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Abstract
We study first-order methods for constrained min-max optimization. Existing methods either re-
quires two gradient calls or two projections in each iteration, which may be costly in applications. In
this paper, we first show that the Optimistic Gradient (OG) method, a single-call single-projection
algorithm, has O( 1√

T
) convergence rate for inclusion problems with operators that satisfy the weak

Minty variation inequality (MVI). Our second result is the first single-call single-projection algo-
rithm – the Accelerated Reflected Gradient (ARG) method that achieves the optimal O( 1

T ) con-
vergence rate for inclusion problems that satisfy negative comonotonicity. Both the weak MVI
and negative comonotonicity are well-studied assumptions and capture a rich set of non-convex
non-concave min-max optimization problems. Finally, we show that the Reflected Gradient (RG)
method, another single-call single-projection algorithm, has O( 1√

T
) last-iterate convergence rate

for constrained convex-concave min-max optimization, answering an open problem of [26].

1. Introduction

Various Machine Learning applications, from the generative adversarial networks (GANs) (e.g., [1,
20]), adversarial examples (e.g., [33]), robust optimization (e.g., [4]), to reinforcement learning
(e.g., [10, 16]), can be captured by constrained min-max optimization. Unlike the well-behaved
convex-concave setting, these modern ML applications often require solving non-convex non-concave
min-max optimization problems in high dimensional spaces.

Unfortunately, the general non-convex non-concave setting is intractable even for computing
a local solution [13, 25, 44]. Motivated by the intractability, researchers turn their attention to
non-convex non-concave settings with structure. Significant progress has been made for several
interesting structured non-convex non-concave settings, such as the ones that satisfy the weak Minty
variation inequality (MVI) (Definition 2) [15, 46] and the ones that satisfy the more strict negatively
comonotone condition (Definition 3) [6, 30]. These algorithms are variations of the celebrated
extragradient (EG) method [29], an iterative first-order method. Similar to the extragradient method,
these algorithms all require two oracle calls per iteration, which may be costly in practice. We
investigate the following important question in this paper:

Can we design efficient single-call first-order methods for

structured non-convex non-concave min-max optimization? (*)

We provide an affirmative answer to the question. We first show that a single-call method known
as the Optimistic Gradient (OG) method [26] is applicable to all non-convex non-concave settings
that satisfy the weak MVI. We then provide the Accelerated Reflected Gradient (ARG) method
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Algorithm Single-Call? Constraints?
Non-Monotone

Comonotone weak MVI

Normal
EG+ [15] ✗ ✗ O( 1√

T
) O( 1√

T
)

CEG+ [46] ✗ ✓ O( 1√
T
) O( 1√

T
)

OG[This paper] ✓ ✓ O( 1√
T
) O( 1√

T
)

Accelerated
FEG [30] ✗ ✗ O( 1

T )
AS [6] ✗ ✓ O( 1

T )
ARG [This paper] ✓ ✓ O( 1

T )

Table 1: Existing results for min-max optimization problem in the nonconvex-nonconcave setting.
A ✓ in “Constraints?” means the algorithm works in the constrained setting. The conver-
gence rate is in terms of the operator norm (in the unconstrained setting) and the residual
(in the constrained setting).

that achieves the optimal convergence rate in all non-convex non-concave settings that satisfy the
negatively comonotone condition. Single-call methods have been studied in the convex-concave
settings [26] but not for the more general non-convex non-concave settings. See Table 1 for com-
parisons between our algorithms and other algorithms from the literature.

1.1. Our Contributions

Throughout the paper, we adopt the more general and abstract framework of inclusion problems,
which includes constrained min-max optimization as a special case. More specifically, we consider
the following problem.

Inclusion Problem. Given E = F + A where F : Rn → R
n is a single-valued (possibly non-

monotone) operator and A : Rn ⇒ R
n is a set-valued maximally monotone operator, the inclusion

problem is defined as follows

find z∗ ∈ Z such that 0 ∈ E(z∗) = F (z∗) +A(z∗). (IP)

As shown in the following example, we can interpret a min-max optimization problem as an
inclusion problem.

Example 1 (Min-Max Optimization) The following structured min-max optimization problem
captures a wide range of applications in machine learning such as GANs, adversarial examples,
robust optimization, and reinforcement learning:

min
x∈Rnx

max
y∈Rny

f(x, y) + g(x)− h(y), (1)

where f(·, ·) is possibly non-convex in x and non-concave in y. Regularized and constrained min-
max problems are covered by appropriate choices of lower semi-continuous and convex functions g
and h. Examples include the ℓ1-norm, the ℓ2-norm, and the indicator function of a closed con-
vex feasible set. Let z = (x, y), if we define F (z) = (∂xf(x, y),−∂yf(x, y)) and A(z) =
(∂g(x), ∂h(y)), where A is maximally monotone, then the first-order optimality condition of (1)
has the form of an inclusion problem.
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[13] shows that without any assumption on the operator E = F +A, the problem is intractable.1

The most well understood setting is when E is monotone, i.e., ⟨u− v, z − z′⟩ ≥ 0 for all z, z′ and
u ∈ E(z), v ∈ E(z′), which captures convex-concave min-max optimization. Motivated by non-
convex non-concave min-max optimization, we consider the two most widely studied families of
non-monotone operators: (i) negatively comonotone operators and (ii) operators satisfy the less
restrictive weak MVI. See Section 2 for more detailed discussion on their relationship. Here are the
main contributions of this paper.

Contribution 1: We provide an extension of the Optimistic Gradient (OG) method for in-
clusion problems when the operator E = F + A satisfies the weak MVI. More specifically,
we prove that OG has a O( 1√

T
) convergence rate (Theorem 4) matching the state of the art

algorithms [15, 46]. Importantly, our algorithm only requires a single oracle call to F and a
single call to the resolvent of A.a

a. When A is the subdifferential of the indicator function of a closed convex set, the resolvent operator is exactly
the Euclidean projection. Hence our algorithm performs a single projection in the constrained case.

Next, we provide an accelerated single-call method when the operator satisfies the stronger
negatively comonotone condition.

Contribution 2: We design an accelerated version of the Reflected Gradient (RG) [8, 9, 26,
34] method that we call the Accelerated Reflected Gradient (ARG) method, which has the
optimal O( 1

T ) convergence rate for inclusion problems whose operators E = F + A are
negatively comonotone (Theorem 5). Note that O( 1

T ) is the optimal convergence rate for any
first-order methods even for monotone inclusion problems [14, 54]. Importantly, ARG only
requires a single oracle call to F and a single call to the resolvent of A.
Finally, we resolve an open question from [26].

Contribution 3: We show that the Reflected Gradient (RG) method has a last-iterate con-
vergence rate of O( 1√

T
) for constrained convex-concave min-max optimization (Theorem 6).

[26] show that the RG algorithm asymptotically converges but fails to obtain a concrete rate.
We strengthen their result to obtain a tight finite convergence rate for RG.

1.2. Related Works

We provide a brief discussion of the most relevant and recent results on nonconvex-nonconcave
min-max optimization here and defer the discussion on related results in the convex-concave setting
to Appendix A. We also refer readers to [2, 17, 49] and references therein for a comprehensive
literature review on inclusion problems and related variational inequality problems.

Structured Nonconvex-Nonconcave Min-Max Optimization. Since in general nonconvex-nonconcave
min-max optimization problems are intractable, recent works study problems under additional as-
sumptions.

The Minty variational inequality (MVI) assumption (also called coherence or variationally sta-
blility), which covers all quasiconvex-concave and starconvex-concave problems, is well-studied
in e.g., [11, 31, 32, 35, 50, 56]. Extragradient-type algorithms has O( 1√

T
) convergence rate for

problems that satisfies MVI [11].

1. Indeed, even if A is maximally monotone, [13] implies that the problem is still intractable without further assumptions
on F .
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[15] proposes a weaker assumption called weak MVI, which includes both MVI or negative
comonotonicity [3] as special cases. Under the weak MVI, the EG+ [15] and OGDA+ [5] algorithms
have O( 1√

T
) convergence rate in the unconstrained setting. Recently, [46] generalizes EG+ to CEG+

algorithm, achieving the same convergence rate in the general (constrained) setting. To the best of
our knowledge, the OG algorithm is the only single-call single-resolvent algorithm with O( 1√

T
)

convergence rate when we only assume weak MVI (Theorem 4).
The result for accelerated algorithms in the nonconvex-nonconcave setting is sparser. For neg-

atively comonotone operators, optimal O( 1
T ) convergence rate is achieved by variants of the EG

algorithm in the unconstrained setting [30] and in the constrained setting [6]. To the best of our
knowledge, the ARG algorithm is the first efficient single-call single-resolvent method that achieves
the accelerated and optimal O( 1

T ) convergence rate in the constrained nonconvex-nonconcave set-
ting (Theorem 5). We summarize previous results and our results in Table 1.

2. Preliminaries

Basic Notations. Throughout the paper, we focus on the Euclidean space Rn equipped with inner
product ⟨·, ·⟩. We denote the standard ℓ2-norm by ∥ · ∥. For any closed and convex set Z ⊆ R

n,
ΠZ [·] : Rn → Z denotes the Euclidean projection onto set Z such that for any z ∈ R

n,ΠZ [z] =
argminz′∈Z ∥z − z′∥. We denote B(z, r) the ℓ2-ball centered at z with radius r.

Monotone Operator. We recall some standard definitions and results on monotone operators here
and refer the readers to [2, 48, 49] for more detailed introduction. A set-valued operator A :
R

n ⇒ R
n maps each point z ∈ R

n to a subset A(z) ⊆ R
n. We denote the graph of A as

Gra(A) := {(z, u) : u ∈ A(z)} and the zeros of A as Zer(A) = {z : 0 ∈ A(z)}. The inverse
operator of A is denoted as A−1 whose graph is Gra(A−1) = {(u, z) : (z, u) ∈ Gra(A)}. For two
operators A and B, we denote A+B to be the operator with graph Gra(A+B) = {(z, uA+uB) :
(z, uA) ∈ Gra(A), (z, uB) ∈ Gra(B)}. We denote the identity operator as I : Rn → R

n. We say
operator A is single valued if |A(z)| ≤ 1 for all z ∈ R

n. Single-valued operator A is L-Lipschitz if∥∥A(z)−A(z′)
∥∥ ≤ L ·

∥∥z − z′
∥∥, ∀z, z′ ∈ R

n.

Moreover, we say A is non-expansive if it is 1-Lipschitz.

Definition 1 ((Maximally) monotonicity) An operator A : Rn ⇒ R
n is monotone if〈

u− u′, z − z′
〉
≥ 0, ∀(z, u), (z′, u′) ∈ Gra(A).

Moreover, A is maximally monotone if A is monotone and Gra(A) is not properly contained in the
graph of any other monotone operators.

Non-Monotone Operator.

Definition 2 (Weak MVI [15, 46]) An operator A : Rn ⇒ R
n satisfies weak MVI if for some

z∗ ∈ Zer(A), there exists ρ ≤ 0

⟨u, z − z∗⟩ ≥ ρ∥u∥2, ∀(z, u) ∈ Gra(A).
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Definition 3 (Comonotonicity [3]) An operator A : Rn ⇒ R
n is ρ-comonotone if〈

u− u′, z − z′
〉
≥ ρ
∥∥u− u′

∥∥2, ∀(z, u), (z′, u′) ∈ Gra(A).

When A is ρ-comonotone for ρ > 0, then A is also known as ρ-cocoercive, which is a stronger
condition than monotonicity. When A is ρ-comonotone for ρ < 0, then A is non-monotone. Weak
MVI with ρ = 0 is also know as MVI, coherence, or variational stability. Note that the weak MVI
is implied by negative comonotonicity. We refer the readers to [30, Example 1], [15, Section 2.2]
and [46, Section 5] for examples of min-max optimization problems that satisfy the two conditions.

2.1. Problem Formulation

Inclusion Problem. We say z is an ϵ-approximate solution to an inclusion problem (IP) if

0 ∈ F (z) +A(z) + B(0, ϵ).

Throughout the paper, we study IP problems under the following assumption.

Assumption 1 In the setup of IP,

1. there exists z∗ ∈ Zer(E), i.e., 0 ∈ F (z∗) +A(z∗).

2. F is L-Lipschitz.

3. A is maximally monotone.

When F is monotone, we refer to the corresponding IP problem as a monotone inclusion problem,
which covers convex-concave min-max optimization. In the more general non-monotone setting,
we would study problems that satisfy negative comonotonicity or weak MVI.

Assumption 2 In the setup of IP, E = F +A is ρ-comonotone, i.e.,〈
u− u′, z − z′

〉
≥ ρ
∥∥u− u′

∥∥2, ∀(z, u), (z′, u′) ∈ Gra(E).

Assumption 3 In the setup of IP, E = F + A satisfies weak MVI with ρ ≤ 0, i.e., there exists
z∗ ∈ Zer(E),

⟨u, z − z∗⟩ ≥ ρ∥u∥2, ∀(z, u) ∈ Gra(E).

Note that by definition, the parameter ρ in both assumption must be O( 1L). An important special
case of inclusion problem is the variational inequality problem.

Variational Inequality. Let Z ⊆ R
n be a closed and convex set and F : Rn → R

n be a single-
valued operator. The variation inequality (VI) problem associated with Z and F is stated as

find z∗ ∈ Z such that ⟨F (z∗), z∗ − z⟩ ≤ 0, ∀z ∈ Z. (VI)

Note that VI is a special case of IP when A = NZ = ∂IZ is the normal cone operator:

0 ∈ F (z∗) +NZ(z
∗) ⇔ −F (z∗) ∈ NZ(z

∗) ⇔ ⟨F (z∗), z∗ − z⟩ ≤ 0,∀z ∈ Z.

The general formulation of VI unifies many problems such as convex optimization, min-max op-
timization, computing Nash equilibria in multi-player concave games, and is extensively-studied
since 1960s [17]. Definitions of the convergence measure for VI and the classical algorithms, EG
and PEG, are presented in Appendix B.
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2.2. Convergence Measure

We focus on a strong convergence measure called the tangent residual, defined as

rtanF,A(z) := min
c∈A(z)

∥F (z) + c∥

It is clear by definition that rtanF,A(z) ≤ ϵ implies z is an ϵ-approximate solution to the inclusion (IP)
problem, and also an (ϵ ·D) approximate strong solution to the corresponding variational inequality
(VI) problem when Z is bounded by D. Moreover, the tangent residual is an upper bound of other
notion of residuals in the literature such as the natural residual rnatF,A [14] or the forward-backward

residual rfbF,A [55] as shown in Fact 1. We defer the proof to Appendix B.4. Note that in the
unconstrained setting where A = 0, these residuals are all equivalent to the operator norm ∥F (z)∥.

Fact 1 Let A be a maximally monotone operator and F be an single-valued operator. Then for
any z ∈ R

n and α > 0,

rtanF,A(z) ≥ rnatF,A(z) := ∥z − JA(z − F (z))∥

rtanF,A(z) ≥ rfbF,A,α(z) :=
1

α
∥z − JαA[z − αF (z)]∥

3. Optimistic Gradient Method for Weak MVI Problems

In this section, we consider an extension of the Optimistic Gradient (OG) algorithm [12, 26, 38, 39,
45] for inclusion problems: given arbitrary starting point z− 1

2
= z0 ∈ R

n and step size η > 0, the
update rule is

zt+ 1
2
= JηA

[
zt − ηF (zt− 1

2
)
]

zt+1 = zt+ 1
2
+ ηF (zt− 1

2
)− ηF (zt+ 1

2
)

(OG)

For t ≥ 1, the update rule can also be written as zt+ 3
2
= JηA[zt+ 1

2
− 2ηF (zt+ 1

2
) + ηF (zt− 1

2
)],

which coincides with the forward-reflected-backward algorithm [36]. We remark that the update
rule of OG is different from the Optimistic Gradient Descent/Ascent (OGDA) algorithm (also known
as Past Extra Gradient (PEG) algorithm) [47], which is single-call but requires two projections in
each iteration.

Previous results for OG only hold in the convex-concave (monotone) setting. The main result
in this section is that OG has O( 1√

T
) convergence rate even for nonconvex-nonconcave min-max

optimization problems that satisfy weak MVI, matching the state of the art results achieved by
two-call methods [15, 46]. Remarkably, OG only requires single call to F and single call to the
resolvent JηA in each iteration. The main result is shown in Theorem 4. The proof relies on a
simple yet important observation that zt−zt+1

η ∈ F (zt+ 1
2
) +A(zt+ 1

2
).

Theorem 4 Assume Assumption 1 and 3 hold with ρ ∈ (− 1
12

√
3L

, 0]. Consider the iterates of (OG)

with step size η ∈ (0, 1
2L) satisfying C = 1

2 + 2ρ
η − 2η2L2 > 0 (existence of such η is guaranteed

by Fact 2). Then for any T ≥ 1,

min
t∈[T ]

rtanF,A(zt+ 1
2
)2 ≤ min

t∈[T ]

∥zt+1 − zt∥2

η2
≤ H2

Cη2
· 1
T
,

where H2 = ∥z1 − z∗∥2 + 1
4∥z 1

2
− z0∥2.
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4. Accelerated Reflected Gradient For Negatively Comonotone Problems

In this section, we propose a new algorithm called the Accelerated Reflected Gradient (ARG) al-
gorithm. We prove that ARG enjoys accelerated O( 1

T ) last-iterate convergence rate for inclusion
problems with comonotone operators (Theorem 5). Note that the lower bound Ω( 1

T ) holds even for
the special case of convex-concave min-max optimization [14, 54].

Our algorithm is inspired by the Reflected Gradient (RG) algorithm [8, 9, 26, 34] for monotone
variational inequalities. Starting at initial points z−1 = z0 ∈ Z , the update rule of RG with step
size η > 0 is as follows: for t = 0, 1, 2, · · ·

zt+ 1
2
= 2zt − zt−1

zt+1 = ΠZ

[
zt − ηF (zt+ 1

2
)
] (RG)

We propose the following Accelerated Reflected Gradient (ARG) algorithm, which is a single-call
single-resolvent first-order method. Given arbitrary initial points z0 = z 1

2
∈ R

n and step size
η > 0, ARG sets z1 = JηA[z0 − ηF (z0)] and updates for t = 1, 2, · · ·

zt+ 1
2
= 2zt − zt−1 +

1

t+ 1
(z0 − zt)−

1

t
(z0 − zt−1)

zt+1 = JηA

[
zt − ηF (zt+ 1

2
) +

1

t+ 1
(z0 − zt)

] (ARG)

We use the idea from Halpern iteration [23] to design the accelerated algorithm (ARG). This
technique for deriving optimal first-order methods is also called Anchoring and receives intense
attention recently [6, 14, 30, 51, 52, 54]. We defer detailed discussion on these works to Appendix A.
We remark that the state of the art result from [6] is a two-call variant of the EG algorithm. Thus
to the best of our knowledge, ARG is the first single-call single-resolvent algorithm with optimal
convergence rate for general inclusion problems with comonotone operators.

Theorem 5 Assume Assumption 1 and 2 hold with ρ ∈ [− 1
60L , 0], then the accelerated reflected

gradient (ARG) algorithm with constant step size η > 0 satisfying Inequality (11) has the following
last-iterate convergence rate: for any T ≥ 1,

rtanF,A(zT ) ≤
√
6H

η
· 1
T

where H2 = ∥z0 − z∗∥2 + 4∥z1 − z0∥2 ≤ ∥z0 − z∗∥2 + 4rtanF,A(z0)
2.

We defer the proof to Appendix D.

5. Last-Iterate Convergence Rate of Reflected Gradient

In this section, we show that the Reflected Gradient (RG) algorithm [8, 9, 26, 34] has a last-iterate
convergence rate of O( 1√

T
) with respect to tangent residual and gap function (see Definition 8) for

solving monotone variational inequalities (Theorem 6). We defer the proof to Appendix E
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Theorem 6 For a variational inequality problem (VI) associated with a closed convex set Z and
a monotone and L-Lipschitz operator F with a solution z∗, the (RG) algorithm with constant step
size η ∈ (0, 1

(1+
√
2)L

) has the following last-iterate convergence rate: for any T ≥ 1,

rtanF,Z(zT ) ≤
λHL√

T
, GAPZ,F,D(zT ) ≤

λDHL√
T

where H2 = 5∥z0 − z∗∥2 + 13
L2 ∥F (z0)∥2 and λ =

√
6(1+3η2L2)

η2L2(1−(1+
√
2)ηL)

.

We remark that the convergence rate of RG is slower than ARG and other optimal first-order
algorithms even in the monotone setting. Nevertheless, understanding its last-iterate convergence
rate is still interesting: (1) RG is simple and largely used in practice; (2) Last-iterate convergence
rates of simple classic algorithms such as EG and RG are mentioned as open problems in [26]. The
question is recently resolved for EG [7, 21] but remains open for RG; (3) Compared to EG, RG
requires only a single call to F and a single projection in each iteration.
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Appendix A. Additional Related Works

A.1. Convex-Concave and Monotone Setting

In the convex-concave setting, a weak convergence measure is the gap function (Definition 8). It
is well-known that classic extragradient-type methods such as EG and PEG have O( 1

T ) average-
iterate convergence rate in terms of gap function [26, 39–41] and the rate is optimal [43]. But
the gap function or average-iterate convergence is not meaningful in the nonconvex-nonconcave
setting. For convergence in terms of the residual in the constrained setting, EG and PEG has a
slower rate of O( 1√

T
) for best-iterate convergence [17, 26, 29, 47] and the more desirable last-iterate

convergence [7, 22]. We remark that the last-iterate convergence rate of the reflected gradient (RG)
algorithm was unknown. The O( 1√

T
) rate is tight for p-SCIL algorithms [19], a subclass of first-

order methods that includes EG, PEG, and many of its variations, but faster rate is possible for other
first-order methods.

Accelerated Convergence Rate in Residual. Recent results with accelerated convergence rates
in terms of the residual are based on Halpern iteration [23] (also called Anchoring). The vanilla
Halpern iteration has O( 1

T ) convergence rate for cocoercive operators (stronger than monotonic-
ity) [14, 28]. Recently, a line of works contributed to provide O( 1

T ) convergence rate for mono-
tone operators in the constrained setting. [14, 55] provide double-loop algorithms with O( log TT )
convergence rate for monotone operators in the constrained setting. In the unconstrained setting
(A = 0), [54] propose the Extra Anchored Gradient (EAG) algorithm, the first efficient algorithm
with O( 1

T ) convergence rate for monotone operators. They also establish matching lower bound for
first-order methods. [30] generalize EAG to Fast Extragradient (FEG), which works even for neg-
atively comonotone operators but still in the unconstrained setting. Analysis for variants of EAG
and FEG in the unconstrained setting is provided in [51, 52]. Recently, [6] close the open prob-
lem by proving the projected version of EAG has O( 1

T ) convergence rate. They also propose the
accelerated forward-backward splitting (AS) algorithm, a generalization of FEG, which has O( 1

T )
convergence rate for negatively comonotone operators in the constrained setting.

A.2. Nonconvex-Nonconcave Setting

This paper study structured nonconvex-nonconcave optimization problems from the general per-
spective of operator theory and focus on global convergence under weak MVI and negative comono-
tonicity. There is a line of works focusing on local convergence, e.g., [18, 24, 27, 37]. Another
line of works focus on problems satisfying different structural assumptions, such as the Polyak
Łojasiewicz condition [42, 53].

Appendix B. Additional Preliminary

B.1. Normal Cone and Resolvent

Normal Cone. We denote NZ : Z → R
n to be the normal cone operator such that for z ∈ Z ,

NZ(z) = {a : ⟨a, z′ − z⟩ ≤ 0, ∀z′ ∈ Z}. Define the indicator function

IZ(z) =

{
0 if z ∈ Z,

+∞ otherwise.

14



ACCELERATED SINGLE-CALL METHODS FOR CONSTRAINED MIN-MAX OPTIMIZATION

It is not hard to see that the subdifferential operator ∂IZ = NZ . A useful fact is that if z = ΠZ [z
′],

then λ(z′ − z) ∈ NZ(z) for any λ ≥ 0.
Some useful properties of the resolvent are summarized in the following proposition.

Proposition 7 If A is maximally monotone, then JA satisfies the following.

1. The domain of JA is Rn. JA is non-expansive and single-valued on Rn.

2. If z = JA(z
′), then z′ − z ∈ A(z). If c ∈ A(z), then z = JA(z + c).

3. When A = NZ is the normal cone operator for some closed convex set Z , then JηA = ΠZ is
the Euclidean projection onto Z for all η > 0.

B.2. Gap Function

A standard suboptimality measure for the variationaly inequalitt (VI) problem is the gap function
defined as GAPZ,F (z) := maxz′∈Z ⟨F (z), z − z′⟩. Note that when the feasible set Z is unbounded,
approximating the gap function is impossible: consider the simple unconstrained saddle point prob-
lem minx∈Rmaxy∈R xy, which has a unique saddle point (0, 0) but any other point has an infinitely
large gap. A refined notion is the following restricted gap function [41], which is meaningful for
unbounded Z .

Definition 8 (Restricted Gap Function) Given a closed convex set Z , a single-valued operator
F , and a radius D, the restricted gap function at point z ∈ Z is

GAPZ,F,D := max
z′∈Z∩B(z,D)

〈
F (z), z − z′

〉
where B(z,D) is a Euclidean ball centered at z with radius D.

In the rest of the paper, we call GAPZ,F,D the gap function (or gap) for convenience. The following
Lemma relates ∥F (z) + c∥ where c ∈ NZ(z), and the gap function.

Lemma 9 Let Z be a closed convex set Z and F be a monotone and L-Lipschitz operator. For any
z ∈ Z and c ∈ NZ(z), we have

GAPZ,F,D(z) := max
z′∈Z∩B(z,D)

〈
F (z), z − z′

〉
≤ D · ∥F (z) + c∥

Proof The proof is straightforward. Since c ∈ NZ(z), we have ⟨c, z − z′⟩ ≥ 0 for any z′ ∈ Z .
Therefor,

max
z′∈Z∩B(z,D)

〈
F (z), z − z′

〉
≤ max

z′∈Z∩B(z,D)

〈
F (z) + c, z − z′

〉
≤ max

z′∈Z∩B(z,D)

∥∥z − z′
∥∥ · ∥F (z) + c∥ (Cauchy-Schwarz inequality)

≤ D · ∥F (z) + c∥.
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B.3. Classical Algorithms for Variationaly Inequalities

The Extragradient Algorithm [29]. Starting at initial point z0 ∈ Z , the update rule of EG is: for
t = 0, 1, 2, · · ·

zt+ 1
2
= ΠZ [zt − ηF (zt)]

zt+1 = ΠZ

[
zt − ηF (zt+ 1

2
)
] (EG)

At each step t ≥ 0, the EG algorithm makes an oracle call of F (zt) to produce an intermediate point
zt+ 1

2
(a gradient descent step if F = ∂f is the gradient of some function f ), then the algorithm

makes another oracle call F (zt+ 1
2
) and updates zt to zt+1. In each step, EG needs two oracle calls

to F and two projections ΠZ .

The Past Extragradient Algorithm [47] Starting at initial point z0 = z− 1
2
∈ Z , the update rule

of PEG with step size η > 0 is: for t = 0, 1, 2, · · ·

zt+ 1
2
= ΠZ

[
zt − ηF (zt− 1

2
)
]

zt+1 = ΠZ

[
zt − ηF (zt+ 1

2
)
] (PEG)

Note that PEG is also known as the Optimistic Gradient Descent/Ascent (OGDA) algorithm in the
literature. The update rule of PEG is similar to (EG) but only requires a single call to F in each
iteration. Both of EG and PEG perform two projections in every iteration.

B.4. Proof of Fact 1

Proof For any c ∈ A(z), we have

rnatF,A(z) = ∥z − JA(z − F (z))∥
= ∥JA(z + c)− JA(z − F (z))∥
≤ ∥F (z) + c∥ (JA is non-expansive)

and

rfbF,A,α(z) =
1

α
∥z − JαA(z − αF (z))∥

=
1

α
∥JαA(z + αc)− JαA(z − αF (z))∥

≤ ∥F (z) + c∥ (JA is non-expansive)

Thus both rtanF,A(z) and rfbF,A,α(z) are smaller than rtanF,A(z) = min
c∈A(z)

∥F (z) + c∥.

Appendix C. Missing Proofs in Section 3

We present the proof of Theorem 4 here.
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Proof From the update rule of (OG), we have the following identity (see also [26, Appendix B]):
for any p ∈ Z ,

∥zt+1 − p∥2 = ∥zt − p∥2 +
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 − ∥∥∥zt+ 1
2
− zt

∥∥∥2
+ 2
〈
zt − ηF (zt− 1

2
)− zt+ 1

2
+ ηF (zt+ 1

2
), p− zt+ 1

2

〉
(2)

Since zt+ 1
2
= JηA[zt − ηF (zt− 1

2
)], we have

zt−ηF (z
t− 1

2
)−z

t+1
2

η ∈ A(zt+ 1
2
) by Proposition 7. Then

zt − zt+1

η
=

zt − ηF (zt− 1
2
)− zt+ 1

2

η
+ F (zt+ 1

2
) ∈ F (zt+ 1

2
) +A(zt+ 1

2
).

Set p = z∗. By the weak MVI assumption, we have

2
〈
zt − ηF (zt− 1

2
)− zt+ 1

2
+ ηF (zt+ 1

2
), z∗ − zt+ 1

2

〉
= 2η

〈
zt − zt+1

η
, z∗ − zt+ 1

2

〉
≤ −2ρ

η
∥zt − zt+1∥2 (3)

Define c = 1
2 − 2η2L2 > 0. We have identity

(1− 2c)η2L2 = 4η4L4 =
1

2
− c− (1 + 2c)η2L2 (4)

Combining Equation (2) and (3) and using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we have

∥zt+1 − z∗∥2

≤ ∥zt − z∗∥2 +
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 − ∥∥∥zt+ 1
2
− zt

∥∥∥2 + c∥zt − zt+1∥2 − (c+
2ρ

η
)∥zt − zt+1∥2

≤ ∥zt − z∗∥2 + (1 + 2c)
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 − (1− 2c)
∥∥∥zt+ 1

2
− zt

∥∥∥2 − (c+
2ρ

η
)∥zt − zt+1∥2 (5)

Using the update rule of OG and L-Lipschitzness of F , we have that for any t ≥ 0,∥∥∥zt+1 − zt+ 1
2

∥∥∥2 = ∥∥∥ηF (zt− 1
2
)− ηF (zt+ 1

2
)
∥∥∥2 ≤ η2L2

∥∥∥zt+ 1
2
− zt− 1

2

∥∥∥2 (6)

Moreover, using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 and Equation (6) , we have that for any t ≥ 1,∥∥∥zt+ 1
2
− zt− 1

2

∥∥∥2 ≤ 2
∥∥∥zt+ 1

2
− zt

∥∥∥2 + 2
∥∥∥zt − zt− 1

2

∥∥∥2 ≤ 2
∥∥∥zt+ 1

2
− zt

∥∥∥2 + 2η2L2
∥∥∥zt− 1

2
− zt− 3

2

∥∥∥2
which imples ∥∥∥zt+ 1

2
− zt

∥∥∥2 ≥ 1

2

∥∥∥zt+ 1
2
− zt− 1

2

∥∥∥2 − η2L2
∥∥∥zt− 1

2
− zt− 3

2

∥∥∥2. (7)
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Combining Equation (4), (5), (6), and (7), we have that for all t ≥ 1.

∥zt+1 − z∗∥2

≤ ∥zt − z∗∥2 + (1 + 2c)
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 − (1− 2c)
∥∥∥zt+ 1

2
− zt

∥∥∥2 − (c+
2ρ

η
)∥zt − zt+1∥2

≤ ∥zt − z∗∥2 + (1− 2c)η2L2
∥∥∥zt− 1

2
− zt− 3

2

∥∥∥2 − (1

2
− c− (1 + 2c)η2L2

)∥∥∥zt+ 1
2
− zt− 1

2

∥∥∥2
− (c+

2ρ

η
)∥zt − zt+1∥2

= ∥zt − z∗∥2 + 4η4L4

(∥∥∥zt− 1
2
− zt− 3

2

∥∥∥2 − ∥∥∥zt+ 1
2
− zt− 1

2

∥∥∥2)− (c+
2ρ

η
)∥zt − zt+1∥2

Telescoping the above inequality and using c = 1
2 − 2η2L2 and ηL < 1

2 , we get

(
1

2
+

2ρ

β
− 2η2L2)

T∑
t=1

∥zt − zt+1∥2 ≤ ∥z1 − z∗∥2 + 1

4

∥∥∥z 1
2
− z− 1

2

∥∥∥2.
Note that z0 is the same as z− 1

2
. This completes the proof.

Fact 2 For any L > 0 and ρ > − 1
12

√
3L

. There exists η ∈ (0, 1
2L) such that

1

2
+

2ρ

η
− 2η2L2 > 0 (8)

Proof Let η = 1
2
√
3L

, then Inequality (8) holds whenever

ρ >
ηL(1− 4η2L2)

4
· 1
L

= − 1

12
√
3L

.

Appendix D. Missing Proofs in Section 4

To prove Theorem 5, we apply a potential function argument. We first show the potential function
is approximately non-increasing and then prove that it is upper bounded by a term independent of
T . As the potential function at step t is also at least Ω(t2) · rtan(zt)2, we conclude that ARG has an
O( 1

T ) convergence rate .

D.1. Potential Function

Recall the update rule of ARG: z0 = z 1
2
∈ R

n are initial points and z1 = JηA[z0 − ηF (z0)]; for
t ≥ 1,

zt+ 1
2
= 2zt − zt−1 +

1

t+ 1
(z0 − zt)−

1

t
(z0 − zt−1)

zt+1 = JηA

[
zt − ηF (zt+ 1

2
) +

1

t+ 1
(z0 − zt)

] (ARG)

18
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Recall that when A is the normal cone of a closed convex set Z , the resolvent JA is equivalent
to Euclidean projection to set Z . Hence, if we apply the ARG algorithm to solve monotone VI
problems, the algorithm uses a single call to operator F and a single projection to Z per iteration.
Here we allow A to be an arbitrary maximally monotone operator, and the ARG algorithm becomes
a single-call single-resolvent algorithm in this more general setting.

Next, we specify the potential function. Define

ct+1 :=
zt − ηF (zt+ 1

2
) + 1

t+1(z0 − zt)− zt+1

η
, ∀t ≥ 0. (9)

By update rule we have ct ∈ A(zt) for all t ≥ 1. The potential function we track in iterate t ≥ 1 is
defined as

Vt :=
t(t+ 1)

2
∥ηF (zt) + ηct∥2 +

t(t+ 1)

2

∥∥∥ηF (zt)− ηF (zt− 1
2
)
∥∥∥2 + t⟨ηF (zt) + ηct, zt − z0⟩

(10)

D.2. Approximately Non-Increasing Potential

Fact 3 For any L > 0 and ρ ≥ − 1
60L . There exists η > 0 such that

1

2
− (12− 4ρ

η
)η2L2 +

2ρ

η
≥ 0. (11)

Moreover, every η > 0 satisfies (11) also satisfies ρ
η ≥ −1

4 .

Proof Rewriting (11), we get

ρ >
ηL(24η2L2 − 1)

4 + 8η2L2
· 1
L
.

Let x = ηL and f(x) = x(24x2−1)
4+8x2 . Since f( 1

12) = − 5
292 < − 1

60 . We know η = 1
12L satisfies (11).

Moreover, rewritng (11) and using ηL > 0, we get

ρ

η
≥ −1− 72η2L2

4 + 8η2L2
≥ −1

4
.

We show in the following lemma that Vt is approximately non-increasing.

Lemma 10 In the same setup as Theorem 5, for any t ≥ 1, we have

Vt+1 ≤ Vt +
1

8
· ∥ηF (zt+1) + ηct+1∥2.

Proof The plan is to show that Vt−Vt+1 plus a few non-positive terms is still ≥ −1
8 ·∥ηF (zt+1) + ηct+1∥2,

which certifies the claim.
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ACCELERATED SINGLE-CALL METHODS FOR CONSTRAINED MIN-MAX OPTIMIZATION

Two Positive Terms. Since F +A is ρ-comonotone, we have

⟨ηF (zt+1) + ηct+1 − ηF (zt)− ηct, zt+1 − zt⟩ −
ρ

η
∥ηF (zt+1) + ηct+1 − ηF (zt)− ηct∥2 ≥ 0.

(12)
Since F is L-Lipschitz, we have

η2L2 ·
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 − ∥∥∥ηF (zt+1)− ηF (zt+ 1
2
)
∥∥∥2 ≥ 0.

Denote p = 1
24 . Multiplying the above inequality with 1− ρ

3η > 0 and rearranging terms, we get

p ·
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 − ∥∥∥ηF (zt+1)− ηF (zt+ 1
2
)
∥∥∥2

+

(
(1− ρ

3η
)η2L2 − p

)
·
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 + ρ

3η

∥∥∥ηF (zt+1)− ηF (zt+ 1
2
)
∥∥∥2 ≥ 0. (13)

Sum-of-Squares Identity. We show an equivalent formulation zt+ 1
2

and zt+1 using definitions of

ηct = zt−1 − zt − ηF (zt− 1
2
) + 1

t (z0 − zt−1) and ηct+1 = zt − ηF (zt+ 1
2
) + 1

t+1(z0 − zt)− zt+1:

zt+ 1
2
= 2zt − zt−1 +

1

t+ 1
(z0 − zt)−

1

t
(z0 − zt−1)

= zt + (zt − zt−1) +
1

t+ 1
(z0 − zt)−

1

t
(z0 − zt−1)

= zt − ηF (zt− 1
2
)− ηct +

1

t+ 1
(z0 − zt),

zt+1 = zt − ηF (zt+ 1
2
)− ηct+1 +

1

t+ 1
(z0 − zt).

We also have

zt+1 − zt+ 1
2
= ηF (zt− 1

2
) + ηct − ηF (zt+ 1

2
)− ηct+1. (14)

Next, we simplify

Vt − Vt+1 − t(t+ 1)× LHS of Inequality (12) − t(t+ 1)

4p
× LHS of Inequality (13)

using the second identity in Proposition 16: replace x0 with z0; for k ∈ [4], replace xk with zt−1+ k
2

and replace yk with ηF (zt−1+ k
2
); replace u2 with ηct; replace u4 with ηct+1; replace k with t;

replace p with q. Note that x3 = x2−y1−u2+
1

k+1(x0−x2) and x4 = x2−y3−u4++ 1
k+1(x0−x2)

hold due to the above equivalent formations of zt+ 1
2

and zt+1. Expression (18) and (19) appear on
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both sides of the following equation.

Vt − Vt+1 − t(t+ 1)× LHS of Inequality (12) − t(t+ 1)

4p
× LHS of Inequality (13)

=
t(t+ 1)

4

∥∥∥ηct+1 − ηct + ηF (zt− 1
2
)− 2ηF (zt) + ηF (zt+ 1

2
)
∥∥∥2 (15)

+

(
(1− 4p)t− 4p

4p
(t+ 1)

)
·
∥∥∥ηF (zt+ 1

2
)− ηF (zt+1)

∥∥∥2 (16)

+ (t+ 1) ·
〈
ηF (zt+ 1

2
)− ηF (zt+1), ηF (zt+1) + ηct+1

〉
(17)

+ t(t+ 1)
ρ

η
· ∥ηF (zt+1) + ηct+1 − ηF (zt)− ηct∥2 (18)

− t(t+ 1)

4p
·
((

(1− ρ

3η
)η2L2 − p

)
·
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 + ρ

3η

∥∥∥ηF (zt+1)− ηF (zt+ 1
2
)
∥∥∥2).

(19)

Since ∥a∥2 + ⟨a, b⟩ = ∥a+ b
2∥

2 − ∥b∥2
4 , we have

Expression (16) + Expression (17)

=

∥∥∥∥∥
√

(1− 4p)t− 4p

4p
(t+ 1) ·

(
ηF (zt+ 1

2
)− ηF (zt+1)

)
+

√
p(t+ 1)

(1− 4p)t− 4p
· (ηF (zt+1) + ηct+1)

∥∥∥∥∥
2

− p(t+ 1)

(1− 4p)t− 4p
· ∥ηF (zt+1) + ηct+1∥2

≥ − p(t+ 1)

(1− 8p)t
· ∥ηF (zt+1) + ηct+1∥2 (t ≥ 1)

≥ − 2p

1− 8p
· ∥ηF (zt+1) + ηct+1∥2 ( t+1

t ≤ 2)

= −1

8
∥ηF (zt+1) + ηct+1∥2. (p = 1

24 )

Now it remains to show that the sum of Expression (15), (18), and (19) is non-negative. Multiplying
4

t(t+1) and replacing p = 1
24 , we get

4

t(t+ 1)
· (Expression (15) + Expression (18) + Expression (19))

=
∥∥∥ηct+1 − ηct + ηF (zt− 1

2
)− 2ηF (zt) + ηF (zt+ 1

2
)
∥∥∥2 + (1− (24− 8ρ

η
)η2L2

)
·
∥∥∥zt+1 − zt+ 1

2

∥∥∥2
+

4ρ

η
· ∥ηF (zt+1) + ηct+1 − ηF (zt)− ηct∥2 −

8ρ

η

∥∥∥ηF (zt+1)− ηF (zt+ 1
2
)
∥∥∥2.

Denote

B1 = ηct+1 − ηct + ηF (zt− 1
2
)− 2ηF (zt) + ηF (zt+ 1

2
)

B2 = zt+1 − zt+ 1
2
= ηF (zt− 1

2
) + ηct − ηF (zt+ 1

2
)− ηct+1 (By (14))

B3 = ηF (zt+1) + ηct+1 − ηF (zt)− ηct

B4 = ηF (zt+1)− ηF (zt+ 1
2
).

21



ACCELERATED SINGLE-CALL METHODS FOR CONSTRAINED MIN-MAX OPTIMIZATION

It is not hard to check that B1 −B2 = 2(B3 −B4):

B1 −B2 = 2ηct+1 − 2ηct − 2ηF (zt) + 2ηF (zt+ 1
2
) = 2(B3 −B4).

Note that ρ is non-positive and we have

4

t(t+ 1)
· (Expression (15) + Expression (18) + Expression (19))

= ∥B1∥2 +
(
1− (24− 8ρ

η
)η2L2

)
· ∥B2∥2 +

ρ

η
· ∥2B3∥2 −

2ρ

η
∥2B4∥2

≥
(
1

2
− (12− 4ρ

η
)η2L2

)
· ∥B1 −B2∥2 +

ρ

η
· ∥2B3∥2 −

2ρ

η
∥2B4∥2

(∥a∥2 + ∥b∥2 ≥ 1
2∥a− b∥2 and (24− 8ρ

η )η
2L2 ≥ 0)

≥
(
1

2
− (12− 4ρ

η
)η2L2

)
· ∥B1 −B2∥2 +

2ρ

η
· ∥2B3 − 2B4∥2

(−∥a∥2 + 2∥b∥2 ≥ −2∥a− b∥2 and −ρ
η ≥ 0)

=

(
1

2
− (12− 4ρ

η
)η2L2 +

2ρ

η

)
· ∥B1 −B2∥2 (B1 −B2 = 2(B3 −B4))

≥ 0. (Inequality (11))

The last inequality holds by the choice of η as shown in Fact 3.

D.3. Bouding Potential at Iteration 1

Lemma 11 Let F be a L-Lipschitz operator and A be a maximally monotone operator. For any
z0 = z 1

2
∈ R

n, η ∈ (0, 1
2L), and z1 = JηA[z0 − ηF (z0)], we have the following

1. ∥z1 − z0∥ ≤ η · rtanF,A(z0).

2. ∥ηF (z1) + ηc1∥ ≤ (1 + ηL)∥z1 − z0∥

3. V1 ≤ 4∥z1 − z0∥2 where V1 is defined in (10)

Proof For any c ∈ A(z0), due to non-expansiveness of JηA, we have

∥z1 − z0∥ = ∥JηA[z0 − ηF (z0)]− JηA[z0 + ηc]∥ ≤ η∥F (z0) + c∥

Thus ∥z1 − z0∥ ≤ η · rtanF,A(z0).
By definition of V1 in (10), we have

V1 = ∥ηF (z1) + ηc1∥2 + ∥ηF (z1)− ηF (z0)∥2 + ⟨ηF (z1) + ηc1, z1 − z0⟩.

We bound ∥ηF (z1) + ηc1∥ first. Note that by definition, we have ηc1 = z0 − ηF (z0) − z1. Thus
we have

∥ηF (z1) + ηc1∥ = ∥z0 − z1 + ηF (z1)− ηF (z0)∥
≤ ∥z0 − z1∥+ ∥ηF (z1)− ηF (z0)∥ (triangle inequality)

≤ (1 + ηL)∥z1 − z0∥ (F is L-Lipschitz)
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Then we can apply the bound on ∥ηF (z1) + ηc1∥ to bound V1 as follows:

V1 = ∥ηF (z1) + ηc1∥2 + ∥ηF (z1)− ηF (z0)∥2 + ⟨ηF (z1) + ηc1, z1 − z0⟩
≤ ∥ηF (z1) + ηc1∥2 + η2L2∥z1 − z0∥2 + ∥ηF (z1) + ηc1∥∥z1 − z0∥
≤ (1 + ηL)2∥z1 − z0∥2 + η2L2∥z1 − z0∥2 + (1 + ηL)∥z1 − z0∥2

= (2 + 3ηL+ 2η2L2)∥z1 − z0∥2

≤ 4∥z1 − z0∥2

where we use L-Lipschitzness of F and Cauchy-Schwarz inequality in the first inequality; we use
∥ηF (z1) + ηc1∥ ≤ (1+ ηL)∥z1 − z0∥ in the second inequality; we use ηL ≤ 1

2 in the last inequal-
ity.

D.4. Proof of Theorem 5

We first show that the potential function Vt = Ω(t2 · rtan(zt)2).

Lemma 12 In the same setup as Theorem 5, for any t ≥ 1, we have

t(t+ 1
2)

4
∥ηF (zt) + ηct∥2 ≤ Vt + ∥z∗ − z0∥2

Proof Since 0 ∈ F (z∗) +A(z∗), by ρ-comonotonicity of F +A and Fact 3, we have

⟨ηF (zt) + ηct, zt − z∗⟩ ≥ ρ

η
∥ηF (zt) + ηct∥2 ≥ −1

4
∥ηF (zt) + ηct∥2 (20)

By definition of Vt in (10), for any t ≥ 1, we have

Vt =
t(t+ 1)

2
∥ηF (zt) + ηct∥2 +

t(t+ 1)

2

∥∥∥ηF (zt)− ηF (zt− 1
2
)
∥∥∥2 + t⟨ηF (zt) + ηct, zt − z0⟩

≥ t(t+ 1)

2
∥ηF (zt) + ηct∥2 + t⟨ηF (zt) + ηct, zt − z∗⟩+ t⟨ηF (zt) + ηct, z

∗ − z0⟩

≥ t(t+ 1)

2
∥ηF (zt) + ηct∥2 −

1

4
∥ηF (zt) + ηct∥2 + t⟨ηF (zt) + ηct, z

∗ − z0⟩
(By Inequality (20))

≥
t(t+ 1

2)

2
∥ηF (zt) + ηct∥2 −

t(t+ 1
2)

4
∥ηF (zt) + ηct∥2 −

t

t+ 1
2

∥z∗ − z0∥2

≥
t(t+ 1

2)

4
∥ηF (zt) + ηct∥2 − ∥z∗ − z0∥2 ( t

t+ 1
2

< 1)

where in the second last inequality we we apply ⟨a, b⟩ ≥ −α
4 ∥a∥

2 − 1
α∥b∥

2 with a =
√
t(ηF (zt) +

ηct), b =
√
t(z∗ − z0), and α = t+ 1

2 .

Proof [Proof of Theorem 5] It is equivalent to prove that for every T ≥ 1, we have

∥ηF (zT ) + ηcT ∥2 ≤
6H2

T 2
.
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From Lemma 11, we have

∥ηF (z1) + ηc1∥2 ≤ (1 + ηL)2∥z1 − z0∥2 ≤ H2.

So the theorem holds for T = 1.
For any T ≥ 2, by Lemma 12 we have

T (T + 1
2)

4
∥ηF (zT ) + ηcT ∥2 ≤ VT + ∥z0 − z∗∥2

≤ V1 + ∥z0 − z∗∥2 + 1

8

T∑
t=2

∥ηF (zt) + ηct∥2

= H2 +
1

8

T∑
t=2

∥ηF (zt) + ηct∥2

By subtracting 1
8∥ηF (zT ) + ηcT ∥2 from both sides of the above inequality, we get

T 2

4
∥ηF (zT ) + ηcT ∥2 ≤ H2 +

1

8

T−1∑
t=2

∥ηF (zt) + ηct∥2

which is in the form of Proposition 17 with C1 = H2 and p = 1
9 . Thus we have for any T ≥ 2

∥ηF (zT ) + ηcT ∥2 ≤
6H2

T 2
.

Appendix E. Missing Proofs in Section 5

To prove Theorem 6, our analysis is based on a potential function argument and can be summarized
in the following three steps. (1) We construct a potential function and show that it is non-increasing
between two consecutive iterates; (2) We prove that the RG algorithm has a best-iterate convergence
rate, i.e., for any T ≥ 1, there exists one iterate t∗ ∈ [T ] such that our potential function at iterate t∗

is small; (3) We combine the above steps to show that the the last iterate has the same convergence
guarantee as the best iterate and derive the O( 1√

T
) last-iterate convergence rate.

E.1. Non-increasing Potential

Potential Function. We denote

ct+1 :=
zt − ηF (zt+ 1

2
)− zt+1

η
, ∀t ≥ 0 (21)

Note that according to the update rule of RG, zt+1 = ΠZ [zt − ηF (zt+ 1
2
)], so ct+1 ∈ NZ(zt+1).

The potential function we adopt is Pt defined as

Pt := ∥F (zt) + ct∥2 +
∥∥∥F (zt)− F (zt− 1

2
)
∥∥∥2, ∀t ≥ 1. (22)

Lemma 13 In the same setup of Theorem 6, Pt ≥ Pt+1 for any t ≥ 1.

Proof The plan is to show that Pt − Pt+1 plus a few non-positive terms is non-negative, which
certifies that Pt − Pt+1 ≥ 0.
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Three Non-Positive Terms. Since F is monotone, we have

(−2) · ⟨ηF (zt+1)− ηF (zt), zt+1 − zt⟩ ≤ 0. (23)

Since F is L-Lipschitz and 0 < η < 1
(1+

√
2)L

< 1
2L , we have

(−2) ·
(
1

4
·
∥∥∥zt+1 − zt+ 1

2

∥∥∥2 − ∥∥∥ηF (zt+1)− ηF (zt+ 1
2
)
∥∥∥2) ≤ 0. (24)

By definition, we have ct+1 ∈ NZ(zt+1) and ct ∈ NZ(zt). Since the normal cone operator NZ is
maximally monotone, we have

(−2) · ⟨ηct+1 − ηct, zt+1 − zt⟩ ≤ 0. (25)

Sum-of-Squares Identity. We use the following equivalent formations of zt+ 1
2

and zt+1.

zt+ 1
2
= 2zt − zt−1 = zt − (zt−1 − zt) = zt − ηF (zt− 1

2
)− ηct

zt+1 = ΠZ

[
zt − ηF (zt+ 1

2
)
]
= zt − ηF (zt+ 1

2
)− ηct+1

The following identity holds according to Proposition 16. To see this, we replace xk with zt−1+ k
2

;
replace yk with ηF (zt−1+ k

2
); replace u2 with ηct; replace u4 with ηct+1; also note that x3 =

x2 − y1 − u2 and x4 = x2 − y3 − u4 hold due to the above equivalent formations of zt+ 1
2

and zt+1.

η2 · (Pt − Pt+1) + LHS of Inequality(23) + LHS of Inequality(24) + LHS of Inequality(25)

=

∥∥∥∥zt+ 1
2
− zt+1

2
+ ηF (zt− 1

2
)− ηF (zt)

∥∥∥∥2 + ∥∥∥∥zt+ 1
2
+ zt+1

2
− zt + ηF (zt) + ηct

∥∥∥∥2.
The right-hand side of the above equality is clearly ≥ 0, thus we conclude Pt − Pt+1 ≥ 0.

E.2. Best-Iterate Convergence

In this section, we show that for any T ≥ 1, there exists some iterate t∗ such that Pt∗ = O( 1
T ), which

is implied by
∑T

t=1 Pt = O(1). To prove this, we first show
∑T

t=1 ∥zt+ 1
2
− zt∥2 =

∑T
t=1 ∥zt − zt−1∥2 =

O(1) and then relate
∑T

t=1 Pt to these two quantities.

Lemma 14 In the same setup of Theorem 6, for any T ≥ 1, we have

T∑
t=1

∥∥∥zt+ 1
2
− zt

∥∥∥2 = T∑
t=1

∥zt − zt−1∥2 ≤
H2

1− (1 +
√
2)ηL

Proof First note that by the update rule of RG, we have zt+ 1
2
= 2zt−zt−1 thus zt+ 1

2
−zt = zt−zt−1.

Therefore, it suffices to only prove the inequality for
∑T

t=1 ∥zt+ 1
2
− zt∥2.
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From the proof of [26, Lemma 2], for any t ≥ 1 and p ∈ Z , we have(
1− (1 +

√
2)ηL

)
·
∥∥∥zt+ 1

2
− zt

∥∥∥2 ≤ ∥zt − p∥2 − ∥zt+1 − p∥2 − 2η
〈
F (zt+ 1

2
), zt+ 1

2
− p
〉

+ ηL

(∥∥∥zt − zt− 1
2

∥∥∥2 − ∥∥∥zt+1 − zt+ 1
2

∥∥∥2). (26)

We set p = z∗ to be a solution of the variational inequality (VI) problem in the above inequality.
Note that

−2η
〈
F (zt+ 1

2
), zt+ 1

2
− z∗

〉
= −2η

〈
F (zt+ 1

2
)− F (z∗), zt+ 1

2
− z∗

〉
− 2η

〈
F (z∗), zt+ 1

2
− z∗

〉
≤ −2η

〈
F (z∗), zt+ 1

2
− z∗

〉
(F is monotone)

= 2η⟨F (z∗), zt−1 − z∗⟩ − 4η⟨F (z∗), zt − z∗⟩ (27)

where the last equality holds since zt+ 1
2
= 2zt − zt−1. Also note that ⟨F (z∗), zt − z∗⟩ ≥ 0 for all

t ≥ 0 since zt ∈ Z and z∗ is a solution to (VI).
Combing Inequality (26) and Inequality (27), telescoping the terms for t = 1, 2, · · · , T , and

dividing both sides by 1− (1 +
√
2)ηL > 0, we get

T∑
t=1

∥∥∥zt+ 1
2
− zt

∥∥∥2 ≤ ∥z1 − z∗∥2 + ∥z1 − z 1
2
∥2 + 2η⟨F (z∗), z0 − z∗⟩

1− (1 +
√
2)ηL

.

To get a cleaner constant that only relies on the starting point z0 = z 1
2
, we further simplify the three

terms on the right-hand side. Note that since η < 1
2L and z1 = ΠZ [z0 − ηF (z0)].∥∥∥z1 − z 1

2

∥∥∥2 = ∥z1 − z0∥2 ≤ η2∥F (z0)∥2 ≤
4

L2
∥F (z0)∥2

Thus we have

∥z1 − z∗∥2 ≤ 2∥z1 − z0∥2 + 2∥z0 − z∗∥2 ≤ 8

L2
∥F (z0)∥2 + 2∥z0 − z∗∥2.

Moreover,

2η⟨F (z∗), z0 − z∗⟩ ≤ 2η∥F (z∗)∥∥z0 − z∗∥
≤ 4η(∥F (z∗)− F (z0)∥+ ∥F (z0)∥)∥z0 − z∗∥
≤ 4ηL∥z0 − z∗∥2 + 4η∥F (z0)∥∥z0 − z∗∥

≤ 2∥z0 − z∗∥2 + 2

L
∥F (z0)∥∥z0 − z∗∥ (η < 1

2L )

≤ 3∥z0 − z∗∥2 + 1

L2
∥F (z0)∥2 (2ab ≤ a2 + b2)

Thus

∥z1 − z∗∥2 +
∥∥∥z1 − z 1

2

∥∥∥2 + 2η⟨F (z∗), z0 − z∗⟩ ≤ 13

L2
∥F (z0)∥2 + 5∥z0 − z∗∥2 = H2.

This completes the proof.
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Lemma 15 In the same setup of Theorem 6, for any T ≥ 1, we have

T∑
t=1

Pt ≤ λ2H2L2.

Proof We first show an upper bound for Pt

Pt = ∥F (zt) + ct∥2 +
∥∥∥F (zt)− F (zt− 1

2
)
∥∥∥2

=

∥∥∥∥F (zt)− F (zt− 1
2
) +

zt − zt−1

η

∥∥∥∥2 + ∥∥∥F (zt)− F (zt− 1
2
)
∥∥∥2 (definition of ct)

≤ 3
∥∥∥F (zt)− F (zt− 1

2
)
∥∥∥2 + 2

η2
∥zt − zt−1∥2 (∥A+B∥2 ≤ 2∥A∥2 + 2∥B∥2)

≤ 3L2
∥∥∥zt − zt− 1

2

∥∥∥2 + 2

η2
∥zt − zt−1∥2 (F is L-Lipschitz)

= 3L2
∥∥∥zt − zt−1 + zt−1 − zt− 1

2

∥∥∥2 + 2

η2
∥zt − zt−1∥2

≤ 6L2
∥∥∥zt− 1

2
− zt−1

∥∥∥2 + ( 2

η2
+ 6L2

)
∥zt − zt−1∥2 (∥A+B∥2 ≤ 2∥A∥2 + 2∥B∥2)

≤ 2 + 6η2L2

η2

(∥∥∥zt− 1
2
− zt−1

∥∥∥2 + ∥zt − zt−1∥2
)
.

Summing the above inequality of t = 1, 2, · · ·T , we get

T∑
t=1

Pt ≤
2 + 6η2L2

η2

T∑
t=1

(∥∥∥zt− 1
2
− zt−1

∥∥∥2 + ∥zt − zt−1∥2
)

=
2 + 6η2L2

η2

(
∥z1 − z0∥2 +

T−1∑
t=1

(∥∥∥zt+ 1
2
− zt

∥∥∥2 + ∥zt+1 − zt∥2
))

≤ 2 + 6η2L2

η2

(
∥z1 − z0∥2 +

2H2

1− (1 +
√
2)ηL

)
≤ 6(1 + 3η2L2)H2

η2(1− (1 +
√
2)ηL)

.

The second last inequality holds by Lemma 14. The last inequality holds since ∥z1 − z0∥2 ≤
4
L2 ∥F (z0)∥2 ≤ H2. Recall that λ =

√
6(1+3η2L2)

η2L2(1−(1+
√
2)ηL)

. This completes the proof.

E.3. Proof of Theorem 6

Fix any T ≥ 1. From Lemma 13, we know that the potential function Pt is non-increasing for all
t ≥ 1. Lemma 15 guarantees that the sum of potential functions

∑T
t=1 Pt is upper bounded by

λ2H2L2, where λ2 = 6(1+3η2L2)

η2L2(1−(1+
√
2)ηL)

. Combining the above, we can conclude that the poten-

tial function at the last iterate PT is upper bounded by λ2H2L2

T . Since PT = ∥F (zT ) + cT ∥2 +
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∥F (zT )− F (zT− 1
2
)∥2, we obtain the last-iterate convergence rate rtanF,Z(zT )

2 ≤ ∥F (zT ) + cT ∥2 ≤
λ2H2L2

T .
The convergence rate on ∥F (zT ) + cT ∥2 implies a convergence rate on the gap function GAPZ,F,D(zT )

by Lemma 9:

GAPZ,F,D(zT ) ≤ D · ∥F (zT ) + cT ∥ ≤ λDHL√
T

.

Appendix F. Auxiliary Propositions

Proposition 16 (Two Identities) Let (xk)k∈[4], (yk)k∈[4], x0, u2 and u4 be arbitrary vectors in
R

n. Let k ≥ 1 and q ∈ (0, 1) be two real numbers. If the following two equations holds:

x3 = x2 − y1 − u2

x4 = x2 − y3 − u4

then the following identity holds:

∥y2 + u2∥2 + ∥y2 − y1∥2 − ∥y4 + u4∥2 − ∥y4 − y3∥2

− 2 · ⟨y4 − y2, x4 − x2⟩

− 2 ·
(
1

4
· ∥x4 − x3∥2 − ∥y4 − y3∥2

)
− 2 · ⟨u4 − u2, x4 − x2⟩

=

∥∥∥∥x3 − x4
2

+ y1 − y2

∥∥∥∥2 + ∥∥∥∥x3 + x4
2

− x2 + y2 + u2

∥∥∥∥2
If the following two equations holds:

x3 = x2 − y1 − u2 +
1

k + 1
(x0 − x2)

x4 = x2 − y3 − u4 +
1

k + 1
(x0 − x2)

then the following identity holds:

k(k + 1)

2

(
∥y2 + u2∥2 + ∥y2 − y1∥2

)
+ k⟨y2 + u2, x2 − x0⟩

− (k + 1)(k + 2)

2

(
∥y4 + u4∥2 + ∥y4 − y3∥2

)
− (k + 1)⟨y4 + u4, x4 − x0⟩

− k(k + 1) · ⟨y4 + u4 − y2 − u2, x4 − x2⟩

− k(k + 1)

4q
·
〈
q · ∥x4 − x3∥2 − ∥y4 − y3∥2

〉
=
k(k + 1)

4
· ∥u4 − u2 + y1 − 2y2 + y3∥2

+

(
(1− 4q)k − 4q

4q
(k + 1)

)
· ∥y3 − y4∥2

+ (k + 1) · ⟨y3 − y4, y4 + u4⟩
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Proof We verify the two identities by MATLAB. The code is available at
https://github.com/weiqiangzheng1999/Single-Call.

Proposition 17 ([6]) Let {ak ∈ R
+}k≥2 be a sequence of real numbers. Let C1 ≥ 0 and p ∈ (0, 13)

be two real numbers. If the following condition holds for every k ≥ 2,

k2

4
· ak ≤ C1 +

p

1− p
·
k−1∑
t=2

at, (28)

then for each k ≥ 2 we have

ak ≤ 4 · C1

1− 3p
· 1

k2
. (29)

Proof We prove the statement by induction.
Base Case: k = 2. From Inequality (28), we have

22

4
· a2 ≤ C1 ⇒ a2 ≤ C1 ≤

4 · C1

1− 3p
· 1

22
.

Thus, Inequality (29) holds for k = 2.
Inductive Step: for any k ≥ 3. Fix some k ≥ 3 and assume that Inequality (29) holds for all
2 ≤ t ≤ k − 1. We slightly abuse notation and treat the summation in the form

∑2
t=3 as 0. By

Inequality (28), we have

k2

4
· ak ≤ C1 +

p

1− p
·
k−1∑
t=2

at

≤ C1

1− p
+

p

1− p
·
k−1∑
t=3

at (a2 ≤ C1)

≤ C1

1− p
+

4p · C1

(1− p)(1− 3p)
·
k−1∑
t=3

1

t2
(Induction assumption on Inequality (29))

≤ C1

1− p
+

2p · C1

(1− p)(1− 3p)
(
∑∞

t=3
1
t2

= π2

6 − 5
4 ≤ 1

2 )

=
C1

1− 3p
.

This complete the inductive step. Therefore, for all k ≥ 2, we have ak ≤ 4·C1
1−3p · 1

k2
.
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