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Abstract
Motivation: Identifying antibody binding sites, is crucial for developing vaccines and therapeutic antibodies, processes that are time-consuming and 
costly. Accurate prediction of the paratope’s binding site can speed up the development by improving our understanding of antibody–antigen interactions.
Results: We present ParaSurf, a deep learning model that significantly enhances paratope prediction by incorporating both surface geometric and 
non-geometric factors. Trained and tested on three prominent antibody–antigen benchmarks, ParaSurf achieves state-of-the-art results across nearly 
all metrics. Unlike models restricted to the variable region, ParaSurf demonstrates the ability to accurately predict binding scores across the entire Fab 
region of the antibody. Additionally, we conducted an extensive analysis using the largest of the three datasets employed, focusing on three key 
components: (i) a detailed evaluation of paratope prediction for each complementarity-determining region loop, (ii) the performance of models trained 
exclusively on the heavy chain, and (iii) the results of training models solely on the light chain without incorporating data from the heavy chain.
Availability and implementation: Source code for ParaSurf, along with the datasets used, preprocessing pipeline, and trained model weights, 
are freely available at https://github.com/aggelos-michael-papadopoulos/ParaSurf.

1 Introduction
Antibodies, also known as immunoglobulins, are crucial compo-
nents of the immune system that specifically recognize and neu-
tralize foreign molecules (antigens) such as pathogens and toxins. 
Structurally, antibodies are Y-shaped proteins, composed of two 
identical heavy chains and two identical light chains. The variable 
regions (V) of both chains form the antigen-binding fragment 
(Fab domain), while the constant region (Fc domain) plays a piv-
otal role in immune effector functions. Within the Fab region, the 
variable domain (Fv) houses the complementarity-determining 
regions (CDRs), which are hypervariable loops responsible for 
the high specificity of antigen binding and the framework resi-
dues. These CDR loops, particularly CDR3, form the key inter-
face for antigen binding (Janeway et al. 2001). The ability of 
antibodies to precisely bind antigens ensures a targeted immune 
response, facilitating antigen neutralization and the recruitment 
of other immune cells.

Studying antibody–antigen (Ab-Ag) interactions is critical for 
understanding immune recognition and developing therapeutic 
targets. Structural biology techniques such as X-ray crystallog-
raphy (Smyth and Martin 2000) and nuclear magnetic reso-
nance (NMR) (Rhodes 2017) have historically been used to 
determine high-resolution structures of antibody–antigen 

complexes. X-ray crystallography provides detailed atomic- 
resolution structures, while NMR can capture more dynamic 
aspects of the interaction in solution. Modern methods, includ-
ing cryo-electron microscopy (Vant et al. 2022) and biophysical 
techniques such as surface plasmon resonance (Vant et al. 
2022), complement these approaches by providing real-time in-
teraction data and structural information without the need for 
crystallization. Together, these techniques offer comprehensive 
insights into how antibodies recognize and neutralize antigens, 
guiding the design of vaccines and antibody-based therapies.

These traditional methods, while effective, are time- 
consuming, expensive and often not scalable to the increasing 
demand of high-throughput data in immunology research. 
This has led to a shift toward computational approaches, par-
ticularly in the field of deep learning. Various models have 
emerged to address this problem with different strategies. For 
example, Cohen et al. (2023) are a method that integrates 
deep learning with X-ray scattering data are presented to re-
solve the structure of antibody–antigen complexes.

The revolutionary achievements in protein structure pre-
diction—3D folding, led by Alphafold (Jumper et al. 2021) 
have shifted the focus of the scientific community toward pre-
dicting the 3D structure of antibodies. With the success of 
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Alphafold, several new methods have appeared specifically 
for antibody structure prediction, such as ABodyBuilder3 
(Kenlay et al. 2024), offering reliably predicted structures of 
antibodies. The recent release of Alphafold3 (Abramson et al. 
2024) has further enhanced the accessibility of predicting 
complex structures, including antibodies. In addition, the de-
velopment of Antifold (Høie et al. 2023), an inverse folding 
approach, enables the efficient design of antibody sequences 
that preserve structural integrity. This ensures that crucial 
binding regions like the CDR loops are optimized without 
disrupting the overall protein fold. Antifold accelerates anti-
body development by predicting mutations that improve 
binding affinity and stability, reducing the need for experi-
mental trial and error. Advances like AlphaFold provide ac-
curate 3D structure predictions, offering deeper insights into 
antibody domains and configurations.

While breakthroughs like AlphaFold have revolutionized 
the prediction of 3D structures, general protein–protein inter-
action (PPI) methods, such as MaSIF (Gainza et al. 2020), 
BipSpi (Sanchez-Garcia et al. 2019), DIPS (Townshend et al. 
2019), ProteinMAE (Yuan et al. 2023), and DockNet 
(Williams et al. 2023), have managed to tackle the binding in-
terface prediction task in various PPI contexts. These meth-
ods focus on identifying interaction sites across a wide range 
of protein complexes, offering general solutions to PPI tasks.

However, to gain a thorough understanding of the paratope– 
antigen (or receptor-antigen) interactions, it is crucial to develop 
specialized approaches that focus on predicting the binding site 
of the paratope. This is essential for accurately mapping anti-
body–antigen interactions, thus improving our understanding 
of immune responses and guiding further research in immunol-
ogy. For instance, Parapred (Liberis et al. 2018) achieved nota-
ble results in predicting paratope binding sites by focusing solely 
on the antibody sequence. It combined convolutional neural 
networks (CNNs) to capture local features with long short-term 
memory cells to model long-range dependencies across the en-
tire sequence, outperforming earlier methods (Krawczyk et al. 
2013, Tsuchiya and Mizuguchi 2016).

Another approach, introduced by Daberdaku (Daberdaku 
and Ferrari 2019), utilized 3D Zernike Descriptors to predict 
the antibody–antigen binding interfaces. By capturing both geo-
metric and physico-chemical properties of the paratope surface, 
this method managed to classify surface patches as binding or 
non-binding using a support vector machine (SVM). The combi-
nation of rotationally invariant descriptors and SVM allowed 
for accurate prediction of binding interfaces.

PECAN (Pittala and Bailey-Kellogg 2020) introduced a 
deep learning framework designed to predict paratope–anti-
gen binding interfaces using graph neural networks (GNNs). 
PECAN captured the spatial relationships between residues 
and incorporated an attention layer to account for the bind-
ing context provided by the partner protein. Combining these 
techniques with transfer learning from the general PPI data 
Docking Benchmark Version 5, DBv5 (Vreven et al. 2015), 
PECAN emerged as a competitive deep learning approach for 
paratope prediction. Additionally, Daberdaku released an an-
tibody–antigen dataset, which, with some exclusions by 
PECAN (11 complexes), is widely regarded as the prominent 
benchmark dataset for paratope prediction, consisting of 460 
antibody–antigen complexes.

On the same note, Paragraph (Chinery et al. 2023), the cur-
rent state-of-art method at this paratope prediction bench-
mark, also employed GNNs. Unlike previous models, 

Paragraph required only the modeled structure of the antibody 
and did not depend on antigen information, making it highly 
versatile. The model applied equivariant GNN layers to cap-
ture spatial relationships between residues and used simple fea-
ture vectors for each residue. To further boost Paragraph’s 
performance the authors created a new expanded dataset con-
sisting of 1086 paratope–antigen complexes and validated the 
model with improved evaluation metrics.

Lastly, MIPE (Wang et al. 2024) introduced a novel approach 
to paratope and epitope prediction by using multi-modal contras-
tive learning and interaction informativeness estimation. MIPE 
integrated both sequence and structure data of antibodies and 
antigens, leveraging multi-modal contrastive learning to maxi-
mize the representations of binding and non-binding residues 
across different modalities. MIPE also validated its method on a 
new dataset consisting of 626 antibody–antigen complexes, 
achieving state-of-the-art results, when compared to previous 
methods PesTo (Krapp et al. 2023) and AG-Fast-Parapred (Deac 
et al. 2019) and Paragraph on this specific dataset.

In this work, ParaSurf is introduced as a novel deep learning 
approach inspired by DeepSurf (Mylonas et al. 2021). 
DeepSurf leveraged surface-derived features from the protein’s 
solvent-accessible area to predict the binding sites on the pro-
tein where it interacts with its corresponding ligand (small 
molecule). Building upon this concept, ParaSurf makes 
extracts geometric, chemical, and electrostatic force-field fea-
tures from the paratope’s surface representation and then train 
a hybrid architecture consisting of a 3D ResNet and a trans-
former layer. This design allows ParaSurf to achieve state-of- 
the-art performance across nearly all metrics on three key anti-
body–antigen benchmarks: the well-established PECAN data-
set (460 complexes), the Paragraph expanded dataset (1086 
complexes), and the MIPE dataset (626 complexes).

Similar to the Paragraph model, ParaSurf is also an antigen- 
agnostic model, meaning it does not require antigen informa-
tion during training. However, unlike Paragraph, ParaSurf 
extends its predictive power beyond the Fv region, covering 
the entire Fab domain of the antibody, thus addressing the in-
herent class imbalance nature of the paratope prediction task. 
Additionally, ParaSurf performs extensive analysis on each of 
the CDR loops, on the CDR plus two extra residues on either 
end (CDR ± 2) regions, on the Fv region and the Fab region. 
Additionally, using the expanded dataset, ParaSurf undergoes 
specialized retraining experiments on individual antibody 
chains, focusing separately on the heavy chain and the light 
chain. The CDR loops were considered using the IMGT num-
bering rule (Lefranc et al. 2009) as in Paragraph.

In summary, the main contributions of this paper are de-
scribed as follows:

� Field-force incorporation: ParaSurf incorporates novel 
features, including geometrical, chemical, and electro-
static information, within a hybrid 3D ResNet and trans-
former architecture. 

� Paratope generalization: ParaSurf provides a generalized 
approach, predicting with remarkable accuracy the bind-
ing scores of each residue across the entire Fab region, 
rather than being restricted solely to the variable (Fv) or 
to the CDR ± 2 region. 

� Extensive analysis: Concerning the Paragraph-expanded 
dataset, ParaSurf delivers a detailed analysis on each of the 
CDR loops and the framework region. It also includes ad-
ditional retraining experiments focusing on each individual 
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antibody chain of the paratope (heavy chain and light 
chain), showcasing state-of-the-art performance. 

� State-of-the-art performance: ParaSurf achieves superior 
results across three major antibody–antigen benchmarks; 
PECAN (460 complexes), Paragraph expanded dataset 
(1086 complexes), and MIPE dataset (626 complexes). It 
consistently delivers state-of-the-art performance on the 
most critical metrics, AUC-ROC and AUC-PR, across all 
three datasets. Additionally, ParaSurf excels in predicting 
binding sites on the most variable CDR3 regions, for both 
the heavy and light chains, and achieves leading perfor-
mance on the framework region. 

� Reproducibility: Open-source code, datasets, and trained 
model weights for each training scenario are available for 
public use, encouraging further research and development 
in the field at https://github.com/aggelos-michael-papado 
poulos/ParaSurf. 

2 Data
To allow direct comparison with the previously published 
methods ParaSurf was trained and tested on exactly the 
same datasets.

PECAN dataset: This dataset is widely used as the bench-
mark for comparing the performance of most paratope pre-
diction methods. ParaSurf was trained and tested on the same 
complexes used by PECAN. It consists of 460 paratope–anti-
gen complexes, with 205 designated for training, 103 for vali-
dation, and 152 for testing. This separation was made using 
CD-HIT (Li and Godzik 2006) to ensure that paratopes 
shared no more than 95% pairwise sequence identity. It 
includes only complexes with paired heavy and light chains, 
with a resolution below 3 Å and protein antigens. Subsequent 
datasets, such as the Paragraph Expanded and MIPE data-
sets, followed the same data separation technique established 
by the PECAN dataset.

Paragraph expanded dataset: The authors from Paragraph 
also trained their model on a new expanded dataset derived 
from the Structural Antibody Database, SAbDab (Schneider 
et al. 2022) on 31 March 2022. This dataset contains 1086 an-
tibody–antigen complexes. To ensure consistency with the 
original work, we used the exact same data split as Paragraph, 
dividing the dataset into 60% for training, 20% for validation, 
and 20% for testing, without making any additional modifica-
tions or random splits.

MIPE dataset: This dataset is also derived from SAbDab. It 
consists of 626 antibody–antigen pairs. Following the same 
principles as the original MIPE method, we randomly split 
the dataset, allocating 90% for cross-validation (CV) and 
10% as an independent test set. We implemented a 5-fold 
CV, where the model was trained on each fold and tested on 
the same independent test set, as MIPE authors suggest.

ParaSurf was trained and tested using five different distinct 
training schemes to ensure extensive performance analysis. 
These include (i) training on the PECAN dataset, (ii) training 
on the Paragraph expanded dataset, (iii) training on the ex-
panded dataset using only the heavy chain, (iv) training on 
the expanded dataset using only the light chain, and (v) train-
ing on the MIPE dataset. The weights for each training 
scheme, along with the specific splits for each dataset are 
available at https://github.com/aggelos-michael-papadopou 
los/ParaSurf.

3 Proposed method
In line with previous methods, a residue is considered part of 
the paratope’s binding site if any of its heavy atoms (non-hy-
drogen atoms) is located within 4.5 Å of any antigen- 
heavy atom.

3.1 Data preprocessing
The pre-processing phase of ParaSurf begins by refining the 
antibody–antigen complex. Specifically, we remove non- 
essential components such as water molecules, ions, and 
ligands from the receptor’s PDB structure. Then, we perform 
a sanity check to ensure that each antibody–antigen pair 
meets the 4.5 Å Euclidean distance criterion. If a pair fails to 
meet this condition, it is excluded from the dataset. This step 
is particularly important in training scenarios 3 and 4, where 
the detachment of one chain may cause some receptor- 
antigen pairs to violate this criterion, resulting in their re-
moval (Supplementary Information).

After the initial filtering, we use the DMS software (UCSF 
2024) to generate the solvent-accessible surface (SAS) repre-
sentation of the paratope, which resembles the van der Waals 
surface of the molecule. Along with the receptor’s surface, we 
obtain the corresponding normal vectors for each surface 
point, pointing outward from the surface. To ensure suffi-
cient surface point coverage, we set the density value to 0.5, 
which is recommended for large molecules like antibodies 
(UCSF 2024). Next, to deal with the class imbalance nature 
of the antibody–antigen task we perform a balanced sam-
pling. For each receptor, we select 800 positive surface points 
(those <4.5 Å from the antigen) and 800 negative surface 
points, randomly selected from the surface of the receptor 
(those >4.5 Å away from the antigen). Suppose fewer than 
800 positive atoms are present on the paratope’s binding sur-
face. In that case, we select as many as are available and ad-
just the number of negative atoms to match, ensuring a 
balanced sample. For example, if only 500 binding surface 
points can be gathered, we will randomly select 500 non- 
binding surface points from the receptor’s surface.

3.2 Feature extraction
Once we have selected a set of 1600 surface points, we pro-
ceed to the feature extraction phase. For each surface point, a 
local grid of size 41 × 41 × 41 with a voxel resolution of 1 Å 
is created, following the recommendation from DIPS 
(Townshend et al. 2019) for PPIs. The grid is oriented per-
pendicular to the surface, similar to DeepSurf’s approach, 
which aligns the grid based on the normal vectors of the sur-
face points. This alignment helps to alleviate the rotation- 
sensitivity problem inherent in voxelized representations. 
Each voxel grid is populated with 22 features calculated per 
atom, describing the atom and its surrounding environment. 
These features are:

� 18 chemical features introduced by (Stepniewska- 
Dziubinska et al. 2018), including nine atom classes (B, C, 
N, O, P, S, Se, halogen and metal), four atom properties 
(hybridization, heavy valence, heterovalence, partial 
charge), and five SMARTS-based (a language for describ-
ing molecular patterns) features such as hydrophobicity, 
aromaticity, acceptor/donor properties, and ring structures, 
same as DeepSurf (Mylonas et al. 2021). 

� 2 electrostatic force field features along with 2 atom 
radii derived from pdb2pqr (Dolinsky et al. 2004). These 
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include AMBER (Assisted Model Building with Energy 
Refinement) (Weiner and Kollman 1981), a force field 
used to simulate the interactions between atoms in molec-
ular systems and CHARMM, another widely used force 
field that provides a detailed mathematical model of the 
forces between atoms in biological molecules. 

Overall we obtain a combination of geometric, chemical, 
and Electrostatic Force-Field features. Geometric features, 
capture the shape and orientation of atoms on the molecular 
surface, using the van der Waals surface and grid-based sam-
pling. Chemical features provide atomic-level properties and 
functional group characteristics, which are crucial for recog-
nizing the types of interactions possible between atoms. 
Electrostatic Force-Field features quantify interaction ener-
gies through electrostatic potentials, adding an energy-based 
perspective to the surface information from DMS. These 
combined features aid the prediction of the binding affinities 
and the stability of antibody–antigen interactions.

Each surface point contributes a 4D tensor of size 41 × 41 
× 41 × 22, which is then used as an input to ParaSurf’s deep 
neural network. The 41 × 41 × 41 grid, with a voxel resolu-
tion of 1 Å, ensures that all atoms within a 20 Å radius from 
each reference surface point are included, capturing the local 
molecular geometry alongside chemical and electrostatic 
properties. Before the training round, these tensors are ran-
domly rotated by 90� along one of the three axes to further 
reduce rotation sensitivity.

The antibody–antigen binding site prediction task is 
treated as a binary classification problem, where each resi-
due—comprising all its atoms—is labeled as either binding or 
non-binding. If an atom’s predicted score exceeds 0.5 thresh-
old, it is classified as part of the binding site. After predicting 
the binding score for each surface point, we assign a residue- 
level score by taking the maximum score out of all surface 
point that belong to a particular residue, according to 
Equation (1). This threshold is consistent with previous meth-
ods, allowing for direct comparisons. 

Resscore ¼ max
�

Prðsp1Þ; Prðsp2Þ; . . . ;PrðspNÞ
�
; (1) 

where PrðspiÞ is the prediction score for the surface point i. If 
Resscore>0:5, then the residue belongs to the binding site.

Residue-level predictions are then compared to ground 
truth labels, where binding residues are defined based on the 
4.5 Å distance threshold. This validation method ensures ac-
curate residue-level predictions and allows for detailed com-
parison with the ground truth labels. The above feature 
extraction pipeline is summarized in Algorithm 1.

In the top section of Fig. 1 (Feature Extraction), we depict 
the feature extraction process for an antibody–antigen com-
plex (PDB code “5EOC”) from the PECAN test set. Both Fab 
and Fv regions of the paratope are visualized. This section 
illustrates the creation of the 41 × 41 × 41 × 22 feature grids. 
Firstly, we generate the molecular surface and then select 800 
positive samples (green-colored surface points) from the 
binding site and 800 negative samples (red-colored surface 
points) randomly from non-binding regions of the surface, 
based on the 4.5 Å distance threshold. For each of the 1600 
sampled points, we construct a 41 × 41 × 41 × 22 feature 
grid, which includes geometric, chemical and force-field in-
formation. Grids corresponding to binding site surface points 

are labeled as 1 (green cube), while grids corresponding to 
non-binding surface points are labeled as 0 (red cube).

In the Res-level Prediction section of Fig. 1, we illustrate 
how residues are classified as binding or non-binding. Using 
the same PDB complex “5EOC,” we focus on two residues. 
The first is a Glycine (GLY) residue from the light chain “M” 
and is the 97th residue in that chain. As shown in the image, 
GLY belongs to the binding site. The second is a Tyrosine 
(TYR) residue from the heavy chain “J,” specifically the 
128th residue of that chain, which does not belong to the 
binding site. To determine the score for each residue, we ap-
ply Equation (1). The residue score for GLY is calculated as 
the maximum prediction score from the surrounding surface 
points of that particular residue (highlighted in green). 
Similarly, the residue score for TYR is determined by the 
maximum prediction score of its surrounding surface points 
(highlighted in red). If the residue score exceeds a certain 
threshold, the residue is classified as binding.In the ParaSurf 
Inference section of Fig. 1, we observe how a “blind” infer-
ence is performed. ParaSurf takes as input only the paratope 
(without any antigen information), shown in Fig. 1a and out-
puts the predicted binding sites (shown in red). The intensity 
of the red color corresponds to the prediction confidence, 
with darker shades indicating a higher likelihood of the resi-
due belonging to the binding site. We follow the common 
convention of annotating the predicted probabilities for each 
residue in the b-factor column of the original paratope PDB 
structure (last column of the PDB file), depicted in Fig. 1b. 
Additionally, we generate a “pocket” PDB file that highlights 
the predicted surface points of the binding site (green surface 
in Fig. 1c).

Prior works, including DeepSurf2.0 (Papadopoulos et al. 
2023) and DeepSurf2-FF (Papadopoulos et al. 2024), laid the 
foundation for ParaSurf. These studies focused on surface- 
level binding site prediction, emphasizing on paratope surface 

Algorithm 1 ParaSurf Feature Extraction

1: Input: Antibody-antigen complex
2: Step 1: Clean up: Remove water, ions, and ligands  

from the antibody
3: Step 2: Sanity check: Ensure at least 1 antibody heavy atom 

is within 4.5 Å of any antigen heavy atom
4: Step 3: Generate the antibody’s surface using DMS
5: Step 4: Perform balanced sampling:
6: if fewer than 800 positive surface points are available then
7:  Select as many positive points as are available and match  

the number of negative points
8: else
9:   Select 800 positive and 800 negative surface points
10: end if
11: for each surface point P do
12:   Compute the normal vector n for P
13:   Create a local grid around P , aligned according to n
14:   Calculate grid features: geometric, chemical,  

and force-field
15:   Create a 41 × 41 × 41 × 22 grid for P as a  

training sample
16: end for
17: Output: Set of grid-based training samples for each antibody.
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points utilizing simpler 3D ResNet architectures. While 
DeepSurf2.0 demonstrated the effectiveness of geometric and 
chemical feature integration, DeepSurf2-FF advanced this by 
introducing electrostatic force fields, further enhancing the 
predictive power for antibody-binding site predictions. These 
preliminary results, showcased the model’s potential for 
surface-level predictions and provided the motivation to de-
velop the more sophisticated ParaSurf framework.

Before conducting the main experiments on the antibody– 
antigen datasets, we performed a preliminary training round 
on the DBv5, a general-purpose protein-protein interaction 
dataset, consisting of 230 complexes. This step was carried 
out exclusively to fine-tune important parameters for our 
model, such as the selection of 800 surface points, the grid 
size of 41 × 41 × 41, and the inclusion of electrostatic force 
field features (AMBER, CHARMM). The goal was to deter-
mine the optimal feature extraction and model parameters. 
No model weights were carried over from this process, as the 
preliminary training was solely intended for parameter opti-
mization and not for developing the final model. Further 
details can be found in the Supplementary Information.

3.3 ParaSurf netwok
ParaSurf employs a hybrid deep learning approach that com-
bines 3D CNN and a transformer block enabling the model 
to capture local spatial features and global contextual rela-
tionships between surface points.

The network begins with an initial 3D CNN block that 
processes the input 41 × 41 × 41 × 22 tensor, extracting 
low-level spatial features. Following this, the data is passed 
through four residual layers composed of dilated bottleneck 
blocks. These residual layers are inspired by ResNet (He et al. 
2016), designed to address challenges like vanishing gradients 
and performance degradation in deep networks. The inclu-
sion of dilated bottlenecks allows the network to capture 
multi-scale spatial dependencies. After the residual layers, a 
compression layer (with a 1 × 1 × 1 kernel) reduces feature 
dimensionality from 2048 channels to 256, lowering the 
computational cost of the subsequent layers while retaining 
important information. The output is then batch-normalized 
and activated using ReLU. Next, the model applies a trans-
former block, which focuses on learning long-range depen-
dencies between surface points. This block, equipped with 
self-attention mechanisms (Vaswani 2017) enables the net-
work to focus on relevant parts of the input, capturing how 
different surface points interact. After the transformer block, 
global average pooling is applied to summarize the learned 
features, reducing the spatial dimensions and condensing the 
information into a single vector per 3D grid. A dropout layer 
(with a dropout rate of 0.1) is applied to prevent overfitting. 
Finally, the resulting features are passed through a fully con-
nected layer, generating a binding score between 0 and 1 for 
each surface point, indicating whether a residue belongs to 
the binding site or not, based on the predicted scores of its 
surface points. The ParaSurf architecture is illustrated in  

Figure 1. Overview of the ParaSurf framework for paratope prediction. The top section (Feature Extraction) illustrates the Feature Extraction process, 
capturing molecular surface points for geometric, chemical and force-field data to build grid-based inputs. The middle section (ParaSurf Inference) 
represents the ParaSurf Inference stage, where the ParaSurf hybrid deep learning network processes the antibody as input (a) to predict binding regions 
(b, c). The right side (Res-level Prediction) demonstrates Residue-Level Prediction, showing the predicted binding sites of two selected residues (GLY 
and TYR). The bottom section outlines the ParaSurf network architecture.
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Fig. 1 (bottom). The input to the model consists of batches of 
41 × 41 × 41 × 22 grids, where green represents binding 
grids and red represents non-binding grids. The model pro-
cesses these inputs and outputs a binding score between 0 
and 1, as indicated by the gradient ball, transitioning from 
red (non-binding) to green (binding).

3.4 Training and evaluation
3.4.1 Training
ParaSurf framework was implemented in Pytorch, in an 
NVIDIA RTX 3090 GPU. The network was trained using bi-
nary cross-entropy loss with the Adam optimizer. A learning 
rate scheduler was applied, starting at 1e −4 and decaying by 
a factor of 5 every 5 epochs to facilitate gradual convergence. 
The batch size was set to 64 for all training scenarios. Full 
training details, including parameter tuning and adjustments, 
are provided in the Supplementary Information. Due to in-
compatibilities with the pdb2pqr software, a few PDB struc-
tures were excluded from the training set of each dataset. 
Additionally, structures that failed the cleaning step, as de-
scribed earlier, were also removed. The details of these exclu-
sions can be found in the Supplementary Information.

3.4.2 Evaluation
ParaSurf’s performance was primarily validated using “AUC- 
PR” and “AUC-ROC,” which align with the main evaluation 
metrics reported by previous state-of-the-art methods. “AUC- 
PR” is particularly useful for assessing performance on imbal-
anced datasets by focusing on the minority class (binding site 
residues), offering insights into precision and recall trade-offs, 
while “AUC-ROC” measures the model’s ability to discriminate 
between binding and non-binding atoms. Although prior works 
primarily highlighted these two metrics, they also reported “F- 
score” and “MCC” (Matthews Correlation Coefficient). F- 
score is used to balance the importance of precision and recall 
and indicates the predictive performance, and MCC offers a re-
liable statistical rate as a measure of the quality of binary classi-
fications. To secure a thorough evaluation, we have included 
these additional metrics.

To ensure a fair comparison with previous methods, 
ParaSurf provides results for three evaluation scenarios: 
“ParaSurf(CDR ± 2),” “ParaSurf(Fv),” and “ParaSurf(Fab).” 
These scenarios allow for both direct comparison with exist-
ing state-of-the-art methods and a demonstration of 
ParaSurf’s ability to generalize across the entire Fab region.

ParaSurf(CDR ± 2) focuses specifically on the CDR ± 2 re-
gion, directly aligning with methods such as Paragraph and 
Parapred (Liberis et al. 2018), which concentrate on predict-
ing binding sites within this region. Although Paragraph and 
Parapred extend their predictions to the entire Fv region by 
assigning a score of zero to residues outside the CDR ± 2 
loops, ParaSurf provides a direct evaluation of its perfor-
mance both within the CDR ± 2 loops and across the full Fv 
region. As a result, both ParaSurf(CDR ± 2) and ParaSurf(Fv) 
serve as direct comparison points for assessing performance 
against these methods, allowing for a more comprehensive 
evaluation across both focused and extended regions.

For comparison with methods like Daberdaku (Daberdaku 
and Ferrari 2019), PECAN (Pittala and Bailey-Kellogg 2020), 
and MIPE (Wang et al. 2024), which predict binding sites 
across the entire Fv region, we present results as ParaSurf 
(Fv). Unlike methods that extend predictions from the CDR ± 
2 region to the full Fv region using zero-padding, ParaSurf 

makes predictions across the Fv region directly, without the 
need for extrapolation, offering a more direct assessment of 
binding site prediction over the entire Fv.

As such, ParaSurf(Fv) serves as a comprehensive compari-
son point against all methods, encompassing both specific 
CDR ± 2 predictions and full Fv region evaluations.

As a significant contribution of this work, we also introduce 
ParaSurf(Fab), which extends binding site predictions across the 
entire Fab region of the antibody. This evaluation not only sur-
passes the Fv region but also highlights ParaSurf’s capacity to 
predict binding sites on a larger scale, demonstrating its ability 
to generalize beyond traditional regions.

We use the IMGT numbering system (Lefranc et al. 2009) for 
direct comparison with previous works, where the regions of 
the variable domain of an antibody are defined as follows: FR1 
(residues 1–26), CDR1 (27–38), FR2 (39–55), CDR2 (56–65), 
FR3 (66–104), CDR3 (105–117), and FR4 (118–128). In this 
context, FR refers to the framework region, while CDR repre-
sents the CDR. The Fv region encompasses both FR and CDR 
regions. To provide a thorough validation of each paratope, 
ParaSurf was evaluated at three levels: ParaSurf(CDR ± 2), 
ParaSurf(Fv), and ParaSurf(Fab) in ascending order.

4 Results
In this section, we present the results of ParaSurf across three 
antibody–antigen interaction prediction benchmarks: PECAN, 
Paragraph-expanded, and the MIPE dataset. For a comprehen-
sive evaluation, we report results for ParaSurf at three levels: 
ParaSurf(CDR ± 2), ParaSurf(Fv), and ParaSurf(Fab). Each 
evaluation is conducted using the standard metrics: AUC-PR, 
AUC-ROC, F1 score, and MCC. Furthermore, in alignment 
with the thresholds used in the Paragraph model, we evaluate 
ParaSurf at 0.5 and 0.734 thresholds, the latter being used 
for direct comparison with the Paragraph model, while the 0.5 
threshold remains the most commonly used across similar 
tasks.

In addition, we also included a baseline method similar to 
that used by Paragraph (Chinery et al. 2023). This baseline 
measures the proportion of residues that bind the antigen at 
each sequence position in the training set and uses these pro-
portions to predict binding in the test set. As the original 
MIPE paper did not provide a baseline, we calculated this for 
the MIPE dataset, ensuring that all benchmarks are evaluated 
using the same reference point. This provides a useful bench-
mark to understand the improvements achieved by model- 
driven predictions.

4.1 PECAN dataset
The PECAN dataset is widely recognized as a benchmark for 
evaluating paratope prediction models, consisting of 460 an-
tibody–antigen complexes. Table 1 shows the comparison of 
various models, including the baseline and previous state-of- 
the-art methods, along with the performance of ParaSurf 
across different levels and thresholds.

We observe a clear improvement in performance as ParaSurf 
moves from the CDR ± 2 region to the full Fab region. This 
trend is evident across all evaluation metrics—PR AUC, ROC 
AUC, MCC, and F1 score. The consistent increase underscores 
the robustness of ParaSurf and its ability to generalize predic-
tions across the entire antibody structure. This not only high-
lights the model’s capability to capture binding residues 
effectively within the core CDR ± 2 region but also its potential 
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to predict binding interactions over a wider region of the anti-
body, including the framework (FR) regions.

By directly comparing ParaSurf(Fv) with Paragraph 
(highlighted in the table), we see that ParaSurf achieves consis-
tent improvements in the key metrics of AUC-ROC and AUC- 
PR, further confirming the effectiveness and generalizability of 
the model across the antibody regions. While ParaSurf shows 
marginal differences in MCC and F1, its primary strength lies in 
robust discrimination, as captured by the AUC metrics, which 
remain the core focus for evaluating model performance.

4.2 Paragraph expanded dataset
Table 2 provides a comparison between ParaSurf and the 
Paragraph model on the Paragraph-expanded dataset, which 
is a dataset consisting of 1086 antibody–antigen complexes. 
Similar to PECAN results, ParaSurf shows consistent 
improvements across all metrics. Notably, ParaSurf(Fv) out-
performs Paragraph, particularly in PR AUC, ROC AUC, 
and F1 scores, confirming its robustness and ability to gener-
alize across the Fv and the Fab regions.

We also report additional results for the Paragraph expanded 
dataset in the Supplementary Information for training scenarios 
3 and 4, where we trained ParaSurf using solely one chain (ei-
ther heavy or light) in each case. In these experiments, ParaSurf 
consistently achieved state-of-the-art results compared to 
Paragraph. Furthermore, we conducted a detailed CDR loop 
analysis, reporting performance across the four key metrics for 
each CDR loop and the Framework region.

Notably, ParaSurf demonstrates exceptional performance on 
the most variable CDRH3 loop, achieving an AUC-ROC of 
0.959 and an AUC-PR of 0.895, compared to Paragraph’s 0.866 
and 0.796, respectively. Given the high variability of CDRH3, 
this level of precision is crucial for accurately identifying paratope 
binding sites in the most dynamic region of the antibody, where 
variability often leads to diverse antigen recognition patterns. 
Similar improvements are observed in the CDRL3 variable loop, 
where ParaSurf achieved AUC-ROC 0.989 and an AUC-PR of 
0.910, compared to Paragraph’s 0.884 and 0.770, respectively 
Additionally, ParaSurf excels at predicting binding residues in the 

Framework region, where class imbalance is a known challenge 
due to the small proportion of framework residues contributing 
to paratope binding. With our balanced sampling technique dur-
ing feature extraction, ParaSurf mitigates the inherent class imbal-
ance issue and generalizes effectively across the Framework 
region, achieving an AUC-ROC of 0.981 and an AUC-PR of 
0.805. In contrast, Paragraph struggles with this imbalance, 
reporting only 0.768 and 0.429, respectively. For all this analysis 
refer to Supplementary Information.

4.3 MIPE dataset
The MIPE dataset is a relatively newer benchmark for paratope 
prediction, consisting of 626 antibody–antigen complexes.  
Table 3 presents a comparison of the baseline and various mod-
els, including the performance of ParaSurf across different levels 
and thresholds. Since the original MIPE paper did not specify a 
clear classification threshold, we report results for both the 0.5 
and 0.734 thresholds to ensure a consistent comparison across 
methods. Additionally, we calculated a baseline for the MIPE 
dataset, similar to the one used for the PECAN and Paragraph 
datasets, to provide a common reference for evaluation.

ParaSurf outperforms all previous methods across every re-
gion of the antibody and at both thresholds, demonstrating 
its robustness and generalizability also on MIPE dataset.

We report results for all key metrics across all training sce-
narios for each of the three datasets at the Supplementary 
Information. In addition to the metrics already discussed, 
these include Accuracy, Precision, Recall, CAUROC which is 
the median of aur-roc values offers resilience to the outliers, 
Negative Predicted Value (NPV), Specificity (SPC), and False 
Positive Rate (FPR), providing a comprehensive evaluation of 
ParaSurf’s performance.

4.4 Unified dataset performance
ParaSurf achieves the highest overall performance when 
trained on the unified ParaSurf dataset, which combines 
PECAN, Paragraph-expanded, and MIPE datasets, yielding 
an AUC-ROC of 0.9739 and an AUC-PR of 0.8234 
(Supplementary Information).

Table 1. Comparison of paratope prediction methods on the PECAN dataset.a

Method PR AUC ROC AUC MCC F1

Baseline 0.626 0.952 0.635 0.665
Daberdaku 0.545 0.923 – –
Parapred 0.646 0.930 – –
PECAN 0.675 0.952 – –
Paragraph 0.696 0.934 0.654 0.685
ParaSurf (CDR ± 2) 0.739/0.739 0.952/0.952 0.561/0.592 0.600/0.638
ParaSurf (Fv) 0.733/0.733 0.955/0.955 0.584/0.612 0.608/0.647
ParaSurf (Fab) 0.730/0.730 0.961/0.961 0.595/0.614 0.611/0.648

a ParaSurf is evaluated at both 0.5 and 0.734 thresholds. The best results for each metric at the 0.734 threshold are highlighted.
The best values for each metric are depicted in bold.

Table 2. Comparison of paratope prediction methods on the paragraph expanded dataset.a

Method PR AUC ROC AUC MCC F1

Baseline 0.624 0.952 0.654 0.622
Paragraph 0.725 0.934 0.696 0.669
ParaSurf (CDR ± 2) 0.787/0.787 0.960/0.960 0.604/0.655 0.626/0.683
ParaSurf (Fv) 0.793/0.793 0.967/0.967 0.630/0.676 0.645/0.698
ParaSurf (Fab) 0.795/0.795 0.973/0.973 0.643/0.674 0.651/0.686

a ParaSurf is evaluated at both 0.5 and 0.734 thresholds. The best results for each metric at the 0.734 threshold are highlighted.
The best values for each metric are depicted in bold.
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4.5 Qualitative results
Figure 2 presents the predicted results for the antibody–antigen 
complex with PDB code “1H0D,” which is a part of the 
Paragraph expanded test set. On the left, we visualize the actual 
output of the ParaSurf model when only the antibody is pro-
vided as input. The model assigns prediction scores to each resi-
due, reflected as b-factor replacements, color-coded by their 
binding potential. In the middle, we observe confusion matrices 
summarizing the prediction outcomes at three levels: the entire 
Fab region, which contains the total amount of the antibody’s 
residues, the Fv region, and the CDR ± 2 region. Each matrix 
shows the number of true negatives (TN), false positives (FP), 
false negatives (FN), and true positives (TP) residues. On the 
right, a surface representation highlights the predicted binding 
site of the paratope, providing a clear view of the specific 
“pocket” involved in antigen binding.

5 Discussion
Overall, ParaSurf’s comprehensive evaluation across different 
thresholds, antibody regions, and diverse datasets under-
scores its robustness, flexibility, and generalizability. By 

addressing key challenges such as the inherent class imbal-
ance nature of the paratope prediction task and prediction 
across larger structural regions like Fab, ParaSurf sets a new 
standard for paratope prediction. In addition to its general 
performance, ParaSurf demonstrates exceptional results in 
highly variable regions of the antibody, particularly the 
CDRH3 and CDRL3 loops. CDRH3 is the most variable and 
functionally important loop in antigen binding, as it under-
goes significant diversification during somatic recombina-
tion—a process critical to generating antibody specificity. 
The ability to accurately predict binding sites within these 
regions, especially the CDRH3 loop, enhances ParaSurf’s rel-
evance in antibody design and its capacity to capture key an-
tigen recognition features.

By offering a more complete picture of antibody–antigen 
interactions, ParaSurf provides a powerful tool for advancing 
antibody engineering and understanding immune responses 
at the molecular level. Its outstanding performance in the 
CDRH3 region, where specificity and antigen recognition are 
largely determined, highlights the model’s contribution to im-
proving antibody targeting accuracy (Gabrielli et al. 2009).

Furthermore, ParaSurf lays a strong foundation for future 
work aimed at integrating its predictions with antibody– 

Table 3. Comparison of paratope prediction methods on the MIPE dataset.a

Method PR AUC ROC AUC MCC F1

Baseline 0.465 0.931 0.177 0.536
Parapred 0.652 0.868 0.503 –
AG-Fast-Parapred 0.612 0.883 0.548 –
PECAN 0.713 0.915 0.558 –
Paragraph 0.650 0.927 0.488 0.616
Pesto 0.721 0.856 0.433 0.611
MIPE 0.741 0.927 0.554 0.627
MIPE(AlphaFold2) 0.723 0.910 0.531 0.617
ParaSurf (CDR ± 2) 0.778/0.778 0.962/0.962 0.557/0.648 0.581/0.686
ParaSurf (Fv) 0.781/0.781 0.967/0.967 0.581/0.659 0.597/0.690
ParaSurf (Fab) 0.782/0.782 0.972/0.972 0.593/0.644 0.618/0.666

a ParaSurf is evaluated at both 0.5 and 0.734 thresholds. The best results for each metric at the 0.734 threshold are highlighted.
The best values for each metric are depicted in bold.

Figure 2. Predicted binding site results for the 1H0D antibody–antigen complex, showing confusion matrices for the Fab, Fv, and CDR ± 2 regions, 
alongside a surface visualization of the predicted paratope binding site.
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antigen docking tools. By focusing on the predicted interac-
tion binding surface rather than the entire protein structure, 
this approach has the potential to significantly enhance dock-
ing accuracy while reducing computational time. Ultimately, 
this integration will improve the efficiency and precision of 
docking simulations, further supporting advancements in 
therapeutic antibody development.

Supplementary data
Supplementary data are available at Bioinformatics online.
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