
Published as a conference paper at ICLR 2024

FAITHFUL AND EFFICIENT EXPLANATIONS FOR NEU-
RAL NETWORKS VIA NEURAL TANGENT KERNEL SUR-
ROGATE MODELS

Andrew Engel1 Zhichao Wang2 Natalie S. Frank3 Ioana Dumitriu2

Sutanay Choudhury1 Anand Sarwate4 Tony Chiang1,5,6

1Pacific Northwest National Laboratory 2University of California, San Diego
3Courant Institute, NYU 4Rutgers University 5University of Washington 6University of Texas, El Paso

{andrew.engel,sutanay.choudhury,tony.chiang}@pnnl.gov;
{zhw036,idumitriu}@ucsd.edu;

nf1066@nyu.edu; ads221@soe.rutgers.edu

ABSTRACT

A recent trend in explainable AI research has focused on surrogate modeling,
where neural networks are approximated as simpler ML algorithms such as kernel
machines. A second trend has been to utilize kernel functions in various explain-
by-example or data attribution tasks. In this work, we combine these two trends to
analyze approximate empirical neural tangent kernels (eNTK) for data attribution.
Approximation is critical for eNTK analysis due to the high computational cost to
compute the eNTK. We define new approximate eNTK and perform novel analysis
on how well the resulting kernel machine surrogate models correlate with the
underlying neural network. We introduce two new random projection variants of
approximate eNTK which allow users to tune the time and memory complexity
of their calculation. We conclude that kernel machines using approximate neural
tangent kernel as the kernel function are effective surrogate models, with the intro-
duced trace NTK the most consistent performer. Open source software allowing
users to efficiently calculate kernel functions in the PyTorch framework is available
here*.

1 INTRODUCTION

Explainability remains a critical open problem for applications of deep neural networks (NNs)
(Leavitt & Morcos, 2020). Explain-by-example techniques (Lai et al., 2021; Yang et al., 2020) have
emerged as a major category of algorithms for explainability, including prototype examples (Chen
et al., 2019), Deep K-Nearest Neighbors (Papernot & McDaniel, 2018; Wang et al., 2021; Dziedzic
et al., 2022), and Representer Points (Yeh et al., 2018; Tsai et al., 2023). These techniques explain
models by providing example(s) that capture model behavior on new data. Kernel functions (Alvarez
et al., 2011) are a natural choice for building explain-by-example algorithms (Yeh et al., 2018); a
kernel measures the similarity between individual data points via an inner product in a reproducing
kernel Hilbert space (RKHS) (Hilbert, 1912; Ghojogh et al., 2021). A RKHS that faithfully represents
a linearized NN feature space can be used in a kernel machine to explain (model) the NN decision as
a weighted sum of similarities to training data.

In this work, we investigate computationally efficient approximations to the empirical neural tangent
kernel (eNTK), which is a kernel function motivated by advances in the theory of deep learning (Jacot
et al., 2018). It is well established that NNs trained using gradient descent are equivalent to kernel
machines (Schölkopf & Smola, 2002) with a kernel constructed from a sum over eNTK (Lee et al.,
2020) computed at each gradient step (Domingos, 2020; Bell et al., 2023). Given this equivalence,
we would like to evaluate the eNTK as the kernel function for an explain-by-example algorithm;
however, computing eNTK is computationally expensive (Novak et al., 2022; Chen et al., 2022),

*https://github.com/pnnl/projection_ntk

1

https://github.com/pnnl/projection_ntk

Published as a conference paper at ICLR 2024

so low computational cost approximations have been developed instead (Mohamadi & Sutherland,
2022). We are the first to define and evaluate one such approximate kernel, the trace neural tangent
kernel (trNTK). Additionally, we build from the work of Park et al. (2023) to provide software to
compute random-projection variants that can be computed and stored with lower time and memory
cost over traditional eNTK. Using these approximations, we build low-cost and faithful surrogate
models for neural network classifiers.

Our methodology improves over the past evaluation of kernel surrogate models. We measure the faith-
fulness of a kernel function by assessing how well a kernel generalized linear model (kGLM) (Hof-
mann et al., 2007) correlates with the softmax probabilities of the original NN using a rank correlation.
Previous evaluations relied on test accuracy (Mohamadi & Sutherland, 2022; Long, 2021), or having
high similarity to the correct class (Hanawa et al., 2021), which are both flawed. Our approach and
accompanying code-repository will allow users to evaluate how close their own NNs are to kernel
machines in the PyTorch framework with limited overhead (Paszke et al., 2019).

CONTRIBUTIONS

We make three major contributions in this work:

1. We define and evaluate new kernel functions for faithful approximation of an underlying
neural network; we are the first to analyze random projection variants that permit tuning the
computational and memory expense of approximate eNTK.

2. We are the first to show that approximate eNTK kernel surrogate models are consistently
correlated to the underlying neural network across experiments including ResNet18 on
CIFAR10 and Bert-base on COLA.

3. We compare explanations of NN decisions generated from each kernel function through a
data attribution strategy and through an explain-by-example strategy; this is the first such
qualitative evaluation between approximate eNTK.

RELATED WORK

Surrogate Models for Explaining Neural Network Behavior. Recent work in explainable AI has
focused on determining when NNs are exactly equivalent to other common ML algorithms (Lee
et al., 2018; Balestriero & Baraniuk, 2018; Schmitz et al., 1999), including kernel machines. It
has been shown that infinitely wide NNs are equivalent to a kernel machine with kernel function
chosen as the neural tangent kernel (Jacot et al., 2018). These infinitely wide models, however, do not
replicate the feature learning behavior seen in finite-width networks (Chizat et al., 2018; Yang & Hu,
2021; Wang et al., 2022). Subsequently, researchers turned to investigate properties of finite-width
models with NTK computed at various checkpoints (Domingos, 2020; Bell et al., 2023) and/or after
training (Long, 2021). This framework was used to explore inductive biases (Ortiz-Jiménez et al.,
2021), feature learning (Radhakrishnan et al., 2022), learning dynamics (Fort et al., 2020; Atanasov
et al., 2022), and adversarial faithfulness (Tsilivis & Kempe, 2023; Loo et al., 2022). Support vector
machines (Vapnik, 1999) using eNTK or approximate eNTK kernels computed after training were
shown to achieve the same test accuracy as the underlying NN (Atanasov et al., 2022; Long, 2021;
Vyas et al., 2022; Mohamadi & Sutherland, 2022). Our work builds upon this by evaluating whether
kernel machines can approximate the underlying neural network function itself, rather than simply
reproduce the same test accuracy.

Kernels for Explainability. Kernel functions defined from various RKHS have been proposed to
explain the behavior of NN in different contexts, (Park et al., 2023; Koh & Liang, 2017; Pruthi et al.,
2020; Akyürek et al., 2023), but in each of these works the kernel studied is loss-based and relies
upon the availability of labels at inference time. We differ in that our goal is to model/explain the
classification behavior on any new data, including unlabeled data where the loss is incalculable. Most
relevant to our work, Yeh et al. (2018) (hereafter Representer Points) used a kernel formed from
the NN final embedding in what we call the data attribution task (see section 2). We build from
Representer Points by evaluating their assumptions under new approximate eNTK kernels.

Computationally Feasible Approximations of the eNTK The computational cost of the eNTK
is prohibitively high for large models and datasets. Advances on this issue have been two-pronged:

2

Published as a conference paper at ICLR 2024

Some groups focus on algorithmic improvements to calculate the eNTK directly (Novak et al., 2022).
An alternative strategy has been to avoid eNTK calculation and instead compute kernel functions
that share a similar structure to the eNTK (Mohamadi & Sutherland, 2022). One such approximate
kernel was introduced quietly in Chen et al. (2022) which we refer to as the trace-NTK (trNTK).
We are the first to explicitly investigate the trNTK’s properties. Finally, Park et al. (2023), hereafter
TRAK, utilized random projection matrices to scale the computation of a loss-based kernel function.
We modify TRAK to compute projected variants of approximate eNTK.

Evaluating Kernel Attribution. In this paper, we use three evaluation strategies. The first focuses
on evaluating the faithfulness of the surrogate model through rank correlation. The second evaluates
surrogate model performance on a data-attribution task. We follow the methodology in Shan et al.
(2022) to evaluate the model via precision and recall in tracing decisions on poisoned test data
back to poisoned training data. Finally, we compare kernels qualitatively via explain-by-example.
Previous work evaluated kernels through whether the attributions trace to training data of the correct
class (Hanawa et al., 2021), whether surrogate models replicate NN test accuracy (Mohamadi &
Sutherland, 2022; Long, 2021). These are insufficient: our goal is that kernel functions reflect the
neural network behavior, but test accuracy is invariant to the specific classification on individual
datapoints. Representer Points used Pearson correlation as a faithfulness measure, but Pearson
correlation can conflate covariance with faithfulness (see Appendix H). We will demonstrate that our
methodology is more secure measurement of faithfulness.

2 PRELIMINARIES

Neural Networks for Classification. We consider the supervised classification problem with C
classes. Consider a data input x ∈ X ⊆ Rn with n the dimensionality of inputs, and a one-hot
encoded data label vector z ∈ Z ⊆ RC . We define a neural network F (x ;θ) : X → Y where
the output space Y ⊆ RC is an intermediary step in our classification called a “logit.” The NN
F (x ;θ) is parameterized by the vector θ and was learned via back-propagation to minimize the
cross entropy loss between the target label vector z and softmax probability vector σ(F (x ;θ)), with
σ : Y → Z the softmax function. We denote the c-th scalar output of the network as F c. We interpret
the predicted confidence for the c-th class for input x as σ(F (x ;θ))c.

Kernel Functions. Kernel functions implicitly map the data vector x to a feature vector ρ(x) in
a higher dimensional RKHS V for which the kernel function κ(·, ·) evaluates the inner product of
two feature vectors in V . We will notate the data matrix X = [x1, . . . ,xN] ∈ RN×n with N the
number of training samples. With some abuse of notation, we will write κ(x,X) ∈ RN for the
vector whose j-th component is κ(x,xj) and κ(X,X) ∈ RN×N for the matrix whose (i, j)-th
entry is κ(xi,xj).

Kernel General Linear Models as Surrogate Models We limit our investigation of surrogate models
to kernel general linear models. We define a general kernel linear model kGLM : X → Y as:

kGLM(x) := Wκ(x,X) + b, (1)

where W ∈ RC×N is a learnable weight matrix, κ is the kernel function, and b ∈ RC is a learnable
bias vector. We compute classifications from kGLM by mapping the final activations to softmax
confidences. The parameters W and b are learned using an optimizer to minimize the cross entropy
loss using the same dataset upon which the NN is trained. Given an input x, the softmax activation σ,
and a NN F (x ;θ), the ideal surrogate modeling goal is to find a kGLM that satisfies:

σ(kGLM(x)) = σ(F (x,θ))), (2)

for all x. Keeping this ideal in mind is useful for building intuition, but in practice, we will relax
from this ideal goal for reasons described below.

Data Attribution with Kernels. Our main motivation is to explain neural networks through data
attribution, i.e., by computing "a score for each training datapoint indicating its importance to the
output of interest" (TRAK). Given the choice of kernel function κ, the scalar valued data attribution
for the c-th class for a test input x and a training datapoint xi is given by:

A(x,xi)
c := Wc,i κ(x,xi) +

bc
N

. (3)

3

Published as a conference paper at ICLR 2024

Where the bc

N term is necessary to ensure that the sum over the attributions for the entire training

dataset is equal to the kGLM’s logit for class c,
N∑
i=1

A(x,xi)
c = kGLM(x)c. If the kGLM is an

ideal surrogate model Eq. 2, then the softmax function applied to the vector created from each class
attribution will equal the NN confidence in each class. Consequently, we will have decomposed the
reasoning for the NN’s specific confidence in each class to a linear combination of similarities between
x and each training datapoint xi. We emphasize that Eq. 3 is our definition of data attribution.
Attribution is a weighted sum of kernel/similarity values.

3 METHODS

We now turn towards the novel work of this research. In the following sections we describe our
measure of faithfulness then introduce the kernel functions.

Evaluating the Faithfulness of Surrogate Models. Given many choices of kernel functions we
require a measure to determine which surrogate models have higher approximation quality (i.e.,
faithfulness) to the NN. We relax from the ideal surrogate model goal Eq. 2 and instead evaluate
kernel functions by how well they are correlated with the neural network using the Kendall-τ rank
correlation.

To assess the faithfulness of a surrogate model, we compute τK between the softmax probability
of the neuron representing the correct class, σ(F (x ;θ))c, and the kGLM softmax probability for
the output representing the correct class, σ(kGLM(x))c. τK was chosen for two reasons; First, τK
has a range [−1, 1] with ± 1 representing a monotonic relationship and a value of 0 representing no
correlation. Second, if the relationship between the kGLM and NN is strictly monotonic, then an
invertible mapping function exists between the kGLM softmax probabilities and the NN’s (Bartle &
Sherbert, 2011). Therefore, for a τK = 1 we would recover the one-to-one ideal surrogate model
relationship given by Eq. 2. In Appendix L, we demonstrate how to find these mapping functions
with iterative optimizers (Virtanen et al., 2020). We provide a formal definition of Kendall-τ rank
correlation in appendix G.

We additionally report two more complementary metrics. While we have argued that the test accuracy
is flawed to measure faithfulness, we will report the test accuracy differential to be complete with
prior works. We define test accuracy differential (TAD) as:

TAD := TestAcckGLM −TestAccNN .

A fundamental limitation of τK is that it can only be computed over a set of scalar outputs so does not
take advantage of the vectorized output of classification networks. To compensate, we will also report
the misclassification coincidence rate, (Rmiss), which captures whether two models both misclassify
the same datapoints as the same class, which is an intuitive property τK misses. A formal definition
of Rmiss is available in appendix G. We now turn to defining the specific kernel functions we evaluate.

Trace Neural Tangent Kernel. For any two data inputs xi and xj , we define the Jacobian of the
NN’s c-th output neuron with respect to θ at datapoint xi as gc(xi;θ) = ∇θF

c(xi;θ). Then, for
choice of class c and c′, the eNTK is a kernel function defined as:

eNTK(xi,xj) := ⟨gc(xi;θ)g
c′(xi;θ)⟩. (4)

For C classes and N datapoints, the full eNTK can be evaluated for each choice of (c, c′) and (i, j)
resulting in a large NC ×NC total size matrix. This matrix is often too expensive to compute or
manipulate in memory, leading researchers to seek approximations.

We introduce now the trace neural tangent kernel (trNTK) approximation, which removes the C2

scaling in memory by effectively performing a “block-trace” operation on the original eNTK. The
trNTK is a kernel function defined as:

trNTK(xi,xj) :=

C∑
c=1

⟨gc(xi;θ), g
c(xj ;θ)⟩

(
C∑

c=1
||gc(xi;θ)||2)

1
2 (

C∑
c=1

||gc(xj ;θ)||2)
1
2

. (5)

4

Published as a conference paper at ICLR 2024

The denominator of Eq. 5 is a normalization that makes the trNTK a kernel of cosine-similarity
values. It has been suggested that this normalization helps smooth out kernel mass over the entire
training dataset (Akyürek et al., 2022). The normalization ensures that two identical inputs always
have maximum similarity value 1. Additional intuition about how this kernel relates to the geometry
of the neural network function surface is available in Appendix C. We provide additional details about
these definitions in Appendix D. In the following section, we relate this kernel to another approximate
eNTK kernel, the pseudo neural tangent kernel.

Wei et al. (2022)

Relationship to the Pseudo Neural Tangent Kernel. We can understand the motivation for the
trNTK in the context of another approximate eNTK, called the pseudo neural tangent kernel (pNTK).
The pNTK computed between inputs xi and xj is a kernel function defined as:

pNTK(xi,xj) :=
1

C

(
∇θ

C∑
c=1

F (xi ;θ)
c

)⊤(
∇θ

C∑
c=1

F (xj ;θ)
c

)
. (6)

Mohamadi & Sutherland (2022) showed that the product of the pNTK(xi,xj) with the C × C
identity matrix is bounded in Frobenius norm to the eNTK by O(1√

n
), with n the width parameter of

a feed forward fully connected NN with ReLU activation (Nair & Hinton, 2010; Glorot et al., 2011)
and He-normal (He et al., 2015a) initialization, with high probability over random initialization.

We can frame the critical differences between the pNTK and trNTK by how each approximate the
eNTK. The pNTK approximates the eNTK as a constant diagonal matrix with constant equal to
the scalar kernel function given in Eq. 6. In contrast, the trNTK allows the diagonal elements of
the eNTK approximation to vary, and in fact, calculates these values directly. Both the pNTK and
trNTK perform a simplifying sum over the diagonal elements, which reduces the memory footprint
of the approximations by a factor C2 compared to the eNTK. We choose not to compare directly
with the pNTK because the trNTK is a higher cost, but more precise, approximation of the eNTK.
Instead, we focus our comparisons to much lower cost alternatives, including a projection variant of
the pNTK.

Projection trNTK and Projection pNTK. For large number of parameters P and large datasets
N , computing approximate eNTK remain expensive, therefore, we explore a random projection
variant that allows us to effectively choose P regardless of architecture studied. Let P be a random
projection matrix P ∈ RK×P , K ≪ P , with all entries drawn from either the Gaussian N (0, 1) or
Rademacher (with p=0.5 for all entries) distribution. K is a hyperparameter setting the projection
matrix dimension. We set K = 10240 for all experiments. We use P to project the Jacobian matrices
to a lower dimension, which reduces the memory needed to store the Jacobians and reduce the
time complexity scaling. The Johnson-Lindenstrauss lemma ensures that most of the information in
the original Jacobians is preserved when embedded into the lower dimensional space (Johnson &
Lindenstrauss, 1984). We define the proj-trNTK and proj-pNTK as random projection variants of
the trNTK and pNTK:

proj-pNTK(xi,xj) :=

〈
P

C∑
c=1

gc(xi, θ),P
C∑

c=1
gc(xj , θ)

〉
∥∥∥∥P C∑

c=1
gc(xi, θ)

∥∥∥∥ · ∥∥∥∥P C∑
c=1

gc(xj , θ)

∥∥∥∥ (7)

proj-trNTK(xi,xj) :=

C∑
c=1

⟨Pgc(xi;θ),Pgc(xj ;θ)⟩

(
C∑

c=1
||Pgc(xi;θ)||2)

1
2 (

C∑
c=1

||Pgc(xj ;θ)||2)
1
2

, (8)

where both definitions include the cosine-normalization.

Random projection variants can improve the time complexity scaling for computing approximate
eNTK under large dataset size and large number of parameters. Assuming computation via Jacobian
contraction and time [FP] for a forward pass, the eNTK time complexity is: NC[FP] +N2C2P
(Novak et al., 2022). The pNTK computation reduces this to N [FP] + N2P ; while the trNTK
computation only reduces to NC[FP]+N2CP . In contrast, the proj-pNTK costs N [FP]+N2K+

5

Published as a conference paper at ICLR 2024

NKP , and the proj-trNTK costs NC[FP] + CN2K + CNKP . The final term in the projection
variants is the cost of the extra matrix multiplication with the random projection matrix P and the
Jacobian matrix. For K ≪ P and N large, projection variants reduce the time complexity.

Additional Kernel Functions. We also evaluate the conjugate kernel (CK) formed from the Gram
matrix of the final embedding vector (Fan & Wang, 2020; Yeh et al., 2018), the un-normalized trNTK
(trNTK0) which is equal to the numerator of Eq. 5, and the embedding kernel (Akyürek et al., 2023),
formed from a sum over the Gram matrices of embedding vectors from various layers in the network
architecture. See Appendix B for formal definition of these kernels.

4 RESULTS

Experiments. Classification NNs with architectures and datasets (MNIST (Lecun et al., 1998), FM-
NIST (Xiao et al., 2017), CIFAR10 (Krizhevsky & Hinton, 2009), and COLA (Warstadt et al., 2018))
shown in Table 1 are trained using standard techniques. Additional details regarding datasets are pro-
vided in Appendix K.1. Models that have a value of more than 1 in the column ‘# Models’ in Table 1
are trained multiple times with different seeds to generate uncertainty estimates. The ResNet18 (He
et al., 2015b), ResNet34, and MobileNetV2 (Sandler et al., 2018) models were trained by an indepen-
dent research group with weights downloaded from an online repository (Phan, 2021). Bert-base (De-
vlin et al., 2019) weights were downloaded from the HuggingFace (Wolf et al., 2019) repository
then transferred onto the COLA dataset, as is common practice for foundation models (Bommasani
et al., 2021). After training, we calculate the trNTK and alternative kernels using PyTorch automatic
differentiation (Paszke et al., 2019). We train a kGLM (sklearn.SGDclassifier) (Pedregosa
et al., 2011) for each κ using the same training dataset for training the NN model. All computation
was completed on a single A100 GPU with 40GB memory. Details such as specifics of architecture
and choice of hyperparameters are available in Appendix K.

Faithful Surrogate Modeling via trNTK. We calculate the τK correlation between the surrogate
model and underlying NN and report the results in Table 1. We find that the efficacy of our surrogate
model as measured by the correlation to the NN changes depending on architecture and dataset;
though remarkably, τK is consistently high, with a lower bound value of 0.7 across all experiments,
indicating high faithfulness. To demonstrate high τK implies we can achieve a point-for-point linear
realization of the NN, we learn a non-linear mapping from the kGLM to the NN (Figure 1 for
Bert-base. (Additional visualizations for the remainder of experiments are available in Appendix L.)
Finally, we observe that the kGLM with choice of κ = trNTK achieves comparable test accuracy as
the underlying NN, which replicates the observations of prior work (Long, 2021; Vyas et al., 2022;
Mohamadi & Sutherland, 2022) using our trNTK.

Data Attribution with trNTK. Accepting that the trNTK is a faithful kernel function for a kGLM
surrogate model, we can use the data attribution formalism to analyze the importance of individual
training datapoints to the classification. In Figure 2 we present the visualization of data attribution for
one test input and provide additional visualizations in Appendix M.1. The distribution of attribution
follows a regular pattern in every visualization generated: the central value of attribution mass for
each logit from each class is centered on the distribution of all training data from that class. We
emphasize that in no cases have we observed a sparse number of training datapoints dominate the
data attribution.

Comparison of Faithfulness between Kernels Functions. For ResNet18 and Bert-base models, we
evaluate our choice of trNTK against alternative kernel functions, reporting τK and test accuracy
differential in Table 2. Across both ResNet18 and Bert-base experiments, we observe that the trNTK
forms surrogate models with the highest correlation to the underlying NN decision function and
is furthermore consistent in replicating the performance of these networks (TAD nearly 0). The
embedding kernel (Em) does not perform as consistently between both tasks, but for its intuitive
connection to the internal representation of the neural network may warrant further investigation.

Faithful Surrogates in Data Poisoning Regime. Next, we evaluate whether surrogate models can be
extended to analyze network behavior on poisoned data. We train a 21-layer CNN (details available
in Appendix K.2.5) using BadNet CIFAR10 data (Gu et al., 2019; Shan et al., 2022). We randomly
perturb training data by placing a yellow square in a tenth of training images from CIFAR10 and
modify the label of these perturbed images to a targeted label (see example in Appendix N). We

6

Published as a conference paper at ICLR 2024

Table 1: Choice of κ = trNTK faithfully forms a surrogate model of underlying NN. We perform each
experiment with ‘# Models‘ independent seeds. For each model and dataset we train and extract the trNTK,
train a kGLM, then calculate and report the τK correlation between the kGLM softmax probability and NN
softmax probability for the correct class. The NN test accuracy column shows that training terminates with a
highly performant model, and the test accuracy differential (TAD) columns reports the difference between the
kGLM test accuracy and the NN test accuracy. We report the leading digit of error (standard error of the mean)
as a parenthetical, when available.

Model (Dataset) # Models NN test acc (%) TAD (%) τK
MLP (MNIST2) 100 99.64(1) +0.03(5) 0.708(3)
CNN (MNIST2) 100 98.4(1) -0.2(2) 0.857(7)
CNN (CIFAR2) 100 94.94(5) -2.1(5) 0.711(3)
CNN (FMNIST2) 100 97.95(4) -2.2(2) 0.882(3)
ResNet18 (CIFAR10) 1 93.07 -0.28 0.776
ResNet34 (CIFAR10) 1 93.33 -0.29 0.786
MobileNetV2 (CIFAR10) 1 93.91 -0.4 0.700
BERT-base (COLA) 4 83.4(1) -0.1(3) 0.78(2)

Figure 1: Linear Realization of Bert-base Model. Each panel shows a linearization of a Bert-base transfer
model, initialized from a different seed. An invertible mapping is fit between the kGLM and NN to transform the
kGLM’s final activations to the NN’s, described in Appendix L. Both τK and the Coefficient of Determination
(R2) are shown for each model.

Table 2: Comparison across surrogate feature spaces. For ResNet18 and Bert-base experiments we report
the faithfulness as τK , test-accuracy-differential (TAD), and misclassification coincidence rate (RMiss) for
each kernel function: the trace-NTK (trNTK), unnormalized trace-NTK (trNTK0, the projection trace NTK
(proj-trNTK), the projection pseudo NTK (proj-pNTK), the embedding kernel (Em) and the conjugate kernel
(CK). If available, we report leading digit of error (standard error of the mean) as a parenthetical.

Exp Name Metric κ

trNTK trNTK0 proj-trNTK proj-pNTK Em CK

ResNet18
τK 0.776 0.658 0.737 0.407 0.768 0.630
TAD (%) -0.30 -0.52 -0.20 -0.30 -0.32 -0.20
RMiss 0.75 0.65 0.77 0.71 0.80 0.73

Bert-base
τK 0.809(9) 0.5(1) 0.800(9) 0.72(2) 0.65(2) 0.52(4)
TAD (%) +0.1(3) +0.6(2) +0.1(2) +0.5(2) -0.3(5) -0.1(1)
RMiss 0.67(2) 0.71(5) 0.61(2) 0.86(3) 0.86(2) 0.91(2)

create a “clean” test dataset from CIFAR10’s normal test dataset, and a “poisoned” test dataset by
placing yellow squares into each image of CIFAR10’s test dataset. At test time, perturbed test data
tricks the model into producing labels of the targeted label. We train a model on this poisoned dataset,
compute each kernel function, measure faithfulness, and report our results in Table 3. We find that the

7

Published as a conference paper at ICLR 2024

Figure 2: Overview of Using Kernel Functions for Data Attribution A) An image from the test dataset of
CIFAR10 is chosen. B) We propagate the test image through the NN and plot the mean attribution of the training
points from each class for each output neuron. C) Zooming into the neuron representing class “dog”, we view
the distribution of attributions as a modified box-plot with central lines the mean and outliers shown as flier
points. The mean lines are always observed to be within the inner quartile, suggesting that no sparse number of
datapoints dominate the central value, and therefore, do not dominate the data attribution.

trNTK is most faithful to the NN on the clean test data, but the proj-pNTK is most faithful when
evaluated on the poisoned test data. Overall in comparison to the non-poisoned set of experiments
each kGLM is less faithful, except for the proj-pNTK. We also point out that the kGLM with overall
highest faithfulness are the kernel functions with our cosine-normalization applied.

In addition, we show an application of our surrogate modeling approach enabled by kernel-techniques.
Forensics models trace NN behavior on unseen poisoned data to the poisoned data source in a training
set (Shan et al., 2022). We treat each kernel as a forensic model: for each image in the clean and
poisoned test dataset we compute the top 5 most similar training datapoints. If 3/5 of these training
datapoints are poisoned we flag the test image as poisoned. In doing so, we can filter poisoned images
from clean images. We report the performance of our forensic models using precision and recall
(see Appendix G) in table 3. Each kernel, except for the conjugate kernel, are all comparable in
performance as forensics models. Appendix N provides examples of multiple forensic models acting
on poisoned and clean versions of CIFAR10 data.

Table 3: Poisoned data attribution forensics. We compute each kernel function between all poisoned training
data and the clean test dataset. We report τK , TAD, and RMiss between the kGLM and NN for both the poisoned
(poi.) and clean set of unseen test images. Finally, we evaluate each kernel as a filter for identifying unseen
poisoned data through high similarity to poisoned training data and report the performance as Precision and
Recall.

Method Precision (%) Recall (%) τK TAD (%) RMiss poi. τK poi. TAD(%) poi. RMiss

trNTK 99.99 100.00 0.643 +0.45 0.44 0.569 +0.09 0.12
trNTK0 99.99 99.97 0.344 +0.87 0.20 0.125 +0.13 0.01
proj-trNTK 99.99 99.97 0.565 +0.09 0.45 0.418 +1.3 0.12
proj-pNTK 99.99 100.00 0.554 +0.07 0.59 0.665 -1.3 0.11
Embedding 99.71 100.00 0.430 -2.73 0.07 0.261 -13.98 0.22
CK 1.65 50.61 0.552 -3.50 0.38 0.454 -81.25 0.00

8

Published as a conference paper at ICLR 2024

5 SUMMARY AND CONCLUSIONS

Impact of Linear Surrogate Modeling for Explainability. We have shown evidence supporting
the choice of the trNTK as a consistently faithful choice of kernel function for a surrogate model
(table 1). We made this determination by measuring the correlation between the kGLM surrogate and
the NN, which is an improvement over past methodologies. Our choice of a linear model as surrogate
model allows us to separate the attribution terms from each training datapoint, and ensures the central
value of the attribution distribution is coupled to the kGLM’s logit, and therefore the NN which it
approximates (Section 2). We observed that the highest attributed images from the trNTK have
relatively small mass compared to the bulk contribution, suggesting that the properties of the bulk,
rather than a few outliers, are the main source driving decision making. We believe this is a result
of the cosine normalization we apply in our definition of the trNTK, as the unnormalized trNTK0

shows a much tighter IQR of attribution (see appendix M.1.2), and in fact, this pattern exists between
all normalized vs un-normalized kernel functions. This directly visualizes the intuition that the cosine
normalization “smooths-out” the attribution (Akyürek et al., 2022). Because the properties of the bulk
drive classification, we conclude that presenting the top highest attribution training images without
the context of the entire distribution of attribution is potentially misleading as a form of explanation,
i.e., the assumption of sparsity in explain-by-example strategies is misguided.

Comparison of Kernel Functions for Surrogate Models. Our quantitative experiments showed
the trNTK as more consistently correlated to the NN model compared to the unnormalized trNTK,
Embedding kernel, and CK. We observe qualitative differences between these kernel’s attributions
(Appendix M.1) and which training datapoints have highest similarity (Appendix N). As a qualitative
comparison between kernel functions, in Appendix M.2 we visualize the top-5 most similar datapoints
evaluated by each kernel function. This further reveals the similarities and differences between kernel
functions. Overall, we observe that the trNTK is more sensitive to conceptual similarities between
test and train examples than the CK. The embedding kernel is consistently sensitive to background
pixel values, though this may be an artifact from our specific choice of layers to sample from. The
proj-trNTK, as expected, follows closely with the regular trNTK. These differences could be used
to tied to interesting phenomena: for example, because the CK is computed from the final embedding
it is likely more sensitive to the effects of neural-collapse (Papyan et al., 2020) than the NTK, which
is computed from Jacobians of weight tensors across the entire architecture. We believe this fact
explains why the highest similar images measured by the trNTK are more conceptually tied to the
specific test image, while the CK has collapsed that inner-class variance away.

Computational Feasibility. Finally, we comment on the computational feasibility of each of the
kernel functions. Table 4 reports the time to compute each kernel, and Appendix F shows that
the empirical residual distribution between the trNTK and proj-trNTK falls exponentially. The
projection-trNTK and projection-pNTK have efficient computation thanks to software made available
in Park et al. (2023). The full trNTK is by far the slowest. As implemented, our trNTK computation
was layerwise (see Appendix D), except in the Poisoning experiment, which we now believe is
sub-optimal. Both the trNTK and projection-trNTK computation scales with the number of output
neurons linearly, so for models with large output space the projection-pNTK may remain the only
feasible option. Finally, because the residuals between the trNTK and proj-trNTK are small and
decay rapidly, we believe using the projected variants are well justified. In total, we believe the
differences between the trNTK and proj-trNTK are small enough that for small number of outputs,
our recommendation is to utilize the proj-trNTK. Finally, see Appendix A for limitations.

Table 4: Computational Complexity of Large Model Experiments. We report time to compute each of the
trNTK, proj-trNTK, and proj-pNTK for the large model large dataset experiments are shown.

Exp Name trNTK proj-trNTK proj-pNTK

ResNet18 389h 1.12h 7.4m
BertBase 1200h 22m 12m
Poisoning 50h 9.3m 1m

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

The authors thank Panos Stinis, Mark Raugas, Saad Qadeer, Adam Tsou, Emma Drobina, Amit Harlev,
Ian Meyer, and Luke Gosink for varied discussions while preparing the draft. This work would not
have been possible without the help from Wendy Cowley in helping navigate the release protocol. The
authors thank Davis Brown for discussions regarding TRAK. A.W.E., Z.W., S.C., N.F., and T.C. were
partially supported by the Mathematics for Artificial Reasoning in Science (MARS) initiative via
the Laboratory Directed Research and Development (LDRD) Program at PNNL and A.D.S. and
T.C. were partially supported by the Statistical Inference Generates kNowledge for Artificial Learners
(SIGNAL) Program at PNNL. A.D.S. was partially supported by the US NSF under award CNS-
2148104. PNNL is a multi-program national laboratory operated for the U.S. Department of Energy
(DOE) by Battelle Memorial Institute under Contract No. DE-AC05-76RL0-1830.

REFERENCES

Ekin Akyürek, Tolga Bolukbasi, Frederick Liu, Binbin Xiong, Ian Tenney, Jacob Andreas, and
Kelvin Guu. Towards tracing knowledge in language models back to the training data. In
Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 2429–2446, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.findings-emnlp.180.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. In The Eleventh International Con-
ference on Learning Representations, 2023. URL https://openreview.net/forum?id=0g0X4H8yN4I.

Mauricio A. Alvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for Vector-Valued Functions:
a Review. arXiv e-prints, art. arXiv:1106.6251, June 2011. doi: 10.48550/arXiv.1106.6251.

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners: The
silent alignment effect. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=1NvflqAdoom.

Randall Balestriero and Richard Baraniuk. A spline theory of deep networks. In International
Conference on Machine Learning, 2018.

Robert G. Bartle and Donald R. Sherbert. Introduction to Real Analysis (4th Edition). Wiley, 2011.

Brian Bell, Michael Geyer, David Glickenstein, Amanda Fernandez, and Juston Moore. An exact
kernel equivalence for finite classification models, 2023.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter
Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar
Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal
Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa,
Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles,
Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung
Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu
Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh,
Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori,
Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai
Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi
Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the
Opportunities and Risks of Foundation Models. arXiv e-prints, art. arXiv:2108.07258, August
2021. doi: 10.48550/arXiv.2108.07258.

10

https://aclanthology.org/2022.findings-emnlp.180
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=1NvflqAdoom

Published as a conference paper at ICLR 2024

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
like that: deep learning for interpretable image recognition. Advances in neural information
processing systems, 32, 2019.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When Vision Transformers Outperform ResNets
without Pre-training or Strong Data Augmentations. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=LtKcMgGOeLt.

Lénaïc Chizat, Edouard Oyallon, and Francis R. Bach. On lazy training in differentiable programming.
In Neural Information Processing Systems, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Pedro Domingos. Every model learned by gradient descent is approximately a kernel machine. arXiv
preprint arXiv:2012.00152, 2020.

Adam Dziedzic, Stephan Rabanser, Mohammad Yaghini, Armin Ale, Murat A. Erdogdu, and
Nicolas Papernot. p-DkNN: Out-of-Distribution Detection Through Statistical Testing of Deep
Representations. arXiv e-prints, art. arXiv:2207.12545, July 2022. doi: 10.48550/arXiv.2207.
12545.

Zhou Fan and Zhichao Wang. Spectra of the conjugate kernel and neural tangent kernel for linear-
width neural networks. Advances in neural information processing systems, 33:7710–7721, 2020.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. Advances in Neural Information
Processing Systems, 33:5850–5861, 2020.

Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, and Mark Crowley. Reproducing kernel hilbert space,
mercer’s theorem, eigenfunctions, nystr\" om method, and use of kernels in machine learning:
Tutorial and survey. arXiv preprint arXiv:2106.08443, 2021.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Interna-
tional Conference on Artificial Intelligence and Statistics, 2011. URL https://api.semanticscholar.
org/CorpusID:2239473.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230–47244, 01 2019. doi: 10.1109/ACCESS.
2019.2909068.

Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Kentaro Inui. Evaluation of similarity-based
explanations. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=9uvhpyQwzM_.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. 2015 IEEE International Conference on Computer
Vision (ICCV), pp. 1026–1034, 2015a. URL https://api.semanticscholar.org/CorpusID:13740328.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015b.

David Hilbert. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Number 3.
BG Teubner, 1912.

Thomas Hofmann, Bernhard Schölkopf, and Alex Smola. Kernel methods in machine learning.
Annals of Statistics, 36:1171–1220, 2007.

11

https://openreview.net/forum?id=LtKcMgGOeLt
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://api.semanticscholar.org/CorpusID:2239473
https://api.semanticscholar.org/CorpusID:2239473
https://openreview.net/forum?id=9uvhpyQwzM_
https://openreview.net/forum?id=9uvhpyQwzM_
https://api.semanticscholar.org/CorpusID:13740328

Published as a conference paper at ICLR 2024

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary Mathematics, 26, 1984. URL http://stanford.edu/class/cs114/readings/JL-Johnson.
pdf.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, pp. 1885–1894. PMLR, 2017.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

Vivian Lai, Chacha Chen, Q Vera Liao, Alison Smith-Renner, and Chenhao Tan. Towards a science
of human-ai decision making: a survey of empirical studies. arXiv preprint arXiv:2112.11471,
2021.

Matthew L. Leavitt and Ari Morcos. Towards falsifiable interpretability research. arXiv e-prints, art.
arXiv:2010.12016, October 2020. doi: 10.48550/arXiv.2010.12016.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=B1EA-M-0Z.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Journal of Statistical Mechanics: Theory and Experiment, 2020(12):
124002, December 2020. doi: 10.1088/1742-5468/abc62b.

Rongmei Lin, Weiyang Liu, Zhen Liu, Chen Feng, Zhiding Yu, James M. Rehg, Li Xiong, and
Le Song. Regularizing neural networks via minimizing hyperspherical energy. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6916–6925, 2019.

Philip M Long. Properties of the after kernel. arXiv preprint arXiv:2105.10585, 2021.

Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Evolution of neural tangent kernels
under benign and adversarial training, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. arXiv e-prints, art.
arXiv:1711.05101, November 2017. doi: 10.48550/arXiv.1711.05101.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. ICLR, 2019.

Mohamad Amin Mohamadi and Danica J. Sutherland. A Fast, Well-Founded Approximation to
the Empirical Neural Tangent Kernel. arXiv e-prints, art. arXiv:2206.12543, June 2022. doi:
10.48550/arXiv.2206.12543.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted Boltzmann machines.
In International Conference on Machine Learning, 2010.

Roman Novak, Jascha Sohl-Dickstein, and Samuel S Schoenholz. Fast finite width neural tangent
kernel. In International Conference on Machine Learning, pp. 17018–17044. PMLR, 2022.

Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. What can linearized
neural networks actually say about generalization? Advances in Neural Information Processing
Systems, 34:8998–9010, 2021.

Nicolas Papernot and Patrick McDaniel. Deep k-Nearest Neighbors: Towards Confident, Interpretable
and Robust Deep Learning. arXiv e-prints, art. arXiv:1803.04765, March 2018.

12

http://stanford.edu/class/cs114/readings/JL-Johnson.pdf
http://stanford.edu/class/cs114/readings/JL-Johnson.pdf
https://openreview.net/forum?id=B1EA-M-0Z

Published as a conference paper at ICLR 2024

Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. CoRR, 2016a.

Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay Celik, and
Ananthram Swami. Practical black-box attacks against deep learning systems using adversarial
examples. CoRR, 2016b.

Vardan Papyan, Xuemei Han, and David L. Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences of the United
States of America, 117:24652 – 24663, 2020.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. TRAK:
Attributing Model Behavior at Scale. arXiv e-prints, art. arXiv:2303.14186, March 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Huy Phan. huyvnphan/pytorch_cifar10, January 2021. URL https://doi.org/10.5281/zenodo.4431043.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. In Advances in Neural Information Processing Systems,
volume 33, pp. 19920–19930. Curran Associates, Inc., 2020.

Saad Qadeer, Andrew Engel, Adam Tsou, Max Vargas, Panos Stinis, and Tony Chiang. Efficient
kernel surrogates for neural network-based regression. ArXiv, abs/2310.18612, 2023. URL
https://api.semanticscholar.org/CorpusID:264590537.

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Feature
learning in neural networks and kernel machines that recursively learn features. arXiv preprint
arXiv:2212.13881, 2022.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

G.P.J. Schmitz, C. Aldrich, and F.S. Gouws. Ann-dt: an algorithm for extraction of decision trees
from artificial neural networks. IEEE Transactions on Neural Networks, 10(6):1392–1401, 1999.
doi: 10.1109/72.809084.

Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y Zhao. Poison forensics: Traceback of
data poisoning attacks in neural networks. In 31st USENIX Security Symposium (USENIX Security
22), pp. 3575–3592, 2022.

Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30:1958–1970, 2008.

Che-Ping Tsai, Chih-Kuan Yeh, and Pradeep Ravikumar. Sample based explanations via generalized
representers. ArXiv, abs/2310.18526, 2023. URL https://api.semanticscholar.org/CorpusID:
264590303.

Nikolaos Tsilivis and Julia Kempe. What can the neural tangent kernel tell us about adversarial
robustness?, 2023.

13

https://doi.org/10.5281/zenodo.4431043
https://api.semanticscholar.org/CorpusID:264590537
https://api.semanticscholar.org/CorpusID:264590303
https://api.semanticscholar.org/CorpusID:264590303

Published as a conference paper at ICLR 2024

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 1999.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Nikhil Vyas, Yamini Bansal, and Preetum Nakkiran. Limitations of the NTK for Understanding
Generalization in Deep Learning. arXiv e-prints, art. arXiv:2206.10012, June 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=rJ4km2R5t7.

Ren Wang, Tianqi Chen, and Alfred Hero. Deep Adversarially-Enhanced k-Nearest Neighbors. arXiv
e-prints, art. arXiv:2108.06797, August 2021. doi: 10.48550/arXiv.2108.06797.

Zhichao Wang, Andrew Engel, Anand Sarwate, Ioana Dumitriu, and Tony Chiang. Spectral evolution
and invariance in linear-width neural networks. arXiv preprint arXiv:2211.06506, 2022.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2018.

Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict how
real-world neural representations generalize. In International Conference on Machine Learning,
pp. 23549–23588. PMLR, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. HuggingFace’s Transformers: State-of-
the-art Natural Language Processing. arXiv e-prints, art. arXiv:1910.03771, October 2019. doi:
10.48550/arXiv.1910.03771.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. ArXiv, abs/1708.07747, 2017.

Fumeng Yang, Zhuanyi Huang, Jean Scholtz, and Dustin L Arendt. How do visual explanations
foster end users’ appropriate trust in machine learning? In Proceedings of the 25th International
Conference on Intelligent User Interfaces, pp. 189–201, 2020.

Greg Yang and Edward J. Hu. Tensor Programs IV: Feature learning in infinite-width neural networks.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 11727–11737.
PMLR, 18–24 Jul 2021.

Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection
for explaining deep neural networks. Advances in neural information processing systems, 31, 2018.

14

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

Published as a conference paper at ICLR 2024

A LIMITATIONS

We point out previous works using support vector machines (SVM) kernel surrogate models report
limitations that we believe extend to kGLM models. We know of two such limitations. We found
that SVM surrogate models fail to replicate NN behavior under gradient-based adversarial attacks
Appendix J. In addition, SVM surrogate models do not have the same scaling relationships as
underlying NNs (Vyas et al., 2022). Our conclusions are limited to kGLM surrogate models; an
interesting follow-on work would investigate using kernel functions in K-Nearest Neighbors surrogate
models which may recover a sparse explanation.

A fundamental limitation of our choice of Kendall-τ was discussed in section 3 and we expand upon
it here. Kendall-τ requires a set of scalars, which forces us to reduce the naturally vector output
space of classification networks to a single value. We choose to use the logit representing the correct
ground-truth class. This is reasonable given that the confidence given by the neural network in
the correct class is an interesting behavior with consequences to the classification task; however,
this choice does not leverage the total amount of information given by the output soft-max vector.
To compensate for this, we report the misclassification coincidence rate, RMiss, which utilizes the
intuition that coupled models should also be wrong in the same way, at the same time. While this
added metric provides an additional powerful line of evidence demonstrating the coupling between
kGLM and NN, it also clouds our analysis on which Kernel function represents the best choice.
Therefore future work should continue to improve upon Kendall-τ as a metric for faithfulness.

While many explainability techniques now exist, its not always clear how useful any technique
actually is until a human reviewer attempts to utilize the technique. In this work we do not perform
any human subjects testing to evaluate each kernel, but in principle this would be an interesting
direction for future work.

This work’s premise is limited in that we have no guarantee that the surrogate model is performing
“reasoning” in the same manner as the underlying neural network. We have only worked to establish
that the kGLMs are highly coupled to NNs and evaluate this coupling between different choices of
kernel functions. Because we find evidence for a high correlation between NN and kGLM models,
we suggest that structure of kGLMs serve as a potential explanation of NNs in a way that connect
decisions made on new inputs to specific training data. In the most limited view of this work, this is
simply a fundamental assumption that must be empirically evaluated for each new network-kGLM
pair. Follow on work could look to compute the eNTK at multiple times throughout training to form
an approximation to the path kernel (Domingos, 2020).

Finally, our evaluations between the trNTK and the pNTK are limited in extent to which either are
a true approximation of the eNTK. For example, we are guaranteed that the tr(trNTK) tr(eNTK)
at all times, but the tr(pNTK) does not necessarily equal the tr(eNTK) at all times. An interesting
direction of future work would be to evaluate to what extent the trNTK reproduced the eNTK in a
similar manner as Mohamadi & Sutherland (2022). In any case, given the computational difficulty
of the eNTK we believe the more interesting questions are for what behavior/phenomena are the
approximations “close-enough” to model the eNTK. This has recently been explored in Qadeer et al.
(2023).

B DEFINITION OF KERNELS

In this Appendix we provide the definition of each of the kernel functions evaluated. For convenience
we restate the definition of the trNTK.

trNTK Recall the definition of the total gradient with respect to θ at datapoint xi by

g(xi;θ)
c = ∇θF

c(xi;θ).

Then the trNTK evaluated at datapoints xi and xj is given by

trNTK(xi,xj) :=

C∑
c=1

⟨gc(xi;θ), g
c(xj ;θ)⟩

(
C∑

c=1
||gc(xi;θ)||2)

1
2 (

C∑
c=1

||gc(xj ;θ)||2)
1
2

.

15

Published as a conference paper at ICLR 2024

We provide additional details about the exact calculation in Appendix D.

Projection Trace Neural Tangent Kernel. We restate our definition of the proj-trNTK kernel
function:

proj-trNTK(xi,xj) :=

C∑
c=1

⟨Pgc(xi;θ),Pgc(xj ;θ)⟩

(
C∑

c=1
||Pgc(xi;θ)||2)

1
2 (

C∑
c=1

||Pgc(xj ;θ)||2)
1
2

,

We remind the reader that P is a Rademacher or Gaussian random projection matrix ∈ RK×P ,
with K a hyperparameter, P the number of model parameters, and K chosen to be K ≪ P . In all
experiments K = 10240.

Projection Pseudo Neural Tangent Kernel.

proj-pNTK(xi,xj) :=

⟨P
C∑

c=1
gc(xi, θ),P

C∑
c=1

gc(xj , θ)⟩

||P
C∑

c=1
gc(xi, θ)|| · ||P

C∑
c=1

gc(xj , θ)||

Embedding Akyürek et al. (2022) defines the embedding kernel, which we restate here. The
embedding kernel is computed from the correlation of the activations following each layer. Let
λℓ(x ;θ) be the output of the ℓ-th hidden layer of F (x ;θ). We denote the ℓ-th embedding kernel at
datapoints xi and xj by

Eℓ(xi,xj) =
⟨λl(xi ;θ), λl(xj ;θ)⟩
∥λl(xi ;θ)∥∥λl(xj ;θ)∥

.

Let the full embedding kernel be defined by the normalized sum over the unnormalized embedding
kernel at each layer of the NN

E(xi,xj) =

∑L
ℓ=1⟨λℓ(xi ;θ), λℓ(xj ;θ)⟩√∑L

ℓ=1 ∥λℓ(xi ;θ)∥2 ∥λℓ(xj ;θ)∥2
.

Embedding kernels are an interesting comparison for the data attribution task when we consider
the prominent role they play in transfer learning and auto-encoding paradigms. In both, finding an
embedding that can be utilized in down-stream tasks is the objective.

Conjugate Kernel We utilize an the empirical conjugate kernel (CK) to compare to the trNTK. Let
the normalized CK be defined by

CK(xi,xj) =
⟨λL(xi ;θ), λL(xj ;θ)⟩
∥λL(xi ;θ)∥∥λL(xj ;θ)∥

.

The CK is an interesting comparison for a couple of reasons: first, for any network that ends in a
fully connected layer, the CK is actually an additive component of the trNTK; therefore, we can
evaluate whether a smaller amount of the total trNTK can accomplish the same task. Second, the
CK is computed from the final feature vector before a network makes a decision; the NN is exactly a
linear model with respect to this final feature vector. NN architectures typically contain bottlenecks
that project down to this final feature vector. These projections remove information. While that
information might be of no use to the classification task, it may be useful for the attribution task. We
can think of the the final information presented to the NN as the CK, and the information contained
before these projections as the trNTK, though more work is needed to formalize and explore this
comparison.

Unnormalized Pseudo Neural Tangent Kernel To evaluate the effect of the normalization in the
trNTK definition we will evaluate the kernel without normalizing. let the unnormalized trNTK be
defined as:

trNTK0(xi,xj) = g(xi;θ)
⊤g(xj ;θ).

While neural tangent kernels are not typically cosine-normalized kernels we were drawn to investigate
such normalized kernels for a few reasons: Akyürek et al. (2022) remarked that cosine normalization

16

Published as a conference paper at ICLR 2024

Figure 3: Geometric intuition behind the trNTK. A NN function is evaluated at two points creating
surfaces F (xi ;θ) and F (xj ;θ). These surfaces are shown with a tangent hyper plane at the same
point (θ) in parameter space coinciding with the end of training. The Jacobian vector defines the
tangent hyperplane’s orientation in parameter space. The trNTK is a kernel whose (i, j)-th element
is the cosine angle between averaged Jacobian vectors. The more similar the local geometry between
xi and xj local to θ in parameter-space , the higher the value of trNTK(xi,xj).

could prevent training data with large magnitude Jacobian vectors from dominating the kernel,
and Hanawa et al. (2021) notes a cosine-similarity kernel achieves the best performance among
alternative kernels on a data attribution task. Key motivators for our study included that the cosine
normalized values are intuitive geometrically, and that it is standard practice to ensure feature matrices
such as κ are in a small range (such as [-1,1]) for machine learning.

C GEOMETRIC INTUITION BEHIND NEURAL TANGENT KERNELS

In figure 3 we provide a pictorial representation of the geometric interpretation behind the trNTK.

D ADDITIONAL DETAILS REGARDING THE TRACE NEURAL TANGENT
KERNEL

In this Appendix we provide an expanded definition of the trNTK that highlights how the trNTK is
actually computed from a series of individual contributions from each learnable tensor. This layerwise
decomposition has been pointed out in previous work (Novak et al., 2022). Let θl be the parameter
vector consisting of only the parameters from the l-th layer. Let the number of parameters in the
l-th layer be pl. A Jacobian is a vector of first-order partial derivatives of the NN with respect to the
parameters. We will specify each Jacobian through the c-th scalar function (equivalently, c-th output
neuron) for the parameters in the l-th layer as:

gc
l (xi) =

∂F (xi ;θ)

∂θl
∈ R1×Pl . (9)

Note that we have intentionally broken our notation for the vector by using the Gothic capital g for
the Jacobian vector. We do this to avoid confusion with the lowercase j used as an index. Let gl(xi)
be the concatenation of all such gc

l (xi) for all c ∈ {1, 2, . . . , C}:

gl(xi) =
[
g1
l (xi),g

2
l (xi), . . . ,g

C
l (xi)

]
∈ R1×CPl . (10)

Let Jl(X) be the matrix formed from column vectors gl(xi)
⊤ over each training data point xi,

where i ∈ {1, 2, . . . , N}:

Gl(X) =
[
gl(x1)

⊤,gl(x2)
⊤, . . . ,gl(xN)⊤

]
∈ RCPl×N . (11)

17

Published as a conference paper at ICLR 2024

Let the l-th unnormalized pseudo-Neural Tangent Kernel, or trNTKl, be the Gram matrix formed
from the products of Jl(X) matrices:

trNTK0
l = Gl(X)⊤Gl(X) ∈ RN×N . (12)

As a Gram matrix, trNTK0
l is symmetric and positive semi-definite. Let trNTK0 ∈ RN×N be the

matrix formed from summing the contributions from all trNTK0
l . Consider

trNTK0 =

L∑
l=1

trNTK0
l ∈ RN×N . (13)

Here, trNTK0 itself is symmetric, as the sum of symmetric matrices is symmetric. Finally, we must
apply the normalization. Let the matrix B be defined as the element-wise product of the trNTK with
the identity:

B = I ⊙ trNTK0. (14)
Then the normalized trNTK can be computed form the unnormalized trNTK by the following
relationship:

trNTK = B
−1
2 trNTK0 B

−1
2 . (15)

The relationship between the full neural tangent kernel and the trNTK is described in Appendix E.

E RELATIONSHIP TO THE EMPIRICAL NTK

To calculate the full eNTK, first find the c-th class Jacobian vector, gc, with respect to θ backwards
through the network for each xi in the data matrix X . Explicitly, the c-th logit’s Jacobian i-th
column-vector corresponds to datapoint xi and is defined:

gc(xi) =
∂F c(xi,θ)

∂θ
. (16)

From which we can define the Jacobian matrix as:

Gc = [gc(x0), g
c(x1), . . . , g

c(xN)] (17)

The eNTK is the block-matrix whose (k,j)-th block, where both k, j = {1, 2, . . . , C}, is the linear
kernel formed between the Jacobians of the (k,j)-th logits:

NTKk,j = (Gj)⊤(Gk). (18)

The NTK is therefore a matrix ∈ RCN×CN . The relationship between the unnormalized trNTK and
the NTK is simply

trNTK0 =

C∑
c=1

NTKc,c. (19)

We chose to study the trNTK instead of the NTK for simplicity, computational efficiency, and
reduced memory footprint. Follow on work could attempt to use the entire NTK to form the surrogate
models. We were additionally motivated by the approach taken in Chen et al. (2022) and Chen et al.
(2022), and we refer the reader to Mohamadi & Sutherland (2022) for a deeper discussion of the
qualities of similar approximations.

F NOTES ON THE PROJECTED VARIANTS OF THE NTK

For TRAK, Park et al. (2023) utilized the Johnson Lindenstrauss lemma (Johnson & Lindenstrauss,
1984) to justify the use of the projection matrix K. The Johnson Lindenstrauss lemma bounds the
error between any two vectors and the same two vectors projected under a projection matrix P .
The lemma can be used to show a bound on the cosine similarity between two vectors and two
projected vectors (Lin et al., 2019). However, this bound relates the probability of the residual
for all vectors being less than some small ϵ. From an applied perspective we might care only that
the residuals of cosine similarity are small with high probability. We empirically observe that the

18

Published as a conference paper at ICLR 2024

(a) (b)

Figure 4: trNTK and proj-trNTK cosine-similarity residuals fall exponentially. For both
ResNet18 Eq. 4a and Bert-base Eq. 4b we plot the cumulative histogram of residuals between
the trNTK and proj-trNTK. The orange line is an exponential function with k=10240. The orange
line is fit “by eye” rather than some best-fit, the objective being to reference the exponential shape of
the residual distribution.

absolute residuals of of the trace-NTK and proj-trNTK fall away as exp(−x ∗ β), where β is the
decay rate. In Figures 4a and 4b, we show the residuals for our ResNet18 and Bert-base experiments,
with an overlaid exponential decay model for reference. We are unaware of a formal proof that
would dictate the form of the distribution of residuals, but we use these plots to empirically justify
the exploration of the projected-variants as close approximations for the original kernels with large
enough K. Intuitively, we expect that there is a trade-off between size of the dataset, size of the model,
and K.

G FORMAL DEFINITION OF EVALUATION METRICS

In this Appendix we restate all the metrics used throughout this study.

Kendall-τ rank correlation

For a paired sequence Sτ = {(a1, b1), . . . , (aN , bN)} a pair (ai, bi) and (aj , bj) with i ̸= j are
concordant if either both ai > aj and bi > bj or ai < aj and bi < bj . Otherwise, the pair is
discordant. We count the total number of concordant, NC, and number of discordant pairs, ND. Then,
τK is defined as

τ(Sτ) =
(NC−ND)

NC +ND
.

Test accuracy differential (TAD) We track the test accuracy differential, or TAD, given by the
difference between the kGLM and NN’s test accuracy,

TAD = TestAcckGLM − TestAccNN, (20)

to demonstrate that kGLM have similar performance to the underlying NN. A value of 0 is preferred.

Misclassification Coincidence Rate we compute the intersection of misclassifications between each
kGLM model and the NN where both the NN and kGLM predict the same class, over the union of all
misclassifications of either the NN or kGLM models as a decimal. A value of 1.0 indicates that in all
cases where the NN is wrong, the kGLM is also wrong and predicts the same class as the NN.

RMiss =
|{f(xi, θ) ̸= zi} ∩ {kGLM(xi) ̸= zi} ∩ {f(xi, θ) = kGLM(xi)}|

|{f(xi, θ) ̸= zi} ∪ {kGLM(xi) ̸= zi}|
. (21)

19

Published as a conference paper at ICLR 2024

Precision and Recall To evaluate whether our attributions are performant at discriminating between
perturbed and unperturbed test datapoints, we use precision as a measure of how valid the flags given
by our attribution model are, and recall as a measure of how complete these attributions were at
identifying poisoned test data. A perfect model would have both precision and recall = 1. Precision
and recall are defined:

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)
,

where TP is the true positive rate, FP is the false positive rate, and FN is the false negative rate.

Coefficient of Determination R2 The coefficient of determination is used as a goodness-of-fit to
assess the viability of our linearization of the NN (described below in Appendix L). It is possible
to have a high τK but small R2 if the choice of invertible mapping function is wrong or if the fit of
said function does not converge. Such cases can be inspected visually to determine the relationship
between the logits.

For a sequence of observations (in the context of this paper, the natural logarithm of probability of the
correct class for the NN and kGLM) SR2 = {(x1, y1), . . . , (xN , yN)}, let the sample average of the
yi observations be ȳ = 1

N

∑N
i yi. Then let the total sum of squares be SStot =

∑N
i (yi − ȳ)2, and

the sum of squared residuals be SSres =
∑N

i (yi − xi)
2. Then let the goodness-of-fit R2 function be

defined by

R2(SR2) = 1− SSres
SStot

.

H ALTERNATIVE MEASURES OF CORRELATION

To justify our choice of Kendall-τ as the measure of correlation, we compare to other choices of
correlation, the Pearson-R and Spearman-ρ. We wrote that Pearson-R is unsuitable as a measure of
correlation because it conflates the covariance between models with the correlation between models.
Consider the thought experiment to see this is true: FA and FB are independent models, both of
which for any input Xi are correct at a rate PA and PB , with PA and PB nearly one. When the
models are correct, the output is Yi + N(0, σ), with Yi ∈ {0, 1}, and when incorrect are |Yi − 1| +
N(0, σ). Furthermore, assume an even class distribution, and that σ ≪ 1. The result of the paired set
of evaluations from FA and FB is a point cloud with most points centered at 0 and 1, as in figure 5.
Because both models are correct with high probability, the probability that FB’s output is centered at
zero is high if FA’s output is centered at zero; likewise, the probability that FB’s output is centered
at one is high if FA’s output is centered at one. These point clouds act as anchor points that sway
the Pearson-R correlation to values of 1, even though there is no real coupling between the models.
To the point: because the kGLM and NN are highly performant models, we must distinguish from
correlation from this fact and their independence, from true kGLM dependence on the NN itself.
While rank-based correlations are sensitive to this phenomena, the expected value of Kendall-τ would
only be 0.5 in this experiment.

To complete the thought experiment, consider if FB is dependent on FA: FB(Xi) = FA(Xi) +
N(0, σ) (visualized in right panel of figure 5). In the limit σ → 0, we would like to choose the
correlation measure that most slowly converges to 1. This is because we want to maximize the interval
over which out faithfulness measure discriminates between models. We complete the numerical
experiment and visualize the result in figure 6, showing the Kendall-τ converges to value one slowest.

I USE THE NN OUTPUTS FOR THE KGLM TARGETS

To evaluate our methodology of training the kGLM using the ground truth labels, we compare to
training using the neural network model output as the label for the kGLM. This is a reasonable
choice, frameing the surrogate model’s learning as a teacher-student model. Contemporaneous work
investigates kernel based data attribution using this method, (Tsai et al., 2023). We report the result of
this experiment in table 5. Compared to our methodology (table 2), We generally see an training with

20

Published as a conference paper at ICLR 2024

Figure 5: Distinguishing between independence but high covariance from true dependence Left:
Plotting the confidence-confidence scatter plot using two independent models which both have a
high probability of correct classification results in a point cloud with high density at (0,0) and (1,1).
These point clouds act as anchors that force the Pearson correlation measure to be nearly 1, but
because there is no underlying structure the rank-correlation τ is only 0.5. Right: We visualize the
dependent case, which is an ideal form of our surrogate model definition. We see that the anchor point
structure is still present forcing the Pearson to be nearly 1, and now the rank correlation τ has grown
to 0.75. Our main point is that Kendall-τ is not so affected by the issue of separating covariance from
dependence as Pearson.

Figure 6: Comparison of Rate of Convergence of Correlation Measures. Using the dependent
models thought experiment, we reduce the σ, or error (x-axis), and plot the correlation value. The
Kendall-τ is the slowest to converge to values of 1, meaning its the most sensitive measure of
correlation over the interval studied.

21

Published as a conference paper at ICLR 2024

Table 5: Using the NN outputs as labels for training kGLM. We report our modified experiment
results for ResNet18 and Bert-base. For the Bert-base model where multiple models are trained, we
report the leading digit of the standard error of the mean as a parenthetical.

Exp Name Metric κ

trNTK trNTK0 proj-trNTK proj-pNTK Em CK

ResNet18 τK 0.44166 * 0.4443 0.6707 0.47159 0.62874
TAD (%) -0.66 * -0.68 -0.01 -0.18 -0.02

Bert-base τK 0.50(3) 0.31(2) 0.50(3) 0.43(4) 0.40(4) 0.38(4)
TAD (%) 0(2) 0.1(2) 0(2) -0.2(1) -0.9(2) -0.3(2)

the original ground truth labels increases Kendall-τ . We speculate this is because the optimization
problem are shared between the kGLM and the NN training if the original ground truth labels are
utilized.

J ADVERSARIAL ATTACKS

We trained NN models on the MNIST dataset. In order to avoid combinatorial considerations, the
classifier was trained on just two classes– we used 7’s and 1’s because these digits look similar. Subse-
quently, we extracted the NTKs and used these kernels to train SVMs. To attack both types of models,
we considered ℓ∞ perturbations, computed using the projective gradient descent algorithm (Madry
et al., 2019) with 7 steps (PGD-7). Our experiments leverage PyTorch’s auto-differentiation engine to
compute second-order derivatives to effectively attack the SVMs. In contrast, prior work (Tsilivis &
Kempe, 2023) derived an optimal one-step attack for the NTK at the limit and and used this approxi-
mation to compute adversarial examples. To compare neural nets with kernel regression, (Tsilivis &
Kempe, 2023) compute the cosine similarity between the FGSM adversarial attack and the optimal
1-step attack for kernel machine, computed analytically by taking the limit for an infinitely wide
neural net. Their results show (Figures 3 and 7 of (Tsilivis & Kempe, 2023)) that throughout training,
the cosine similarity of this optimal 1-step attack and the empirical attack on the neural net decreases.
This observation suggests that in practice, the NTK limit is not a good surrogate model for a neural
net under an adversarial attack. Our plots (Figure 7) confirm this observation as SVMs are much
more vulnerable to attacks that the associated neural nets. To better compare with prior work, we
trained our SVMs using NTKs rather than pNTKs.

In considering security of neural nets, attacks are categorized as either white-box or black-box. White-
box attacks assume that the adversary has access to all the weights of a neural net while black box
attacks do not assume that an adversary has this information. A common strategy for creating a black
box attack is training an independent NN and then using perturbations calculated from attacking this
new NN to attack the model in question. Such attacks are called transfer attacks; see (Papernot et al.,
2016b;a) for examples of successful black-box and transfer attacks.

In line with this framework, we test our models against two white-box attacks and a black box attack.
First, we test neural nets and SVMs by directly attacking the models. Next, to better understand
the similarities between a neural net and the associated SVM, we evaluate the SVM on attacks
generated from the associated neural net and the neural net on attacks generated from the associated
SVM. For the black box attacks, we test: 1) neural nets on adversarial examples generated from
independently trained neural nets, 2) SVMs on adversarial examples from SVMs trained with an
NTK from an independently trained neural net, 3) Neural nets on adversarial examples from SVMs
trained with an NTK from and independently trained neural net, 4) SVMs on adversarial examples
from independently trained neural nets.

The error bars for all three figures are on 10 trials. For the black box figure, each model was tested
against 9 other independently trained models; the plotted quantities are the average of all these black
box attacks.

22

Published as a conference paper at ICLR 2024

(a) (b) (c)

Figure 7: Error Under Adversarial Attacks: Eq. 7a White-box attack: Attacking a neural net and
the associated NTK SVM directly. Eq. 7b White-box attack: Attacking a neural net using perturbed
examples for the associated SVM and attacking an NTK SVM by using perturbed examples for the
associated neural net. Eq. 7c Black-box attack: Attacking neural nets and SVMs using perturbed
examples from independently trained SVMs and neural nets. This demonstrates a limitation of our
surrogate model method: we find that the SVM’s performance does not scale the same as the NN’s
performance with increasing perturbation radius, across multiple kinds of attack.

J.1 ADVERSARIAL EXPERIMENT DETAILS

When performing PGD to find adversarial examples to our models, we did not restrict pixel values
of the attacked images to the interval [0, 1]. See (Madry et al., 2019) for more information on
using the PGD algorithm in an adversarial context. Notice that in the PGD algorithm, attacking the
SVM trained with the NTK involves computing second derivatives of the neural net. Due to this
consideration, using ReLUs as neurons in this experiment was impractical– the second derivative of a
piecewise linear function at any point is either zero or non-existent. Hence the nets are constructed
from sigmoid neurons.

The model architecture was 3 fully connected layers of 100 neurons. The models were trained for 100
epochs and with learning rate 10−4 with AdamW optimizer and minibatches of size 64 in PyTorch
on the cross-entropy loss. The error bars in both Figures 7a and 7b figures are computed from the
standard deviation calculated from 10 independent experimental trials set with different random
seeds.

The SVMs were trained using sklearn’s SVM package.

K ADDITIONAL EXPERIMENTAL DETAILS

In this Appendix we detail the specific choice of architecture, hyperparameters, and training times for
each experiment.

K.1 DATASETS

Our experiments utilize common benchmark datasets: MNIST, FMNIST, CIFAR10, and COLA.
we will quickly introduce each in turn. The Modified National Institute of Science Technology
(MNIST) (Lecun et al., 1998) handwritten digit database is a grey-scale image classification dataset
comprised of handwritten numerical digits and label pairs created from combining the National
Institute of Science and Technology special datasets 1 and 3. MNIST has over 50,000 training and
10,000 testing data-label pairs. “Fashion”-MNIST (FMNIST) (Xiao et al., 2017) is another image
classification dataset that was specifically introduced to serve as drop in replacement to MNIST.
It was created by reducing images from an online European fashion catalogue to the same 28x28
pixel resolution as MNIST and to grey-scale. FMNIST has 10 classes of different kinds of garments,
with 7,000 examples of each garment, split into 60,000 training and 10,000 test data. Canadian
Institute for Advanced Research-10 (CIFAR10) is a 10-class supervised image classification dataset
comprised of 32x32 pixel 3-color channel hand-labeled subset of the TinyImages dataset (Torralba
et al., 2008) featuring everyday objects and animals. CIFAR10 is composed of 50,000 training and

23

Published as a conference paper at ICLR 2024

10,000 test data, evenly split among the 10 classes. Finally, the Corpus of Linguistic Acceptability
(CoLA) (Warstadt et al., 2018) is a dataset composed of sentences and labels corresponding to the
grammatical correctness of the sentence compiled from texts on grammar. CoLA includes 9515
training sentences and 1049 test sentences. CoLA was included in the original GLUE (Wang et al.,
2019) set of benchmarks for NLP, which became the de-facto benchmark set of tasks for general
language modeling.

K.2 EXPERIMENTS

K.2.1 100 FULLY CONNECTED MNIST2 MODELS

Using the first two classes of MNIST, (MNIST2), we train 100 independent 4-layer fully connected
NNs using PyTorch. The network layer widths were [100,100,100,1], and each had a Rectified Linear
Unit (ReLU) activation function, except for the final layer. We define all of our networks to terminate
without a final activation for the sake of calculating our trNTK; however, we use the sigmoid link
function to map the activations onto a value we interpret as probability of class 1. As is typical in
NTK parameterization, we divided each activation map by the square root of the preceding layer’s
width. The input space of MNIST was modeled as a 784-size feature vector that we preprocessed
to have values between 0 and 1 by dividing by the maximum pixel value of 255. For simplicity, we
down sampled the test dataset to share an equal amount of class 0 and class 1 examples, giving 980
examples of each class. We initialized the layers using the normal distribution.

Each model instance had the same hyperparameters, architecture, and approximate training time. The
only differences were the initialization given by seed and the stochastic sequence of datapoints from
a standard PyTorch data-loader. We trained our model to minimize the binary cross entropy loss
between the true labels and the prediction function. We chose to optimize our model using stochastic
gradient descent with no momentum and static learning rate 1e-3. Training 100 models sequentially
takes approximately 8 hours on a single A100 GPU.

K.2.2 100 CNN MNIST2, FMNIST2, AND CIFAR2 MODELS

We use the same CNN architecture for our 100 MNIST2, FMNIST2, and CIFAR2 models; for
brevity, we will describe the model once. Each model is a 12-layer NN where the first 9 layers are
a sequence of 2D convolutional layers and 2D Batch Normalization layers. The final 3 layers are
fully connected. The first nine layers are split into three sections operating on equal feature map sizes
(achieved with padding). The first layer in each section is a convolutional layer with kernel size 3 and
padding size 1 followed by a batch normalization layer, followed by a second convolutional layer
with kernel size 3 and padding size 1 but with stride = 2 to reduce the feature map in half. The number
of filters steadily increases throughout each convolutional layer as [8,8,16,24,32,48,64]. After the
convolutional layers, a flattening operation reduces the image dimensions into a 1-dimensional vector.
Next, fully connected layers of widths [256, 256, 1] are applied. After each convolutional layer and
fully connected layer we apply the rectified linear unit (ReLU) activation. Training times for 100
models on MNIST2, CIFAR2, and FMNIST 2 were 15 hours (100 epochs), 5 hours (100 epochs), and
48 hours (200 epochs), respectfully, on a single A100 GPU. The difference in times can be explained
by the different choices of batch size and number of epochs, which were 4, 64, and 4, respectfully.
We chose these batch sizes, and all other hyperparameters, by hand after a small search that stopped
after achieving comparable performance the many examples of models available online for these
benchmark tasks. One oddity we believe worth mentioning is that we subtract the initial model’s
final activation vector for the CIFAR2 model, after observing that this lead to a modest improvement.
Initial LRs were 1e-3 for each model, but the optimizers were chosen as SGD, Adam, and Adam for
MNIST2, CIFAR2, and FMNIST2, respectfully.

K.2.3 4 COLA BERT-BASE MODELS

To train the 4 BERT-base models, we downloaded pre-trained weights available on the HuggingFace
repository for BERT-base no capitalization. We then replaced the last layer with a two-neuron output
fully connected layer using HuggingFace’s API for classification tasks. We set different seeds for
each model instance, which sets the random initialization for the final layer. We train our model
on the COLA dataset for binary classification of sentence grammatical correctness. We train our
model using the the AdamW optimizer (Loshchilov & Hutter, 2017) with an initial learning rate η

24

Published as a conference paper at ICLR 2024

= 2e-5. We allow every layer to update. Training is done over 10 epochs after which the training
accuracy is seen to exceed 99% performance on each model. Training takes a few minutes on an
A100 GPU. Calculating the NTK is achieved by splitting the parameter vector into each learnable
tensor’s contribution, then parallelizing across each tensor. Each tensor’s trNTK computation time
depends upon the tensor’s size. In total the computation takes 1200 GPU hours, on single A100
GPUs.

K.2.4 LARGE COMPUTER VISION MODELS

We downloaded 3 pre-trained model weights files from an independent online repository (Phan, 2021).
ResNet18 and Resnet34 architectures can be found described in He et al. (2015b), and MobileNetV2
can be found described in Sandler et al. (2018). Each model’s trNTK was computed by parallelizing
the trNTK computation across each learnable tensor. the computation time varies as a function of the
learnable tensor’s size, but the total time to compute each of ResNet18, ResNet34, and MobilenetV2
was 389, 1371, and 539 GPU hours, respectfully, on single A100 GPUs.

K.2.5 CNN FOR POISONED DATA EXPERIMENT

We trained a 22 layer CNN with architecture described in the repository alongside Shan et al. (2022)
and restated here. The architecture’s first 15 layers are composed of a 5 layer repeating sequence
of convolution, batch normalization, convolution, batch normalization, and max pooling. After the
15th layer, we flatten the feature vector, apply another max pooling operation, and then apply dropout
with probability 0.2. The next parameterized layers consist of the sequence fully connected layer,
batch normalization, fully connected layer, batch normalization and final fully connected layer. A
ReLU activation is applied between each hidden layer. The repository of Shan et al. (2022) generates
BadNet cifar10 images as a data artifact. We translate their architecture to PyTorch and train our own
model. The model was trained to minimize the cross entropy loss on the poisoned image dataset
with stochastic gradient descent with an initial learning rate of 1e-2. The total number of parameters
for this model is 820394. We take a different approach to calculate the trNTK of this model and
choose not to parallelize the computation across each learnable tensor. The total trNTK calculation
completed in 8 hours on a single A100 GPU.

K.3 COMPUTING EMBEDDING KERNELS

To compute an embedding kernel we must make a choice of what constitutes a “layer”. This has some
slight nuance, as for example, the most complete Embedding kernel would be computed after every
modification to the feature space. In a typical fully connected layer there would be 2-3 modifications
that occur: 1) the weight matrix multiplication; 2) the bias vector addition; 3) the activation function.
Typically, we would take each of these modifications as part of the same fully connected layer and
sample an activation for the Embedding following all three. Next, consider residual blocks and similar
non-feed forward or branching architectures. We must make a choice of where to sample in the
branch that may have an impact on how the final Embedding kernel behaves. In this Appendix, we list
our choice of layers to sample the activation for each experiment. We chose to balance completeness
and computation time. Follow on work could investigate how these choices affect the final embedding
kernel.

K.3.1 RESNET18

Table 6 shows where the components of the embedding kernel were calculated.

K.3.2 BERT-BASE

The layers used to calculate Bert-base embedding kernel are shown in Table 7.

K.3.3 POISONED CNN

Table 8 shows after which modules the embedding kernel was calculated for the data poisoning CNN.

25

Published as a conference paper at ICLR 2024

Table 6: Embedding Layers ResNet18 with x ∈ {1, 2, 3, 4}

Layername
conv1
bn1
maxpool
layer.x
layer.x .0
layer.x.0.conv1
layer.x.0.bn1
layer.x.0.conv2
layer.x.0.bn2
layer.x.1
layer.x.1.conv1
layer.x.1.bn1
layer.x.1.conv2
layer.x.1.bn2
avgpool
fc

Table 7: Bert-base Layers with Embedding Kernel calculation, x ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Layername
bert.embeddings
bert.embeddings.word_embeddings
bert.embeddings.position_embeddings
bert.embeddings.token_type_embeddings
bert.embeddings.LayerNorm
bert.encoder.layer.x
bert.encoder.layer.x.attention
bert.encoder.layer.x.attention.self
bert.encoder.layer.x.attention.self.query
bert.encoder.layer.x.attention.self.key
bert.encoder.layer.x.attention.self.value
bert.encoder.layer.x.attention.output
bert.encoder.layer.x.attention.output.dense
bert.encoder.layer.x.attention.output.LayerNorm
bert.encoder.layer.x.intermediate
bert.encoder.layer.x.intermediate.dense
bert.encoder.layer.x.intermediate.intermediate_act_fn
bert.encoder.layer.x.output
bert.encoder.layer.x.output.dense
bert.encoder.layer.x.output.LayerNorm
bert.pooler
bert.pooler.dense
classifier

26

Published as a conference paper at ICLR 2024

Table 8: Embedding Layers Poisoned CNN

Layername
conv2d
batch_normalization
conv2d_1
batch_normalization_1
max_pooling2d
conv2d_2
batch_normalization_2
conv2d_3
batch_normalization_3
max_pooling2d_1
conv2d_4
batch_normalization_4
conv2d_5
batch_normalization_5
max_pooling2d_2
max_pooling1d
dense
batch_normalization_6
dense_1
batch_normalization_7
dense_2

27

Published as a conference paper at ICLR 2024

L METHODOLOGY FOR LINEARIZING NNS VIA KGLMS

We describe the procedure to achieve a linearization of the NN via a kGLM surrogate model.
First, we fit a supervised NN using standard techniques. Next, we compute the trNTK. This
kernel acts as the feature space of the kGLM. we fit the kGLM (Pedregosa et al., 2011)
(sklearn.linear_model.SGDClassifier) using the kernels computed from the same train-
ing data as the NN is trained upon. The dimensionality of the output vector from the kGLM will be
the same as the NN, and is equal to the number of classes.

We are concerned with demonstrating that after applying an invertible mapping function Φ, the NN
decision function is approximately equal to the kGLM decision function. Because the decision
function is typically only a function of the probabilities of each class, this objective can be achieved
by showing the following approximation holds:

σ(F (x ;θ)) ≈ Φ(kGLM(x)).

Across many models and datasets we generally observed that the trend between the NN activation
and the kGLM activation was “S-shaped”, or else was already linear. The analytic class of function
that are “S-shaped” are sometimes called sigmoid functions. The following three functions are used
to map the kGLM to the NN.

Φ1(x) = νx+ µ,

Φ2(x) = ν
exp(x−α

β)

1 + exp(x−α
β)

+ µ

Φ3(x) =
ν

π
arctan

(
−x− α

2β

)
+

1

2
+ µ.

Φ1 is a linear re-scaling. Both Φ2 and Φ3 are sigmoid-shaped functions that map (−∞,∞) to (0,1).
All choices of Φ are invertible. We made these choices for ϕ after observing the relationship between
the kGLM and the NN. We fit Φ functions with an iterative optimizer (Virtanen et al., 2020) on the L2

loss between F (X̃ ;θ)c) and Φ(kGLM(X)c), where c is chosen to be class 1 in the case of binary
classification (we describe changes necessary for multi-classification below). Fits are completed
over a partition of half the test dataset and evaluated on the remaining half. The linearizations are
visualized in Appendix L.1.

To visualize we use scale using the logit function. We define the logit function as the scalar-valued
function that acts on the softmax probability p ∈ (0, 1) of a single class and outputs a “logit”:

logitfn(x) = log
x

1− x
.

Using the logit creates a better visualization of the probabilities themselves by smoothing out the
distribution of values across the visualized axes. As a final implementation note, we observed some
numerical instability due to values being so close to p=1 that errors occur in re-mapping back into
logits. We choose to mask out these values from our fit, our visualization, and the R2 metric.

L.1 VISUALIZATIONS OF POINT-FOR-POINT LINEAR REALIZATIONS FOR EACH EXPERIMENT

What follows is the visualization of the linearizations of the NN logits with respect to the kGLM logits.
A perfect fit would line up with parity, shown as a diagonal dashed line in each plot. The coefficient
of determination or R2 is shown in the text for each plot. Seeds are shown in each panel’s title. For
the classification models ResNet18, ResNet34, and MobileNetV2, we flatten out the regressed vector
and choose to plot the distribution as a KDE estimate of the correct class and incorrect classes instead
of a scatter plot, due to the large number of points.

28

Published as a conference paper at ICLR 2024

Figure 8: MNIST2 MLP Linearization

29

Published as a conference paper at ICLR 2024

Figure 9: MNIST2 CNN Linearization

30

Published as a conference paper at ICLR 2024

Figure 10: CIFAR2 CNN Linearization

31

Published as a conference paper at ICLR 2024

Figure 11: FMNIST2 CNN Linearization

32

Published as a conference paper at ICLR 2024

M ATTRIBUTION VISUALIZATIONS EXPLAINED

In this Appendix, we describe the methodology used to visualize the attribution in greater detail. Our
kGLM architecture gives each kernel value a unique weight for each output neuron in the NN. For
example, in our visualized CIFAR10 ResNet18 network, there are 10 learned weights for each kernel
value. For each column, we plot a line representing the average attribution given by training examples
in that class. By design, multiplying the average attribution from each class by the number of points
in each class (in CIFAR10 this is a uniform 5,000 for each class) and summing will result in the logit
value of the kGLM in that class. We can therefore use these visualizations to quickly compare this:

N ×

(
1

N

N∑
i=1

A(x,xi)

)
= kGLM(x). (22)

When visualizing, we choose to hide the attribution from each training datapoint to the activation
of the class c if the training datapoint’s true label is not c, by slightly modifying the attribution. Let
Nc be the number of datapoints in class c. Let Sc be the set of training datapoint indices with true
label z = c. Let S̸c be the set of training datapoint indices with true label z ̸= c. Finally, assume
the classes are balanced, as is the case for CIFAR10. Therefore, the length of the set S̸c = N −Nc.
Then Aviz gives the attribution we visualize for i ∈ Sc:

Aviz(x,xi) =

Nc∑
i∈Sc

Wc,i κ(x,xi) +
Bc

Nc
+

1

Nc

N−Nc∑
j∈S̸c

Wc,i κ(x,xj). (23)

In other words, we have evenly distributed the attribution from training datapoints not in class c to the
training datapoints in class c. Future work can investigate the human-AI interaction from different
methods of visualization to determine the most informative visualization technique.

M.1 ADDITIONAL ATTRIBUTION VISUALIZATIONS

In the following subsection, we visualize additional examples of attribution from the ResNet18
CIFAR10. In the first subsection, we visualize the mean value of attribution for each logit. In the
second subsection, we focus on the correct logit and visualize the distribution of attribution explaining
that logit’s value. In the final subsection, we visualize the highest similar images from each kernel
function.

M.1.1 MEAN VALUE OF ATTRIBUTION IN EACH LOGIT

In the following plots, we visualize the mean attribution value (y-axis) from each class (different
colors) to each logit (x-axis) evaluated on the test datapoint shown. We compare these values across
each of the kernel functions. Because the number of datapoints in each class are an equal 5000, one
interpretation of these plots are that each mean value times 5000 summed over each contributing
class is equivalent to the logit value in that column. Overall, we see that typically the training data
representing the same class as the logit have the highest attribution, as expected. Because attribution
can be negative, a high similarity with a class can also remove total attribution in a logit. We notice
that in some fraction of misclassifications, a seemingly random choice of prediction is the result of
high and off-setting similarity to two classes, that leave a third class with initially low attribution as
having the highest mass, and therefore logit value.

M.1.2 VISUALIZING PREDICTED CLASS ATTRIBUTION MASS

Each figure shows the attribution distribution from each training data class for the predicted logit.
Each sub-panel shows a different kernel function with the logit visualized labeled in the title. Each
sub-panel is a boxplot with a dark line representing the mean contribution of attribution mass from
that class. For our most consistent performing trNTK kernel function, the mean contribution is
within the inner quartile range for every test image.

33

Published as a conference paper at ICLR 2024

 Test Image:
 corr=horse
 NN=horse

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 1e 2 trNTK = truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
1e3 trNTK0 = plane

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

1

0

1

2

3

4
1e 3proj-trNTK = horse

plane
car
bird
cat
deer
dog
frog
horse
ship
truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

6

4

2

0

2

4 1e 3proj-pNTK = horse

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
2

1

0

1

2

3

1e 2 Em = horse

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

4

3

2

1

0

1

1e 2 CK = horse

Visualizing Distribution of Attributions Across Kernels

Figure 12: An image of a horse with a human handler (right side) standing in front of a trailer. The
NN correctly classifies the image as a horse with a close runner-up secondary classification as a truck,
which we might consider excusable given the presence of both a horse and the trailer in the image.
The trNTK classifies as truck, with high activations for cat, dog, horse and truck. While cat is the
second highest activation, the dog attribution in the cat logit subtracts from the total logit value.

 Test Image:
 corr=car
 NN=car

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
3

2

1

0

1

2

3

1e 2 trNTK = car

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

1

0

1

2

3
1e2 trNTK0 = car

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

0.5

0.0

0.5

1.0

1.5

1e 2 proj-trNTK = car
plane
car
bird
cat
deer
dog
frog
horse
ship
truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
1e 2 proj-pNTK = car

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
3

2

1

0

1

2

3

4

5
1e 2 Em = car

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

4

2

0

2

4

1e 2 CK = car

Visualizing Distribution of Attributions Across Kernels

Figure 13: An image of a silver car is correctly classified as a car. This is a perfect example of high
confidence classification. In each logit (i.e., column), the orange tabs represent total attribution across
the entire car class. In the car column, this attribution adds to the logit; in the remaining columns
a high attribution to car yields a negative contribution to the logits (i.e., we trained on mutually
exclusive classes, so the strong presence of one class should remove confidence in another class).

34

Published as a conference paper at ICLR 2024

 Test Image:
 corr=bird
 NN=bird

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
1.0

0.5

0.0

0.5

1.0

1.5

1e 2 trNTK = bird

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
4

2

0

2

4

6

8

1e2 trNTK0 = bird

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

2

0

2

4

6

1e 3 proj-trNTK = bird
plane
car
bird
cat
deer
dog
frog
horse
ship
truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

6

4

2

0

2

4

6
1e 3 proj-pNTK = bird

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

4

2

0

2

4

1e 2 Em = bird

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

4

3

2

1

0

1

2
1e 2 CK = bird

Visualizing Distribution of Attributions Across Kernels

Figure 14: A bird against a blue sky is correctly classified as a bird. This is another example of strong
correct classification, but unlike the previous example, the contributions of the remaining logits are
somewhat elevated. The negative contribution of bird in these classes ensures the logit remains small
compared to the bird logit.

 Test Image:
 corr=ship
 NN=plane

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1e 2 trNTK = plane

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1e3 trNTK0 = plane

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

1

0

1

2

3

4

1e 3proj-trNTK = plane
plane
car
bird
cat
deer
dog
frog
horse
ship
truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
4

2

0

2

4

6

1e 3 proj-pNTK = plane

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

2

0

2

4

6

1e 2 Em = plane

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
4

3

2

1

0

1

2

3

4
1e 2 CK = plane

Visualizing Distribution of Attributions Across Kernels

Figure 15: A small boat resting on grass is incorrectly classified as a plane by the NN. We show
that many kernels also follow the network misclassification, which is an important property for a
surrogate model. We see a strong positive attribution to plane that is un-mediated by any of the other
classes.

35

Published as a conference paper at ICLR 2024

 Test Image:
 corr=bird
 NN=plane

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1e 2 trNTK = plane

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
1e3 trNTK0 = plane

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
2

1

0

1

2

3

4

5
1e 3proj-trNTK = plane

plane
car
bird
cat
deer
dog
frog
horse
ship
truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
1e 2 proj-pNTK = plane

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

2

0

2

4

6

1e 2 Em = plane

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
6

4

2

0

2

4

1e 2 CK = plane

Visualizing Distribution of Attributions Across Kernels

captionA bird resting
on a wire is misclassified as a plane by the NN. We again demonstrate that the kernels misclassify as

the same incorrect class. We again see the reason why is a strong positive attribution to plane.

 Test Image:
 corr=dog
 NN=dog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

4

2

0

2

4

1e 2 trNTK = dog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

2

0

2

4

1e2 trNTK0 = dog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1e 2 proj-trNTK = dog
plane
car
bird
cat
deer
dog
frog
horse
ship
truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
6

4

2

0

2

4

1e 3 proj-pNTK = dog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

2

1

0

1

2

3

4
1e 2 Em = dog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
5

4

3

2

1

0

1
1e 2 CK = dog

Visualizing Distribution of Attributions Across Kernels

Figure 16: A dog in a pink background frame is classified correctly as a dog. Similar to the other
high confidence classifications, this image shows how positive attribution in one logit acts to subtract
confidence in another image. It particularly highlights how high similarity to dog subtracts greatly
from cat. This is an important idea to explain some misclassifications we explore below.

36

Published as a conference paper at ICLR 2024

 Test Image:
 corr=bird
 NN=deer

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

4

2

0

2

4

6

8

1e 3 trNTK = deer

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

0.5

0.0

0.5

1.0

1.5

1e3 trNTK0 = deer

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

1

0

1

2

3

4
1e 3 proj-trNTK = deer

plane
car
bird
cat
deer
dog
frog
horse
ship
truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

4

2

0

2

4

6
1e 3 proj-pNTK = deer

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
3

2

1

0

1

2

3

1e 2 Em = deer

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

3

2

1

0

1

2

1e 2 CK = deer

Visualizing Distribution of Attributions Across Kernels

Figure 17: A large bird, possibly an ostrich, is misclassified by the NN as a deer. The kernels all have
the same misclassification, with a high confidence in deer, bird, and cat.

 Test Image:
 corr=ship
 NN=frog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
1e 2 trNTK = frog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

1

0

1

2

3

1e3 trNTK0 = frog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
2

1

0

1

2

3

4
1e 3 proj-trNTK = frog

plane
car
bird
cat
deer
dog
frog
horse
ship
truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

4

2

0

2

4

6

1e 3 proj-pNTK = frog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
3

2

1

0

1

2

3

4

5
1e 2 Em = frog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
4

3

2

1

0

1

2

3

1e 2 CK = frog

Visualizing Distribution of Attributions Across Kernels

Figure 18: An inflatable boat is misclassified as a frog by the NN. This is an interesting example, and
we focus in on the trNTK. The cat attribution is actually the highest, but unlike previous examples,
the attribution in the cat logit from the remaining classes subtracts enough away from the logit such
that the highest remaining class is frog.

37

Published as a conference paper at ICLR 2024

 Test Image:
 corr=car
 NN=bird

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
1e 2 trNTK = bird

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

0.5

0.0

0.5

1.0

1.5
1e3 trNTK0 = bird

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
2

1

0

1

2

3

4

5
1e 3 proj-trNTK = bird

plane
car
bird
cat
deer
dog
frog
horse
ship
truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

6

4

2

0

2

4

1e 3 proj-pNTK = bird

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
4

2

0

2

4

1e 2 Em = bird

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

4

3

2

1

0

1

2
1e 2 CK = bird

Visualizing Distribution of Attributions Across Kernels

Figure 19: A car elevated on a platform against a white sky is misclassified as bird by the NN. The
plane and bird class are both highly activated across each kernel function.

 Test Image:
 corr=dog
 NN=dog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
6

4

2

0

2

4

6

8

1e 3 trNTK = dog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
1.0

0.5

0.0

0.5

1.0

1.5

1e3 trNTK0 = dog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
2

1

0

1

2

3

4
1e 3 proj-trNTK = dog

plane
car
bird
cat
deer
dog
frog
horse
ship
truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

4

2

0

2

4

1e 3 proj-pNTK = dog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

2

1

0

1

2

3 1e 2 Em = dog

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

4

3

2

1

0

1
1e 2 CK = horse

Visualizing Distribution of Attributions Across Kernels

Figure 20: A dog with blurry text overhead is correctly classified as a dog. Each kernel function,
except the CK, follows the correct classification, and it can be explained by the high attribution to the
dog training data.

38

Published as a conference paper at ICLR 2024

 Test Image:
 corr=plane
 NN=horse

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
1e 2 trNTK = horse

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

2

0

2

4

6

8

1e2 trNTK0 = horse

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

1

0

1

2

3

4

5
1e 3proj-trNTK = horse

plane
car
bird
cat
deer
dog
frog
horse
ship
truck

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
4

2

0

2

4

1e 3proj-pNTK = horse

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck
3

2

1

0

1

2

3

4

5

1e 2 Em = horse

pla
necar bir

d catde
erdo

g
fro

g
ho

rseshi
p
tru

ck

2

1

0

1

2
1e 2 CK = horse

Visualizing Distribution of Attributions Across Kernels

Figure 21: A person sitting on the nose of a large plane faces the camera and is misclassified as a
horse. There is a high positive attribution to both plane and horse.

Figure 22: We visualize the entire distribution of attribution through each kernel’s predicted class,
(shown in sub-title). Focusing on the trNTK, the highest attributed images are truck. Compared
to the previous section’s plots, we now see structure of individual points from the other classes
adding constructively to the Truck class logit, we some examples from each class. The mean value of
attribution from each class is visualized by the colored bar.

39

Published as a conference paper at ICLR 2024

Figure 23: We visualize the entire distribution of attribution through each kernel’s predicted class,
(shown in sub-title). Each kernel’s predicted class is car. Focusing on the trNTK: we see the
distribution of cars represented as a box-plot is quite high, establishing that many car examples
contribute to classify this image correctly, rather than a sparse few.

Figure 24: We visualize the entire distribution of attribution through each kernel’s predicted class,
(shown in sub-title). Focusing on the trNTK emphasizes how both that the distribution of Bird is high
compared to the similarity of other classes, but that there are also some plane examples with high
positive attribution. We might expect planes that are on blue-sky backgrounds to positively share
features with birds. We delve into this example deeper in the next section.

Figure 25: We visualize the entire distribution of attribution through each kernel’s predicted class,
(shown in sub-title). Focusing onto the trNTK, we see both car, ship, and truck have examples with
high attribution supporting plane.

40

Published as a conference paper at ICLR 2024

Figure 26: We visualize the entire distribution of attribution through each kernel’s predicted class,
(shown in sub-title). Focusing onto the trNTK, we see that there are additional bird and car examples
positively attributing to the plane logit. We explore this misclassification in more detail in the section
below.

Figure 27: We visualize the entire distribution of attribution through each kernel’s predicted class,
(shown in sub-title). Focusing onto the trNTK, many dog examples have high attribution resulting in
a clear and correct classification of dog.

Figure 28: We visualize the entire distribution of attribution through each kernel’s predicted class,
(shown in sub-title). Focusing onto the trNTK, there is a higher variance to the distributions of bird,
dog, deer, and horse compared to plane, car, ship and truck. Despite these variances, the distributions
of the living classes are still centred on zero, so that the net contribution from the other classes is
slightly negative.

41

Published as a conference paper at ICLR 2024

Figure 29: We visualize the entire distribution of attribution through each kernel’s predicted class,
(shown in sub-title). Focusing onto the trNTK, we see a higher variance of the dog and frog classes
compared the the remaining classes.

Figure 30: We visualize the entire distribution of attribution through each kernel’s predicted class,
(shown in sub-title). Focusing onto the trNTK, there are singular examples from the frog and horse
class that stand as outliers of positive contribution while the average contribution from these classes
is slightly negative (colored bar).

Figure 31: We visualize the entire distribution of attribution through each kernel’s predicted class,
(shown in sub-title). Focusing onto the trNTK, the attribution for dog, horse and deer have a higher
variance, though only dog has a positive attribution.

42

Published as a conference paper at ICLR 2024

Figure 32: We visualize the entire distribution of attribution through each kernel’s predicted class,
(shown in sub-title). Focusing onto the trNTK, both plane and deer have example which contribute
some positive attribution, but overall the effect of these classes are slightly negative to the classificaiton
of horse.

43

Published as a conference paper at ICLR 2024

M.2 TOP FIVE EXEMPLAR ATTRIBUTION VISUALIZATIONS

In the following plots, we visualize the qualitative differences between kernels by plotting the top five
most similar training images for the same selection of images as in the last Appendix. We emphasize
that here, we are using the kernel function as a measure of similarity. Qualitatively, we observe that
test data often share conceptual similarities with the most similar training data as evaluated by the
trNTK, and that what is chosen as most similar often reveal something about the kernel itself. For
example, the CK kernel is created from the final representation of the neural network. For NN trained
until convergence this final representation should have all inner-class variance collapsed (Papyan
et al., 2020). Therefore, we expect the CK to mostly show that the test image is highly similar to
ALL training images of the predicted class. Because the top most similar are not tied directly to
our kernel surrogate model any explanations we generate from these visualizations are admittedly
up to interpretation. Future work could endeavor to evaluate different kernel surrogate models such
as a K-Nearest Neighbors, which would tie these visualizations directly to the surrogate model’s
prediction. This would be a way to recover explain-by-example with sparse number of exemplars. We
also can visually confirm that the most of the highest similar images are shared between the trNTK
and proj-trNTK, as expected. We notice that many proj-pNTK examples seem shared with the CK,
which we did not expect. In fact, much of the evidence presented throughout this work suggests that
the proj-pNTK and CK share similar properties.

Test Image
 corr=horse
 NN=horse

trNTK trNTK0 proj-trNTK proj-pNTK Em CK
Visualizing Most Similar Across Kernels ResNet18

Figure 33: A horse stands next to a human and in front of a trailer or truck is correctly classified as
horse by the NN model. Many of the attributed animals are shown in profile, as the subject horse of
the original image stands.

44

Published as a conference paper at ICLR 2024

Test Image
 corr=car
 NN=car

trNTK trNTK0 proj-trNTK proj-pNTK Em CK
Visualizing Most Similar Across Kernels ResNet18

Figure 34: A silver car is correctly classified by the NN. Many similar images (seemingly the same
image with different crops) exist in the training dataset.

Test Image
 corr=bird
 NN=bird

trNTK trNTK0 proj-trNTK proj-pNTK Em CK
Visualizing Most Similar Across Kernels ResNet18

Figure 35: A bird flies with wings spread in a blue sky background and is correctly classified by the
NN. Many of the bids attributed to by the evaluated kernels are also flying in a similar manner in a
blue sky background.

Test Image
 corr=ship
 NN=plane

trNTK trNTK0 proj-trNTK proj-pNTK Em CK
Visualizing Most Similar Across Kernels ResNet18

Figure 36: A boat resting on grass is misclassified as a plane by the NN. The most similar attributions
are varied, perhaps demonstrating a weakness in this kind of visualization.

45

Published as a conference paper at ICLR 2024

Test Image
 corr=bird
 NN=plane

trNTK trNTK0 proj-trNTK proj-pNTK Em CK
Visualizing Most Similar Across Kernels ResNet18

Figure 37: A bird resting on a wire that spans the image diagonally is misclassified as a plane. Many
of the highest attributed images from the trNTK and trNTK0 have a similar diagonal quality, even
if the underlying class of the subject of the image is much different than the true or classified class.

Test Image
 corr=dog
 NN=dog

trNTK trNTK0 proj-trNTK proj-pNTK Em CK
Visualizing Most Similar Across Kernels ResNet18

Figure 38: A small puppy in a pink background looking out of the screen (“at the camera”) is
correctly classified as a dog. Many of the most similar images are dogs that look out of the screen.
The Embedding kernel seems very focused on the background pixel values, as many of the attributions
are pink centered.

46

Published as a conference paper at ICLR 2024

Test Image
 corr=bird
 NN=deer

trNTK trNTK0 proj-trNTK proj-pNTK Em CK
Visualizing Most Similar Across Kernels ResNet18

Figure 39: A large bird is misclassified as a deer. The attributed images are varied, perhaps
demonstrating a weakness in this kind of visualization.

Test Image
 corr=ship
 NN=frog

trNTK trNTK0 proj-trNTK proj-pNTK Em CK
Visualizing Most Similar Across Kernels ResNet18

Figure 40: A white inflatable boat is misclassified as a frog. The attributed images are varied, perhaps
demonstrating a weakness in this kind of visualization.

Test Image
 corr=car
 NN=bird

trNTK trNTK0 proj-trNTK proj-pNTK Em CK
Visualizing Most Similar Across Kernels ResNet18

Figure 41: A car resting on a raised platform is misclassified as a bird. Many of the bird attributed
to by the trNTK and trNTK0 are large bird with rotund black bodies and stalky legs, perhaps
suggesting a pathway for the misclassification.

47

Published as a conference paper at ICLR 2024

Test Image
 corr=dog
 NN=dog

trNTK trNTK0 proj-trNTK proj-pNTK Em CK
Visualizing Most Similar Across Kernels ResNet18

Figure 42: A dog with blurry text overhead is correctly classified as a dog. The attributed images in
the trNTK and trNTK0 are mostly images of animals with white fur “looking left” mirroring the
test image of the dog “looking right”.

Test Image
 corr=plane
 NN=horse

trNTK trNTK0 proj-trNTK proj-pNTK Em CK
Visualizing Most Similar Across Kernels ResNet18

Figure 43: An image of a person sitting on the nose of a plane facing towards the camera. The NN
misclassified this example as a horse. The trNTK shows many example of people riding horses,
mirroring the person “riding” the plane.

48

Published as a conference paper at ICLR 2024

N ADDITIONAL DATA POISONING ATTRIBUTION VISUALIZATIONS

In this Appendix, we provide additional visualization for the data poisoning experiment attributions.
We show the same selection of images as the previous section for comparison. Because the NN
classifies nearly every poisoned image as the targeted class deer, we expect that a good surrogate
model would reflect this fact by attributing highly to poisoned examples. Because the model trained
is a different architecture than the ResNet, it can be interesting to compare the top attributions to the
previous Appendix section.

Original, corr=horse, NN=horse

Poisoned,
 targeted label=deer, NN=deer

trNTK

Un
pe

rtu
rb

ed
 S

im
ila

rit
y

trNTK0 proj-trNTK proj-pNTK Em CK

trNTK

Po
iso

ne
d

Si
m

ila
rit

y

trNTK0 proj-trNTK proj-pNTK Em CK

Visualizing Poisoned Similarity Across Kernels

Figure 44

Original, corr=car, NN=car

Poisoned,
 targeted label=deer, NN=deer

trNTK

Un
pe

rtu
rb

ed
 S

im
ila

rit
y

trNTK0 proj-trNTK proj-pNTK Em CK

trNTK

Po
iso

ne
d

Si
m

ila
rit

y

trNTK0 proj-trNTK proj-pNTK Em CK

Visualizing Poisoned Similarity Across Kernels

Figure 45

49

Published as a conference paper at ICLR 2024

Original, corr=bird, NN=bird

Poisoned,
 targeted label=deer, NN=deer

trNTK

Un
pe

rtu
rb

ed
 S

im
ila

rit
y

trNTK0 proj-trNTK proj-pNTK Em CK

trNTK

Po
iso

ne
d

Si
m

ila
rit

y

trNTK0 proj-trNTK proj-pNTK Em CK

Visualizing Poisoned Similarity Across Kernels

Figure 46

Original, corr=ship, NN=ship

Poisoned,
 targeted label=deer, NN=deer

trNTK

Un
pe

rtu
rb

ed
 S

im
ila

rit
y

trNTK0 proj-trNTK proj-pNTK Em CK

trNTK

Po
iso

ne
d

Si
m

ila
rit

y

trNTK0 proj-trNTK proj-pNTK Em CK

Visualizing Poisoned Similarity Across Kernels

Figure 47

50

Published as a conference paper at ICLR 2024

Original, corr=bird, NN=plane

Poisoned,
 targeted label=deer, NN=deer

trNTK

Un
pe

rtu
rb

ed
 S

im
ila

rit
y

trNTK0 proj-trNTK proj-pNTK Em CK

trNTK

Po
iso

ne
d

Si
m

ila
rit

y

trNTK0 proj-trNTK proj-pNTK Em CK

Visualizing Poisoned Similarity Across Kernels

Figure 48

Original, corr=dog, NN=dog

Poisoned,
 targeted label=deer, NN=deer

trNTK

Un
pe

rtu
rb

ed
 S

im
ila

rit
y

trNTK0 proj-trNTK proj-pNTK Em CK

trNTK

Po
iso

ne
d

Si
m

ila
rit

y

trNTK0 proj-trNTK proj-pNTK Em CK

Visualizing Poisoned Similarity Across Kernels

Figure 49

51

Published as a conference paper at ICLR 2024

Original, corr=bird, NN=horse

Poisoned,
 targeted label=deer, NN=deer

trNTK

Un
pe

rtu
rb

ed
 S

im
ila

rit
y

trNTK0 proj-trNTK proj-pNTK Em CK

trNTK

Po
iso

ne
d

Si
m

ila
rit

y

trNTK0 proj-trNTK proj-pNTK Em CK

Visualizing Poisoned Similarity Across Kernels

Figure 50

Original, corr=ship, NN=cat

Poisoned,
 targeted label=deer, NN=deer

trNTK

Un
pe

rtu
rb

ed
 S

im
ila

rit
y

trNTK0 proj-trNTK proj-pNTK Em CK

trNTK

Po
iso

ne
d

Si
m

ila
rit

y

trNTK0 proj-trNTK proj-pNTK Em CK

Visualizing Poisoned Similarity Across Kernels

Figure 51

52

Published as a conference paper at ICLR 2024

Original, corr=car, NN=plane

Poisoned,
 targeted label=deer, NN=deer

trNTK

Un
pe

rtu
rb

ed
 S

im
ila

rit
y

trNTK0 proj-trNTK proj-pNTK Em CK

trNTK

Po
iso

ne
d

Si
m

ila
rit

y

trNTK0 proj-trNTK proj-pNTK Em CK

Visualizing Poisoned Similarity Across Kernels

Figure 52

Original, corr=dog, NN=dog

Poisoned,
 targeted label=deer, NN=deer

trNTK

Un
pe

rtu
rb

ed
 S

im
ila

rit
y

trNTK0 proj-trNTK proj-pNTK Em CK

trNTK

Po
iso

ne
d

Si
m

ila
rit

y

trNTK0 proj-trNTK proj-pNTK Em CK

Visualizing Poisoned Similarity Across Kernels

Figure 53

53

Published as a conference paper at ICLR 2024

Original, corr=plane, NN=horse

Poisoned,
 targeted label=deer, NN=deer

trNTK

Un
pe

rtu
rb

ed
 S

im
ila

rit
y

trNTK0 proj-trNTK proj-pNTK Em CK

trNTK

Po
iso

ne
d

Si
m

ila
rit

y

trNTK0 proj-trNTK proj-pNTK Em CK

Visualizing Poisoned Similarity Across Kernels

Figure 54

54

	Introduction
	Preliminaries
	Methods
	Results
	Summary and conclusions
	Limitations
	Definition of Kernels
	Geometric Intuition behind Neural Tangent Kernels
	Additional Details Regarding the Trace Neural Tangent Kernel
	Relationship to the Empirical NTK
	Notes on the Projected Variants of the NTK
	Formal Definition of Evaluation Metrics
	Alternative Measures of Correlation
	Use the NN outputs for the kGLM targets
	Adversarial Attacks
	Adversarial Experiment Details

	Additional Experimental Details
	Datasets
	Experiments
	100 Fully Connected MNIST2 Models
	100 CNN MNIST2, FMNIST2, and CIFAR2 Models
	4 COLA BERT-base Models
	Large Computer Vision Models
	CNN for Poisoned Data Experiment

	Computing Embedding Kernels
	ResNet18
	Bert-base
	Poisoned CNN

	Methodology for Linearizing NNs via kGLMs
	Visualizations of Point-for-Point Linear Realizations for each Experiment

	Attribution Visualizations Explained
	Additional Attribution Visualizations
	Mean value of attribution in each logit
	Visualizing Predicted Class Attribution Mass

	Top Five Exemplar Attribution Visualizations

	Additional Data Poisoning Attribution Visualizations

