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ABSTRACT

The representation learning of knowledge graphs (KGs) is a longstanding research
problem. While graph neural networks (GNNs) have driven recent progress, they
still struggle with encoding textual features and subtle relationships of KGs, par-
ticularly in conveying key information to large language models (LLMs). The
emergence of multi-modal LLMs (MLLMs), which combine linguistic and visual
understanding, presents an intriguing opportunity: Could their vision capabilities
inspire mental visualization, facilitating conceptual thinking and abstract reason-
ing akin to human cognition? To investigate this premise, we propose SeeKG, an
innovative framework that transforms KGs into visually rendered representations
as image inputs for MLLMs. We evaluate SeeKG under both training-free and su-
pervised fine-tuning settings, where the experimental results show that SeeKG ex-
cels in understanding KG sub-graphs and achieves competitive performance even
without training or demonstrations. Further fine-tuning on small-batch data re-
veals that it outperforms state-of-the-art LLM-based KG completion methods by
substantial margins across multiple benchmark datasets.

1 INTRODUCTION

Knowledge graphs (KGs) store real-world facts in the form of triples and serve as fundamental re-
sources for many AI applications (Ji et al., 2020). With the rise of deep neural models, learning the
low-dimensional vectors (i.e., embeddings) for KG entities and relations gains increasingly more
attention (Bordes et al., 2013; Trouillon et al., 2016; Sun et al., 2019; Guo et al., 2019; Zhu et al.,
2021). In recent years, graph neural networks (GNNs) (Kipf & Welling, 2017) have become the
standard for state-of-the-art KG representation learning. They take the adjacency matrices as in-
put and stack multiple GNN layers to aggregate near-to-far neighborhood information of the given
entity (Nguyen et al., 2018; Vashishth et al., 2020; Chen et al., 2021; Cui et al., 2024).

However, the resulting embeddings often fail to fully capture contextual information. While the
GNN-based methods efficiently summarizes variable-length relationships into a single vector, the
detailed information of neighboring entities is discarded and the whole process is irreversible. Such
deficiencies become more severe in integrating KGs with large language models (LLMs), where
fine-tuning is compulsory for aligning structural KG embeddings with LLM token embeddings.
Even so, the LLMs still struggle to interpret the basic properties of the encoded information (e.g.,
identifying entities in the contextual KG) (Lin et al., 2025; Zhang et al., 2025).

Take the input KG image in Figure 1 as an example, many conventional KG representation learning
methods ignore the textual information of entities (e.g., the name of “Bulat Okudzhava”), or merely
aggregate word embeddings as initial features via bag-of-word models (Chen et al., 2022; Zhang
et al., 2024a). Consequently, the LLM is incapable of inferring the detailed contextual KG infor-
mation (e.g., whether Moscow exists in the KG) from the input embeddings, as they mix a varying
number of neighboring entities in an unordered manner. Integrating these structural encoders into
LLMs remains highly challenging even fine-tuning on the full training set (Yao et al., 2023; Zhang
et al., 2024b; Guo et al., 2024a; 2025; Lin et al., 2025).
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Based on the knowledge graph image … is evaluated as follows:
1. Graph Context Analysis:
• Bulat Okudzhava → place of birth → Moscow
• Moscow → country → Soviet Union
• Bulat Okudzhava → country of citizenship → Soviet Union
• No explicit "location of formation" relationship detected.
• Key Inference:
The graph establishes strong spatial-national ties (birth and citizenship 
within the Soviet Union), implying that life activities (including 
education) likely occurred within this geopolitical scope.

2. Internal Knowledge Verification:
• Bulat Okudzhava (1924–1997) was educated entirely within Soviet 
territory:

Graduated from Tbilisi State University (Georgia, USSR).
Later studied at Moscow State University (Russian SFSR, USSR).

• The Soviet Union’s centralized system made education outside its 
borders exceptionally rare for citizens during his lifetime.

3. Unified Conclusion:
• Graph context suggests a tendency for formation within the Soviet 
Union due to birthplace, citizenship, and lack of contradictory evidence.
• Historical facts explicitly confirm his education occurred within Soviet 
borders.

Final Verdict:
{True}

Given the input knowledge graph 
triple in the form of (head, relation, 
tail), …, and response only “True” 
or “False” at the end.

The input triple:
(Bulat Okudzhava, location of 
formation, Soviet Union)

The input knowledge graph image: 
<image>

151644, 8948, 198, … , 151655, 
151655, 151655, …, 151655, 151655, 
151655, 151655, 151655, 151655, 
151655, 151655, 151655, 151655, 
151655, 151655, 151653, 198, 151645, 
198, 151644, 77091, 198, 2514, 
151645, 198

Input KG imageInput text

Token IDs

Output

MLLMs

input output

detection 
& analysis

tokenization

Figure 1: The workflow of SeeKG. The input text and KG image are first tokenized into IDs by
the tokenizer, where the image is sampled from the CoDeX-S (Safavi & Koutra, 2020) dataset and
generated by our visualization tool. During tokenization, the special tag <image> is converted to
image paddings, which are then replaced by image token embeddings when fed into the MLLM. The
output demonstrates that the MLLM sufficiently understands the graph context in the KG image and
integrates the visual clues with its internal knowledge to correctly predict the answer.

KGs are highly abstract graphs, yet humans intuitively understand and reason about them through
visualization, i.e., sketching them manually or imaging them mentally. In some sense, thinking is
seeing (Danesi, 1990; Arnheim, 2023). Abstract thinking can be linked to the visual system.

Multi-modal large language models (MLLMs) facilitate LLMs with the vision capability to perceive
and interact with the world (Achiam et al., 2023; Lin et al., 2024; Wu et al., 2025). Technically,
prevalent convolution operations and local attention mechanisms (e.g., window-based attention (Liu
et al., 2021)) are capable of capturing sub-graph information in the KG image, enabling better struc-
tural comprehension compared to processing textualized KG triple sequences.

With new MLLMs emerging rapidly, it is interesting to query whether the vision understanding of
MLLMs can surpass conventional KG representation learning in relevant tasks? Can they interpret
and complete KGs by inferring the visualized images like humans?

To answer the above questions, we propose SeeKG, an end-to-end framework to extract, visualize,
and reason about KG subgraphs with MLLMs. Figure 1 illustrates an example of how SeeKG works.
The visualized KG image is processed through the vision encoder in the MLLM and then mapped
to the special token <image> in the input instruction. The subsequent steps mirror the standard
LLM reasoning, where the MLLM takes the token embedding sequence as input and generates the
analysis and answer accordingly.

We summarize our contributions as follows:

• We explore a novel direction of leveraging visual modality to represent KG structural in-
formation, investigating the extent to which MLLMs can comprehend and reason over the
abstract KG images.

• We propose SeeKG, an end-to-end framework for visualizing real-world KGs as images
and reasoning with MLLMs. SeeKG supports diverse MLLMs, sub-KG sampling strate-
gies, and customizable visualization settings.

• We evaluate SeeKG on triple classification task, which is one of the most important tasks
for KG completion. The experimental results across multiple datasets show that SeeKG sig-
nificantly outperforms all LLM-based methods in training-free setting and achieves state-
of-the-art performance with supervised fine-tuning.
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2 RELATED WORKS

Multi-modal Large Language Models Understanding and generating multi-modal content has
become fundamental for advanced artificial intelligence systems. Consequently, MLLM research
has attracted significant attention across communities ranging from natural language processing
(NLP) and computer vision to audio processing and multi-modal learning (Yu et al., 2021; Lin
et al., 2024; Abdin et al., 2024; Hurst et al., 2024; Wu et al., 2025). A variety of MLLM families
are established, such as LLaVa (Lin et al., 2024), Qwen-VL (Wu et al., 2025), DeepSeek-VL (Lu
et al., 2024), MiniCPM (Aharoni & Goldberg, 2020), InternVL (Chen et al., 2024), GPT-o (Hurst
et al., 2024), and Gemini (Comanici et al., 2025). These models demonstrate versatile capabilities,
processing not only conventional photographs but also structured content like tables, code snippets,
and mathematical expressions, all in the image form. Building on these advances, we propose
SeeKG to harness MLLMs for knowledge graph reasoning.

Large Language Models for Knowledge Graphs With the rapid advancement of LLMs, there
are increasingly more works that integrate them into KG tasks (Yang et al., 2023; Pan et al., 2024;
2023; Guan et al., 2024; Yao et al., 2023; Zhang et al., 2024b; Guo et al., 2024a; 2025; Lin et al.,
2025). The most straightforward approach is employing prompt engineering to convert triples from
structural ID tuples into textual short sentences (Yao et al., 2023). Contextual information like
neighboring entities can be also textualized as LLM input (Zhang et al., 2024b). However, such
graph-to-text conversion risks losing critical structural information, resulting in suboptimal task
performance (Zhang et al., 2024b; Guo et al., 2024a).

To enhance the structural understanding, recent methods (Zhang et al., 2024b; Guo et al., 2024a; Lin
et al., 2025) leverage conventional KG representation learning models as structural encoders, align-
ing their output embeddings with LLMs through supervised fine-tuning. For example, KoPA (Zhang
et al., 2024b) employs the triple-based models RotatE (Sun et al., 2019) to obtain the embeddings
of entities and relations, while MKGL (Guo et al., 2024a) employs PNA (Corso et al., 2020) as
graph encoder to encode structural information. SSQR (Lin et al., 2025) learns to map the structural
information of KG to special code token embeddings via quantized representations (Kostant, 2006).

These approaches train adapters to bridge structural encoders and LLMs, resembling the training
process of many MLLMs. However, the KG representation learning methods mainly capture the
high-level structural information. Even those text-aware variants (Lee et al., 2023; Zhang et al.,
2024a) lose identifiable details through the average-based aggregation of GNNs. It is still challeng-
ing to enabling LLMs to understand the contextual output of the structural encoders.

In this paper, we investigate a novel direction: rather than adapting MLLMs for multi-modal KG
tasks, we explore the correlation between the visual capacity of MLLMs with abstract thinking.

3 METHODOLOGY

In this section, we present the details of proposed SeeKG, discussing and analyzing how to employ
an MLLM for KG reasoning. We begin with preliminaries that introduce the fundamental con-
cepts of KGs and MLLMs, then demonstrate how we construct KG images as contextual input for
MLLMs. Finally, we illustrate the two different implementations of SeeKG.

3.1 PRELIMINARIES

Knowledge Graphs We define a KG as G = {T , E ,R}, where T , E , R represent the sets of
triples, entities, and relations, respectively. Each triple τ = (ei, rk, ej) ∈ T encodes a factual
relationship where entity ei ∈ E relates to entity ej ∈ E through relation rk ∈ R. It is worth
noting that, conventional KG representation learning methods typically focus solely on the structure
while disregarding multi-modal information, organizing inputs as raw IDs, e.g., τ = (0, 2, 1) where
ei = 0, ej = 1, and rk = 2.

Multi-modal Large Language Models MLLMs are LLMs capable of processing and generating
multi-modal features, such as images and videos. Most MLLMs leverage pretrained LLMs as their
foundation, aligning visual (and other modality) embeddings with the token space of original LLMs

3
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Figure 2: The pipeline for constructing contextual KG images. (1) we consider simple paths as the
key contextual sub-KG, with multi-hop neighboring entities as complement; (2) all obtained paths
and neighboring entities are merged into a unified sub-KG; (3) we leverage Personalized PageRank
(PPR) (Gasteiger et al., 2018) to compute the importance scores of the entities in the merged sub-
KG, where the source entity e1 and target entity e2 are initialized with weights of 1, and others set
to 0; (4) we visualize the structural sub-KG as an KG image using Graphviz (Ellson et al., 2004).

through post-training techniques (Abdin et al., 2024; Lin et al., 2024). We formalize an MLLM as
M, which takes an instruction text tin and image vin as input to generate a textual response tout,
i.e., tout = M(tin, vin).

LLM for KG Completion KG completion is one of the most crucial tasks for KG representation
learning. It encompasses multiple sub-tasks, including entity linking (Bordes et al., 2013), relation
prediction (Yao et al., 2019), triple classification (Safavi & Koutra, 2020), etc. In this paper, we
focus on triple classification, a task analogous to conventional question answering that has gained
prominence in evaluating LLM-based KG reasoning methods (Yao et al., 2023; Zhang et al., 2024b;
Lin et al., 2025). Specifically, given a triple τ = (ei, rk, ej), the LLM is required to determine the
validity of this triple and output either “True” or “False” as the final response.

To leverage the internal knowledge and enhance the comprehension of LLMs towards the given
triple τ , the input IDs (ei, rk, ej) (also the relevant contextual triples) is transformed into textual
format, such as (Bulat Okudzhava, place of birth, Moscow). With appropriate prompts, the LLMs
inherently demonstrates promising zero-shot prediction capability for triple classification.

3.2 KNOWLEDGE GRAPHS AS IMAGES

We illustrate the workflow of generating a contextual sub-KG visualization for the given triple τ in
Figure 2. As our goal is to extract the most informative sub-KG as context, the primary objective is
to collect the potentially helpful entities and triples surrounding τ .

Drawing upon the established approaches in KG representation learning, we observe that both path-
based and neighborhood-based contexts have consistently served as fundamental elements for rea-
soning systems (Lin et al., 2015; Guo et al., 2019; Vashishth et al., 2020; Chen et al., 2021; Guo
et al., 2024a; Lin et al., 2025). This empirical evidence inspires us to integrate these two contextual
dimensions when building the sub-KG structure for τ .
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Simple Path Search While path discovery between KG entities presents computational challenges
due to potential instability and time complexity, identified paths carry significant semantic value.
The presence of interconnected paths strongly indicates entity correlations and provides interpretable
evidence for verifying the validity of the given triple.

To efficiently collect the path context information, we employ simple path search (Goldberg &
Harrelson, 2005) on the KG, and designate e1 as the source entity and e2 as the target entity for
τ = (ei, rk, ej). A simple path p is a path in the KG that does not have repeating entities. We
enforce the simple path constraint to prohibit entity repetitions within any single path, ensuring
computational tractability and eliminating redundant entities:

p = {(en, rn, en+1)}l(p)n=1, where en ̸= em,∀n ̸= m (1)
Pei→ej = {p|s(p) = ei & t(p) = ej & l(p) ≤ L} (2)

where p represents a simple path and Pei→ej denotes the complete set of valid paths from ei to
ej . l(·) is the path length function. We set a hyperparameter L to balance exploration depth and
computational efficiency. s(·) and t(·) identify path origins and destinations, respectively. With
the resulting simple path set P , we can construct a contextual sub-KG Gei→ek , where path edges
become subgraph relations and traversed entities form the node set.

Neighborhood Search When no paths exists or only a limited number of paths are available, we
may augment the context sub-KG by incorporating the K-hop neighbors of the source entity ei and
target entity ek. Formally, the neighboring entity set Eei,ek is defined as:

Eei,ek = {e|d(e, ei) ≤ K} ∪ {e|d(e, ek) ≤ K}, (3)

where d(·, ·) measures the distance between a pair of entities. K denotes the maximal distance
threshold to bound the search scope. Subsequently, we can construct a sub-knowledge graph Gei,ek
with entities in Eei,ek as nodes.

Knowledge Graph Pruning Although the path sub-KG Gei→ek and neighborhood sub-KG Gei,ek
offer essential contextual information for triple validation, merging them into a unified sub-KG Gτ

may also introduce substantial redundancy, especially when ei and ej exhibit dense connectivity. In
this case, the information overload may exceed the processing capacity of LLMs.

To mitigate this problem, we leverage Personalized PageRank (PPR) (Page et al., 1999; Gasteiger
et al., 2018) to prune Gτ . Specifically, we initialize the weights of the source entity ei and target
entity ej as 1 while setting others to 0. Then, we apply PPR on Gτ to compute the importance scores
of all involved entities:

wout
Eτ

= PPR(Gτ ,w
in
Eτ
), (4)

where wout
Eτ

is output score vector for entities in Eτ , while win
Eτ

represents the initial input with
ei = 1 and ej = 1 (others 0). Only entities with top-Ne scores are retained in the final sub-KG Gτ .

PPR has significant advantages over the existing embedding-based or LLM-based approaches in
computational speed. Meanwhile, it also precisely meets our intention: when multiple paths exist
between the source entity ei and target entity ej , entities on these paths receive higher scores due to
their connectivity importance. If no direct path exists, the entities with high scores exhibit significant
betweenness centrality or proximity to ei and ej , avoiding being erroneously pruned.

Visualization While numerous open-source tools (e.g., Neo4j visualization library, yFiles,
ipysigma, etc.) can be used for visualizing the sub-KGs, most of them prioritize user interaction
and algorithmic features, which diverge from our focus on enabling rich stylistic customization for
Gτ . Therefore, we develop a dedicated visualization tool based on Graphviz (Ellson et al., 2004), a
versatile framework for graph rendering.

For the main experiments, entity names in the visualized images are displayed in Times New Roman
without decorative elements (e.g., boxes or circles) to enhance clarity. Relation labels are placed
directly around edges. Thus, the generated KG images are friendly for optical character recognition
(OCR) and readable for both humanity and machine.

5
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Table 1: The main results on triple classification. ”-” denotes the unavailable entries. The best and
second-best Acc/F1 results are boldfaced and underlined, respectively.

Model CoDeX-S FB15K-237N
Acc P R F1 Acc P R F1

Embedding-based

TransE (Bordes et al., 2013) 72.07 71.91 72.42 72.17 69.71 70.80 67.11 68.91
DistMult (Yang et al., 2015) 66.79 69.67 59.46 64.16 58.66 58.98 56.84 57.90

ComplEx (Trouillon et al., 2016) 67.64 67.84 67.06 67.45 65.70 66.46 63.38 64.88
RotatE (Sun et al., 2019) 75.68 75.66 75.71 75.69 68.46 69.24 66.41 67.80

LLM-based
Training-free

Zero-shot (Alpaca) (Taori et al., 2023) 50.62 50.31 99.83 66.91 56.06 53.32 97.37 68.91
Zero-shot (GPT-3.5) (Achiam et al., 2023) 54.68 69.13 16.94 27.21 60.15 86.62 24.01 37.59

ICL (1-shot) (Zhang et al., 2024b) 49.86 49.86 50.59 50.17 54.54 53.67 66.35 59.34
ICL (2-shot) 52.95 51.54 98.85 67.75 57.81 56.22 70.56 62.58
ICL (4-shot) 51.14 50.58 99.83 67.14 59.29 57.49 71.37 63.68
ICL (8-shot) 50.62 50.31 99.83 66.91 59.23 57.23 73.02 64.17

SeeKG 72.78 69.66 80.74 74.79 67.92 64.14 81.32 71.71

LLM-based
Fine-tuning

KG-LLaMA (Yao et al., 2023) 79.43 78.67 80.74 79.69 74.81 67.37 96.23 79.25
KG-Alpaca (Yao et al., 2023) 80.25 79.38 81.73 80.54 69.91 62.71 98.28 76.56

Vanilla IT (Zhang et al., 2024b) 81.18 77.01 88.89 82.52 73.50 65.87 97.53 78.63
Structure-aware IT (Zhang et al., 2024b) 81.27 77.14 88.40 82.58 76.42 69.56 93.95 79.94

KoPA (Zhang et al., 2024b) 82.74 77.91 91.41 84.11 77.65 70.81 94.09 80.81
SSQR (Lin et al., 2025) - - - - 79.80 75.90 87.20 81.10

SeeKG 84.05 80.44 89.99 84.95 82.20 80.18 85.55 82.78

3.3 REASONING KG IMAGES WITH MLLMS

Now, we are capable of employing an MLLM for triple classification with KG images as context.
Following the existing works that leverage LLMs for KG completion, we implement SeeKG through
two prevalent strategies:

Training-free SeeKG The training-free strategy directly leverage pretrained LLMs for question
answering, where prompt design is critical. The recent studies demonstrate significant improvements
through techniques like in-context-learning (ICL) (Dong et al., 2022; Wies et al., 2024) and chain-
of-thought (CoT) (Wei et al., 2022). However, we deliberately adopt a minimalistic prompting
approach for fair comparison with baseline methods in the main experiment, which is sufficient to
surpass them by substantial margins. The instruction template is presented in Appendix B, in which
the MLLMs are required to response strictly with “True” or “False” only.

Supervised Fine-tuning SeeKG Our designed visualization style have simplified the sub-KG rep-
resentation, but the resulting KG images remain unfamiliar to MLLMs. Therefore, performing su-
pervised fine-tuning can enhance the understanding of MLLMs towards the triple classification task,
thereby minimizing the knowledge gap. We follow the existing LLM-based methods (Zhang et al.,
2024b) to perform supervised fine-tuning to optimize SeeKG with identical instruction template
used in the training-free setting.

4 EXPERIMENT

In this section, we conduct a series of experiments to verify the effectiveness of SeeKG. The source
code has been uploaded and will be available on GitHub.

4.1 SETTINGS

Datasets We consider CoDeX-S (Safavi & Koutra, 2020) and FB15K-237N (Lv et al., 2022) as
datasets, which are widely used in evaluating LLM-based methods for triple classification. The
detailed statistics of these two datasets can be found in Appendix C.

Implementation We use Qwen2.5-VL-7B (Wu et al., 2025) as the backbone MLLM for SeeKG
in the main experiment. Qwen2.5-VL is one of the most popular MLLMs in AI community, and
the parameter size of its 7B version is analogous to that of the LLMs employed in baselines. In the
supervised fine-tuning setting, we employ low-rank adaption (LoRA) (Hu et al., 2021) for efficiency,

6
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Table 2: Ablation studies under supervised fine-tuning setting on CoDex-S and FB15K-237N.

Model CoDeX-S FB15K-237N

Acc P R F1 Acc P R F1

SeeKG 84.05 80.44 89.99 84.95 82.20 80.18 85.55 82.78
- w/o context 81.40 76.92 89.72 82.83 74.26 67.36 94.13 78.53
- w/ text context 82.71 83.37 81.73 82.54 77.90 70.85 94.80 81.09
- w/ image + text context 83.37 79.13 90.65 84.50 81.88 83.67 79.22 81.39

- w/o simple paths 82.71 83.37 81.73 82.54 80.72 78.12 85.34 81.57
- w/o neighborhood 83.34 81.66 86.00 83.77 81.48 78.42 86.87 82.43
- w/ random pruning 81.62 78.47 87.14 82.58 79.65 77.68 83.21 80.35
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Figure 3: The accuracy results of SeeKG with different backbone MLLMs on the CoDeX-S dataset.

where r = 64 is identical to the baseline method KoPA (Zhang et al., 2024b). The learning rate and
number of training epoch are set to 0.0001 and 2.0, respectively. The original training sets for
supervised fine-tuning have over 100, 000 samples, while we find that only using 10, 000 ∼ 20, 000
samples is sufficient for fine-tuning SeeKG. The detailed settings can be found in Appendix D.1.

Baselines and Metrics We compare our method with state-of-the-art baselines including: the
conventional embedding-based methods, such as TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), and RotatE (Sun et al., 2019); the LLM-based training-free
methods, such as zero-shot and ICL-based methods (Zhang et al., 2024b); the LLM-based fine-
tuning methods, such as KG-LLama (Yao et al., 2023), KG-Alpaca (Yao et al., 2023), KoPA (Zhang
et al., 2024b), and SSQR (Lin et al., 2025). Following the existing works, we use accuracy (Acc),
precision (P), recall (R), and F1-score (F1) as the evaluation metrics.

4.2 MAIN RESULTS

Table 1 presents the main experimental results on triple classification. Notably, the LLM-based fine-
tuning methods substantially outperform conventional embedding-based approaches, demonstrating
the superior capability of LLM on reasoning KGs. Within the LLM-based methods, SeeKG consis-
tently achieves state-of-the-art performance in both training-free and supervised fine-tuning settings
across the main metrics and datasets. These results provide empirical evidence that MLLMs excel
at understanding KG images and generating reliable triple validity predictions.

Specifically, the LLM-based training-free baselines show no significant advantage over conventional
embedding-based methods, which may be attributed to their unfamiliarity with the triple classifica-
tion task. On the CoDeX-S dataset, anomalous recall patterns emerge in several LLM-based meth-
ods. These extreme values suggest model bias toward blanket acceptance/rejection of most triples.
Results on FB15K-237N exhibit more balanced precision-recall tradeoffs, though accuracy remains
below the best conventional method. It is worth noting that our SeeKG still achieves competitive or
even better results, demonstrating robust superiority over the existing LLM-based methods.

For the fine-tuning setting, all LLM-based methods exhibit dramatic performance gains, decisively
surpassing conventional methods. Our SeeKG emerges as new state-of-the-art across both datasets
and primary metrics. Remarkably, SeeKG achieves these results with significantly reduced training
data requirements, highlighting its effectiveness and efficiency.
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Figure 4: The results of SeeKG with different pruning and visualization settings on the CoDeX-S
dataset. Ne denotes the maximal number of entities. Box and Star are visualization styles featuring
entities with rectangular and star-shaped borders, respectively. Script and SFDP denote style with
cursive font and scaled force-directed placement layout, respectively.

4.3 ABLATION STUDY

We perform ablation studies on the CoDex-S and FB15K-237N datasets to validate the efficacy
of each module in SeeKG. We develop several variants for comparison: “w/o context”, “w/ text
context” and “w/ image + text context” denote our method without sub-KG context, with textualized
context, and with both two types of context, respectively. “w/o simple paths”, “w/o neighborhood”,
and ”w/ random pruning” are the methods excluding simple paths, omitting multi-hop neighborhood,
and replacing PPR-based pruning with random pruning, respectively.

The results are shown in Table 2, from which we can observe that: The proposed method outper-
forms all variants across two datasets. The closest competitor is SeeKG with image + text context,
though its performance remains slightly inferior. Given that modern MLLMs excel at OCR, the
triple information loss in KG images is nearly negligible, especially in the fine-tuning setting. In
contrast, textual context may divert the attention of the MLLM away from KG images, which ex-
plicitly illustrate structural correlations among entities and relations.

For sub-KG construction, removing simple paths results in significantly more performance degrada-
tion compared to removing multi-hop neighborhood information, implying that paths serve as more
critical context for KG reasoning. PPR pruning is also vital for sampling high-quality sub-KGs, as
replacing it with random pruning also causes performance drop on both datasets.

4.4 BACKBONE MLLMS

We evaluate SeeKG with various backbone MLLMs under both training-free and supervised fine-
tuning settings, and present results on the CoDeX-S dataset in Figure 3. Overall, larger MLLMs
generally achieve better performance in both settings. Qwen2.5-VL-32B and Qwen2.5-VL-72B
emerge as the top-performing models, with accuracy results in training-free setting approaching
those of fine-tuned 7B models. The minimal performance gap between these two methods may
stems from that the 32B model is newly released with reinforcement learning training.

The other open-source MLLMs also achieve promising results, especially MiniCPM-V-2.6-8B,
which significantly outperforms Qwen2.5-VL-7B in the training-free setting. The Commercial
MLLMs GPT-4o-mini and Gemini 2.5 Pro underperform relative to our expectations, despite re-
peated adjustments to the instructions. The primary reason appears to be their overly conservative
decision-making, resulting in very low recall scores. Nevertheless, most MLLMs still outperform
the single-modal LLMs presented in Table 1. More detailed results can be found in Appendix D.2.
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a. A complicated KG image contains 27 entities and 41 triples. b. Results of Qwen2.5-VL-72B for three tasks

Figure 5: The case study results. We present the MLLM with a complex KG image and evaluate its
performance on three tasks: listing all entities, listing all relations, and completing 40 triples.

4.5 PRUNING AND VISUALIZATION SETTINGS

We conduct experiments to further analyze the effects of different pruning and visualization settings.
As shown in Figure 4, the top sub-figures present sampled KG images with varying maximal entity
number Ne and their corresponding performance on the CodeX-S dataset. SeeKG maintains robust
performance across different Ne values, consistently achieving state-of-the-art results. The optimal
configuration emerges at Ne = 6, where the corresponding KG images have more appropriate
node/edge density. When Ne = 4, the KG images often fail to capture essential paths between
source and target entities, causing noticeable drops in accuracy and F1 score. Conversely, setting
Ne = 16 introduces excessive redundant entities and relations, which solely provide marginal utility
for entity identification and may impose considerable burdens for the 7B MLLM.

The bottom sub-figures compare different visualization styles. Contrary to our initial hypothesis
that entity bounding boxes would enhance MLLM’s entity-relation discrimination, the box style
underperforms the default plain style. Further experimentation with star-shaped borders yields even
more pronounced performance deterioration, suggesting that explicit segmentation boundaries may
disrupt the spatial reasoning of MLLMs. Typography and layout choices also significantly affect
performance: Replacing “Times New Roman” with the cursive “Segoe Script” severely degrades
results due to OCR difficulties. The SFDP layout (with straight-line edges) produces sparse graphs
containing more edge crossings, resulting in inferior performance compared to the default layout.
More sampled KG images can be found in Appendix D.3.

4.6 CASE STUDY

To evaluate the extent to which MLLMs can comprehend and reason over KG images, we design
a case study involving a complex KG image comprising 27 entities and 41 triples, and reserve 40
additional triples related to these entities for the completion task.

The results are shown in Figure 5. We use Qwen2.5-VL-72B as the MLLM and task it with three ob-
jectives: listing all entities, listing all relations, and completing 40 triples in the form of (head entity,
relation, ?), where “?” denotes the missing entity. From the results we can observe that, the MLLM
demonstrates remarkable capability in understanding the KG image even without fine-tuning, ac-
curately identifying all entities and relations with just a single relation oversight. Furthermore, it
performs exceptionally well in completing KG triples. All predicted triples are factually correct,
though 9 triples were already present in the image, possibly due to hallucination. Notably, there are
also 6 predicted triples absent from the dataset yet verified as correct through manual validation.
As more advanced MLLMs continue to emerge, we anticipate these results may still have room for
improvement. The details of case study are provided in Appendix D.4.

5 CONCLUSION AND LIMITATION

In this paper, we propose SeeKG, a novel MLLM-based framework for KG reasoning with visual-
ized sub-KG images as input. SeeKG features an end-to-end pipeline integrating search, pruning,
and visualization modules to efficiently sample relevant subgraphs and transform them into highly
reliable, customizable graphical representations. Experimental results indicate that SeeKG outper-
forms all LLM-based baselines by substantial margins with a 7B MLLM as backbone. A potential
limitation for our work is the unexplored integration of advanced LLM techniques, such as rein-
forcement learning from human feedback and chain-of-thought, which we reserve for future work.
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Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
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Given the input knowledge graph triple in the form of (head, relation, tail),
please first identify the key entities/relationships in the KG image, then cross-
reference with your internal knowledge to determine the validity of the triple. 
Note: the image doesn't contain the input triple, and relation definitions may 
vary in strictness. Return True if the probability ≥ 0.5, otherwise False. Respond 
strictly with 'True' or 'False' only. Do not include any additional text.

Instruction

User Input
The input triple: (Veniamin Smekhov, country of citizenship, Soviet Union)

The input knowledge graph image: <image>

Response True

Figure 6: The instruction template used in the main experiment for both training-free and supervised
fine-tuning settings.

A RELATED WORKS TO CONVENTIONAL KG REPRESENTATION LEARNING

Conventional KG representation learning focuses on the encoding of relational structures via the
triple-based methods or GNNs (Ji et al., 2020; Chen et al., 2025). The triple-based methods (Bordes
et al., 2013; Wang et al., 2014; Lin et al., 2015a; Trouillon et al., 2016; Dettmers et al., 2018;
Balazevic et al., 2019; Guo et al., 2019; Sun et al., 2019) design diverse score functions to evaluate
a given triple τ = (ei, rk, ej). For example, TransE (Bordes et al., 2013) models τ as ei + rk =
ej , where the boldfaced denote the corresponding embeddings. The following methods such as
ComplEx (Trouillon et al., 2016) and RotatE (Sun et al., 2019) further extend TransE to the complex
space and polar coordinates. GNN-based methods (Schlichtkrull et al., 2018; Wang et al., 2018;
Vashishth et al., 2020; Sun et al., 2020; Chen et al., 2021; Guo et al., 2022; Zhang et al., 2024a),
such as CompGCN (Vashishth et al., 2020) and DAN (Guo et al., 2024b), usually follow a two-step
paradigm: first aggregating the neighboring entities into embeddings via GNNs and then employing
the triple-based score functions for relational learning.

B INSTRUCTION TEMPLATE

The instruction template used in the main experiment is shown in Figure 6, which follows a struc-
tured format:

• Instruction specifies the task: analyze input knowledge graph triple, then extract key en-
tities/relations from the KG image and cross-reference with internal knowledge to assess
triple validity, finally return True/False based on probability. We restrict response to only
True or False to ensure a fair comparison with existing methods.

• User input provides the input triple and KG image, e.g., (Veniamin Smekhov, country of
citizenship, Soviet Union) and the placeholder <image>.

• Response is the expected output, which is used for fine-tuning and evaluation.

This template ensures clear task definition, consistent input-output structure, and precise response
constraints, enabling LLMs to focus on knowledge reasoning and validity assessment.

C DATASET DETAILS

As shown in Table C, we leverage two benchmark datasets for evaluating SeeKG:

• CoDeX-S (2,034 entities, 42 relations) balances scale with interpretability, derived from
Wikipedia hyperlinks.

• FB15K-237N (13,104 entities, 93 relations) offers large-scale complexity, masking inverse
relations to reduce redundancy.
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Dataset |E| |R| # Train # Valid(+/-) # Test(+/-)

CoDeX-S (Safavi & Koutra, 2020) 2,034 42 32,888 1,827/1,827 1,828/1,828
FB15K-237N (Lv et al., 2022) 13,104 93 87,282 7,041/7,041 8,226/8,226

Table 3: Statistical information of datasets. The positve (+) and negative (-) samples are 1:1 in the
valid / test set.

Datasets LLM LoRA
r

LoRA
dropout

LoRA
target modules

train
batch size
per device

loss
criterion

gradient
accumulation

steps
optimizer

CoDeX-S Qwen2.5-VL-7B 64 0.05 all 32 CausalLMLoss 1 AdamW
FB15K-237N Qwen2.5-VL-7B 32 0.05 all 32 CausalLMLoss 1 AdamW

# epoch warm up
ratio

max gradient
norm

training
max samples

image
max pixels

MLLM
cutoff length

sub-KG
max entities

simple path
max length

CoDeX-S 2.0 0.1 1.0 10,000 262,144 2,048 6 3
FB15K-237N 2.0 0.1 1.0 20,000 262,144 2,048 8 3

Table 4: Hyper-parameter settings for supervised fine-tuning in the main experiments.

All datasets enforce a 1:1 ratio of positive-to-negative samples in validation/test splits, ensuring
unbiased metric computation. Training sets vary in size to accommodate different learning regimes.

D EXPERIMENT DETAILS

D.1 HYPER-PARAMETER SETTINGS

The detailed hyper-parameter settings are shown in Table 4. We use Qwen2.5-VL-7B (Wu et al.,
2025) as the backbone LLM in the main experiment, and develop the training and evaluation proce-
dure using LLamaFactory (Zheng et al., 2024) and VLLM (Kwon et al., 2023). All experiments are
conducted using a single H100 GPU. We employ low-rank adaption (LoRA) (Hu et al., 2021) in the
supervised fine-tuning setting, where r = 64 is identical to the baseline method KoPA (Zhang et al.,
2024b). The learning rate and number of training epoch are set to 0.0001 and 2.0, respectively.

D.2 DETAILED RESULTS OF SEEKG WITH DIFFERENT BACKBONE MLLMS

We present the detailed results of SeeKG across various backbone MLLMs in Figure 7. Evidently,
there are substantial performance variations in recall metrics among different MLLMs. Notably,
while Gemini 2.5 achieves the highest precision in triple classification, its recall performance is the
weakest among compared models, consequently yielding suboptimal accuracy and F1 scores, the
similar to GPT-4o-mini. Even though, most MLLMs still have significantly better results than the
single-modal LLMs in Table 1.

D.3 MORE SAMPLED KG IMAGES WITH DIFFERENT PRUNING AND VISUALIZATION
SETTINGS

We provide more KG image samples with different pruning and visualization settings in Figure 8. It
is clear that including more entities inevitably expands the neighborhood of both source and target
entities, as the number of simple paths is often limited. Also, the images with Star, Script and SFDP
styles exhibit significant readability challenges.

D.4 DETAILED RESULTS OF CASE STUDY

We present the details of case study in Figure 9, which includes the original input KG image, prompt
instructions, and MLLM outputs. The sole missing relation in the output is “place of death”, posi-
tioned at the right edge of the KG image.
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Figure 7: The detailed results of SeeKG with different backbone MLLMs on the CoDeX-S dataset.
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Figure 8: More sampled KG images with different pruning and visualization settings.
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Given the knowledge graph image <image>, 
please identify all contained entities and 
relations. Please strictly response in the 
format of JSON.

Example output:

{"relation":["a","b","c"], 
"entity":["d","e","f"]}

Input

{
"relation": [

"place of birth",
"ethnic group",
"country of citizenship",
"residence",
"employer",
"influenced by",
"occupation",
"languages spoken, written, or signed",
"country",
"diplomatic relation",
"continent",
"official language",
"part of",
"religion"

],
"entity": [

"Alexander Ivanovich Herzen",
"Vladimir Lenin",
"Moscow",
"Russians",
"Saint Petersburg",
"Saint Petersburg State University",
"Karl Marx",
"Friedrich Engels",
"writer",
"Soviet Union",
"Russian Soviet Federative Socialist 

Republic",
"Russian Empire",
"politician",
"journalist",
"Georg Wilhelm Friedrich Hegel",
"German",
"London",
"philosopher",
"atheism",
"United States of America",
"United Kingdom of Great Britain and 

Ireland",
"United Kingdom",
"North America",
"English",
"Europe",
"Russia",
"Russian"

]
}

Output

missed relation: 
place of death

9 25 

14 

27 

6

1

0 10 20 30 40 50

40 KG Completions

15 Relations

27 Entities

Existing Correct New Correct Missing/Incorrect

Given the knowledge graph image <image>, please complete 
the given triplets. Note: all candidate entities are in the image, 
and do not include the existing triples. The incomplete triplets: 
(London, country, ?) 
(Karl Marx, occupation, ?)
…
Vladimir Lenin, occupation, ?) 

Please strictly response in order with the format of JSON. 
Example output: {"triple":["(head, relation, tail)", "(head, 
relation, tail)"]}

Input

{
"triple": [

"(London, country, United Kingdom)",
"(Karl Marx, occupation, journalist)",
"(United Kingdom, official language, English)",
"(Vladimir Lenin, languages spoken, written, or signed, 

Russian)",
"(Vladimir Lenin, occupation, politician)",
"(Alexander Ivanovich Herzen, occupation, writer)",
"(Vladimir Lenin, religion, atheism)",
"(Vladimir Lenin, languages spoken, written, or signed, 

German)",
"(Alexander Ivanovich Herzen, occupation, journalist)",
"(Russian Soviet Federative Socialist Republic, official 

language, Russian)",
"(Moscow, continent, Europe)",
"(United Kingdom, continent, Europe)",
"(United States of America, diplomatic relation, Russian 

Soviet Federative Socialist Republic)",
"(Vladimir Lenin, influenced by, Georg Wilhelm Friedrich 

Hegel)",
"(Karl Marx, religion, atheism)",
"(United Kingdom, diplomatic relation, Russian Soviet 

Federative Socialist Republic)",
"(London, continent, Europe)",
"(London, country, United Kingdom)",
"(Vladimir Lenin, member of political party, Saint 

Petersburg State University)",
"(Vladimir Lenin, country of citizenship, Russian Soviet 

Federative Socialist Republic)",
"(Alexander Ivanovich Herzen, occupation, politician)",
"(Vladimir Lenin, occupation, journalist)",
"(Friedrich Engels, occupation, philosopher)",
"(Vladimir Lenin, influenced by, Karl Marx)",
"(Vladimir Lenin, ethnic group, Russians)",
"(Russia, diplomatic relation, United States of America)",
"(Karl Marx, occupation, philosopher)",
"(Moscow, country, Russian Soviet Federative Socialist 

Republic)",
"(Moscow, official language, Russian)",
"(Saint Petersburg, country, Russian Soviet Federative 

Socialist Republic)",
"(Karl Marx, place of death, London)",
"(United States of America, diplomatic relation, United 

Kingdom)",
"(Friedrich Engels, influenced by, Karl Marx)",
"(Friedrich Engels, occupation, journalist)",
"(Moscow, country, Russian Soviet Federative Socialist 

Republic)",
"(Russia, diplomatic relation, United States of America)",
"(Vladimir Lenin, occupation, writer)",
"(Vladimir Lenin, residence, Moscow)",
"(Vladimir Lenin, residence, Saint Petersburg)",
"(Vladimir Lenin, occupation, politician)"

]
}

Output

Figure 9: The detailed results of case study.
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