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Abstract

Machine-learned interatomic potentials (MLIPs) promise to significantly advance1

atomistic simulations by delivering quantum-level accuracy for large molecular2

systems at a fraction of the computational cost of traditional electronic structure3

methods. While model hubs and categorisation efforts have emerged in recent4

years, it remains difficult to consistently discover, compare, and apply these models5

across diverse scenarios. The field still lacks a standardised and comprehensive6

framework for evaluating MLIP performance. We introduce MLIPAudit, an open,7

curated and modular benchmarking suite designed to assess the accuracy of MLIP8

models across a variety of application tasks. MLIPAudit offers a diverse collection9

of benchmark systems, including small organic compounds, molecular liquids,10

proteins and flexible peptides, along with pre-computed results for a range of11

pre-trained and published models. MLIPAudit also provides tools for users to12

evaluate their models using the same standardised pipeline. A continuously updated13

leaderboard tracks performance across benchmarks, enabling direct comparison14

on downstream tasks. By providing a unified, transparent reference framework15

for model validation and comparison, MLIPAudit aims to foster reproducibility,16

transparency, and community-driven progress in the development of MLIPs for17

complex molecular systems. The library is available on GitHub and on PyPI 1418

under the Apache license 2.0.19

1 Introduction20

The accurate prediction of molecular and material properties is a cornerstone of scientific progress21

across disciplines, including drug discovery, functional material design, and process chemistry [1–3].22

Traditionally, this has been done using classical force fields, which enable efficient simulations of23

large systems relying on predefined functional forms and parameters derived from experiments or first-24

principles methods [4, 5]. Although computationally inexpensive, classical force fields often struggle25

to capture complex chemical interactions or generalise beyond the systems for which they were26

parametrised. At the other end of the spectrum, first-principles methods such as density functional27

theory (DFT) offer higher accuracy but at significantly greater computational cost, typically limiting28

their use to systems with fewer than a few hundred atoms [6, 7]. In recent years, machine-learned29

interatomic potentials (MLIPs) have emerged as a compelling middle ground. These models aim to30

retain the accuracy of first-principles methods while approaching the efficiency of classical force31

fields, by learning the potential energy surface directly from high-level electronic structure data32

[8–25].33
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Despite the rapid emergence of diverse MLIP architectures, which have significantly broadened the34

scope of atomistic simulations, the field continues to lack a standardised and rigorous framework for35

evaluating model performance in downstream applications. Many benchmarks focus on energy and36

force errors, which miss aspects like stability, transferability, and robustness. Recent works propose37

more holistic evaluations [11, 26–34], which we detail in the Literature Review section. However, all38

these studies highlight the need for consistent and reproducible evaluation protocols that go beyond39

basic error metrics, aiming to establish benchmarking practices that reflect real-world simulation40

demands. Therefore, a universally adopted, comprehensive benchmarking suite that can guide both41

model development and deployment remains an open challenge for the community.42

To address this gap, we introduce MLIPAudit: an open, curated repository of benchmarks, reference43

datasets, and model evaluations for MLIP models applied (in its first version) to the analysis of small44

molecules, molecular liquids and biomolecules. MLIPAudit is designed to complement model-centric45

testing by shifting the focus to systematic validation and comparison. It provides:46

• A diverse set of benchmark systems, including organic small molecules, flexible peptides,47

folded protein domains, molecular liquids and solvated systems.48

• Pre-computed results for a range of published and pretrained MLIP models, enabling direct,49

fair comparisons.50

• A continuously updated leaderboard, tracking performance across different tasks.51

• A suite of tools for users to submit and evaluate their models within the same benchmarking52

pipeline. We support both Jax-based and Torch-based models, as long as they have an ASE53

[35, 36] calculator.54

By providing a shared reference point for assessing accuracy, robustness, and generalisation, MLIPAu-55

dit aims to facilitate transparency, reproducibility, and community-wide progress in the development56

and deployment of MLIPs for complex molecular systems.57

2 Literature Review58

MLIP Audit aims to expand the existing methods and tools for benchmarking MLIPs. To put this59

work in context, we summarise current efforts for MLIP benchmarking here.60

Static regression metrics: The first and most fundamental level of MLIP evaluation involves the61

use of standard regression metrics to quantify a model’s ability to reproduce the reference quantum-62

mechanical (QM) data it was trained on. The most common benchmarks in this category are the63

root-mean-square-error (RMSE) and mean-absolute-error (MAE) calculated for energies and atomic64

forces on a held-out validation dataset [37]. These benchmarks are routinely reported with the release65

of new MLIP models, and state-of-the-art models achieve high accuracy on these tests. Although66

benchmarks for atomic energies and forces are a necessary baseline for the interpolation accuracy of67

the models, they are insufficient to estimate their practical utility. This is demonstrated, for example,68

by Gonzales et al. [38], who found that three models with very similar force validation error show69

significant variation in performance on a structural relaxation task.70

Assessment of physical and chemical behaviour: Recent MLIP benchmarks generally accompany71

model releases and assess performance on physical and chemical properties using QM or experimental72

data, typically tailored to specific use cases. For models trained on small organic molecules, standard73

tests include dihedral scans, conformer selection, vibrational frequencies, and interaction energies74

[32, 39, 40]. Biomolecular benchmarks cover backbone sampling, water properties, and folding75

dynamics [32, 40, 41], while models trained on reactivity data are evaluated on their ability to76

reproduce product, reactant, and transition state geometries, as well as reaction pathways via string or77

NEB methods [33, 42].78

Comparative studies have also emerged, evaluating multiple MLIPs across diverse benchmarks. Fu et79

al. [27] propose a suite spanning organic molecules, peptides, and materials, and find that models80
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with low force errors may still perform poorly on simulation-based metrics like energy conservation81

and sampling. Similarly, Liu et al. [43] report discrepancies in atom dynamics and rare events, even82

for models with strong regression accuracy. These findings reflect a growing consensus that static83

error metrics alone are insufficient for evaluating MLIPs, and that dynamic and simulation-based84

benchmarks are increasingly essential.85

Standardised benchmarks: While a great variety of benchmarks for accurate physical and chemical86

properties can be collected from individual model releases and MLIP evaluation studies, a need87

remains for standardised benchmarks that can be used to compare models on a level playing field and88

get a holistic view of their utility regarding practical tasks.89

This gap is addressed by leaderboards and standardised frameworks. MLIP Arena [26] is a leaderboard90

based on a benchmark platform focused on physical awareness, stability, reactivity, and predictive91

power. The framework comprises a small but well-selected suite of benchmarks that address known92

problems like data leakage, transferability, and overreliance on specific errors. Matbench Discovery93

[44] features a leaderboard and evaluation framework that is easily extendable to additional models94

and focused exclusively on materials science. MOFSimBench [45] is a standardised benchmark95

specialised on metal-organic frameworks that highlights simulation metrics and bulk properties.96

MLIPX [46] provides a framework with a user-centric perspective, providing a set of reusable recipes97

that allow users to compose benchmarks for their specific tasks.98

These standardised frameworks are valuable tools to evaluate and compare MLIP models. However,99

they are limited to a specific domain of application, employ a small number of benchmarks or require100

development by the MLIP user.101

3 MLIPAudit Benchmarks102

To enable a rigorous and meaningful evaluation of MLIP models, MLIPAudit includes a curated and103

modular suite of benchmarks that span a range of molecular systems and complexity levels (Figure104

1). These benchmarks are designed to capture both general-purpose and domain-specific challenges105

faced by MLIPs in industrial applications. Benchmark subsets each emphasise different aspects106

of model performance, such as elemental molecular dynamics stability, non-covalent interactions,107

conformational ranking of small organic compounds, or sampling of rotamers in biomolecules. A108

description of the rationale for each benchmark on the different categories is given in Appendix109

A, including: (i) general systems designed for molecular dynamics stability and scaling, (ii) small110

molecules relevant to materials chemistry, (iii) molecular liquids, and (iv) biomolecules.111

Figure 1: Representative molecular systems spanning increasing levels of structural and environmental
complexity, from isolated dimers and drug-like molecules, to condensed-phase molecular liquids and
folded biomolecules.

We have evaluated the performance of the three graph-based MLIPs provided in the open-source mlip112

library [25]: MACE [9], NequIP [11], and ViSNet [41]. All three models were trained on a subset of113

the SPICE2 dataset [47], which includes 1,737,896 molecular structures across 15 elements (B, Br, C,114

Cl, F, H, I, K, Li, N, Na, O, P, S, Si). From now on, MACE-SPICE2, NequIP-SPICE2 and ViSNet-115

SPICE2. Training protocols and dataset curation details are available in [25]. We trained versions116

of each of these models (MACE-t1x, NequIP-t1x, ViSNet-t1x) using 10% (randomly sampled) of117
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the original t1x dataset [48], containing a total of one million structures and four elements (H, C, N,118

O). Additionally, we have trained two versions of ViSNet using different subsets of SPICE2 and 1119

million datapoints from t1x (both taken from the OpenMolecules dataset - OMOL [42]) , respectively,120

ViSNet-SPICE2(charged)-t1x, ViSNet-SPICE2(neutral)-t1x (When not specified, the neutral version121

is used). The mlipaudit library also supports Torch-based models as long as they have have been122

wrapper in an ASE Calculator class [35, 36]. For completeness, we have evaluated a non-exhaustive123

subset of Torch-based models using their original implementation, namely: MACE-OFF [32], MACE-124

MP [9], and UMA-Small [34]. Two comments on these are worth raising: (1) runtime are not optimal125

for these models as they rely on ASE instead of JAXMD for simulations, (2) MACE-MP is trained126

for materials and at a different level of DFT theory. It is therefore not well suited for the benchmarks127

presented in MLIPAudit. We nonetheless added it as it is largely considered a reference model in the128

community and as results provide some interesting insights.129

To ensure fair and consistent comparison across models, we define a composite score Sm ∈ [0, 1]130

that averages soft-thresholded, normalised benchmark metric scores, rewarding models that approach131

DFT-level accuracy. Only benchmarks compatible with a model’s element set are included, ensuring132

broad applicability without penalising for unsupported systems. Though readers should note that133

unless all benchmarks are completed, aggregate scores should be caveated. For full details, see134

Appendix B.135

For each benchmark, a set of test cases has been curated (Appendix C, Table 4). As public datasets136

increase, it becomes increasingly challenging to ensure zero overlap between the training data and the137

relevant chemistry that one needs to include to ensure the relevance and reliability of the benchmarks.138

In Appendix C-Table 5, we disclose the overlap between the MLIPAudit test cases per benchmark139

and the training set for the presented internal models. In most cases, the overlap is either zero or140

under 10 %. But, for the conformer selection benchmark, for which two molecules (adenosine and141

efivarez) from the Wiggle150 [49] dataset were present in the model’s training set. We do not provide142

this information for external open source models. In the following, we will discuss the different143

scores and how the overlap may impact ranking.144

3.1 Overall ranking145

Table 1 highlights the generalisation capabilities of the top-performing models. In the following,146

we will analyse separately external open-source models run using the original implementation from147

our internal models. Some models did not complete all benchmarks; we refer you to Appendix A,148

Table 7 for more information. Missing benchmarks can be due to the availability of elements in149

the training set (essentially the models trained on t1x only) or runtime issues due to the reliance of150

external models on ASE [35, 36].151

Table 1: Overall MLIPAudit scores
Source Rank Model Name Average Score Benchmarks
External 1 UMA-Small 0.70 12/14
External 2 MACE-OFF 0.63 11/14
External 3 MACE-MP 0.41 9/14
Internal 1 ViSNet-SPICE2 0.70 14/14
Internal 2 NequIP-SPICE2 0.70 14/14
Internal 3 ViSNet-SPICE2-t1x 0.70 14/14
Internal 4 MACE-SPICE2 0.63 14/14
Internal 4 NequIP-t1x 0.10 4/14
Internal 5 MACE-t1x 0.10 4/14
Internal 6 ViSNet-t1x 0.10 4/14

For the external models, UMA-Small achieves the highest average score (0.70), completing 12/14152

benchmarks, followed by MACE-OFF (0.63), completing 11/14 benchmarks. MACE-MP completes153

9/14 and scores 0.41; we include this model on purpose as a test for the Physics the benchmarks,154

as MACE-MP is trained the MPtrj dataset [50] and therefore specialised on crystalline matter and155
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not condensed matter. All internal models completed the 14 benchmarks. ViSNet-SPICE2-t1x and156

ViSNet-SPICE2 attain the strongest performance (0.70), closely followed by NequIP-SPICE2 (0.68)157

and MACE-SPICE2 (0.63). The models specifically trained on the t1x dataset [48] score lower (0.1)158

and cover only a subset of benchmarks (4/14), reflecting the impact of training data breadth and159

domain coverage. Models consistently performing well across domains underscore the benefits of160

comprehensive training and robust architectures. However, it is worth noting that model performance161

is reflective of training strategy, not solely the model architecture, and it should not be considered an162

assessment of the model architecture. It is also important to note that UMA-Small, MACE-OFF, and163

MACE-MP may include train–test overlaps, and therefore their scores could be artificially overstated.164

3.2 Categorical ranking165

In Appendix C-Table 6, we summarise the category-based ranking analysis, which further reveals the166

specialisation and limitations of each MLIP model across different chemical domains. In the General167

category, which tests for molecular dynamics stability, most models (internal and external) achieve168

perfect scores, indicating strong stability for different chemical entities in vacuum and in solution169

4. The picture becomes more differentiated in the Small-molecule benchmarks. For the external170

models, UMA-Small leads with a score of 0.56, followed by MACE-OFF (0.50) and MACE-MP171

(0.36). The ViSNet-SPICE2-t1x variant is the best internal model in this category (0.65). Among172

models trained purely on SPICE2 [47], ViSNet-SPICE2, NequIP-SPICE2, and MACE-SPICE2173

cluster closely together (0.52-0.51), demonstrating consistent performance across gas-phase and174

conformational tasks. In contrast, models trained primarily on the t1x dataset [48] exhibit lower175

performance (0.11-0.16), consistent with the dataset’s focus on reactive gas-phase chemistry rather176

than diverse molecular energetics or equilibrium conformational distributions. The Molecular-liquids177

category shows the strongest overall spread. Within the external models, UMA-Small achieves178

the highest score (0.98), followed by MACE-OFF (0.73). MACE-MP, trained on inorganic crystal179

trajectories, underperforms here (0.45), reflecting the domain shift between crystalline materials and180

molecular liquids. The internal models trained on SPICE2 perform similarly with scores around181

0.95-0.97. These results highlight that SPICE2-trained models, despite being built from largely182

gas-phase and small-molecule electronic-structure data, still transfer effectively to condensed-phase183

structure and energetics. Performance diverges further in the Biomolecule category, which probes184

larger solvated, flexible, and chemically complex systems. External and Internal models (except185

for models trained exclusively on t1x) score very high in this category, around 0.8-1.0. However,186

MACE-MP also scores high (0.79), which highlights that the length of the simulation is not enough187

to assess the dynamical behaviour of the systems. Simulation length is constrained by computational188

resources, as this is the most expensive benchmark to run (more details will follow). t1x-trained189

models again unsurprisingly trail behind, consistent with their lack of exposure to biomolecular190

chemistry. Overall, these results emphasise the importance of both training data diversity and domain191

alignment for robust generalisation across molecular and biomolecular environments, while also192

pointing to meaningful architectural and training-strategy differences even within closely related193

model families.194

3.3 Single benchmark highlighted results195

3.3.1 Reactivity benchmarks196

Internal models trained exclusively on SPICE2 (ViSNet-SPICE2, NequIP-SPICE2, MACE-SPICE2)197

perform notably badly in the reactivity task with scores below 0.1 (Table 2). It is worth noting198

that all internal models completed all test cases (100/100 for the nudge elastic band (NEB) bench-199

mark, ∼12000/12000 for the transition-state-theory (TST) benchmark), indicating that performance200

differences stem from modelling accuracy rather than lack of elements in the training set. These201

results suggest that, in the context of reactivity benchmarks, domain-specific training still offers a202

measurable edge, especially when accurate prediction of reaction energies or barriers is the primary203

objective. t1x trained models perform better in this category with scores ranging from 0.4-0.8 in204

the TST benchmark and 0.38-0.58 in the nudge-elastic-band (NEB) convergence benchmark, with205
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most notably the ViSNet-SPICE2-t1x (charged and neutral) lead this category with 0.8 and 0.58,206

respectively.207

Table 2: Reactivity Benchmarks Ranking
Source Rank Benchmark Model Name Score Test Cases
External 1 Small Molecule Reactivity TST UMA-Small 0.86 11961/11961
External 2 Small Molecule Reactivity TST MACE-OFF 0.12 11961/11961
External 3 Small Molecule Reactivity TST MACE-MP 0.05 11961/11961
Internal 1 Small Molecule Reactivity TST ViSNET-SPICE2-t1x 0.77 11961/11961
Internal 2 Small Molecule Reactivity TST NequIP-t1x 0.41 11961/11961
Internal 3 Small Molecule Reactivity TST MACE-t1x 0.39 11961/11961
Internal 3 Small Molecule Reactivity TST ViSNET-t1x 0.39 11961/11961
Internal 4 Small Molecule Reactivity TST MACE-SPICE2 0.1 11961/11961
Internal 5 Small Molecule Reactivity TST ViSNET-SPICE2 0.05 11961/11961
Internal 5 Small Molecule Reactivity TST NequIP-SPICE2 0.05 11961/11961
Internal 1 Small Molecule Reactivity NEB ViSNET-SPICE2-t1x 0.58 100/100
Internal 2 Small Molecule Reactivity NEB NequIP-t1x 0.58 100/100
Internal 3 Small Molecule Reactivity NEB MACE-t1x 0.44 100/100
Internal 3 Small Molecule Reactivity NEB ViSNET-t1x 0.38 100/100
Internal 4 Small Molecule Reactivity NEB MACE-SPICE2 0.1 100/100
Internal 4 Small Molecule Reactivity NEB ViSNET-SPICE2 0.1 100/100
Internal 4 Small Molecule Reactivity NEB NequIP-SPICE2 0.1 100/100

Figure 2: Reactivity benchmark performance. (a–b) Reaction energy profiles for two Grambow
reactions (IDs 008805 and 000433) [51] MLIP predictions to DFT references. (c) MAEs for activation
energies (EA) and reaction enthalpies across the benchmark.

As shown in Figure 2, all t1x-trained models outperform SPICE2 trained MLIPs (and SPICE1 in the208

case of MACE-OFF), which show much larger errors, especially for activation energies.209

From the external models, UMA-Small excels in the reactivity benchmark with a score of 0.86, with210

MACE-OFF following behind with a score of 0.12. While remarkable, all our test-cases come from211

the Grambow dataset [51], which is included in the t1x dataset [48], which is included in full in the212

UMA-Small training data.213

3.3.2 Molecular liquids benchmark: water radial distribution function214

Having a closer look at the single benchmarks, the water radial distribution function (RDF) benchmark215

provides a compelling illustration of the strengths of MLIPs over traditional force fields. As shown in216

6



Figure 3, all five internal MLIP models, MACE-SPICE2, ViSNet-SPICE2, ViSNet-SPICE2(neutral)-217

t1x, ViSNet-SPICE2(charged)-t1x, ViSNet-SPICE2 and NequIP-SPICE2, reproduce the experimental218

RDF profile with high fidelity across the full radial range, accurately reproducing both the first219

solvation shell peak and subsequent oscillations. And this is also true for the original implementations220

of UMA-Small and MACE-OFF. In contrast, TIP3P and TIP4P [52], two of the most widely used221

classical water models, show notable deviations, particularly in the overstructured and exaggerated222

height of the first peak, a known artefact in rigid water models [53]. Notably, MACE-MP produces

Figure 3: Water radial distribution function and angular distribution for the example models, compared
with the experimental observable and two water classical forcefields TIP3P and TIP4P [52]

223

crystalline water even when simulated at 300 K, indicating that the model remains strongly biased224

toward its crystal-structure training data despite liquid-phase simulation conditions. This behaviour is225

evident in the radial distribution function (RDF): whereas liquid water shows a broadened first O–O226

peak near 2.8 Å and damped oscillations characteristic of short-range order, crystalline (ice-like)227

water exhibits sharp, well-defined peaks extending to long range, reflecting persistent translational228

order. These qualitative differences are well-established in the literature [54].229

This alignment between MLIP predictions and experimental data strongly supports the notion that230

learned potentials, trained on accurate quantum data, can capture the subtle balance of hydrogen231

bonding and thermal fluctuations that define liquid water structure, without the need for hand-tuned232

parametrisation. This not only reflects the higher representational capacity of MLIPs but also233

demonstrates their ability to generalise to bulk-phase properties, a capability that classical force fields234

struggle to match without introducing complex polarisable terms or many-body corrections.235

3.3.3 Small molecules benchmarks: dihedral scans236

The dihedral scan benchmark highlights another area where MLIP models show outstanding agree-237

ment with quantum reference data. As shown in Figure 4, the energy profiles predicted by all MLIP238

models align nearly perfectly with DFT-calculated torsional energy curves across a representative239

scan. This agreement is not only qualitative—preserving the positions and heights of barriers, but240

also quantitatively precise, with RMSE values all well below the 1.0 kcal/mol DFT-level convergence241

threshold. This strong performance is further reflected in the ranking table (Appendix C, Table 6),242
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Figure 4: Dihedral scan benchmark. (a) Dihedral energy profiles for fragment 015 compared to DFT
reference values. (b) MAE and RMSE for each model. DFT-level error threshold (red dashed line).

where ViSNet-SPICE2 and ViSNet-SPICE2-t1x lead the benchmark scoring ∼1.0, followed closely243

by NequIP-SPICE2 and MACE-SPICE2, MACE-SPICE2-t1x. Notably, all models completed the244

full set of 500 fragments, demonstrating not only accuracy but robustness and generalisability across245

a diverse chemical space.246

The error bars shown on the right panel of Figure 4 underscore how consistent the models are,247

with MAE values under 0.12 kcal/mol for all methods—well within chemical accuracy. MLIPs248

outperform classical parameters like GAFF2 [55]. These results validate the capability of current249

MLIPs to accurately model intramolecular potential energy surfaces, a critical requirement for reliable250

conformational sampling, molecular docking, or pharmacophore prediction.251

Taken together, this benchmark provides a clear example of how MLIPs can match DFT accuracy at a252

fraction of the computational cost, making them practical for high-throughput screening or molecular253

simulations involving flexible, drug-like molecules.254

3.3.4 Small molecules benchmarks: conformer ranking255

Figure 6 presents model performance on the conformer benchmark, showing MAE values by molecule256

for three general-purpose MLIPs: NequIP-SPICE2, ViSNet-SPICE2, and MACE-SPICE2. All models257

were trained on datasets that included adenosine (ADO) and efavirenz (EFA), while benzylpenicillin258

(BPN) was excluded from training and thus acts as a stronger generalisation test.259

Despite having seen ADO and EFA during training, none of the models reach the DFT-level MAE260

threshold of 0.5 kcal/mol, pointing to persistent difficulty in accurately ranking conformers. ADO is261

best predicted, while EFA shows higher errors due to its flexibility. BPN, which was unseen during262

training, is the most challenging, though MACE-SPICE2 shows slightly better generalisation. All263

models outperform GAFF2 [55], especially on EFA. Still, as seen in Appendix C, Figure 7, predicted264

vs. DFT energy plots show strong agreement and near-perfect Spearman correlations across all265

molecules.266

This consistency suggests that while the models may struggle to reproduce exact conformer energy267

magnitudes (as seen in the MAE analysis), they are highly effective at preserving the correct energetic268

ordering. In practical applications like conformer selection or ranking, such ordinal accuracy can269

be more important than precise energetic reproduction, particularly when used in combination with270

scoring functions or downstream screening.271

Interestingly, the performance gap between in-training-set molecules (ADO, EFA) and the out-of-272

distribution case (BPN) is far less pronounced here than in absolute MAE terms—highlighting that273
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model generalisation, at least in terms of correlation, is relatively robust. These findings reinforce274

the importance of using multiple complementary metrics (e.g., MAE and rank correlation) when275

evaluating MLIP performance for conformational energetics.276

3.3.5 Biomolecules benchmarks277

The biomolecules benchmark (Appendix C, Table 6) provides a fitting conclusion to our compre-278

hensive assessment, highlighting the potential for MLIP models to operate effectively in complex,279

biologically relevant regimes. The biomolecules benchmark is the most computationally intensive280

one, as it involves solvated systems with 1000 to 4000 atoms in total (Appendix C, Table 4).281

All top models successfully completed the protein folding stability benchmark (6/6 test cases, see282

Appendix C), all models achieve similar scores ∼0.525, but there is room for improvement. This level283

of agreement underscores the growing maturity of MLIPs for macromolecular tasks. The Protein284

Sampling benchmark across different MLIP models shows that models trained on the SPICE2 dataset285

(e.g., ViSNet-SPICE2, NequIP-SPICE2, MACE-SPICE2) significantly outperform their t1x-trained286

counterparts, with ViSNet-SPICE2 achieving the highest score (0.928) and full coverage (12/12287

systems). Taken together, the results from this and all previous benchmarks reinforce a central288

conclusion: while task-specific training offers advantages in specialised domains, the leading models289

demonstrate strong, transferable performance across molecular scales and properties, setting the stage290

for robust deployment in real-world chemistry and biology applications.291

3.4 Conclusions and future outlook292

The MLIPAudit suite provides a comprehensive and diverse evaluation framework for MLIPs,293

spanning small-molecule geometrical and conformational energetics, reactivity, molecular liquids,294

and biomolecular stability and sampling. Results show that while specialised models trained on the295

t1x dataset excel in targeted tasks such as reaction barrier prediction, general-purpose architectures296

like ViSNet-SPICE2, NequIP-SPICE2, and MACE-SPICE2 exhibit strong and transferable accuracy297

across a wide range of benchmarks, often surpassing classical force fields and closely matching DFT298

reference data in others. Notably, the ViSNet model trained on SPICE2 and t1x from the OMOL299

dataset leads the small-molecule benchmarks, highlighting the promise of hybrid training strategies300

and possibly reflecting the importance of the underlying level of theory used in data generation.301

Despite this progress, performance gaps persist, especially in condensed-phase systems and energeti-302

cally subtle regimes, indicating that further improvements are needed. While MLIPAudit establishes303

a unified and reproducible evaluation suite, it also has limitations. The current set of models is304

biased toward graph neural network architectures, and the benchmarks rely primarily on DFT data305

of varying origin, which may introduce systematic bias. Efficiency and robustness-oriented metrics306

(e.g., uncertainty calibration and scalability) are not yet fully assessed, and several critical chemical307

regimes, such as transition-metal systems, enzyme catalysis, and extreme thermodynamic conditions,308

remain under-represented due to limited reference data.309

A further challenge lies in maintaining truly blind test sets. As the community continually expands310

training datasets, ensuring that future benchmark systems remain unseen becomes increasingly311

difficult. In future iterations, we will explore generating dedicated blind datasets and curated QM312

reference sets, though this task will remain increasingly complex.313

Future releases will introduce more demanding simulation tasks, such as free-energy estimation,314

reactive condensed-phase processes, and protein–ligand systems. By evolving alongside the MLIP315

community and enabling continuous contribution, MLIPAudit aims not only to benchmark progress316

but to support rigorous, open, and scalable development of next-generation ML interatomic potentials.317

By continually broadening the scope and complexity of MLIPAudit, we hope to accelerate the318

development of MLIPs that are not only accurate but also general, scalable, and ready for real-world319

deployment across the chemical sciences.320
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A Benchmarks overview593

Each benchmark in MLIP-Audit includes a brief introduction that outlines its purpose, helping594

users understand the relevance of the task and how it reflects molecular challenges. A link to the595

documentation is provided for users who want a deeper explanation of the benchmark’s design,596

scientific context, datasets and implementation details. A description of each benchmark’s dataset can597

be found in Appendix C-Table 4. This is followed by key performance metrics for the best-performing598

model, along with a summary of results across all analysed MLIP models. Depending on the nature599

of the benchmark, additional visualisations may be included, such as radial distribution functions for600

molecular liquids or torsion energy profiles for small molecules, which users can explore interactively601

or download for further analysis (Figure 5).

Figure 5: MLIPAudit interface
602

In the following subsections, we describe the composition, rationale, and evaluation criteria for each603

benchmark category: (i) general systems designed for molecular dynamics stability and scaling, (ii)604

small molecules relevant to pharmaceutical and materials chemistry, and (iii) biomolecules, which605

pose unique challenges due to their size, flexibility, and hierarchical structure.606

A.1 General benchmarks607

The general benchmarks implemented in MLIP Audit are system-agnostic and focus on fundamental608

molecular dynamics (MD) stability and performance metrics that are applicable across molecular609

systems. Two benchmarks are included in this category:610

• Stability: assesses the dynamical stability of an MLIP during an MD simulation for a611

diverse set of large biomolecular systems. For each system, the benchmark performs an MD612
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simulation using the MLIP model in the NVT ensemble at 300 K for 100,000 steps (100 ps),613

leveraging the jax-md engine, as integrated via the mlip library[25]. The test monitors the614

system for signs of instability by detecting abrupt temperature spikes (“explosions”) and615

hydrogen atom drift. These indicators help determine whether the MLIP maintains stable616

and physically consistent dynamics over extended simulation times.617

• Inference Scaling: evaluates how the computational cost of an MLIP scales with the system618

size. By running single, long MD episodes on a series of molecular systems of increasing619

size, we systematically assess the relationship between molecular complexity and inference620

performance. This benchmark is not used for scoring, but it aims at helping the user to pick621

the best model in terms of time-to-solution for the application task.622

A.2 Small Molecules623

MLIPAudit small-molecule benchmarks focus on the ability of MLIPs to reproduce the properties624

and dynamics of small organic molecules, including their conformational sampling and interactions625

with other molecules. In order of task complexity:626

• Bond Length: evaluates the ability of MLIPs to accurately model the equilibrium bond627

lengths of small organic molecules during MD simulations. This is an important test to628

understand whether the MLIP respects basic chemistry throughout simulations. Accurate629

prediction of bond length is crucial for capturing the structural and electronic properties630

of any chemically relevant compounds. For each molecule in the dataset, the benchmark631

performs an MD simulation with the same configuration described in the stability benchmark.632

Throughout the trajectory, the positions of the bond atoms are tracked, and their deviation633

from a reference bond length of the QM-optimised starting structure is calculated. The634

average deviation over the trajectory provides a direct measure of the MLIP’s ability to635

maintain bond lengths under thermal fluctuations, enabling quantitative comparison to636

reference data or other models.637

• Ring Planarity: evaluates the ability of MLIPs to preserve the planarity of aromatic638

and conjugated rings in small organic molecules during molecular dynamics simulations.639

Aromatic rings (e.g., benzene) are inherently planar due to delocalised π electrons. Ring640

planarity enforcement is crucial in molecular dynamics simulations because it preserves641

the correct geometry, electronic structure, and interactions of aromatic and conjugated642

systems. Without proper planarity (e.g., via improper torsions), simulations can produce643

chemically unrealistic distortions that compromise accuracy in energy, flexibility, and644

binding predictions. This is especially important in molecules like benzene, tyrosine side645

chains, nucleobases, and drug scaffolds, where planarity governs stacking, hydrogen bonding,646

and overall stability. For each molecule in the dataset, the benchmark performs an MD647

simulation with the same configuration described in the stability benchmark. Throughout648

the trajectory, the positions of the ring atoms are tracked, and their deviation from a perfect649

plane is quantified using the root mean square deviation (RMSD) from planarity. The ideal650

plane of the ring is computed using a principal component analysis of the ring’s atoms.651

The average deviation over the trajectory provides a direct measure of the MLIP’s ability652

to maintain ring planarity under thermal fluctuations, enabling quantitative comparison to653

reference data or other models.654

• Dihedral Scan: evaluates the MLIP’s ability to reproduce torsional energy profiles of655

rotatable bonds in small molecules, aiming to approach the quantum-mechanical QM656

reference quality. Dihedral scans are essential for mapping how a molecule’s energy changes657

as bonds rotate, revealing preferred conformations and energy barriers. Beyond force field658

development, they are also used in studying reaction mechanisms, analysing conformational659

dynamics in drug discovery, validating quantum chemistry methods, and guiding the design660

of flexible or constrained molecules. For each molecule, the benchmark leverages the mlip661

library for model inference, comparing the predicted energies along a dihedral scan to QM662

reference energy profiles. The reference profile is shifted so that its global minimum is zero,663

17



and the MLIP profile is aligned to the same conformer. Performance is quantified using664

the following metrics: MAE and RMSE. The Pearson correlation coefficient between the665

MLIP-predicted and reference datapoints and the mean barrier height error.666

• Non-covalent Interactions: tests if the MLIP can reproduce interaction energies of molec-667

ular complexes driven by non-covalent interactions. Non-covalent interactions are of the668

highest importance for the structure and function of every biological molecule. This bench-669

mark assesses a broad range of interaction types: London dispersion, hydrogen bonds, ionic670

hydrogen bonds, repulsive contacts and sigma hole interactions. Assessing the accuracy of671

non-covalent interactions is crucial for evaluating how well computational models capture672

key forces like hydrogen bonding, π-π stacking, and van der Waals interactions that govern673

molecular recognition, binding, and assembly. This is essential not only for force field674

development, but also for validating quantum methods, guiding molecular design, modelling675

biomolecular interfaces, and studying condensed-phase behaviour such as solvation and676

aggregation. The benchmark runs energy inference on all structures of the distance scans677

of bi-molecular complexes in the dataset. The key metric is the RMSE of the interaction678

energy, which is the minimum of the energy well in the distance scan, relative to the energy679

of the dissociated complex, compared to the reference data. For repulsive contacts, the680

maximum of the energy profile is used instead. Some of the molecular complexes in the681

benchmark dataset contain exotic elements (see dataset section). In case the MLIP has never682

seen an element of a molecular complex, this complex will be skipped in the benchmark.683

• Reference Geometry Stability: assesses the MLIP’s capability to preserve the ground-state684

geometry of organic small molecules during energy minimisation, ensuring that initial DFT-685

optimised structures remain accurate and physically consistent. Each system is minimised686

using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (ASE default parameters).687

After minimisation, structural fidelity is assessed by computing the RMSD of all heavy688

atoms relative to the initial geometry, using the RMSD implementation provided by mdtraj689

[56].690

• Conformer Selection: evaluates the MLIP’s ability to identify the most stable conformers691

within an ensemble of flexible organic molecules and accurately predict their relative energy692

differences. It focuses on capturing subtle intramolecular interactions and strain effects that693

influence conformational energies. These metrics assess both numerical accuracy and the694

MLIP’s ability to preserve relative conformer energetics, which is crucial for downstream695

applications such as conformational sampling and compound ranking.696

• Tautomers: assesses the ability of MLIP to accurately predict the relative energies and697

stabilities of tautomeric forms of small molecules in vacuum. Tautomers are structural698

isomers that interconvert via proton transfer and/or double bond rearrangement, and ac-699

curately estimating the energy gap between them is an important measure of chemical700

accuracy in the MLIP framework. Tautomer ranking assesses a model’s ability to predict the701

relative stability of different tautomeric forms of a molecule, which is critical for accurately702

modelling protonation states, reactivity, and binding affinities. It is especially important in703

drug discovery, quantum method benchmarking, and cheminformatics, where tautomers704

can dramatically affect molecular properties and biological activity. For each molecule, the705

benchmark compares MLIP-predicted energies against QM reference data. Performance706

is quantified by comparing the absolute deviation of the energy difference between the707

tautomeric forms from the DFT data.708

• Reactivity: assesses the MLIP’s capability to model chemical reactivity. The reactivity-tst709

benchmark tests the ability to predict the energy of transition states relative to the reaction’s710

reactants and products and thereby the activation energy and enthalpy of a reaction. This711

benchmark calculates the energy of reactants, products and transition states of a large dataset712

of reactions. From the difference between these states, the activation energy and enthalpy of713

formation can be calculated. The performance is quantified using the MAE and RMSE in714

activation energy and enthalpy of formation. The reactivity-neb benchmark evaluates the715
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capability to converge a set of nudged elastic band calculations with a known transition state.716

The performance is quantified by the percentage of converged calculations.717

A.3 Molecular Liquids718

The MLIP Audit molecular liquids benchmark focuses on assessing long-range interactions by719

computing the radial distribution function for different molecular liquids.720

• Radial Distribution Function: assesses the ability of MLIP to accurately reproduce721

the radial distribution function (RDF) of liquids. The RDF characterises the local and722

intermediate-range structure of a liquid by describing how particle density varies as a723

function of distance from a reference particle. Accurate modelling of the RDF is essential724

for capturing both short-range ordering and long-range interactions, which are critical for725

understanding the microscopic structure and emergent properties of liquid systems. The726

benchmark performs an MD simulation using the MLIP model in the NVT ensemble at727

300 K for 500,000 steps, leveraging the jax-md engine from the mlip library. The starting728

configuration is already equilibrated. For every specific atom pair (e.g., oxygen-oxygen in729

water), the radial distribution function (RDF or g(r)) is calculated from the simulation, as:730

g(r) =
1

4Πr2ρN
⟨

N∑
i=1

N∑
j ̸=i

δ(r − rij)⟩ (1)

where: r is the distance from a reference particle,ρ is the average number density, N is the731

number of particles, rij is the distance between particles and δ is the Dirac delta function.732

Angle brackets denote an ensemble average. For each test case, the benchmark computes733

rpeak = argmax
r

g(r) and compares it with the experimental value for the first solvation734

shell.735

• Tetrahedral Order Parameter: evaluates the ability of an MLIP to reproduce the tetrahedral736

structure of liquid water by computing the tetrahedrality (q-number) around each water737

molecule. This descriptor quantifies how closely the local arrangement of neighbouring738

molecules matches an ideal tetrahedral geometry, a defining feature of hydrogen-bonded739

water networks and a key determinant of liquid water’s structural and thermodynamic740

properties. The benchmark performs an MD simulation in the NVT ensemble at 300 K for741

500,000 steps using the jax-md engine from the mlip library, starting from an equilibrated742

configuration. For each oxygen atom, the four nearest oxygen neighbours are identified, and743

the tetrahedral order parameter q is computed as:744

q = 1− 3

8

4∑
j=1

4∑
k=j+1

(
cosψjik +

1

3

)2

(2)

where ψjik is the angle between vectors rij and rik connecting the central oxygen i to745

neighbours j and k. A value of q = 1 corresponds to a perfect tetrahedral environment,746

while q = 0 indicates a fully disordered one. For each test case, the benchmark reports the747

mean tetrahedrality ⟨q⟩ and compares it against experimental and first-principles reference748

values, providing a stringent evaluation of a model’s ability to capture hydrogen-bond749

network structure in liquid water.750

A.4 Biomolecules751

MLIP Audit biomolecule benchmarks focus on assessing the properties and dynamics of proteins,752

including their folding behaviour, structural stability, and conformational sampling.753

• Protein Folding Stability: evaluates the ability of an MLIP to preserve the structural754

integrity of experimentally determined protein conformations during MD simulations. It755

assesses the retention of secondary structure elements and overall compactness across a756
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set of known protein structures. This module analyses the folding trajectories of proteins757

in MLIP simulations. For each molecule in the dataset, the benchmark performs an MD758

simulation with the same configuration described in the stability benchmark. We track how759

Root Mean Square Deviation (RMSD), TM Score [57], Dictionary of Secondary Structure760

in Proteins (DSSP) [58] and Radius of Gyration change over time.761

• Sampling Outlier Detection: Assesses the structural quality of sampled conformations762

by computing backbone Ramachandran angles (ϕ/ψ) and side-chain rotamer angles (χ),763

and identifying outliers through comparison with reference rotamer libraries [59]. For764

each molecule in the dataset, the benchmark performs an MD simulation with the same765

configuration described in the stability benchmark. The outlier detection identifies residues766

whose dihedral angles fall outside expected ranges, relying on the fast KDtree [60] scipy767

[61] implementation. The analysis provides a global percentage of outliers for backbone768

and rotamers per structure, as well as a more detailed analysis per residue type.769

B Benchmarks scoring770

To enable consistent and fair comparison across models, we define a composite score that aggregates771

performance over all compatible benchmarks. Each benchmark b ∈ B may report one or more metrics772

x
(i)
m,b, where i = 1, . . . , Nb indexes the Nb metrics evaluated for the model m. For each metric, we773

compute a normalised score using a soft thresholding function based on a DFT-derived reference774

tolerance t(i)b (see 3):775

s
(i)
m,b =

1, if x(i)m,b ≤ t
(i)
b

exp

(
−α · x

(i)
m,b−t

(i)
b

t
(i)
b

)
, otherwise

where α is a tunable parameter controlling the steepness of the penalty (e.g., α = 3). The per-776

benchmark score is then computed as the average over all its metric scores:777

sm,b =
1

Nb

Nb∑
i=1

s
(i)
m,b

Let Bm ⊆ B denote the subset of benchmarks for which the model m has valid data (i.e., benchmarks778

compatible with its element set). The final model score is the mean over all benchmarks on which the779

model could be evaluated:780

Sm =
1

|Bm|
∑
b∈Bm

sm,b

This scoring framework ensures that models are rewarded for meeting or exceeding DFT-level781

accuracy. In the current version, full benchmarks are skipped if a model does not have all the782

necessary chemical elements to run all the test cases. This is true for all benchmarks, but non-covalent783

interactions, in which we do a per-test-case exception. Benchmarks with multiple metrics contribute784

proportionally, and the result is a single interpretable score Sm ∈ [0, 1] that balances physical fidelity,785

chemical coverage, and overall model robustness. The thresholds for the different benchmarks have786

been chosen based on the literature. In the case of tautomers, energy differences are very small;787

therefore, we’ve chosen a stricter threshold of 1-2 kcal/mol, which is not enough for classification.788

Thresholds for biomolecules are borrowed from traditional literature in molecular modelling.789
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Table 3: Score thresholds across benchmarks.
Benchmark Metric Threshold
Reference Geometry Stability RMSD (Å) 0.075 [62]
Non-covalent Interactions Absolute deviation from reference

interaction energy (kcal/mol)
1.0 [62]

Dihedral Scan Mean barrier error (kcal/mol) 1.0 [63]
Conformer Selection MAE (kcal/mol) 0.5

RMSE (kcal/mol) 1.5 [64]
Tautomers Absolute deviation (∆G) 0.05
Ring Planarity Deviation from plane (Å) 0.05 [65]
Bond Length Distribution Avg. fluctuation (Å) 0.05 [62]
Reactivity-TST Activation Energy (kcal/mol) 3.0 [66]

Enthalpy (kcal/mol) 2.0 [66]
Reactivity-NEB Final force convergence (eV/Å) 0.05 [67]
Radial Distribution Function RMSE (Å) 0.1 [68]
Protein Sampling Outliers Ramachandran ratio 0.1

Rotamers Ratio 0.03
Protein Folding Stability min(RMSD) (Å) 2.0

max(TM-Score) 0.5

C Supporting Figures and Tables790
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Table 4: Datasets used for the different benchmarks in MLIPAudit.
Benchmark Dataset Name Link/Citation Content Description
General Stability In-house dataset Released with MLIPAu-

dit
3 small molecules in vacuum (1
HCNO-only, 1 with halogens, 1 with
sulfur). 2 peptides in vacuum (Neu-
rotensin PDBid 2LNF and Oxytocin
PDBid 7OFG). 1 protein in vacuum
(PDBid 1A7M). 1 peptide in pure
water (Oxytocin). 1 peptide in water
with Cl- counterions (Neurotensin).

Inference Scaling In-house dataset Released with MLIPAu-
dit

Proteins in vacuum. PDBids: 1AY3,
1UAO, 1AB7, 1P79, 1BIP, 1A5E,
1A7M, 2BQV, 1J7H, 5KGZ, 1VSQ,
1JRS.

Reference Geometry Stability OpenFF [69] 200 molecules for the neutral dataset
and 20 for the charged dataset. The
subsets are constructed so that the
chemical diversity, as represented by
Morgan fingerprints, is maximised.

Non-covalent Interactions NCI-ATLAS subsets:
D442x10, HB375x10,
HB300SPXx10,
IHB100x10, R739x5,
SH250x10

http://www.nciatlas.org/ QM optimised geometries of dis-
tance scans of bi-molecular com-
plexes, where the two molecules in-
teract via non-covalent interactions
with associated energies.

Dihedral Scan In-house recomputed
TorsionNet 500 dataset
at ωB97M-D3(BJ)
DFT-level.

[70] 500 structures of drug-like
molecules and their energy profiles
around selected rotatable bonds at
wB97M-D3(BJ) DFT-level.

Conformer Selection Wiggle 150 [49] 50 conformers each of three
molecules: Adenosine, Benzylpeni-
cillin, and Efavirenz.

Tautomers In-house recomputed
Tautobase dataset at
ωB97M-D3(BJ) DFT-
level.

[71] 2,792 tautomer pairs sourced from
the Tautobase dataset. After gen-
eration of the structures and min-
imisation at xtb level, the QM en-
ergies were computed in-house us-
ing ωB97M-D3(BJ)/def2-TZVPPD
level of theory.

Ring Planarity QM9 subset [72] One representative molecule each,
containing substructures for ben-
zene, furan, imidazole, purine, pyri-
dine and pyrrole.

Bond Length QM9 subset [72] One representative molecule each,
containing the bond types C-C, C=C,
C#C, C-N, C-O, C=O and C-F.

Reactivity Grambow dataset [51] Reactants, products and transition
states of 11960 reactions.

Radial Distribution Function In-house solvent boxes Released with MLIPAu-
dit. Reference data: [73–
76]

Water, CCl4, Acetonitrile,
Methanol.

Protein Folding Stability In-house dataset Released with MLIPAu-
dit

3 solvated proteins: Chignolin,
Orexin and Trp Cage. PDBids:
1UAO, 2JOF, 1CQ0.

D Model training details791

Three of the models presented in this paper were released as part of the mlip library [25]: ViSNet-792

SPICE2, MACE-SPICE2, and NequIP-SPICE2. Details on how these models were trained, alongside793

training data details and hyperparameters can be found in the original reference.794
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Table 5: MLIPAudit test-cases overlap with models training dataset for internal models only
Benchmark Category Benchmark Overlap [%]
Small-Molecule Reference Geometry Stability 0
Small-Molecule Bond Length distribution 0
Small-Molecule Ring Planarity 0
Small-Molecule Conformer selection 66.7
Small-Molecule Dihedral scan 1.4
Small-Molecule Tautomers 8.4
Small-Molecule Non-covalent interactions –
Small-Molecule Reactivity –
Molecular liquids RDF 0
Biomolecules Folding stability 0
Biomolecules Sampling 0

Table 6: Category-based rankings (aggregated scores by benchmark category)
Source Rank Category Model Name Score Metrics
External 1 General UMA-Small 1.00 1/1
External 1 General MACE-SPICE2 1.00 1/1
External 1 General MACE-MP 1.00 1/1
Internal 1 General ViSNet-SPICE2 1.00 1/1
Internal 1 General MACE-SPICE2 1.00 1/1
Internal 2 General NequIP-SPICE2 0.90 1/1
Internal 3 General ViSNet-SPICE2-t1x 0.75 1/1
Internal 3 General ViSNet-t1x 0.00 1/1
Internal 3 General NequIP-t1x 0.00 1/1
Internal 3 General MACE-t1x 0.00 1/1
External 1 Small-molecules UMA-Small 0.56 7/9
External 2 Small-molecules MACE-OFF 0.50 8/9
External 3 Small-molecules MACE-MP 0.36 7/9
Internal 1 Small-molecules ViSNet-SPICE2-t1x 0.65 9/9
Internal 2 Small-molecules ViSNet-SPICE2 0.52 9/9
Internal 2 Small-molecules NequIP-SPICE2 0.52 9/9
Internal 3 Small-molecules MACE-SPICE2 0.51 9/9
Internal 4 Small-molecules NequIP-t1x 0.16 6/9
Internal 5 Small-molecules MACE-t1x 0.14 6/9
Internal 6 Small-molecules ViSNet-t1x 0.11 6/9
External 1 Molecular-liquids UMA-Small 0.98 2/2
External 2 Molecular-liquids MACE-OFF 0.73 2/2
External - Molecular-liquids MACE-MP 0.0 2/2
Internal 1 Molecular-liquids NequIP-SPICE2 0.97 2/2
Internal 1 Molecular-liquids MACE-SPICE2 0.97 2/2
Internal 1 Molecular-liquids MACE-SPICE2 0.97 2/2
Internal 2 Molecular-liquids ViSNet-SPICE2-t1x 0.95 2/2
Internal - Molecular-liquids ViSNet-t1x 0.0 2/2
Internal - Molecular-liquids NequIP-t1x 0.0 2/2
Internal - Molecular-liquids MACE-t1x 0.0 2/2
External 1 Biomolecules UMA-Small 0.92 2/2
External 1 Biomolecules MACE-OFF 0.92 2/2
External - Biomolecules MACE-MP 0.79 2/2
Internal 1 Biomolecules ViSNet-SPICE2 1.00 2/2
Internal 1 Biomolecules NequIP-SPICE2 1.00 2/2
Internal 2 Biomolecules ViSNet-SPICE2-t1x 0.43 2/2
Internal - Biomolecules ViSNet-t1x 0.0 2/2
Internal - Biomolecules NequIP-t1x 0.0 2/2
Internal - Biomolecules MACE-t1x 0.0 2/2
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Table 7: Single benchmarks rankings
Source Rank Benchmark Model Name Score Test Cases
External 1 General Stability UMA-Small 1.00 8/8
External 1 General Stability MACE-OFF 1.00 8/8
External 1 General Stability MACE-MP 1.00 8/8
Internal 1 General Stability ViSNet-SPICE2 1.00 8/8
Internal 1 General Stability MACE-SPICE2 1.00 8/8
Internal 2 General Stability Nequip-SPICE2 0.90 8/8
Internal 3 General Stability ViSNet-SPICE2-t1x 0.75 8/8
Internal 4 General Stability MACE-t1x 0.44 8/8
External 1 Solvent RDF UMA-Small 0.95 3/3
External 2 Solvent RDF MACE-OFF 0.73 3/3
External - Solvent RDF MACE-MP 0.00 0/3
Internal 1 Solvent RDF Nequip-SPICE2 0.97 3/3
Internal 2 Solvent RDF MACE-SPICE2 0.94 3/3
Internal 2 Solvent RDF ViSNet-SPICE2 0.94 3/3
Internal 3 Solvent RDF ViSNet-SPICE2-t1x 0.90 3/3
External 1 Water RDF UMA-small 1.00 1/1
External 2 Water RDF MACE-OFF 0.56 1/1
External - Water RDF MACE-MP 0.00 1/1
Internal 1 Water RDF ViSNet-SPICE2 1.00 1/1
Internal 1 Water RDF MACE-SPICE2 1.00 1/1
Internal 1 Water RDF Nequip-SPICE2 1.00 1/1
Internal 1 Water RDF ViSNet-SPICE2-t1x 1.00 1/1
Internal - Water RDF ViSNet-t1x 0.00 1/1
Internal - Water RDF MACE-t1x 0.00 1/1
Internal - Water RDF Nequip-t1x 0.00 1/1
External 1 Water Ang. Dist. MACE-OFF 1.00 1/1
External 2 Water Ang. Dist. UMA-Small 0.76 1/1
External - Water Ang. Dist. MACE-MP 0.00 1/1
Internal 1 Water Ang. Dist. Nequip-SPICE2 0.72 1/1
Internal 2 Water Ang. Dist. ViSNet-SPICE2-t1x 0.60 1/1
Internal 3 Water Ang. Dist. Visnet-SPICE2 0.59 1/1
Internal 4 Water Ang. Dist. MACE-SPICE2 0.51 1/1
Internal - Water Ang. Dist. ViSNet-t1x 0.00 1/1
Internal - Water Ang. Dist. MACE-t1x 0.00 1/1
Internal - Water Ang. Dist. Nequip-t1x 0.00 1/1
External 1 Protein Folding Stability UMA-Small 1.00 3/3
External 1 Protein Folding Stability MACE-OFF 1.00 3/3
External 1 Protein Folding Stability MACE-MP 1.00 3/3
Internal 1 Protein Folding Stability ViSNet-SPICE2 1.00 3/3
Internal 1 Protein Folding Stability Nequip-SPICE2 1.00 3/3
Internal 2 Protein Folding Stability MACE-SPICE2 0.33 3/3
Internal - Protein Folding Stability ViSNet-SPICE2-t1x 0.00 3/3

We present in Table 9 below details about the other models presented as examples in the paper. Note795

that training details for UMA-Small, MACE-OFF and MACE-MP can be found in Ref. [34], [32],796

and [77] respectively.797
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Figure 6: Conformer selection benchmark across three pharmaceutically relevant molecules: adeno-
sine (ADO), benzylpenicillin (BPN), and efavirenz (EFA). MAE is computed with respect to DFT
reference conformer energies. DFT threshold (red dashed line at 0.5 kcal/mol). Insets depict repre-
sentative 3D conformers for each molecule.

Figure 7: Predicted vs. DFT conformer energies for adenosine (ADO, blue), benzylpenicillin (BPN,
orange), and efavirenz (EFA, green).
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Table 8: Single benchmarks rankings (cont.)
Source Rank Benchmark Model Name Score Test Cases
External 1 Reference Geometry Stability UMA-Small 0.98 220/220
External 1 Reference Geometry Stability MACE-OFF 0.93 220/220
External 1 Reference Geometry Stability MACE-MP 0.50 220/220
Internal 1 Reference Geometry Stability ViSNet-SPICE2-t1x 0.97 220/220
Internal 1 Reference Geometry Stability ViSNet-SPICE2 0.97 220/220
Internal 2 Reference Geometry Stability MACE-SPICE2 0.96 220/220
Internal 3 Reference Geometry Stability Nequip-SPICE2 0.94 220/220
External 1 Conformer Selection UMA-Small 0.29 3/3
External - Conformer Selection MACE-OFF 0.00 3/3
External - Conformer Selection MACE-MP 0.00 3/3
Internal 1 Conformer Selection ViSNet-SPICE2-t1x 0.05 3/3
Internal 2 Conformer Selection Nequip-SPICE2 0.03 3/3
Internal 2 Conformer Selection MACE-SPICE2 0.03 3/3
Internal - Conformer Selection Visnet-SPICE2 0.00 3/3
External 1 Dihedral Scan UMA-Small 0.71 500/500
External 2 Dihedral Scan MACE-OFF 0.66 500/500
External 2 Dihedral Scan MACE-MP 0.40 500/500
Internal 1 Dihedral Scan ViSNet-SPICE2-t1x 0.70 500/500
Internal 2 Dihedral Scan ViSNet-SPICE2 0.69 500/500
Internal 2 Dihedral Scan Nequip-SPICE2 0.66 500/500
Internal 3 Dihedral Scan MACE-SPICE2 0.65 500/500
External 1 Non-covalent Interactions UMA-Small 0.84 2192/2206
External 2 Non-covalent Interactions MACE-OFF 0.70 1728/2206
External 3 Non-covalent Interactions MACE-MP 0.44 2206/2206
Internal 1 Non-covalent Interactions MACE-SPICE2 0.75 1807/2206
Internal 2 Non-covalent Interactions Visnet-SPICE2 0.73 1807/2206
Internal 2 Non-covalent Interactions Nequip-SPICE2 0.73 1807/2206
Internal 3 Non-covalent Interactions Visnet-SPICE2-t1x 0.68 1807/2206
Internal 4 Non-covalent Interactions Nequip-t1x 0.44 689/2206
Internal 5 Non-covalent Interactions MACE-t1x 0.43 689/2206
Internal 6 Non-covalent Interactions Visnet-t1x 0.21 689/2206
External 1 Reactivity UMA-Small 0.86 11961/11961
External 1 Reactivity MACE-OFF 0.12 11961/11961
External 1 Reactivity MACE-MP 0.04 11961/11961
Internal 1 Reactivity Visnet-SPICE2-t1x 0.77 11961/11961
Internal 2 Reactivity Nequip-t1x 0.44 11961/11961
Internal 3 Reactivity MACE-t1x 0.43 11961/11961
Internal 4 Reactivity Visnet-t1x 0.22 11961/11961
Internal 5 Reactivity MACE-SPICE2 0.10 11961/11961
Internal 6 Reactivity Visnet-SPICE2 0.05 11961/11961
Internal 7 Reactivity Nequip-SPICE2 0.04 11961/11961
Internal 1 Nudged Elastic Band Visnet-SPICE2-t1x 0.58 100/100
Internal 1 Nudged Elastic Band Nequip-t1x 0.58 100/100
Internal 2 Nudged Elastic Band MACE-t1x 0.44 100/100
Internal 3 Nudged Elastic Band Visnet-t1x 0.38 100/100
External 1 Tautomers UMA-Small 0.23 1391/1391
External 2 Tautomers MACE-OFF 0.07 1391/1391
External - Tautomers MACE-MP 0.00 1391/1391
Internal 1 Tautomers Nequip-SPICE2 0.11 1391/1391
Internal 2 Tautomers Visnet-SPICE2 0.10 1391/1391
Internal 3 Tautomers Visnet-SPICE2-t1x 0.09 1391/1391
Internal 3 Tautomers MACE-SPICE2 0.05 1391/1391
External 1 Bond Length UMA-Small 1.00 8/8
External 1 Bond Length MACE-OFF 1.00 8/8
External 1 Bond Length MACE-MP 1.00 8/8
Internal 1 Bond Length Visnet-SPICE2-t1x 1.00 8/8
Internal 1 Bond Length Visnet-SPICE2 1.00 8/8
Internal 1 Bond Length MACE-SPICE2 1.00 8/8
Internal 1 Bond Length Nequip-SPICE2 1.00 8/8
External 1 Ring Planarity MACE-OFF 0.99 6/6
External 2 Ring Planarity UMA-Small 0.98 6/6
External 1 Ring Planarity MACE-MP 0.80 6/6
Internal 1 Ring Planarity Visnet-SPICE2-t1x 1.00 6/6
Internal 1 Ring Planarity Visnet-SPICE2 1.00 6/6
Internal 1 Ring Planarity MACE-SPICE2 1.00 6/6
Internal 1 Ring Planarity Nequip-SPICE2 1.00 6/6
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Table 9: Example models training details
Model Dataset Hyperparameters
ViSNet-SPICE2 Original version of SPICE2 [47], as curated

in [25] - includes only neutral systems
As described in [25]

MACE-SPICE2 Original version of SPICE2 [47], as curated
in [25] - includes only neutral systems

As described in [25]

NequIP-SPICE2 Original version of SPICE2 [47], as curated
in [25] - includes only neutral systems

As described in [25]

ViSNet-t1x Original version of Transition-1X [48],
trained on 1M samples, randomly sampled
with 95/5 train/val split.

Same as ViSNet-SPICE2

MACE-t1x Original version of Transition-1X [48],
trained on 1M samples, randomly sampled
with 95/5 train/val split.

Same as MACE-SPICE2

NequIP-t1x Original version of Transition-1X [48],
trained on 1M samples, randomly sampled
with 95/5 train/val split.

Same as NequIP-SPICE2

ViSNet-SPICE2(charged)-t1x SPICE2 and Transition-1X as recomputed in
the OMOL dataset [42]. SPICE2 is curated
as is described in [25]. T1X includes 50k
samples, selected among transition states,
reactants and products.

Same as ViSNet-SPICE2, ex-
cept for the number of channels
with is increased to 256.

ViSNet-SPICE2(neutral)-t1x SPICE2 and Transition-1X as recomputed in
the OMOL dataset [42]. SPICE2 is curated
as is described in [25]. T1X includes 1M
samples, selected among transition states,
reactants and products.

Same as ViSNet-SPICE2, ex-
cept for the number of channels
with is increased to 256.
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