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Abstract001

Recent research shows that supplementing002
Large Language Models (LLMs) with knowl-003
edge graphs can enhance their performance.004
However, existing methods often introduce005
noise in the retrieval and reasoning pipeline,006
hindering LLMs’ ability to effectively inte-007
grate external knowledge for complex multi-008
hop question answering. To address this, we009
propose RefKG, a novel framework designed010
to enhance the reasoning capabilities of LLMs011
through reflective engagement with knowledge012
graphs. RefKG autonomously conduct retrieval013
and reflection on knowledge graphs. It con-014
sists of three modules: Query Decoupling,015
LLM-Driven Knowledge Graph Exploration,016
and Inference with Knowledge Reconstruction.017
We also introduce a multi-task tuning strat-018
egy that not only integrates external knowl-019
edge into LLMs but also trains them to lever-020
age this knowledge for answering questions.021
This significantly improves their performance022
on knowledge-intensive tasks. Experiments on023
fact verification and knowledge graph question024
answering demonstrate RefKG’s effectiveness.025

1 Introduction026

Large Language Models (LLMs) have demon-027

strated remarkable capabilities in solving various028

NLP tasks, such as machine translation (Zhang029

et al., 2023) and information extraction (Sainz et al.,030

2023). However, given the ever-evolving nature of031

real-world knowledge (Zhang et al., 2023), LLMs032

exhibit limitations in domain-specific expertise or033

in timely updating their knowledge bases. This034

shortfall often results in hallucinations within their035

responses, where the generated content deviates036

from factual accuracy (Huang et al., 2023).037

To alleviate the issue of hallucinations in LLMs038

on knowledge-intensive tasks such as Knowledge039

Graph Question Answering (KGQA) (Gupta et al.,040

2018), a promising strategy involves augmenting041

LLMs with external knowledge sources (Tan et al.,042
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Figure 1: Comparison between previous method and
our method. While conventional methods often intro-
duce noisy knowledge during retrieval, our method em-
ploys an Expert Model for knowledge refinement, sig-
nificantly reducing the acquisition of noisy information.

2023), like knowledge graphs (KGs) (Luo et al., 043

2018; Hu et al., 2018). This approach retrieves 044

relevant facts from knowledge bases to help LLMs 045

generate more accurate responses. However, exist- 046

ing solutions still suffer from several shortcomings. 047

First, due to the scale and complexity of knowl- 048

edge graphs, retrieval and reasoning processes of- 049

ten introduce irrelevant or noisy information, com- 050

plicating the model’s ability to answer complex 051

queries (Lan et al., 2021), as illustrated in Figure 1. 052

Second, recent investigations (Li et al., 2023b; Nie 053

et al., 2023) have predominantly performed black- 054

box testing on proprietary models such as Chat- 055

GPT. These studies often employ in-context learn- 056

ing techniques (Liu et al., 2022), where external 057

knowledge is incorporated into the prompts to steer 058

the model’s response generation. 059

Although these training-free methods enable the 060

integration of external knowledge, they do not en- 061

hance the interactive capabilities between LLMs 062

and knowledge graphs, thereby limiting the po- 063

tential of LLMs to efficiently acquire and deploy 064

knowledge, especially when supervised signals are 065
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available. Additionally, black-box models cannot066

be deployed privately, which significantly limits067

their flexibility and adaptability.068

In this paper, we introduce RefKG, an innova-069

tive framework specifically crafted to enhance the070

reasoning capabilities of LLMs through reflective071

engagement with knowledge graphs. In particu-072

lar, RefKG is structured as a three-step framework:073

1) A Query Decoupling Module that decouples a074

complex query into multiple sub-queries that share075

a common knowledge background. 2) A LLM-076

Driven Knowledge Graph Exploration Module that077

iteratively and reflectively retrieves relevant evi-078

dence subgraphs from a knowledge base and re-079

fines the knowledge through an expert model. 3)080

An Inference with Knowledge Reconstruction Mod-081

ule that transforms structured knowledge into a082

natural language format that is more easily under-083

stood by the LLM, and integrates it with the ques-084

tion to derive the answer. Compared to approaches085

that directly use retrieved results in prompts (Kim086

et al., 2023a), our approach maximizes the reflec-087

tion capabilities of LLMs (Asai et al., 2023) to crit-088

ically assess and refine the evidence subgraph. Fur-089

thermore, we have formulated a knowledge-driven090

multi-task tuning strategy that provides RefKG with091

foundational expertise in knowledge-intensive rea-092

soning. This is achieved by fine-tuning the model093

on a specially synthesized corpus, equipping it with094

the necessary skills for advanced reasoning tasks.095

Together, the three-step process enables our ap-096

proach to autonomously retrieve, reflect, and utilize097

knowledge in solving knowledge-intensive tasks.098

In summary, our main contributions are three-fold:099

• We propose RefKG, a novel framework crafted100

to enhance the reasoning capabilities of LLMs101

through reflective engagement with knowl-102

edge graphs. In particular, our approach sim-103

plifies complex queries through decomposi-104

tion, enabling effective retrieval, reflection105

and reasoning within knowledge graphs.106

• We develop an LLM-Generated corpus107

for knowledge-intensive multi-task tuning,108

equipping LLMs with initial expertise in109

knowledge-intensive reasoning, setting the110

stage for advanced task-specific learning.111

• We extensively evaluate RefKG on fact verifi-112

cation and knowledge graph question answer-113

ing tasks. The experimental results affirm that114

RefKG outperforms previous KG-augmented115

methods across various open-source LLMs.116

2 Related Work 117

KG Retrieval-Augmented Methods. Knowl- 118

edge graphs (KGs) organize relationships between 119

entities in a structured manner, and leveraging KG 120

retrieval to enhance large language models (LLMs) 121

has proven effective in mitigating hallucination is- 122

sues (Agrawal et al., 2023; Pan et al., 2023). Recent 123

research in KG retrieval can be broadly classified 124

into two categories: (1) Semantic Parsing-Based 125

Methods: For example, SSKGQA (Li and Ji, 2022) 126

generates query graphs based on questions to elim- 127

inate incorrect query structures, while RnG-KBQA 128

(Ye et al., 2022) ranks and generates logical forms 129

(LFs) from candidate queries. However, these meth- 130

ods require generating executable SPARQL state- 131

ments and additional label information. (2) In- 132

formation Retrieval-Based Methods: For instance, 133

UniK-QA (Oguz et al., 2022) combines retrieved 134

triplets with questions in a Seq2Seq framework to 135

generate answers. However, it rely heavily on the 136

accuracy of the retrieved subgraphs or triplets, lack- 137

ing mechanisms to filter irrelevant results, which 138

can lead to error accumulation. DiFaR (Baek et al., 139

2023a) improves retrieval accuracy by leveraging 140

query-triplet similarity but struggles with complex 141

multi-hop questions. In contrast, our approach en- 142

hances the KG retrieval process by utilizing LLMs’ 143

semantic capabilities to guide retrieval and applies 144

robust quality control to the results. 145

LLMs Reasoning for KGQA. Recent work has 146

focused on using LLMs for Knowledge Graph 147

Question Answering (KGQA), with methods like 148

KAPING (Baek et al., 2023b) and KGGPT (Kim 149

et al., 2023a) prompting LLMs to generate answers 150

by inserting retrieved triplets into predefined tem- 151

plates. However, these methods neglect the chal- 152

lenge that triplets from knowledge graphs are not 153

always in natural language, complicating LLM in- 154

ference. Additionally, they rely on black-box APIs, 155

limiting model training and deployment. Retrieve- 156

Rewrite-Answer (Wu et al., 2023) addresses this 157

by fine-tuning open-source LLMs on KG-to-text 158

corpora, converting triplets into more readable text. 159

However, none of these methods filter the extracted 160

triplets, potentially introducing irrelevant informa- 161

tion and leading to incorrect results. 162

3 Methodology 163

As shown in Figure 2, our proposed RefKG is 164

structured with three modules: Query Decoupling, 165
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Figure 2: An overview of our proposed framework RefKG. The framework consists of three modules: Query
Decoupling, Evidence Subgraph Retrieval and inference with Knowledge Reconstruction. We enhance the model’s
ability to utilize knowledge through Knowledge-Driven Multi-Task Tuning, enabling the decoupling, navigation,
refinement, and reconstruction of knowledge.

LLM-Driven Knowledge Graph Exploration, Infer-166

ence with Knowledge Reconstruction. Besides, we167

enhance the model’s ability to utilize knowledge168

through Knowledge-Driven Multi-Task Tuning.169

3.1 Query Decoupling170

Inspired by the divide-and-conquer paradigm, we171

initially decouple a complex query into multiple172

sub-queries, each of which shares the contextual173

semantics but contains only a single-hop atomic174

query. In knowledge-intensive tasks, we assume175

entities contain the essential information necessary176

for the decomposition process. By anchoring enti-177

ties, LLMs can capture the underlying mechanisms178

of knowledge-intensive problem decoupling.179

Specifically, given a knowledge-intensive query180

q, a collection of relevant knowledge entities E ,181

and a predefined decoupling template P , our goal182

is to predict the hop number H , derive a sequence183

of sub-queries qsub = [q1, ..., qH ], and identify the184

corresponding entity subsets Esub = [e1, ..., eH ]185

for each subquery. It can be formulated as:186

{qi, ei}Hi=1 = LLM(p′), p′ = P(q, e), (1)187

3.2 LLM-Driven Knowledge Graph188

Exploration189

As shown in Figure 3, the evidence subgraph re-190

trieval consists of Evidence Subgraph Retrieval and191

Knowledge Refinement.192

Evidence Subgraph Retrieval. Our approach 193

leverages the LLM as a navigator, encouraging it 194

to autonomously select the search trajectory on the 195

related subgraph Gsub, continuously advancing to 196

form a chain of reasoning. Specifically, we divide 197

the retrieval reasoning process into multiple iter- 198

ations, ultimately forming a complete chain Pt, 199

formulated as: 200

Pt = {(ehead1 , r1, e
tail
1 )

LLM−−−→ . . .
LLM−−−→

(eheadT , rT , e
tail
T ), (eheadt , rt, e

tail
t ) ∈ Gsub}

(2) 201

For each iteration, the LLM conducts inter- 202

pretable reasoning on the graph by targeting re- 203

lationships as objectives for selecting paths. We 204

formulate the relation selection task as an optimiza- 205

tion problem, with the objective of maximizing 206

the probability of extracting a set of relationships 207

r from the knowledge graph G by generating an 208

inference chain Pt: 209

Pθ(r|q, e,G) =
∑

pt−1∈Pt−1

Pθ(r|pt−1, q, e,G)

· Pθ(pt−1|q, e,G),
(3) 210

The new relation r are incorporated into the rea- 211

soning path to form new reasoning paths pt, with 212

N such paths together constituting a complete ev- 213

idence subgraph Gevi = {pnt }Nn=1. To improve 214

the stability and coverage of relation selection, our 215

approach incorporates the Top-k most relevant re- 216

lations into the reasoning chain, rather than relying 217

on a single relation. 218
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Subgraph Retrieval. Find the top 3 elements from relation 

set which are most semantically related to the given sentence. 

Sentence: Agra Airport is located in Uttar Pradesh. Uttar 

Pradesh is where the leader is Ram Naik.
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Evidence: [(Agra_Airport, location, Uttar_Pradesh), (Uttar_Pradesh, 
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Figure 3: In the Evidence Subgraph Retrieval process, RefKG initiates from entities within the related subgraph to
select the most probable relations, thereby constructing an inference pathway in triplets-form. In the Knowledge
Refinement phase, RefKG uses a trained expert model to score and rerank the retrieved knowledge, filtering out
noisy triplets.

Evidence Subgraph Refinement. To address219

the noisy data of the evidence subgraph retrieved220

from large knowledge graphs, we trained an expert221

model to refine and rerank the generated evidence222

subgraph, enhancing both the accuracy and effec-223

tiveness of the external knowledge.224

Given a sub-query qi and its corresponding ev-225

idence subgraph Gsub,i ∈ Gsub,we utilize an LLM226

to jointly encode the query and subgraph together,227

resulting in a hidden layer state hi. Then we inte-228

grate a single Multi-Layer Perceptron (MLP) after229

an LLM for regression training, aimming to map230

the hidden layer state hi to a corresponding score231

si (more details in Appendix A.6). The formula for232

this mapping is expressed as follows:233

si = MLP(hi), hi = LLM(qi,Gsub,i) (4)234

We use the Mean Squared Error (MSE) loss as235

the objective function, formulated as:236

MSE =
1

n

n∑
i=1

(si − ŝi)
2 (5)237

where si represents the actual scores, and ŝi de-238

notes the predicted scores by the model. Then, we239

rerank the obtained evidence triplets by score and240

set a threshold α to filter out triplet reasoning paths241

that are irrelevant to the question.242

3.3 Inference with Knowledge Reconstruction243

To improve the LLM’s capacity to integrate exter-244

nal knowledge, we reconstruct the evidence sub-245

graph into a natural language format.246

For an evidence subgraph Gevi containing n 247

triplets, We transform them into a textual prompt p′ 248

by a predefined template P , and then transform the 249

input p′ into a trained LLM to generate the textual 250

evidence evi: 251

evi = LLM(p′), p′ = P(Gevi), (6) 252

Gevi = {(eheadn , rn, e
tail
n )}Nn=1, 253

Then we perform reasoning in two types of 254

knowledge-intensive tasks, question answering 255

tasks and fact verification tasks. We unify them 256

into a single probabilistic model, formulated as: 257

Pθ(a|q,G) = Pθ(a|evi, q,G)Pθ(evi|q,G) (7) 258

where a denote the answer, evi denote the evi- 259

dence transformed from knowledge graph. And the 260

details of prompts templates for each step of RefKG 261

are thoroughly outlined in Appendix A.10. 262

3.4 Knowledge-Driven Multi-Task Tunning 263

3.4.1 Training Corpus 264

Corpus Generation. To address the limitations 265

of existing corpora that do not fully meet our train- 266

ing needs, we have developed a multi-task ap- 267

proach for corpus generation. To create training 268

data, we focus on three specific tasks: (1) Query 269

Decoupling, (2) Evidence Subgraph Retrieval, and 270

(3) Inference with Knowledge Reconstruction. For 271

each task, we design a pre-defined template T and 272

insert relevant feature elements x, forming a text 273
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prompt p. This prompt p is then processed by Chat-274

GPT1 to generate the corresponding training data275

y. Further details are provided in Appendix A.3.276

Quality Control. In light of the lack of explicit277

labels and the challenge of applying general met-278

rics, we have developed specific evaluation meth-279

ods for assessing the quality of the generated out-280

comes: (1) For Query Decoupling: We evaluate281

the decoupling quality based on the entity set E282

extracted from the original question and the en-283

tity sets Ediv = [ediv,1, ..., ediv,H ] derived from284

the decomposed sub-queries. The criteria for con-285

sidering the decoupling results as high-quality are286

as follows: (a) E ̸= ∅. (b) E =
⋃H

i=1 ediv,i. (c)287

If |Ediv| > 1, then ∀ediv,i ∈ Ediv, ediv,i ⫋ E. If288

|Ediv| = 1, then Ediv = E. (2) For Inference with289

Knowledge Reconstruction: We perform a unified290

assessment of the two-step pipeline process. For291

the answers A generated through these two steps,292

we identify instances where the feedback from the293

generator corresponds with the factual ground truth294

as indicators of high-quality data.295

3.4.2 Multi-Task Tunning296

Previous research has demonstrated that multi-task297

learning is effective when tasks are diverse but298

related, particularly when they share a common299

knowledge background, despite requiring different300

skills (Ni et al., 2023). Based on this insight, we301

have designed tasks that are related in knowledge302

but involve distinct skill sets. In the training phase,303

we synergistically infuse both linguistic and entity304

knowledge into LLMs by focusing on the optimiza-305

tion of three tasks: Query Decoupling, Evidence306

Subgraph Retrieval, and Inference with Knowledge307

Reconstruction308

The auto-regressive training objective focuses309

on training the LLM to predict subsequent tokens310

based on previous tokens. Specifically, for the311

prompt pi of different tasks, the objective function312

for generating the target answer z = [z1, ..., zT ] is:313

Li(θ) = −
T∑
t=1

log pθ(zt|z<t,pi) (8)314

4 Experiments315

4.1 Experimental Setup316

Datasets. We evaluate RefKG on a fact-317

verification benchmark: FactKG (Kim318

1ChatGPT is from https://openai.com/

et al., 2023b), and two KGQA benchmarks: 319

MetaQA (Zhang et al., 2018) and WebQSP (Yih 320

et al., 2016). FactKG and WebQSP are both 321

highly challenging benchmarks, while MetaQA is 322

relatively less difficult. Further dataset details are 323

provided in Appendix A.2. 324

Baselines. For FactKG, we compare RefKG with 325

two types of baselines: (1) Claim Only: These 326

baselines utilize the claim as the input without any 327

evidence retrieved from the knowledge graph, in- 328

cluding classifiers trained on the training set such 329

as BERT, BlueBERT, and popular LLMs. (2) With 330

Evidence: These baselines incorporate both the 331

claim and retrieved evidence as inputs. This group 332

includes fully supervised models like GEAR (Zhou 333

et al., 2019) and 12-shot model KG-GPT (Kim 334

et al., 2023a). For MetaQA and WebQSP, we 335

compare RefKG with four types of baselines: 1) 336

Embedding-based methods. 2) Retrieve-augmented 337

methods. 3) Prompting-based LLMs methods, and 338

4) Fine-tuned LLMs methods. The details of each 339

baseline are described in Appendix A.4. 340

Implementation Details. We perform our exper- 341

iments across a diverse range of LLMs, includ- 342

ing Llama-2 7B (Touvron et al., 2023), Bloom 343

7B (Workshop et al., 2022), Baichuan-2 7B (Yang 344

et al., 2023) and Internlm-2 7B (Team, 2023). For 345

evidence subgraph retrieval, we configure the num- 346

ber of relations k to be either 2 or 5. For knowledge 347

refinement, we establish a score threshold α of 0.6. 348

See Appendix A.5 for more details. 349

4.2 Main Results 350

Results on FactKG. The results are shown in 351

Table 1. We can make the following observations: 352

First, RefKG with Bloom-7B outperforms all 353

baseline methods in terms of the overall accu- 354

racy, attaining a new state-of-the-art status on this 355

benchmark. This success can be attributed to our 356

framework’s dual strategy of employing knowledge 357

graphs as external resources and harnessing the 358

innate reasoning powers of LLMs. By encourag- 359

ing LLMs to engage deeply with and reflect on 360

retrieved information, RefKG significantly enhance 361

the performance. 362

Second, fine-tuned 7B-parameter LLMs exhibit 363

much better performance in fact verification tasks 364

than LLMs without fine-tuning. Notably, RefKG 365

enhances the performance of Llama 2, Bloom, 366

Internlm 2 and Baichuan 2 by 71.62%, 73.67%, 367

41.64% and 56.01%, respectively. 368
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Method One-hop Conjunction Existence Multi-hop Negation Overall
Claim Only

BERT∗ 69.64 63.31 61.84 70.06 63.62 65.20
BlueBERT∗ 60.03 60.15 59.89 57.79 58.90 59.93
Flan-T5∗ 62.17 69.66 55.29 60.67 55.02 62.70
Baichuan-2 7B 29.88 26.21 18.55 18.43 17.73 24.29
Llama-2 7B 13.17 2.58 20.40 10.08 24.35 9.64
Internlm-2 7B 39.98 40.54 28.71 48.00 34.55 40.40
Bloom 7B 3.24 16.61 2.16 13.80 7.69 10.37

With Evidence
KG-GPT†[EMNLP23] - - - - - 72.68
GEAR∗[ACL19] 83.23 77.68 81.61 68.84 79.41 77.65

RefKG (Ours)
Baichuan-2 7B 81.14 83.75 80.83 73.52 77.63 80.30(+2.65)
Llama-2 7B 84.13 88.46 72.83 71.83 83.64 81.26(+3.61)
Internlm-2 7B 84.18 86.12 76.15 76.41 80.06 82.04(+4.39)
Bloom 7B 85.65 87.94 81.14 77.81 82.80 84.04(+6.39)

Table 1: Performance of different models on the FactKG benchmark. Performance marked with ∗ are sourced from
(Kim et al., 2023b) and those marked with † are sourced from (Kim et al., 2023a). We applied our method, RefKG,
to experiments on four open-source large language models (Baichuan-2, Llama-2, Internlm-2, Bloom), testing
it against five types of questions (One-hop, Conjunction, Existence, Multi-hop, Negation). The green numbers
indicate the improvement values compared to the GEAR method, Bold numbers represent the highest values, and
underlined numbers represent the second-highest values.

Third, in the context of knowledge graph re-369

trieval methods, RefKG outperforms KG-specific370

supervised models like GEAR and training-free ap-371

proaches such as KG-GPT. This underscores the372

effectiveness of our approach, which involves fine-373

tuning LLMs with a rich set of instructions. More-374

over, RefKG demonstrates commendable results375

across all five tasks, with the exception of the Exis-376

tence category. This exception might stem from the377

limited entity information available, which poses378

challenges for effective query decoupling.379

Results on WebQSP. As shown in Table 2,380

RefKG demonstrates competitive performance,381

achieving a Hits@1 score of 85.2% within fine-382

tuned LLMs methods. Moreover, unlike prompting-383

based LLMs methods that typically rely on care-384

fully crafted prompts to guide black-box large mod-385

els in generating answers, RefKG surpasses them386

by fine-tuning a 7B-parameter LLM.387

Results on MetaQA. As shown in Table 3,388

RefKG reaches state-of-the-art performance on the389

Hop-1 test set, recording a 98.1% accuracy. This390

exceptional performance is attributed to the richer391

relational context available in Hop-1 compared to392

Hop-2 and Hop-3, suggesting that the strategic use393

of LLMs for relation selection minimizes errors394

at this juncture, thereby enhancing overall results.395

Additionally, RefKG achieves performances close396

Method Hits@1
Embedding

EmbedKGQA(Saxena et al., 2020)[ACL20] 66.6
NSM(He et al., 2021)[WSDM21] 68.7
TransferNet(Shi et al., 2021)[EMNLP21] 71.4

Retrieval
GraftNet(Sun et al., 2018)[EMNLP18] 66.4
PullNet(Sun et al., 2019)[EMNLP19] 68.1
SR+NSM(Zhang et al., 2022)[ACL22] 68.9

LLM (Prompting)
KAPING(Baek et al., 2023b)[NLRSE23] 73.9
KB-BINDER(Li et al., 2023b)[ACL23] 74.4
ChatGPT+ToG(Sun et al., 2024)[ICLR24] 76.2
FRAG(Gao et al., 2025) 76.7
GPT4+ToG(Sun et al., 2024)[ICLR24] 82.6

LLM (Fine-tuned)
InstructGraph(Yu et al., 2022)[ACL24] 73.3
UniKGQA(Jiang et al., 2022)[ICLR23] 77.2
Retrieve-Rewrite(Wu et al., 2023)[IJCKG23] 79.4
DECAF(Yu et al., 2022)[ICLR23] 82.1
RefKG (Ours) 85.2

Table 2: The performance of the models on WebQSP. The
best results are in bold.

to SOTA on the Hop-2 and Hop-3 test sets, under- 397

scoring its versatility and robust adaptability across 398

a variety of tasks. This demonstrates RefKG’s con- 399

sistent and reliable performance across both single- 400

hop and multi-hop question answering tasks. 401

4.3 Ablation Study 402

Is text form better than triplet form? As il- 403

lustrated in Table 4, our experiments suggest that 404

6



Methods 1-hop 2-hop 3-hop Avg.
Embedding

KVMemNN(Xu et al., 2019)[NAACL19] 96.2 82.7 48.9 75.9
EmbedKGQA(Saxena et al., 2020)[ACL20] 97.5 98.8 94.8 97.0

NSM(He et al., 2021)[WSDM21] 97.1 99.9 98.9 98.6
Retrieval

GraftNet(Sun et al., 2018)[EMNLP18] 97.0 94.8 77.7 89.9
PullNet(Sun et al., 2019)[EMNLP19] 97.0 99.9 91.4 96.1

LLM (Prompting)
ChatGPT 60.0 23.0 38.7 40.6

KG-GPT(Kim et al., 2023a)[EMNLP23] 96.3 94.4 94.0 94.9
StructGPT(Jiang et al., 2023)[EMNLP23] 97.1 97.3 87.0 93.8

KB-BINDER[ACL23] 93.5 99.6 96.4 96.5
LLM (Fine-tuned)

UniKGQA(Jiang et al., 2022)[ICLR22] 97.5 99.0 99.1 98.5
Retrieve-Rewrite(Wu et al., 2023)[IJCKG23] - 97.7 - 97.7

RefKG (Ours) 98.1 99.4 99.0 98.8

Table 3: The performance of the models on MetaQA
(Hits@1). The best results are in bold.

Methods Accuracy Rate (%)
RefKG (full) 81.26 0.00
-triplet only 61.15 -24.74
-w/o Knowledge Refinement 78.55 -3.33
-w/o Knowledge Reconstruction 68.99 -15.10
-w/o JI tunning 50.62 -37.71
RefKG (Lora-ft) 72.45 -10.84

Table 4: Ablation study on the FactKG using llama2-7b.
“Rate” quantifies the reduction in accuracy. JI tunning
denotes the Joint Inference tunning.

replacing natural language text with triplets results405

in a performance decline of about 20%. We hypoth-406

esize that triplets may lack crucial semantic details,407

hindering the model’s ability to process the infor-408

mation effectively. In contrast, providing evidence409

in natural language aligns better with the LLM’s410

pre-training corpus, enhancing the model’s ability411

to utilize the information more efficiently.412

How does Knowledge Refinement enhance in-413

ference performance? As illustrated in Table 4,414

removing Knowledge Refinement from the RefKG415

framework results in a performance drop of ap-416

proximately 2.71%. This highlights the impor-417

tance of reflection in the model’s analytical pro-418

cess. Through reflection, the model can indepen-419

dently identify and discard incorrect relations and420

evidence, leading to more accurate inferences.421

What role does multi-task tuning play in RefKG?422

We first conducted comparison experiments using423

an untrained base model for the entire process, with424

results presented in Table 5. The findings reveal425

a 46.11% average performance drop, indicating426

Model Base Model RefKG (Ours) Difference
Llama-2 7B 34.12 81.26 -47.14
Bloom 7B 37.65 84.04 -46.39

Internlm-2 7B 39.41 82.04 -42.63
Baichuan-2 7B 31.73 80.30 -48.57

Average 35.73 81.84 -46.11

Table 5: Comparison of Multi-task Tuning and untrained
base model.

Bloom InternLm-2 Llama-2 Baichuan-2 Avg.
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Figure 4: Comparison of Multi-task Tuning and Single-
task Tuning.

that untrained models struggle with our multi-task 427

framework and lack the capacity to handle complex 428

knowledge-based tasks. 429

Then we conducted an experiment to evalu- 430

ate the performance gap between multi-task fine- 431

tuning and single-task fine-tuning. Specifically, 432

we train the LLM on multiple independent single 433

tasks and then combine the trained LLMs into a 434

unified system for inference. We refer to this ap- 435

proach as single-task tuning. As shown in Figure 4, 436

single-task tuning weakens the model’s overall ca- 437

pabilities compared to multi-task tuning, leading 438

to a decline in task performance, with an average 439

accuracy drop of 3.21%. 440

We attribute the advantages of multi-task tuning 441

to three key factors: (1)Multi-task tuning enables 442

the model to share hidden layers across different 443

tasks, thereby facilitating the sharing of learned fea- 444

tures and representations. (2)Training on multiple 445

tasks simultaneously mitigates overfitting, enhanc- 446

ing the model’s ability to generalize. (3)Multi-task 447

tuning optimizes data utilization and lowers com- 448

putational costs. 449
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Figure 5: A case study on FactKG. The left figure illustrates the process of RefKG handling a claim, while the right
figure depicts the modification made to the knowledge graph, resulting in the change of RefKG’s response.

Figure 6: Impact of varying the number of Top-K re-
trieval with Llama-2 and Bloom on FactKG.

4.4 Further Analysis450

Impact of numbers of Top-K Retrieval. As451

shown in Figure 6, we investigated the impact of452

Top-K values ranging from 1 to 5. The Bloom453

model consistently improves as the Top-K value454

increases, while the Llama model shows a decline455

in performance with higher Top-K settings. This456

suggests that an increase in the number of paths457

selected, and consequently, more evidence being458

generated, may overwhelm the Llama model, com-459

plicating its ability to distill crucial information460

from an extensive pool of evidence. Interestingly,461

when the Top-K value is set to 1, where only the462

most probable relation is chosen, RefKG still per-463

forms well. This indicates that the LLM’s ability464

to select the most relevant relation from a limited465

set is often sufficient for accurate results.466

Qualitative Analysis We conduct a case study467

as presented in Figure 5. Based on the given state-468

ment, our method RefKG performs sentence decom-469

position to identify triplets and transform them into470

evidence. Since no relevant fact is found in the 471

knowledge graph for the statement “William An- 472

ders was born in Kashmar”, our model outputs 473

“False”. This underscores RefKG’s capability to pre- 474

cisely detect the absence of supporting evidence for 475

incorrect statements and to consequently deliver an 476

accurate verdict. 477

Furthermore, we explore whether RefKG can 478

adapt to newly updated knowledge. By manually 479

adding a new path into the original KG, our model 480

adeptly identifies and processes the triplets into 481

evidence, resulting in a diametrically opposed con- 482

clusion. This case demonstrates the model’s ability 483

to seamlessly adjust to updated factual knowledge, 484

negating the necessity for further training or adjust- 485

ments. This flexibility highlights RefKG’s potential 486

for maintaining relevance and accuracy in the face 487

of evolving knowledge bases. 488

5 Conclusion 489

In this paper, we proposed the RefKG framework, 490

which engages with knowledge graphs in a reflec- 491

tive manner to identify the most likely relational 492

paths and evidence, using this curated evidence to 493

derive answers. To Infuse the LLM with the abili- 494

ties to decouple, navigate, refine, reconstruct, and 495

reason over knowledge, we developed a knowledge- 496

driven multi-task tuning approach and built a cor- 497

responding training corpus. The experimental re- 498

sults prove its effectiveness on fact verification and 499

knowledge graph question answering. Our method 500

can be deployed on any open-source LLM, and the 501

experimental results indicate that it achieves excel- 502

lent performance in fact verification and knowledge 503

graph question answering. 504
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Limitations505

In this section, we faithfully discuss the limitations506

of our approach and potential avenues for future507

research.508

Cumulative error effect. Although our framework509

can handle some complex multi-hop or negation510

questions, it involves multiple subtasks. The work-511

flow of the pipeline generates a cumulative error512

effect. For example, if the model misidentifies en-513

tities in the first step of sentence decomposition,514

subsequent answers obtained will inevitably be in-515

correct. Therefore, future work could focus on516

reducing error rates by introducing efficient and ac-517

curate retrieval methods or instruction fine-tuning518

methods.519

Larger model sizes. Limited by computational re-520

sources, we only applied RefKG to the 7B LLM and521

conducted full-parameter fine-tuning of the model522

under this configuration without testing larger mod-523

els. We hope to conduct experiments on models524

with larger parameter sizes such as OPT (175B) in525

the future.526

Ethical Considerations527

Our approach RefKG has been validated on publicly528

available datasets FactKG and MetaQA. However,529

it is unclear how RefKG performs on other specific530

datasets or domains. Therefore, using RefKG in531

some highly sensitive and high-risk datasets or do-532

mains may result in the generation of offensive533

information or other unexpected consequences. We534

recommend practitioners to conduct thorough test-535

ing and inspection before applying our method to536

real-world scenarios.537
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A Appendix795

A.1 Large Language Models796

We conducted extensive experiments on multiple797

7B open-source LLMs, including popular models798

such as Llama-2, Bloom, Vicuna, Internlm-2 and799

Baichuan-2.800

Llama-2 is an LLM optimized for dialogue801

scenarios based on Llama 2, particularly suitable802

for handling KGQA tasks. Vicuna is an LLM803

fine-tuned based on Llama 1.804

Bloom is an LLM trained on the Megatron-LM805

GPT2, utilizing unique decoder structures, nor-806

malization of the word embedding layer, linear807

bias attention position encoding with the GeLU808

activation function, and other advanced techniques.809

Baichuan-2 is developed by Baichuan Intelligence,810

is a highly influential AI large-scale model. It811

integrates intent understanding, information812

retrieval, and reinforcement learning technologies,813

achieving high-performance results through814

supervised fine-tuning and alignment with human815

intent.816

Internlm-2 is capable of efficiently supporting817

ultra-long contexts of up to 200,000 characters,818

achieving a leading level among open-source819

models in tasks such as Longbench and E-eval. Its820

comprehensive capabilities have shown all-around821

advancements over the previous generation of In-822

ternlm, and it possesses strong code interpretation823

and data analysis abilities.824

825

A.2 Datasets826

We conduct extensive experiments on three827

datasets: FactKG (Kim et al., 2023b),828

MetaQA (Zhang et al., 2018) and WebQSP (Yih829

et al., 2016).830

FactKG is a fact-verification benchmark based831

on KG, containing 108K natural language state-832

ments verifiable via DBpedia (Lehmann et al.,833

2015), categorized into five reasoning types: One-834

hop, Conjunction, Existence, Multi-hop, and Nega-835

tion.Furthermore, FactKG contains various linguis-836

tic patterns, including colloquial style statements837

as well as written style statements, to increase prac-838

ticality.839

MetaQA is a comprehensive benchmark for as-840

sessing question-answering systems, particularly841

those utilizing knowledge graphs. It comprises842

over 400K questions, including one-hop, two-hop,843

and three-hop reasoning. This dataset is crucial 844

for evaluating knowledge graph-based question an- 845

swering, especially in handling complex multi-hop 846

reasoning and noisy inputs. 847

WebQuestionsSP is a KGQA benchmark con- 848

taining full semantic parses in SPARQL queries 849

for 4,737 questions (3,098 train, 1,639 test). It is 850

built on Freebase and includes multi-hop questions, 851

linked through topic entities, reasoning chains, and 852

SPARQL queries. It provides semantic parses in 853

SPARQL with standard Freebase entity identifiers, 854

which can be directly executed on Freebase to re- 855

turn answers to questions. 856

A.3 Corpus Generation 857

Recognizing ChatGPT’s exceptional abilities in un- 858

derstanding and generating text, as highlighted in 859

recent research (Li et al., 2023a; Tahmid Rahman 860

Laskar et al., 2023), we use the GPT-3.5-turbo API 861

($0.002 / 1K tokens) to generate training corpora, 862

with the following steps: 863

Query Decoupling. Given a question q and a 864

set of entities e, we insert them into a predefined 865

generation template pdec to obtain a text prompt. 866

This text prompt is then input into ChatGPT 867

to produce an output sequence z = [z1, ..., zT ], 868

which includes sub-queries and their respective 869

entity subsets. 870

871

Knowledge Reconstruction. Given an evidence 872

subgraph Gevi stored in triplet form, we first 873

linearize it into a text format by concatenating 874

the head entity, relation word, and tail entity to 875

form textual triplets. We insert this sequence of 876

triplets into a predefined template pevi: “Your task 877

is to transform a knowledge graph in triplets (or 878

tuples) format into a single sentence, preserving 879

the original words or expressions from the triplets 880

as much as possible. The knowledge graph is: 881

{graph}. The sentence is:”. This prompt is then 882

fed into ChatGPT, resulting in an output sequence 883

z = [z1, ..., zT ] that contains the textualized 884

evidence. 885

886

Joint Inference. Given a query q and an evidence 887

sequence evi, we insert both into a predefined tem- 888

plate pinf , input it into ChatGPT, and the model 889

will produce inference results and explanations 890

based on the input. 891
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A.4 Baselines892

We compare RefKG with four types of baselines: 1)893

Embedding-based methods, 2) Retrieve-augmented894

methods, 3) Prompting-based LLMs methods, and895

4) Fine-tuned LLMs methods. The details of each896

baseline are described below.897

Embedding-based methods.898

• KVMemNN (Xu et al., 2019) utilizes a Key-899

Value memory network to store triples and900

conducts multi-hop reasoning through itera-901

tive operations on the memory.902

• EmbedKGQA (Saxena et al., 2020) ap-903

proaches reasoning on knowledge graphs as a904

sequential link prediction problem by leverag-905

ing the embeddings of both entities and ques-906

tions.907

• NSM (He et al., 2021) employs a sequential908

model to replicate the multi-hop reasoning909

process.910

• TransferNet (Shi et al., 2021) uses a graph neu-911

ral network to capture the relevance between912

entities and questions for reasoning. process.913

Retrieve-augmented methods.914

• GraftNet (Sun et al., 2018) retrieves relevant915

subgraphs from knowledge graphs using en-916

tity linking.917

• PullNet (Sun et al., 2019) trains a retrieval918

model that combines an LSTM and a graph919

neural network to retrieve a question-specific920

subgraph.921

• SR+NSM (Zhang et al., 2022) introduces a922

relation-path retrieval mechanism to retrieve923

subgraphs for multi-hop reasoning.924

Prompting-based LLMs methods.925

• KB-Binder (Li et al., 2023b) is the first to en-926

able few-shot in-context learning over KBQA927

tasks.928

• KAPING (Baek et al., 2023b) propose to aug-929

ment the knowledge directly in the input of930

LLMs.931

• KG-GPT (Kim et al., 2023a) is a multi-932

purpose framework leveraging LLMs for tasks933

employing KGs. It comprises three steps: Sen- 934

tence Segmentation, Graph Retrieval, and In- 935

ference, each aimed at partitioning sentences, 936

retrieving relevant graph components, and de- 937

riving logical conclusions, respectively. 938

• StructGPT (Jiang et al., 2023) proposes an in- 939

voking linearization-generation procedure to 940

support LLMs in reasoning on the structured 941

data. 942

• ToG (Sun et al., 2024) enables LLM agent 943

to interactively explore related entities and 944

relations on KGs and perform reasoning based 945

on the retrieved knowledge. 946

• FRAG (Gao et al., 2025) is a flexible modu- 947

lar KG-RAG framework that enhances LLM 948

reasoning by estimating query complexity and 949

applying tailored retrieval pipelines. 950

Fine-tuned LLMs methods. 951

• KD-CoT (Wang et al., 2023) retrieves perti- 952

nent knowledge from knowledge graphs to 953

formulate faithful reasoning plans for LLMs. 954

• UniKGQA (Jiang et al., 2022) integrates 955

graph retrieval and reasoning into a unified 956

model with LLMs, achieving state-of-the-art 957

performance on KGQA tasks. 958

• DECAF (Yu et al., 2022) synergizes semantic 959

parsing and LLMs reasoning to jointly gener- 960

ate answers, achieving notable performance 961

on KGQA tasks. 962

• Retrieve-Rewrite-Answer (Wu et al., 2023) 963

propose an answer-sensitive KG-to-Text ap- 964

proach that can transform KG knowledge into 965

well-textualized statements most informative 966

for KGQA. A. Also, they propose a KG-to- 967

Text enhanced LLMs framework for solving 968

the KGQA task. 969

• InstructGraph (Wang et al., 2024) is a frame- 970

work that empowers LLMs with the abilities 971

of graph reasoning and generation by instruc- 972

tion tuning and preference alignment. 973

A.5 Implementation Details 974

The details of training hyperparameters are pre- 975

sented in Table 6. 976
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Hyper-parameters FactKG MetaQA WebQSP
training strategy full full lora

epoch 3 3 50
sequence length 2048 256 2048

learning rate 1e-5 2e-5 5e-5
batch size 1 1 16

gradient accumulation 4 4 1
optimizer AdamW AdamW AdamW

weight decay 0.01 0.01 0.01
deepSpeed stage 3 3 3

Table 6: Hyper-parameters of training.

FactKG. We extracted a subset of 40,000 data977

from the training set to generate our training cor-978

pus. Following quality control measures, we pro-979

duced a total of 86,786 data instances, divided into980

three categories: 31,999 for question decomposi-981

tion, 29,702 for evidence generation, and 24,085982

for evidence reasoning. For the task of evidence983

subgraph retrieval, we configure the number of re-984

lations k to be either 2 or 5, and the score threshold985

α to 0.6. For a full-parameter fine-tuning of a 7b986

model using two A800-80G graphics cards, the987

memory consumption is approximately 140G, and988

it takes about 24 hours.989

MetaQA. We extracted a subset of 30,000990

data from the training set to create our training991

corpus. In the hyperparameter configuration, we992

set the number of selected relations k to 3, and993

the score threshold α to 0.7. Since the number of994

entities related to each question in the WebQSP995

dataset is smaller compared to FactKG, we directly996

treat the topic entity as the sole member of the997

entity set, in order to train the LLM’s ability to998

predict the number of hops. For a full-parameter999

fine-tuning of a 7b model using two A800-1000

80G graphics cards, the memory consumption1001

is approximately 140G, and it takes about 16 hours.1002

1003

WebQuestionsSP. We first extract SPARQL1004

queries and their corresponding topic entities from1005

the training set. Next, we parse these SPARQL1006

queries and decompose them into multiple hops.1007

By designing precise SPARQL query statements,1008

we perform searches in Freebase, thereby obtaining1009

inference chains represented in the form of triplets.1010

By populating predefined task templates with the1011

obtained ground truth data, we construct training1012

datasets for each stage. And we set the number of1013

selected relations k to 3, and the score threshold1014

α to 0.6. Since the number of entities related to1015

Stage Total Existence Multi-hop Other
Query Decoupling 62 10 18 34

Evidence Subgraph Retrieval 13 7 1 5
Joint Inference 25 6 3 16

Table 7: Statistics on 100 incorrect samples.

each question in the WebQSP dataset is smaller 1016

compared to FactKG, we directly treat the topic 1017

entity as the sole member of the entity set, in order 1018

to train the LLM’s ability to predict the number of 1019

hops. Due to the small size of our training dataset, 1020

which contains only 3,098 entries, we use Lora for 1021

fine-tuning to prevent overfitting during the train- 1022

ing process. For a lora fine-tuning of a 7b model 1023

using four A800-80G graphics cards, the memory 1024

consumption is approximately 240G, and it takes 1025

about 14 hours. 1026

A.6 Training Details for Expert Model 1027

We trained the Expert LLM using 30,000 annotated 1028

data entries, as detailed below: 1029

Evidence score annotation. For each sub-query 1030

qi and triplet format evidence t, we first employ the 1031

semantic similarity model DistilBERT to assign 1032

a similarity score, denoted as s, to represent the 1033

supportiveness of the evidence triplet toward the 1034

query. 1035

For each sub-query qi, we sort all evidence 1036

triplets t based on their scores, from highest to 1037

lowest. This set includes triplets that are relevant 1038

to the query as well as some that are noise. We 1039

then match these triplets with the ground truth. If 1040

a triplet from the ground truth is ranked among 1041

the top k, we retain it as part of the training data; 1042

otherwise, we filter it out. 1043

It’s important to note that we don’t directly use 1044

all the collected annotated data for training. Instead, 1045

we first conduct a complete inference process with 1046

this data. If the final inference result is correct, we 1047

retain the annotated data as the gold score; if it’s 1048

incorrect, we discard it. This approach ensures the 1049

high quality of the annotated data. Additionally, to 1050

minimize the influence of noise during the training 1051

process, we have eliminated anomalously high and 1052

low scores. 1053

A.7 Error Analysis. 1054

For the error analysis of the FactKG, see Table 7. 1055

To explore the execution efficiency of each step, 1056

we perform an error analysis on FactKG. It was 1057

noted that errors predominantly arise in the Query 1058
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Decoupling stage, primarily due to the model’s1059

struggle in correctly identifying entities within sen-1060

tences, a difficulty that is particularly pronounced1061

in Multi-hop claims. This issue can lead to the1062

alteration of entities mentioned in a sentence. A1063

potential solution to mitigate such errors involves1064

enhancing the model’s sensitivity towards entity1065

recognition.1066

A.8 Noise Analysis1067

We randomly selected 100 samples from the Fac-1068

tKG dataset and conducted a detailed analysis of1069

the noise introduction and reduction in the decou-1070

pling, retrieval, scoring, and reconstruction steps,1071

as shown in Table 8. We defined three statistical1072

metrics:1073

• Noise introduction: Refers to the intro-1074

duction of incorrect knowledge, conflicting1075

knowledge, or loss of correct information at a1076

particular step.1077

• Noise reduction: Refers to successfully re-1078

moving incorrect or irrelevant knowledge at a1079

particular step.1080

• Correctness: Indicates whether the cur-1081

rent knowledge information contains correct1082

knowledge.1083

The details of the noise flow in the four stages1084

are as follows:1085

In the Query Decoupling: A small number of1086

cases may experience partial entity information1087

loss, leading to the introduction of noise.1088

In the Subgraph Retrieval: Since we aim to1089

retrieve as much relevant knowledge as possible,1090

it is inevitable to introduce some irrelevant knowl-1091

edge and even knowledge that conflicts with correct1092

information. Among them, some conflicting infor-1093

mation may interfere with the results, while some1094

irrelevant information has a minor impact.1095

In the Knowledge Refinement: Some incorrect1096

and irrelevant triples are scored and removed, but1097

there is also a small possibility that a few correct1098

answers may be mistakenly filtered out.1099

In the Knowledge Reconstruction: While con-1100

verting triples into textual information, the model1101

performs implicit reasoning. During this process,1102

the model may actively discard some incorrect or1103

conflicting information and even correct erroneous1104

information, but this may also result in the loss of1105

a few correct pieces of information.1106

Type Decoupling Retrieval Refinement Reconstruction
Noise Introduction 9 24 2 3
Noise Reduction - - 16 6

Correctness 92 87 85 84

Table 8: Noise analysis of the FactKG.

Dataset Number of triplets Number of calls Inference time

FactKG 10.11 4.8 2.4
WebQSP 19.76 4.4 2.1
MetaQA - 5.1 1.9

Average - 4.8 2.1

Table 9: Evaluation of computational efficiency.

The statistical results show that noise introduc- 1107

tion is often difficult to completely avoid when han- 1108

dling complex problems. Through the collaborative 1109

operation of various tasks, particularly during the 1110

Knowledge Refinement and Knowledge Recon- 1111

struction stages, we effectively control noise, sig- 1112

nificantly mitigating its cumulative effects across 1113

tasks and reducing its impact on overall perfor- 1114

mance. This further validates the robustness and 1115

effectiveness of our approach in complex knowl- 1116

edge reasoning scenarios. 1117

A.9 Evaluation of Computational Efficiency 1118

We randomly selected 100 samples from each of 1119

the three datasets for the efficiency analysis, as 1120

shown in Table 9. We computed the average num- 1121

ber of triples involved in each question, the average 1122

number of LLM calls, and the average inference 1123

time (in seconds). 1124

A.10 Prompts 1125

The 9-shot prompt templates for Query Decoupling, 1126

Evidence Subgraph Retrieval, and Joint Inference 1127

are respectively presented in Table 10, Table 11, 1128

and Table 12. 1129

A.11 Qualitative Analysis 1130

More qualitative results on FactKG and MetaQA 1131

are respectively presented in Table 13 and Table 14. 1132
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Prompt for query decoupling

Please decompose the given sentence into multiple single-hop sub-sentences, which can be rep-
resented by a triplet. Each entity subset should contain no more than two elements, entities can
be duplicated across different subsets, and the union of multiple subsets should equal the original
entity set. Generate the results in the format of (number). (Sentence), (entity set), using "##" to
separate different entities. Refer to the following examples to complete the task:

Examples)
Sentence A: The City of Soldotna is the owner of the AIDAluna.
Entity set: [’AIDAluna’ ## awareaware’"The City of Soldotna"’]
Answer: 1. The City of Soldotna is the owner of the AIDAluna., Entity set: [’AIDAluna’ ## ’"The
City of Soldotna"’]

Sentence B: Born in Gevelsberg, Alan Shepard was awarded the "Distinguished Service Medal".
Entity set: [’Alan_Shepard’ ## ’Distinguished_Service_Medal_(United_States_Navy)’ ## ’Gevels-
berg’]
Answer: 1. Alan Shepard was awarded the "Distinguished Service Medal"., Entity set:
[’Alan_Shepard’ ## ’Distinguished_Service_Medal_(United_States_Navy)’] 2. Alan Shepard
was born in Gevelsberg., Entity set: [’Alan_Shepard’ ## ’Gevelsberg’]

......
Your Task)
Query: ««QUERY»»
Entity set: ««ENTITY_SET»»
Answer:

Table 10: Prompt for query decomposition. ««QUERY»» and ««ENTITY_SET»» will be replaced with the
corresponding query and entity set in the FactKG dataset.

Prompt for evidence subgraph retrieval

I will give you a set of words.

Find the top ««K»» elements from relational words set which are most semantically related to the
given sentence. You may select up to ««K»» words. If there is nothing that looks semantically
related, pick out any ««K»» elements and give them to me.

Examples)
Sentence A: The City of Soldotna is the owner of the AIDAluna.
Words set: [’status’, ’owner’, ’builder’, ’shipOwner’, ’shipBuilder’, ’operator’, ’shipOperator’,
’shipClass’]
Top 2 Answer: [’owner’, ’shipOwner’]
Sentence B: Born in Gevelsberg, Alan Shepard was awarded the "Distinguished Service Medal".

Relational words set: [’birthPlace’, ’mission’, ’awards’, ’rank’, ’region’, ’state’, ’birthYear’,
’country’, ’type’]
Top 2 Answer: [’birthPlace’, ’awards’]
... Now let’s find the top ««K»» elements.
Query: ««QUERY»»
Relational words set: ««RELATION_SET»»
Top ««K»» Answer:

Table 11: Prompt for subgraph retrieval. «<QUERY»» and ««ENTITY_SET»» will be replaced with the correspond-
ing query and Relational words set in the FactKG dataset. ««K»» will be replaced with the chosen hyperparameter
k.
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Prompt for joint inference

You should verify the claim based on the textual evidence. Each evidence is derived from one or
several sentences generated from knowledge graph triplets.
Verify the claim based on the evidence. (True means that everything contained in the claim is
supported by the evidence.) Choose one of {True, False}, and give me one sentence explanation.

Examples)
Claim A: The City of Soldotna is the owner of the AIDAluna.
Evidence: Lack of evidence.
Answer: {False}, there is no evidence that The City of Soldotna is the owner of the AIDAluna.

Claim B: Brandon Carter was born in England and graduated from the University of Cambridge
where the current Chancellor is Leszek Borysiewicz.
Evidence: Brandon Carter attended the University of Cambridge.Brandon Carter was born in
England.Leszek Borysiewicz served as the Vice-Chancellor of the University of Cambridge.
Answer: {True}, everything of the claim is supported by the evidence.

Now let’s verify the Claim based on the Evidence.
Query: ««QUERY»»
Evidence: ««EVIDENCE»»
Answer:

Table 12: Prompt for joint inference.««QUERY»» and ««EVIDENCE»» will be replaced with the corresponding
query on the FactKG dataset and evidence set generated in 3.3.

Type Claim Evidence Subgraph Graph Textual Evidence generation Prediction

One-hop Do you know Agra Airport IATA
Location Identifier is AGR. [Agra_Airport, iataLocationIdentifier, "AGR"], Agra Airport has an IATA

location identifier of "AGR". True

Conjunction Doris Bures is the leader of Austria
where Alfons Gorbach died in Styria.

[Austria, leader, Doris_Bures],
[Alfons_Gorbach, placeOfDeath, Styria],
[Doris_Bures, birthPlace, Austria]

Austria is the leader and birthplace of Doris Bures.
Alfons Gorbach was born and died in Styria. True

Existence At least Dawn Butler had a successor!
[Dawn_Butler, successor, Paul_Boateng],
[Dawn_Butler, birthPlace, England],
[Dawn_Butler, predecessor, Sarah_Teather]

Dawn Butler has a successor named Paul Boateng.
Dawn Butler was born in England.
Dawn Butler has a predecessor named Sarah Teather.

True

Negation I understand that Acura is not
a division of Honda.

[Acura, owningCompany, Honda],
[Honda, division, Acura],
[Acura, owner, Honda]

Acura is owned by Honda
and is also a division of Honda. False

Multi-hop It is located in Alan B Miller Hall
in the United States.

[Alan_B_Miller_Hall, location, Williamsburg,_Virginia],
[Williamsburg,_Virginia, country, United_States]

Alan B Miller Hall locates in Williamsburg,Virginia.
Williamsburg,Virginia is in the United States. True

Table 13: Qualitative results from FACTKG.

Task Question Evidence Subgraph Graph Textual Evidence generation Prediction

Brian Backer appears in which movies? (Moving Violations, starred_actors, Brian Backer) Moving Violations, starring Brian Backer,
is a film. Moving Violations

1-hop who is the writer of the film Habit? (Habit, written_by, Larry Fessenden) Habit, written by Larry Fessenden. Larry Fessenden

what kind of film is The Old Dark House? (The Old Dark House, has_genre, Comedy)
(The Old Dark House, has_genre, Horror)

The Old Dark House is a Comedy.
The Old Dark House is a Horror genre. Comedy

what genres do the movies written
by Anders Nilsson fall under?

(The Third Wave, written_by, Anders Nilsson),
(The Third Wave, has_genre, Action)

The Third Wave, written by
Anders Nilsson, is an action genre. Action

2-hop what are the primary languages in
the movies directed by David Mandel

(EuroTrip, directed_by, David Mandel)
(EuroTrip, in_language, German)

EuroTrip, directed by David Mandel,
is a film in the German language. German

who is listed as director of
Joseph Stein written films

(Fiddler on the Roof, written_by, Joseph Stein),
(Fiddler on the Roof, written_by, Joseph Stein)

Fiddler on the Roof, written by
Joseph Stein and directed by
Norman Jewison, is a film.

Norman Jewison

what genres do the films that
share writers with Karate-Robo Zaborgar
fall under?

(Karate-Robo Zaborgar, written_by, Noboru Iguchi),
(RoboGeisha, written_by, Noboru Iguchi),
(RoboGeisha, has_genre, Action)

Karate-Robo Zaborgar and RoboGeisha
are written by Noboru Iguchi and they
both belong to the genre of Action.

Action

3-hop
the movies that share writers
with the movie Naqoyqatsi
were released in which years?

(Naqoyqatsi, written_by, Godfrey Reggio),
(Powaqqatsi, written_by, Godfrey Reggio),
(Powaqqatsi, release_year, 1988)

Naqoyqatsi and Powaqqatsi were
written by Godfrey Reggio and
were released in 1988.

1988

who is listed as screenwriter of
the movies directed by the
The Battle of Shaker Heights director?

(The Battle of Shaker Heights, directed_by, Kyle Rankin),
(Infestation, directed_by, Kyle Rankin),
(Infestation, written_by, Kyle Rankin)

The Battle of Shaker Heights
and Infestation, directed by Kyle Rankin,
were written by Kyle Rankin.

Kyle Rankin

Table 14: Qualitative results from MetaQA.
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