states of 11960 reactions.

Radial Distribution Function In-house solvent boxes Released with MLIPAu- | Water, CCH4, Acetonitrile,
dit. Reference data: [[73~ | Methanol.
76|

Protein Folding Stability In-house dataset Released with MLIPAu- | 3 solvated proteins: Chignolin,

dit

Orexin and Trp Cage. PDBids:

1UAOQ, 2JOF, 1CQO.

D Model training details

Three of the models presented in this paper were released as part of the mlip library [25]: ViSNet-
SPICE2, MACE-SPICE2, and NequlP-SPICE2. Details on how these models were trained, alongside

training data details and hyperparameters can be found in the original reference.
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Table 5: MLIPAudit test-cases overlap with models training dataset for internal models only

Benchmark Category | Benchmark Overlap [%]
Small-Molecule Reference Geometry Stability 0
Small-Molecule Bond Length distribution 0
Small-Molecule Ring Planarity 0
Small-Molecule Conformer selection 66.7
Small-Molecule Dihedral scan 1.4
Small-Molecule Tautomers 8.4
Small-Molecule Non-covalent interactions -
Small-Molecule Reactivity -
Molecular liquids RDF 0
Biomolecules Folding stability 0
Biomolecules Sampling 0

Table 6: Category-based rankings (aggregated scores by benchmark category)

Source | Rank Category Model Name Score | Metrics
External 1 General UMA-Small 1.00 1/1
External 1 General MACE-SPICE2 1.00 1/1
External 1 General MACE-MP 1.00 1/1
Internal 1 General ViSNet-SPICE2 1.00 1/1
Internal 1 General MACE-SPICE2 1.00 1/1
Internal 2 General NequlP-SPICE2 0.90 171
Internal 3 General ViSNet-SPICE2-tlx | 0.75 1/1
Internal 3 General ViSNet-t1x 0.00 1/1
Internal 3 General NequlP-tl1x 0.00 171
Internal 3 General MACE-tlx 0.00 1/1
External 1 Small-molecules UMA-Small 0.56 7/9
External 2 Small-molecules MACE-OFF 0.50 8/9
External 3 Small-molecules MACE-MP 0.36 7/9
Internal 1 Small-molecules | ViSNet-SPICE2-t1x | 0.65 9/9
Internal 2 Small-molecules ViSNet-SPICE2 0.52 9/9
Internal 2 Small-molecules NequlIP-SPICE2 0.52 9/9
Internal 3 Small-molecules MACE-SPICE2 0.51 9/9
Internal 4 Small-molecules NequlP-tl1x 0.16 6/9
Internal 5 Small-molecules MACE-t1x 0.14 6/9
Internal 6 Small-molecules ViSNet-t1x 0.11 6/9
External 1 Molecular-liquids UMA-Small 0.98 2/2
External 2 Molecular-liquids MACE-OFF 0.73 2/2
External - Molecular-liquids MACE-MP 0.0 2/2
Internal 1 Molecular-liquids NequlP-SPICE2 0.97 2/2
Internal 1 Molecular-liquids MACE-SPICE2 0.97 2/2
Internal 1 Molecular-liquids MACE-SPICE2 0.97 2/2
Internal 2 Molecular-liquids | ViSNet-SPICE2-t1x | 0.95 2/2
Internal - Molecular-liquids ViSNet-t1x 0.0 2/2
Internal - Molecular-liquids NequlP-tl1x 0.0 2/2
Internal - Molecular-liquids MACE-tlx 0.0 2/2
External 1 Biomolecules UMA-Small 0.92 2/2
External 1 Biomolecules MACE-OFF 0.92 2/2
External - Biomolecules MACE-MP 0.79 2/2
Internal 1 Biomolecules ViSNet-SPICE2 1.00 2/2
Internal 1 Biomolecules NequlIP-SPICE2 1.00 2/2
Internal 2 Biomolecules ViSNet-SPICE2-tl1x | 0.43 2/2
Internal - Biomolecules ViSNet-t1x 0.0 2/2
Internal - Biomolecules NequlIP-t1x 0.0 2/2
Internal - Biomolecules MACE-t1x 0.0 2/2
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795 We present in Table 0] below details about the other models presented as examples in the paper. Note
that training details for UMA-Small, MACE-OFF and MACE-MP can be found in Ref. [34], [32],

796
797

Table 7: Single benchmarks rankings

Source | Rank Benchmark Model Name Score | Test Cases
External 1 General Stability UMA-Small 1.00 8/8
External 1 General Stability MACE-OFF 1.00 8/8
External 1 General Stability MACE-MP 1.00 8/8
Internal 1 General Stability ViSNet-SPICE2 1.00 8/8
Internal 1 General Stability MACE-SPICE2 1.00 8/8
Internal 2 General Stability Nequip-SPICE2 0.90 8/8
Internal 3 General Stability ViSNet-SPICE2-tlx | 0.75 8/8
Internal 4 General Stability MACE-t1x 0.44 8/8
External 1 Solvent RDF UMA-Small 0.95 3/3
External 2 Solvent RDF MACE-OFF 0.73 3/3
External - Solvent RDF MACE-MP 0.00 0/3
Internal 1 Solvent RDF Nequip-SPICE2 0.97 3/3
Internal 2 Solvent RDF MACE-SPICE2 0.94 3/3
Internal 2 Solvent RDF ViSNet-SPICE2 0.94 3/3
Internal 3 Solvent RDF ViSNet-SPICE2-t1x | 0.90 3/3
External 1 Water RDF UMA-small 1.00 171
External 2 Water RDF MACE-OFF 0.56 171
External - Water RDF MACE-MP 0.00 1/1
Internal 1 Water RDF ViSNet-SPICE2 1.00 171
Internal 1 Water RDF MACE-SPICE2 1.00 171
Internal 1 Water RDF Nequip-SPICE2 1.00 1/1
Internal 1 Water RDF ViSNet-SPICE2-tlx | 1.00 171
Internal - Water RDF ViSNet-t1x 0.00 1/1
Internal - Water RDF MACE-tlx 0.00 1/1
Internal - Water RDF Nequip-tl1x 0.00 11
External 1 Water Ang. Dist. MACE-OFF 1.00 1/1
External 2 Water Ang. Dist. UMA-Small 0.76 171
External - Water Ang. Dist. MACE-MP 0.00 1/1
Internal 1 Water Ang. Dist. Nequip-SPICE2 0.72 1/1
Internal 2 Water Ang. Dist. ViSNet-SPICE2-tlx | 0.60 171
Internal 3 Water Ang. Dist. Visnet-SPICE2 0.59 171
Internal 4 Water Ang. Dist. MACE-SPICE2 0.51 1/1
Internal - Water Ang. Dist. ViSNet-t1x 0.00 1/1
Internal - Water Ang. Dist. MACE-t1x 0.00 1/1
Internal - Water Ang. Dist. Nequip-tlx 0.00 1/1
External 1 Protein Folding Stability UMA-Small 1.00 3/3
External 1 Protein Folding Stability MACE-OFF 1.00 3/3
External 1 Protein Folding Stability MACE-MP 1.00 3/3
Internal 1 Protein Folding Stability ViSNet-SPICE2 1.00 3/3
Internal 1 Protein Folding Stability Nequip-SPICE2 1.00 3/3
Internal 2 Protein Folding Stability MACE-SPICE2 0.33 3/3
Internal - Protein Folding Stability | ViSNet-SPICE2-tlx | 0.00 3/3

and [[77] respectively.
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Figure 6: Conformer selection benchmark across three pharmaceutically relevant molecules: adeno-
sine (ADO), benzylpenicillin (BPN), and efavirenz (EFA). MAE is computed with respect to DFT
reference conformer energies. DFT threshold (red dashed line at 0.5 kcal/mol). Insets depict repre-
sentative 3D conformers for each molecule.
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Figure 7: Predicted vs. DFT conformer energies for adenosine (ADO, blue), benzylpenicillin (BPN,
orange), and efavirenz (EFA, green).
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Table 8: Single benchmarks rankings (cont.)

Source | Rank Benchmark Model Name Score | Test Cases
External 1 Reference Geometry Stability UMA-Small 0.98 220/220
External 1 Reference Geometry Stability MACE-OFF 0.93 220/220
External 1 Reference Geometry Stability MACE-MP 0.50 220/220
Internal 1 Reference Geometry Stability | ViSNet-SPICE2-t1x | 0.97 220/220
Internal 1 Reference Geometry Stability ViSNet-SPICE2 0.97 220/220
Internal 2 Reference Geometry Stability MACE-SPICE2 0.96 220/220
Internal 3 Reference Geometry Stability Nequip-SPICE2 0.94 220/220
External 1 Conformer Selection UMA-Small 0.29 3/3
External - Conformer Selection MACE-OFF 0.00 3/3
External - Conformer Selection MACE-MP 0.00 3/3
Internal 1 Conformer Selection ViSNet-SPICE2-tlx | 0.05 3/3
Internal 2 Conformer Selection Nequip-SPICE2 0.03 3/3
Internal 2 Conformer Selection MACE-SPICE2 0.03 3/3
Internal - Conformer Selection Visnet-SPICE2 0.00 3/3
External 1 Dihedral Scan UMA-Small 0.71 500/500
External 2 Dihedral Scan MACE-OFF 0.66 500/500
External 2 Dihedral Scan MACE-MP 0.40 500/500
Internal 1 Dihedral Scan ViSNet-SPICE2-tIx | 0.70 500/500
Internal 2 Dihedral Scan ViSNet-SPICE2 0.69 500/500
Internal 2 Dihedral Scan Nequip-SPICE2 0.66 500/500
Internal 3 Dihedral Scan MACE-SPICE2 0.65 500/500
External 1 Non-covalent Interactions UMA-Small 0.84 2192/2206
External 2 Non-covalent Interactions MACE-OFF 0.70 1728/2206
External 3 Non-covalent Interactions MACE-MP 0.44 2206/2206
Internal 1 Non-covalent Interactions MACE-SPICE2 0.75 1807/2206
Internal 2 Non-covalent Interactions Visnet-SPICE2 0.73 1807/2206
Internal 2 Non-covalent Interactions Nequip-SPICE2 0.73 1807/2206
Internal 3 Non-covalent Interactions Visnet-SPICE2-t1x | 0.68 1807/2206
Internal 4 Non-covalent Interactions Nequip-tlx 0.44 689/2206
Internal 5 Non-covalent Interactions MACE-tlx 0.43 689/2206
Internal 6 Non-covalent Interactions Visnet-t1x 0.21 689/2206
External 1 Reactivity UMA-Small 0.86 | 11961/11961
External 1 Reactivity MACE-OFF 0.12 | 11961/11961
External 1 Reactivity MACE-MP 0.04 | 11961/11961
Internal 1 Reactivity Visnet-SPICE2-t1x | 0.77 | 11961/11961
Internal 2 Reactivity Nequip-tlx 0.44 | 11961/11961
Internal 3 Reactivity MACE-tlx 0.43 | 11961/11961
Internal 4 Reactivity Visnet-t1x 0.22 | 11961/11961
Internal 5 Reactivity MACE-SPICE2 0.10 | 11961/11961
Internal 6 Reactivity Visnet-SPICE2 0.05 | 11961/11961
Internal 7 Reactivity Nequip-SPICE2 0.04 | 11961/11961
Internal 1 Nudged Elastic Band Visnet-SPICE2-t1x | 0.58 100/100
Internal 1 Nudged Elastic Band Nequip-tlx 0.58 100/100
Internal 2 Nudged Elastic Band MACE-t1x 0.44 100/100
Internal 3 Nudged Elastic Band Visnet-t1x 0.38 100/100
External 1 Tautomers UMA-Small 0.23 1391/1391
External 2 Tautomers MACE-OFF 0.07 1391/1391
External - Tautomers MACE-MP 0.00 1391/1391
Internal 1 Tautomers Nequip-SPICE2 0.11 1391/1391
Internal 2 Tautomers Visnet-SPICE2 0.10 1391/1391
Internal 3 Tautomers Visnet-SPICE2-t1x | 0.09 1391/1391
Internal 3 Tautomers MACE-SPICE2 0.05 1391/1391
External 1 Bond Length UMA-Small 1.00 8/8
External 1 Bond Length MACE-OFF 1.00 8/8
External 1 Bond Length MACE-MP 1.00 8/8
Internal 1 Bond Length Visnet-SPICE2-t1x 1.00 8/8
Internal 1 Bond Length Visnet-SPICE2 1.00 8/8
Internal 1 Bond Length MACE-SPICE2 1.00 8/8
Internal 1 Bond Length 26 Nequip-SPICE2 1.00 8/8
External 1 Ring Planarity MACE-OFF 0.99 6/6
External 2 Ring Planarity UMA-Small 0.98 6/6
External 1 Ring Planarity MACE-MP 0.80 6/6

1

Internal

Rino Planaritv

Vicnet-SPICE?2-t1x

1 .00
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Table 9: Example models training details

Model

Dataset

Hyperparameters

ViSNet-SPICE2

Original version of SPICE2 [47], as curated
in [25]] - includes only neutral systems

As described in [25]]

MACE-SPICE2

Original version of SPICE2 [47]], as curated
in [25] - includes only neutral systems

As described in [25]]

NequlP-SPICE2

Original version of SPICE2 [47]], as curated
in [25]] - includes only neutral systems

As described in [25]]

ViSNet-t1x

Original version of Transition-1X [48]],
trained on 1M samples, randomly sampled
with 95/5 train/val split.

Same as ViSNet-SPICE2

MACE-t1x

Original version of Transition-1X [48],
trained on 1M samples, randomly sampled
with 95/5 train/val split.

Same as MACE-SPICE2

NequlP-t1x

Original version of Transition-1X [48]],
trained on 1M samples, randomly sampled
with 95/5 train/val split.

Same as NequIP-SPICE2

ViSNet-SPICE2(charged)-t1x

SPICE2 and Transition-1X as recomputed in
the OMOL dataset [42]. SPICE2 is curated
as is described in [25]. T1X includes 50k
samples, selected among transition states,
reactants and products.

Same as ViSNet-SPICE2, ex-
cept for the number of channels
with is increased to 256.

ViSNet-SPICE2(neutral)-t1x

SPICE2 and Transition-1X as recomputed in
the OMOL dataset [42]. SPICE2 is curated
as is described in [25]]. T1X includes 1M
samples, selected among transition states,
reactants and products.

Same as ViSNet-SPICE2, ex-
cept for the number of channels
with is increased to 256.
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