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Scene Diffusion: Text-driven Scene Image Synthesis Conditioning
on a Single 3D Model

Anonymous Authors

ABSTRACT
Scene image is one of the important windows for showcasing prod-
uct design. To obtain it, the standard 3D-based pipeline requires
designer to not only create the 3D model of product, but also man-
ually construct the entire scene in software, which hindering its
adaptability in situations requiring rapid evaluation. This study
aims to realize a novel conditional synthesis method to create the
scene image based on a single-model rendering of the desired object
and the scene description. In this task, the major challenges are en-
suring the strict appearance fidelity of drawn object and the overall
visual harmony of synthesized image. The former’s achievement
relies on maintaining an appropriate condition-output constraint,
while the latter necessitates a well-balanced generation process
for all regions of image. In this work, we propose Scene Diffusion
framework to meet these challenges. Its first progress is introduc-
ing the Shading Adaptive Condition Alignment (SACA), which
functions as an intensive training objective to promote the appear-
ance consistency between condition and output image without
hindering the network’s learning to the global shading coherence.
Afterwards, a novel low-to-high Frequency Progression Training
Schedule (FPTS) is utilized to maintain the visual harmony of en-
tire image by moderating the growth of high-frequency signals in
the object area. Extensive qualitative and quantitative results are
presented to support the advantages of the proposed method. In
addition, we also demonstrate the broader uses of Scene Diffusion,
such as its incorporation with ControlNet.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
scene image synthesis, conditional image synthesis, text-to-image,
diffusion model

1 INTRODUCTION
Exhibiting product through scene image is a common practice
in modern design. The predominant technique for creating scene
images is 3D rendering, which calls for designers to manually con-
struct the entire scene in software. This process not only takes up
a significant amount of time, but also necessitates users to possess
expert skills in 3D rendering like texturing and lighting. These
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Figure 1: Scene Diffusion employs the diffusion model prin-
ciple and generates the scene image conditioning on the ren-
dering of single 3D model and the scene description.

factors clearly impede its adaptability in situations requiring rapid
evaluation. Given the successes of text-to-image(T2I) techniques
recently [3, 4, 20, 24, 25, 37], in this work, we attempt to realize a
novel conditional synthesis framework to create scene image solely
based on a single 3D model and the scene description. As depicted
in Figure 1, upon creating the 3D model of designed object, the user
only needs to provide a single-model rendering image in the desired
position and posture, the network can accordingly generate a scene
image that match the scene description. This framework stream-
lines the laborious scene construction in traditional 3D pipelines,
leading to a marked improvement in design efficiency.

The synthesized scene image is expected to meet two major
criteria: The first is the appearance fidelity. In general, all appear-
ance details of the object contribute to its design. A qualified scene
image should faithfully present these minutiae. For this criterion,
the direct solution would be to enforce a consistency constraint
between the condition and the output image. However, since the
condition image is rendered without scene context, the displayed
colors of object, known as its shading, is bound to be different
from that in the targeted output image. The objects’ shading in the
latter is coherent with the entire scene. Enforcing the network’s
prediction to be consistent with both of them is impractical and will
undoubtedly disturb the network’s learning to the prior of global
shading coherence. Therefore, the first challenge we encounter is
coordinating the network’s learning to the object appearance con-
sistency and the global shading coherence. The second criterion is
the visual harmony of entire image. In the envisioned diffusion-
based framework [5, 11], condition image and description text are
responsible to prompt the object area and background area of scene
image respectively. Because the former already contains the pri-
mary information about the object, it is highly probable that the
denoising processes of the two areas will not synchronize, resulting
in a disharmony visual effect. In view of this, the second challenge
we must overcome is adapting the generation process of the object
and background areas to alleviate the issue of visual disharmony.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In this work, we propose Scene Diffusion to meet the challenges.
The first novelty of it is introducing the Shading Adaptive Condi-
tion Alignment (SACA) as an intensive training objective. In SACA,
the shading difference between the condition and targeted output
image is described though a parametric shading adaptive trans-
formation. The shading of the condition image will be adapted to
resemble that of the targeted output image through this transfor-
mation. Then the pixel-level error between converted condition
and current output is optimized to achieve alignment. SACA en-
sures a reliable consistency constraint between the condition and
output image without impeding the network’s learning to the prior
of global shading coherence. It assists the network in successfully
achieving the goal of maintaining appearance fidelity. In terms of
visual harmony, we attribute the observed disharmony issue to
the abnormal growth of high-frequency signals in the object area,
and develop a Frequency Progression Training Schedule (FPTS) to
tackle the problem. When the timestep is large, the network mainly
learns low-frequency information, and the SACA is only executed
between the low-frequency bands of the condition and output im-
age. With timestep decreasing, the constraint gradually spreads to
the higher frequencies. The quantitative analysis demonstrates that
FPTS effectively slows down the growth of high-frequency signals
in the object area, ultimately enhancing the visual harmony of the
entire image.

The main contributions of this article are as follows:
• Investigating a novel challenge of generating scene images
based on a single 3D model with the prior of the pre-trained
T2I model. In contrast to conventional 3D-based pipeline,
this method streamlines the complex scene crafting process
and is better suited for the scenarios that demand rapid
evaluation.

• Proposing a novel learning-based scene image synthesis
framework. By introducing Shading Adaptive Condition
Alignment as an intensive training objective, the framework
effectively facilitates the network’s learning to the com-
plex relationship between the condition and output image.
The subsequent addition of Frequency Progression Train-
ing Schedule further improves the visual harmony of the
synthesized image.

• The proposed Scene Diffusion has been shown to excel be-
yond the other alternatives in terms of faithfully presenting
condition object and generating high quality images. In ad-
dition,it also shows the ability to seamlessly integrate with
existing ControlNet and potential for generalizing to real
image fragments.

2 RELATEDWORKS
Recently, the emergence of large-scale T2I models [3, 4, 20, 24,
25, 37] has significantly advanced the progress of image synthe-
sis. Based on that, numerous new image-editing [2, 38, 40] and
conditional generation techniques [12, 19, 39, 41] were developed
and have shown significant success in practice. In this paper, we
try to accomplish a fresh task that synthesizing the scene image
conditioning on the single-model rendering and the description
text. This task necessitates the model to not only produce a suitable
background, but also accurately present the details of the object. To

our best knowledge, the technologies with the potential to complete
this task can be segmented into three categories: personalization-
based method, editing-based method, and learning-based method.
In this section, we will provide a brief overview of these related
studies and analyze their applicability in our task.
Personalization-based Method Personalization techniques [26,
27, 31] enable the model to learn a specific object from the limited
references and then generate images about it. The early methods
such as DreamBooth [26] typically involved a brief tuning process.
Nowadays, the focus has shifted to the tuning-free personalization
[8, 13, 15, 32, 34] among researches. A representative method was
BLIP-Diffusion [15]. In this method, a cross-modal encoder was
employed to embed the identity of object from reference image. The
output embedding would then be combined with the text embed-
ding to jointly prompt the image synthesis process. By integrating
with edge-driven ControlNet, BLIP-Diffusion could further achieve
control over the object’s position and posture, which theoretically
met the objectives of our task. However, since condition image
contained only a single object, the edge map obtained from it could
hardly guide the generation of background area. As shown in the
experiment section, the images generated by this scheme generally
had the relatively monotonous background.
Editing-based Method Since scene image synthesis can be con-
sidered a specific image editing task, our comparison also includes
editing-based methods [2, 10, 25, 35, 38, 40]. In this field, a com-
monly applied technique was SD-inpainting [25]. This method
effectively utilized the prior knowledge of the pre-trained diffusion-
based T2I model regarding image composition. In denoising process,
a mask was applied to fix the object area, while the rest was synthe-
sized from random noise in accordance with the text prompts. This
strategy guaranteed the preservation of the object area’s informa-
tion, but it also meant that the object’s shading would not be altered
to match the surroundings. The Prompt2Prompt [10] provided a
more flexible editing paradigm by manipulating the features of
cross-attention layers, by which users could modify the semantics
of any elements in the image, including the background. Follow-
ing researches like InstructPix2Pix [2] utilized Prompt2Prompt
to generate paired image editing datasets and then trained an
instruction-driven image editing model, ultimately enhancing the
user-friendliness of this type of methods. An aspect of these meth-
ods was that the editing operation was reliant on the original im-
age’s structure. In our task, the condition image was comprised
solely of foreground object. It would be challenging for these meth-
ods to produce a scene image with extensive background context
without the reference.
Learning-based Method In existing T2I models, text was mainly
utilized to prompt the semantic information of image. For con-
trolling other elements like image structure, specific conditional
image generation methods [12, 19, 22, 39, 41] were frequently em-
ployed. The most influential technology is ControlNet [39]. This
method employed the Stable Diffusion [25] as the base model and
utilized paired condition-output data to train the additional condi-
tion branch. Due to the rich image priors of large-scale T2I model,
ControlNet was able to learn the complex tasks such as depth-to-
image and edge-to-image with relatively limited data. Additionally,
some studies have made headway in tasks such as layout-to-image
[14, 36, 42], , pose-to-image [18, 28] and sketch-to-image [33]. A



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Scene Diffusion: Text-driven Scene Image Synthesis Conditioning on a Single 3D Model ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The left diagram gives the overview of Scene Diffusion framework. Refer to the legends below for the meanings of
blocks. The right diagram illustrates the principles of proposed Shading Adaptive Condition Alignment training objective and
Frequency Progression Training Schedule.

noteworthy fact was that these methods generally did not introduce
explicit condition-output constraints during the training process.
This strategy yielded satisfactory results in the above tasks that did
not require strict control over appearance. However, in our task,
the synthesized scene image was required to faithfully present the
appearance details of condition object. The network was unable to
fulfill this requirement by autonomously learning the relationship
between the condition and output image. In the experiment section,
the effects of the proposed method and original ControlNet will be
compared to verify the necessity of this constraint.

3 METHODOLOGY
In this section, we first provide an overview of Scene Diffusion,
followed by detailed introduction of two key improvements.

3.1 Overview
The goal of Scene Diffusion framework is to learn a conditional
distribution 𝑝 (𝑥0 |𝑦, 𝑐). Given a single-object rendering image 𝑐 ∈
Rℎ×𝑤×𝑐ℎ and a scene description text 𝑦, model is expected to gen-
erate a high quality scene image 𝑥 ∈ Rℎ×𝑤×𝑐ℎ . While ensuring that
the scene semantics conforms to the text description, 𝑥 is expected
to accurately present the position, posture, and appearance details
of the condition object. Our approach adopts the diffusion-based
generative model and utilizes the identical network architecture as
ControlNet [39]. As shown in Figure 2, the network mainly consists
of two parts. The first is the U-Net inherited directly from Stable
Diffusion. Also taken are Stable Diffusion’s image encoder 𝐸, image
decoder 𝐷 and text encoder 𝑇 . The second is condition branch,
which is constructed with the duplication of U-Net’s encoder frag-
ment and a randomly initialized input block. Condition branch
takes 𝑐 as input. The feature maps output by its blocks are incorpo-
rated into the features of the corresponding blocks of U-Net after
the zero-convolution layer. Training only affects the parameters of
the condition branch, leaving all the other parts frozen.

In training phase, the target scene image will be initially encoded
as the latent embedding 𝑧0 = 𝐸 (𝑥0). The purpose of this operation
is to reduce the amount of computation of U-Net. Then 𝑧0 will be

fused with the random noise 𝜖 . U-Net is trained to predict the noise
component from the noisy input. This training objective is called
𝜖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 , expressed as:

L𝜖−𝑝𝑟𝑒𝑑 = E(𝑧0,𝑦,𝑐 ),𝑡 [| |𝜖𝑡 − Φ(𝑧𝑡 , 𝑦, 𝑐, 𝑡) | |22] (1)

𝑡 ∈ {1, . . . 1000} represents the timestep of diffusion process. 𝑧𝑡 is
the noisy intermediate latent embedding, calculated as 𝑧𝑡 =

√
𝛼𝑡𝑧0+√

1 − 𝛼𝑡𝜖𝑡 , in which𝛼𝑡 is the predefined diffusion scheduling param-
eter. 𝜖𝑡 is the random noise added at the current timestep. Φ is the
trained network to predict 𝜖𝑡 . For each timestep, we can get a predic-
tion for the target image 𝑥0 = 𝐷 (

√︁
1/𝛼𝑡𝑧𝑡 −

√︁
(1 − 𝛼𝑡 )/𝛼𝑡𝜖𝑡 ), 𝜖𝑡 =

Φ(𝑧𝑡 , 𝑦, 𝑐, 𝑡). Since 𝛼𝑡 and the image decoder 𝐷 are deterministic,
the training objective of 𝜖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is theoretically equivalent
to directly predict 𝑥0.

The above are the basic components of proposed method. To
better meet the challenges of scene image synthesis, two improve-
ments are further applied. The first is introducing Shading Adaptive
Condition Alignment (SACA) as the intensive training objective.
Its function is to promote the appearance fidelity between condi-
tion and output image without hindering the network’s learning to
prior of the global shading coherence. The inclusion of Frequency
Progression Training Schedule (FPTS) afterwards further improves
the visual harmony by moderating the growth of high-frequency
signals in the object area. Subsequently, we will provide a thorough
introduction to them and demonstrate their effectiveness through
theoretical analysis and quantitative evaluation.

3.2 Shading Adaptive Condition Alignment
It has been demonstrated that the constraint between the condition
and output image is crucial for ensuring the appearance fidelity of
synthesized image. The following concern is which form it should
adopt. The condition image 𝑐 is rendered without scene context.
Its shading is bound to differ from the targeted scene image in
which the object’s shading has strong coherence with the overall
environment. As stated above, the optimization goal of L𝜖−𝑝𝑟𝑒𝑑 is
equivalent to predict 𝑥0 in theory. Directly enforcing the RGB color
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of the predicted image 𝑥0 to conform to 𝑐 not only theoretically
goes against L𝜖−𝑝𝑟𝑒𝑑 , but also impedes the network’s learning to
the prior of global shading coherence in practice.

In this scenario, the logical option would be to first adapt 𝑐’s
shading to be same as 𝑥0 via a transformation T and then conduct
consistency constraint between 𝑥0 and converted condition image,
expressed as:

L𝑠𝑎𝑐𝑎 = E(𝑥0,𝑦,𝑐 ),𝑡 [| |𝑚 ⊙ (𝑥0 − T (𝑐, 𝑥0) | |22] (2)

𝑚 is mask of object area. The transformation T needs to satisfy
two conditions: first, it must be parameterized to allow for gradient
propagation, and second, it should be able to convert 𝑐 to the same
shading as 𝑥0 with maximum precision. Finally, we consider the
following form:

T (𝑐, 𝑥0) = 𝑠𝑡𝑑 (𝑥0) ∗
𝑐 −𝑚𝑒𝑎𝑛(𝑐)
𝑠𝑡𝑑 (𝑐) +𝑚𝑒𝑎𝑛(𝑥0) (3)

The transformation is preformed separately on each channel in
the object area. For simplicity we omit𝑚 in the formulation. The
mathematical meaning of T is to adjust the color distribution of 𝑐
to be consistent with 𝑥0. Subsequently, we will provide a concise
analysis to validate the suitability of T in adapting the changes in
ambient light color of object.

Here we employ the fundamental Blinn-Phong [1, 21] shading
model to assist in our analysis. According to it, the displayed color
𝑙 of a point on the object surface can be expressed as:

𝑙 = 𝑙𝑎 + 𝑙𝑑 + 𝑙𝑠 (4)

𝑙𝑎, 𝑙𝑑 and 𝑙𝑠 are ambient lighting, diffuse reflection and specular
highlight colors respectively. Generally, 𝑙𝑎 is regarded as the main
contributor to displayed color, which calculated as:

𝑙𝑎 = 𝐾𝑎𝐼𝑎 (5)

𝐾𝑎 is the ambient light absorption rate of this point, which is
associated with the its intrinsic color and material. 𝐼𝑎 is the ambient
light intensity. Since ambient light involves the reflected light from
all possible directions, 𝑙𝑎 is usually defined as a constant across the
whole surface.

Supposing 𝐾𝑎 follows a normal distribution. For ambient light
colors of the condition image and the targeted output image, 𝑐𝑎
and (𝑥0)𝑎 , we have:

(𝑥0)𝑎 −𝑚𝑒𝑎𝑛((𝑥0)𝑎)
𝑠𝑡𝑑 ((𝑥0)𝑎)

≡ 𝑐𝑎 −𝑚𝑒𝑎𝑛(𝑐𝑎)
𝑠𝑡𝑑 (𝑐𝑎)

(6)

Through basic manipulation, we obtain the transformation in
the Equation 3. 𝑙𝑑 and 𝑙𝑠 are influenced by the light sources and are
not addressed in this work. Experiments show that the current T
can address the primary color differences between 𝑐 and 𝑥0. In sup-
plementary materials, intuitive results are provided to demonstrate
its effects.

However, due to the simplifications implemented, there will
inevitably be errors between T (𝑐, 𝑥0) and original 𝑥0. To avoid
the affects of the remaining error on the optimization of L𝜖−𝑝𝑟𝑒𝑑 ,
we formulated the following strategy: for every pixel in object

Figure 3: The changing trends of the EoG of object and back-
ground areas during the diffusion sampling process. The
solid lines reflect the average values, while the bounds of
filled areas reflect the ±1/2 standard deviations. The results
are calculated based on 50 test samples. The reference value
is calculated on the corresponding target images.

area, when 𝑥 (𝑖, 𝑗 ) ∉ [𝑥0(𝑖, 𝑗 ) ,T (𝑐, 𝑥0) (𝑖, 𝑗 ) ] (𝑖, 𝑗 are position indexes,
and supposing 𝑥0(𝑖, 𝑗 ) < T (𝑐, 𝑥0) (𝑖, 𝑗 ) ), both loss terms are enabled,
otherwise, only L𝜖−𝑝𝑟𝑒𝑑 is enabled.

The complete training loss of Scene Diffusion is:

L = L𝜖_𝑝𝑟𝑒𝑑 + 𝜆𝑠𝑎𝑐𝑎L𝑠𝑎𝑐𝑎 (7)

𝜆𝑠𝑎𝑐𝑎 is the manually set weight, in our practice, setting it to 1
gives satisfactory results.

3.3 Frequency Progression Training Schedule
In Scene Diffusion, the object and background areas are prompted
by the condition image and the scene description respectively. Since
the primary information about object is already provided by the
condition image, it is highly probable that its denoising process will
outpace the background area’s. Concretely, the high-frequency sig-
nals in the object area may growing faster than in the others. Here
we employ the indicator of Energy of Gradient (EoG) to support
this reasoning, which is commonly used to quantify the content of
high-frequency signals of image. It is calculated on the grayscale,
formulated as:

𝐸𝑜𝐺 (𝑥) = 1
ℎ𝑤

Σℎ𝑖=1Σ
𝑤
𝑗=1 [(𝑥 (𝑖+1, 𝑗 ) − 𝑥 (𝑖, 𝑗 ) )

2 + (𝑥 (𝑖, 𝑗+1) − 𝑥 (𝑖, 𝑗 ) )2]
(8)

A higher EoG indicates a more significant variation within a
narrow range and a stronger presence of high-frequency signals.
We calculate the EoG on object and background areas of 𝑥0 in each
timestep, the trends are shown in Figure 3. As the background typi-
cally consists of sizeable regions of uniform color, its EoG reference
value is lower than that of the object area. As shown in plots, the
high-frequency signals of two areas do have the different growth
curves. When no targeted strategy is applied (orange), the EoG of
object area undergoes a rapid increase in the early stage. Despite
the decline afterwards, its final value still exceeds the reference
value, which indicates the disharmonious visual effect.

We propose the Frequency Progression Training Schedule (FPTS)
to alleviate this problem. The core concept is applying SACA to
different frequency bands of the image for different timesteps.When
𝑡 is large, the network mainly predicts the coarse information of
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Figure 4: The samples of generated scene images of Scene Diffusion. The corresponding condition image is placed at the bottom
or upper left corner. To simplify, we omit the common prompt words about image quality in scene description.

image, with SACA being applied solely on the low frequency bands.
As 𝑡 decreases, the network begins to predict finer details, and
the effective range of SACA will progressively extend to higher
frequencies. The low-frequency signals of image are separated by
standard gaussian downsample operation G, which first convolves
the image using a 3𝑥3 standard gaussian kernel and then applying
2𝑥2 average pooling.

In practice, L𝑠𝑎𝑐𝑎 is conducted between G(𝑥0) and G(T (𝑐, 𝑥0))
when 700 > 𝑡 ≥ 300, while between G2 (𝑥0) and G2 (T (𝑐, 𝑥0))
when 𝑡 > 700. Here G2 represents the two-stage cascaded G oper-
ation. The thresholds for 𝑡 are selected by experience. As shown
in Figure 3, The application of FPTS (blue) softens the rise of high-
frequency signals in the object area, and ultimately maintains it at
a reasonable level. In the following section, we will further provide
intuitive comparisons to validate its effectiveness on improving
visual harmony of synthesized image.

4 EXPERIMENTS
The numerical experiments are performed to evaluate the proposed
Scene Diffusion. This section starts by introducing the basic exper-
imental setup. Afterwards, the results of the Scene Diffusion and
its comparation with the other alternative methods are reported.
Finally, the ablation study and expanded applications for proposed
method are demonstrated.

4.1 Experimental Settings
DatasetWe employ the public interior design dataset 3D-FUTURE
[6, 7] to evaluate the proposed Scene Diffusion framework. It con-
sists of 20240 clean and high-quality scene rendering images and
16563 textured 3D model of furniture. Each scene rendering image
comes with complete annotations, including the fine categories and
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Figure 5: The samples of generated scene images of the comparison methods. All compared methods are implemented with the
recommended settings. The ControlNet was trained with our dataset, using the same hyperparameters as the proposed method.

poses of included objects and camera setup, which allows us to
construct the envisioned condition-text-output triple data.

We first split the dataset. We select 50 objects for each of the
five major furniture categories (bed, sofa, table, chair and shelf)
as the test data, and make sure that the scene images containing
them are not used for training. Next is to get the description for
each scene image. We initially construct the concise description
comprised solely of nouns, such as “Bedroom design, a king-size
bed, nightstands, an armchair”. Then the multimodal language
model LLaVA-1.5 [16] is employed to further polish it from aspects
of overall style and object appearance. Finally, we render the single-
object condition image under the given object pose and camera
setup. This step is conducted based on Blender 3.6. Since a scene
image usually contains multiple furniture, it will correspond to
multiple condition images. Ultimately, there are 49,963 condition-
text-output triples are used for training.
Implementation Details Scene Diffusion are trained based on
Stable Diffusion V2.1, and its network architecture is exactly the
same as ControlNet. The training is conducted on 512𝑥512 resolu-
tion. AdamW [17] optimizer is used with a constant learning rate
of 1𝑒 − 5. 4 Nvidia V100 are used in training phase, with a global
batch size of 8 and a total iteration of 40,000. All the synthesized
images shown in this article are sampled by DDIM [29] sampler,
with the step size of 100 and the classifier-free guidance scale of 7.
EvaluationMetrics Four metrics are utilized in this section to fully
assess the effect of the proposed method, including Image Entropy
(IE), CLIP-based Text-Image Similarity (C-TIS) [23], Appearance
Fidelity Score (AF Score) and Image Quality Score (IQ Score). IE
is a widely accepted objective metric for assessing the amount
of information in the image. The higher IE commonly signifies
the more diverse composition within the generated image. It is
calculated on the greyscale, formulated as: 𝐼𝐸 (𝑥) = −Σ255

𝑖=1𝑝𝑖 ·𝑙𝑜𝑔2𝑝𝑖 ,

in which 𝑝𝑖 represents the probability that the gray value of image
pixel is equal to 𝑖 . C-TIS is defined as the cosine similarity between
the CLIP features of the synthesized image and the text prompt,
which reflects the level of model’s controllability. AF Score and IQ
Score are measured by user study. Fifty individuals take part in the
survey and assess the results of our method and other comparisons
in regards to the appearance fidelity of object and overall image
quality. Our questionnaire explicitly emphasizes the importance of
visual harmony in determining image quality. The scale goes from
1 to 5, with a higher score indicating better results.

4.2 Application Effect of Scene Diffusion
By manipulating the condition image and scene description, Scene
Diffusion can accomplish a variety of control objectives. In this sec-
tion, we mainly demonstrate its application effects in four aspects,
the samples are shown in Figure 4. 1) Single-object. Generating
the complete scene image conditioning on the single-object render-
ing is the basic task for the proposed method. As can be seen, Scene
Diffusion is capable of faithfully drawing the conditional object into
the image while providing it a suitable shading that cohering with
the global environment. This property functions well even when
addressing small objects like chairs. 2) Multi-object. We found
that the network trained with single-object condition images gen-
eralizes well to the multi-object situations. It is our conjecture that
the acquisition of this ability is related to the network’s learning to
the objects with complex structures. For the network, processing
a combination of multiple objects is essentially the same as pro-
cessing a single object with multiple different parts. This feature
further increases the practicality of the proposed method in the
design work. 3) Variable Scene Description Text. Since the Scene
Diffusion is trained based on the large-scale T2I model, the latter’s
strong semantic control ability can also be utilized in sampling
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Table 1: Quantitative Evaluation of Comparison Methods

Method IE C-TIS AF Score IQ Score

BLIPDiffusion [15] 6.35 26.93 3.45±1.21 3.00±1.30
SD-Inpainting [25] 7.16 29.88 4.01±1.09 3.78±1.13
InstructPix2Pix [2] 7.11 30.19 2.66±1.35 2.97±1.22
ControlNet [39] 7.74 31.64 3.52±1.08 3.98±1.03
Ours 7.78 31.92 4.39±0.91 4.48±0.88

process. By modifying the scene description, we can manipulate
the elements such as scene style and the occurrences, colors and
materials of objects in the background. 4) Variable Position &
Posture of Object. As shown in the figure, when the position and
posture of condition object shift, the network can still produce the
image with reasonable layout and the required scene semantics.
This feature facilitates the user to continuously adjust the object’s
pose to achieve more satisfying visual effect.

4.3 Comparison with Existing Alternatives
Several advanced alternative methods are selected for compari-
son, including BLIP-Diffusion [15] (personalization -based), SD-
Inpainting [25] (editing-based), InstructPix2Pix [2] (editing-based),
and ControlNet [39] (learning-based). Table 1 and Figure 5 pro-
vide the results of the quantitative and qualitative comparisons
respectively. The metrics of IE and C-TIS are calculated with all
250 test cases, and AF Score and IQ Score are counted based on the
assessments of 50 users on 30 test cases. Since the users may have
diverse preferences, we additionally report the standard deviations
of the last two metrics. Please refer to supplementary materials for
the implementation details of compared methods.

According to the reported outcomes, Scene Diffusion surpasses
existing alternatives in both of evaluation indicators and intuitive
visual effects, which confirms its superiority on scene image syn-
thesis task. Next, we will analysis the sources of its efficacy by
contrasting it with different types of alternatives.

The personalization-based method does not achieve satisfactory
results on this task. BLIP-Diffusion lags behind other methods in
both IE and C-TIS indicators. The images produced by it generally
lack a defined background. This result is derived from the basic
principle of this type of methods. Personalization-based methods
are initially designed to allow the network to generate the images
about a specific object, which emphases on preserving the object’s
identity rather than controlling its poses. Although the combining
with edge-driven ControlNet can partially serve the latter purpose,
the edge map obtained from the single-object rendering image will
in turn restrict the generation of background area. Overall, to meet
the demands of this task, a unified control mechanism for object’s
appearance and pose is necessary.

Comparing to BLIP-Diffusion, the editing-based methods shown
better ability in drawing objects in the background that approx-
imately align with the text prompts. Both SD-Inpainting and In-
structPix2Pix acquire the IE and C-TIS surpassing BLIP-Diffusion at
least 0.76 and 2.95 respectively. However, these methods have their
limitations when tackling this task, such as the changeless object
colors in SD-Inpainting’s results and unfaithful object appearances

Figure 6: The generated images under different ablation se-
tups. The images in same row use the same scene description.
The images are cropped to better showcase the object area.
Please refer to supplementary materials for original images.

Table 2: Quantitative Evaluation for Ablation Study

Setup IE C-TIS AF Score IQ Score

Baseline 7.77 30.22 3.38±1.17 3.63±1.20
+ SACA 7.83 30.57 3.78±1.06 3.67±1.12
Ours 7.77 30.82 4.26±0.96 4.07±1.02

in InstructPix2Pix’s results, and the latter leads to the lowest AF
score among all the comparisons. The causes of these method- spe-
cific drawbacks have been discussed in section of related works.
A noticeable phenomenon is that the editing-based methods may
occasionally misinterpret the structure of objects. Take the third
case in Figure 5 as the example, the table legs are mistakenly drawn
as the part of chair back or the chair legs. This observation implies
that the use of feature manipulation in editing-based methods may
alter the sematics of small parts of complex objects.

The most critical comparison lies between ControlNet and the
proposed method. As the learning-based method, their performance
surpasses that of othermethods in scene synthesis task. This leading
position is also reflected in the quantitative indicators. ControlNet
acquires the IE, C-TIS, and IQ Score higher than the third best
method 0.58, 1.45 and 0.2 respectively, which confirms the advan-
tages of learning-based method in image quality and controllability.
The only exception occurs in AF Score. ControlNet’s results do not
receive high ratings in terms of appearance fidelity. This phenome-
non can be attributed to that the network may not accurately learn
the relationship between the condition and the output image. Take
the first and third cases in Figure 5 as the examples, the network
mistakenly interprets the condition input on bed foot area and table
leg area as the guidance for the image structure, which results in
the unfaithful appearances and unsatisfactory visual effects. To
tackle the problem, an explicit constraint between the condition
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Figure 7: The results of expanded applications of Scene Dif-
fusion. The condition images for integrated ControlNet or
the fragments of real images are placed in upper left corner.

and output image is required. In Scene Diffusion, this issue is fixed
by the introduction of SACA. The inclusion of FPTS afterwards
further enhanced the image quality from the perspective of visual
harmony, which ultimately makes the Scene Diffusion achieve the
best results among all the comparisons.

4.4 Ablation Study
Ablation study is conducted to evaluate the effects of proposed
SACA and FPTS components. Since FPTS cannot be applied indepen-
dently, in this part, we mainly compare three setups: 1) Baseline.
No improving component is applied, and the network is trained
solely with L𝜖−𝑝𝑟𝑒𝑑 . 2) + SACA. Only SACA is applied. 3) Ours.
Both SACA and FPTS are applied. All the networks in ablation
study are trained with the subset of training data that using bed as
the condition object. The quantitative and qualitative results are
reported as Table 2 and Figure 6. IE and C-TIS are calculated with
50 test cases, and AF Score and IQ Score are counted based on the
assessments of 50 users on 10 test cases.

As can be seen, the proposed components indeed bring improve-
ments from the perspective of appearance fidelity of object and
image quality. The setups with SACA yield the AF Score that is at
least 0.4 higher than the baseline. However, using SACA in isolation
also leads to adverse effects. As shown in Figure 6, the results of
second setup exhibits a more “saturated” visual effect in the object
area. In fact, this is a direct manifestation of the excessive high-
frequency signals in this area. Excessive high-frequency signals also
contribute to its IE indicator. Such phenomenon reduces the users’
assessments in both image quality and appearance fidelity. This
issue was eventually alleviated by FPTS. The third setup surpass
the second setup 0.48 and 0.4 in AF Score and IQ Score respectively.

4.5 Expanded Applications
We investigate two key expended applications of Scene Diffusion,
including integrating with existing ControlNet and generalizing to
real image fragment. The results are shown in Figure 7.
Integrating with Existing ControlNet The proposed method
controls the scene semantics through the text prompt. In some cases,
the user may have more detailed requirements for the structure
of scene. The integration of Scene Diffusion and the ControlNet
can meet this demand. The results in Figure 7 confirms that Scene
Diffusion is highly compatible with the structure-driven ControlNet
that using scribble[30], segmentation map[43], or M-LSD [9] image
as the condition input. To accomplish this expended application,
we additionally train a network based on Sable Diffusion V1.5 to
align with existing M-LSD-driven ControlNet.
Generalizing to Real Image Fragment Except for the single-
object rendering image obtained from 3D software, the object frag-
ment from real image may also serve as the condition image of the
proposed method. To investigate its effect on this important appli-
cation, we collect some in-the-wild images of furniture and conduct
the test. As shown in Figure 7, our approach shows a certain degree
of generalization ability on real image fragments. For first two test
cases, it can synthesize the image with faithful appearance of object
and harmony visual effect. However, for the third test case, the
network does not produce satisfactory result. We address this issue
to the complex lighting environment in orginal image. The strong
diffuse reflection and specular highlight impede the network’s per-
ception to the color of object. Due to the limited capability of 3D
software in simulating real lighting, one feasible solution to this
challenge is introducing real 2D images into the training phase,
which is also a topic that we plan to explore in future research.

5 CONCLUSION
In this work, we explore a novel task that synthesizing the scene im-
age conditioning on the single 3D model and the scene description.
After identifying the main goals of ensuring appearance fidelity
of drawn object and visual harmony of entire image, we propose
Scene Diffusion framework to meet the challenge. Comparing to
the existing learning-based methods, the key novelty is introducing
the SACA as an intensive training objective, which successfully
promotes the appearance consistency between the condition and
output image without hindering the network’s learning to the prior
of global shading coherence. Afterwards, FPTS is utilized to improve
the visual harmony of entire image by moderating the growth of
high-frequency signals in the object area. In contrast to traditional
3D-based pipeline, this framework eliminates the laborious scene
construction step and offers enhanced adaptability in time-sensitive
situations.
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