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Abstract

Scene text editing is a challenging task that involves modifying or inserting specified texts in
an image while maintaining its natural and realistic appearance. Most previous approaches
to this task rely on style-transfer models that crop out text regions and feed them into image
transfer models, such as GANs. However, these methods are limited in their ability to change
text style and are unable to insert texts into images. Recent advances in diffusion models
have shown promise in overcoming these limitations with text-conditional image editing.
However, our empirical analysis reveals that state-of-the-art diffusion models struggle with
rendering correct text and controlling text style. To address these problems, we propose
DiffSte to improve pre-trained diffusion models with a dual encoder design, which includes
a character encoder for better text legibility and an instruction encoder for better style con-
trol. An instruction tuning framework is introduced to train our model to learn the mapping
from the text instruction to the corresponding image with either the specified style or the
style of the surrounding texts in the background. Such a training method further brings
our method the zero-shot generalization ability to the following three scenarios: generating
text with unseen font variation, e.g., italic and bold, mixing different fonts to construct a
new font, and using more relaxed forms of natural language as the instructions to guide the
generation task. We evaluate our approach on five datasets and demonstrate its superior
performance in terms of text correctness, image naturalness, and style controllability. Our
code is publicly available at https://github.com/UCSB-NLP-Chang/DiffSTE.

1 Introduction

Scene text editing has gained significant attention in recent years due to its practical applications in various
fields, including text image synthesis Karacan et al. (2016); Qin et al. (2021); Zhan et al. (2018), styled
text transfer Atarsaikhan et al. (2017); Azadi et al. (2018); Zhang et al. (2018), and augmented reality
translation Cao et al. (2023); Du et al. (2011); Fragoso et al. (2011). The task involves modifying or inserting
specified text in an image while maintaining its natural and realistic appearance Huang et al. (2022); Shi
et al. (2022); Wu et al. (2019). Most previous approaches have formulated the problem as a style transfer
task using generative models such as GANs Lee et al. (2021); Park et al. (2021); Qu et al. (2022); Roy et al.
(2020); Wu et al. (2019); Yang et al. (2020).

Specifically, these methods rely on a reference image with the target style, e.g., cropped out text region
that needs to be modified. The method then transfers a rendered text in the desired spelling to match the
style and the background of the reference. However, these methods are limited in their ability to generate
text in arbitrary styles (e.g., font and color) or at arbitrary locations. Additionally, the process of cropping,
transferring style, and then replacing back often leads to less natural-looking results. Figure 1.(c) illustrates
an image generated by Mostel Qu et al. (2022), a state-of-the-art GAN-based scene text editing model.
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The edited part of the image exhibits discordance with the surrounding areas with distinct boundaries and
messy distortions.

Input Rendered Mostel SD DiffSte

Figure 1: Text editing results by GAN-based Mos-
tel, diffusion model SD, and our method DiffSte. A
reference Rendered image with desired content and
style is fed to Mostel as style guidance. SD and our
method are prompted by instruction Write a grass-
colored word “DiffSTE” in BadScript font.

On the other hand, recent advances in diffusion
models have shown promise for overcoming these
limitations and creating photo-realistic images Bal-
aji et al. (2022); Ho et al. (2020); Saharia et al.
(2022); Song et al. (2020). Furthermore, by incor-
porating a text encoder, diffusion models can be
adapted to generate natural images following text
instructions, making them well-suited for the task of
image editing Ramesh et al. (2022); Rombach et al.
(2022). Despite the remarkable success of diffusion
models in general image editing, our empirical study
reveals that they still struggle with generating accu-
rate texts with specified styles for scene text editing. For instance, Figure 1.(d) shows an example of the
text generated by stable-diffusion-inpainting (SD) Rombach et al. (2022), a state-of-the-art text-conditional
inpainting model. We feed the model with the masked image and a text instruction, requiring the model to
complete the masked region. Although the resulting image shows better naturalness, neither the spelling of
the generated text is correct nor the specified style is well followed by the model.

Motivated by this, in this paper, we aim to improve the pre-trained diffusion models, especially SD, in their
scene text editing ability. In particular, we identify two main issues as the cause of the diffusion model’s
failure: ① although the target text is fed as a part of the input to the text encoder of SD, it cannot encode
the character-level information of the target text, making it challenging to accurately map the spelling
to appropriate visual appearance; ② the models are unable to understand the language instructions for a
style-specified generation, which leads to the incorrect font or color generation. To address these challenges,
we propose a novel model for scene text editing called DiffSte, which incorporates a dual encoder design
comprising of an instruction encoder and a character encoder. Specifically, DiffSte is built upon SD, and
the instruction encoder is inherited from the original SD’s text encoder. The input to this encoder describes
the target text and its desired style, which is then utilized in cross-attention to guide the generation process.
On the other hand, the character encoder is an add-on module that only takes the character-tokenized target
text. The encoded character embeddings are then attended by the image encodings and further aggregated
together with the attended result from the instruction encoder side. Having direct access to the characters
equips the model with the capability of explicit spelling checks and the awareness of target text length.

To make both encoders understand the scene text editing task, we further introduce an instruction-tuning
framework for training our model. Instruction tuning is a popular technique in the natural language process-
ing (NLP) domain Gupta et al. (2022); Mishra et al. (2022); Sanh et al. (2021); Wei et al. (2021); Honovich
et al. (2022); Wang et al. (2022); Xu et al. (2022); Zhong et al. (2022); Zhou et al. (2022). It aims to
teach foundation language models to perform specific tasks based on the corresponding task instructions.
By doing so, models can achieve better performance on both training and unseen tasks with appropriate
instructions Chung et al. (2022); Chen et al. (2022); Gu et al. (2022); Jang et al. (2023); Muennighoff et al.
(2022); Brooks et al. (2022). Similarly, our goal is to teach DiffSte to capture the mapping from the text
instruction to scene text generation. To achieve this, we create a synthetic training dataset, where each
training example includes three components: ① a text instruction that describes the desired target text, ② a
masked region surrounded by other scene texts in a similar style indicating the location in the image where
the text should be generated, and ③ a ground truth reference image. The text instructions are generated
using a fixed natural language rule that can be grouped into four main categories: specifying both color and
font, specifying color only, specifying font only, and providing no style specification. If a text instruction is
missing either color or font information or both, the scene text in the surrounding area of the image can be
used to infer the missing information.

Our model is trained to generate the ground-truth scene text by minimizing a mean square error (MSE) loss
conditioned on the provided instructions and the unmasked image region using both synthetic and real-world
datasets. This enables our model to achieve both spelling accuracy and good style control. An example of
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the generated image can be found in Figure 1.(e). Even more surprisingly, our model performs well on test
instructions that were significantly different from the ones used for training, demonstrating its zero-shot
generalization ability. Specifically, our model generalizes well to the following three scenarios: generating
text with unseen font variation, e.g., italic and bold, mixing different fonts to construct a new font, and using
more relaxed forms of natural language as the instructions to guide the generation task. Figure 2 showcases
the new font style created by DiffSte, which mixes the fonts PressStart2P and MoonDance.

Font1 Font2 Font1+Font2

Figure 2: Generating text in new style by blending two
existing fonts. The first row shows the texts rendered
with real fonts, and the second row shows our gen-
eration results with instructions Write “Greetings” in
font: Font, where Font is PressStart2P, MoonDance
and PressStart2P and MoonDance, respectively.

We compared our approach with state-of-the-art
baselines on five datasets, considering both style-free
and style-conditional text editing scenarios. Our
method showed superior performance in terms of
text correctness, image naturalness, and style con-
trol ability, as evaluated quantitatively and sub-
jectively. For instance, under the style-free text
editing setting, DiffSte achieves an average im-
provement of 64.0% on OCR accuracy compared to
the most competitive baseline. Additionally, our
approach maintained high image naturalness, as
demonstrated by 28.0% more preference over other
baseline methods in human evaluations. In the style-
conditional scenario, our method shows 69.2% and
26.8% more preference compared to other diffusion
baselines in terms of font correctness and color correctness, with consistent improvements in text correctness
and naturalness as observed in the style-free case.

2 Related Work

Scene text editing GAN-based style transfer methods have been widely used for the task of scene text
editing Huang et al. (2022); Kong et al. (2022b); Lee et al. (2021); Roy et al. (2020); Shimoda et al. (2021);
Yang et al. (2020); Zhan et al. (2019). These works accomplish the task by transferring the text style
in a reference image to the rendered target text image. STEFANN Roy et al. (2020) edits scene text at
the character level with a font-adaptive neural network for extracting font structure and a color-preserving
model for extracting text color. SRNet Wu et al. (2019) breaks down scene text editing into two sub-tasks,
which involve extracting the image background and text spatial alignment, and a fusion model is then used
to generate the target text with the extracted information. Mostel Qu et al. (2022) further incorporates
additional stroke-level information to improve scene text editing performance. To reduce the dependence
of paired synthetic data with source style images, and target style images, TextstyleBrush Krishnan et al.
(2023) proposes to disentangle the text appearance into content and style vectors in a self-supervised manner,
which allows the utilization of real-world text images. Another recent work, SSTE Su et al. (2023), proposes
to embed the text styles in the latent feature space, thus allowing users to control the text style, such as
text rotation, text color, and font via latent space editing similar to StyleGAN Karras et al. (2019). Despite
the reasonable performances, these methods are limited in generating text in arbitrary styles and locations
and often result in less natural-looking images.

Diffusion models Recent advances in diffusion models have achieved significant success in image edit-
ing Balaji et al. (2022); Brack et al. (2023); Ho et al. (2020); Li et al. (2023); Nichol et al. (2021); Nichol &
Dhariwal (2021); Ryu & Ye (2022); Wu & De la Torre (2022); Wu et al. (2022); Xie et al. (2022). Stable
diffusion Rombach et al. (2022) is one of the state-of-the-art diffusion models, which enables effective text-
conditional image generation by first compressing images into a low-dimensional space with an autoencoder
and then leveraging text encodings with a cross-attention layer. The model could be easily adapted for var-
ious tasks like image inpainting and image editing conditioned on texts. However, it has been observed that
the diffusion models exhibit poor visual text generation performance and are often susceptible to incorrect
text generation Ramesh et al. (2022); Saharia et al. (2022). There is a limited amount of research focusing
on improving the text-generation capabilities of diffusion models. A recent study has sought to improve
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the generation of visual text images by training a character-aware diffusion model conditioned on a large
character-aware text encoder Liu et al. (2022). However, this work differs from our method in the application,
as they concentrate on text-to-image generation, while our work focuses on editing texts within an image. In
contrast to their single-encoder architecture, our approach incorporates dual encoders to provide character
and style encoding for the target text, respectively. Some other concurrent works, such as ControlNet Zhang
& Agrawala (2023), DiffUTE Chen et al. (2023a), and TextDiffuser Chen et al. (2023b), have demonstrated
exceptional performance in image editing by providing the model with references such as canny edge images
and character segmentation maps. However, such fine-grained text reference is challenging to apply for scene
text editing. Moreover, the reference can only be used to control the text content, while the text style is not
considered. In contrast, our method only needs natural language instruction to control the generated text
and style, enjoying better scalability and flexibility.

3 Methodology

The proposed DiffSte aims to improve the pre-trained diffusion models in their scene text editing ability.
We specifically use the SD, a state-of-the-art diffusion model, as our backbone, but the proposed methodology
is general to other text-to-image diffusion model architectures. The key architectural innovation of DiffSte
is to augment SD with an additional character-level encoder to form a dual-encoder structure. We will first
elaborate on our model architecture with the dual-encoder design. An illustration can be seen in Figure 3.
Next, we will describe our instruction tuning framework for training our model.

3.1 The Dual-encoder Design

Figure 3: Model structure of DiffSte with
dual-encoder design. The input text instruc-
tion and the target text spelling are processed
by instruction encoder Encinst and character en-
coder Encchar, respectively. Both encodings are
attended to the intermediate hidden represen-
tation z from the previous layer through cross-
attention. The results are averaged to guide im-
age generation.

Our goal is to equip pre-trained diffusion model SD with
the ability to accurately capture the spelling of the tar-
get text while understanding the provided instructions
for generating the target text in the desired style and
font. To achieve this, we consider a dual-encoder architec-
ture in DiffSte, which consists of an instruction encoder
Encinst and a character encoder Encchar. The instruction
encoder Encinst is inherited from the text encoder of SD,
namely, a CLIP Radford et al. (2021) text encoder. It is
expected to encode the desired style information for tar-
get text generation with the proper instruction as input.
In contrast, the character encoder Encchar is a new add-
on module to SD that takes only the target text to be
generated tokenized at the character level as input, pro-
viding DiffSte the direct access to the correct spelling.

To incorporate the information from both encoders, we
modify only the cross-attention module from SD. Specifi-
cally, unlike SD, which only computes the cross-attention
from the instruction encoder side, we construct the cross-
attention layer by first separately attending to the em-
beddings from the instruction and character levels and then aggregating the attended results using a simple
average. As shown in Figure 3, both encodings are used to attend the intermediate hidden representation z
(output of the previous layer) in the UNet components during visual denoising. The averaged result is then
fed into the following UNet layer. By applying this modified cross-attention at every denoising layer, the
generated clean image at the end of the diffusion process is expected to be natural, with correct spelling,
and consistent with the language instruction.
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3.2 Instruction Tuning

We adopt an instruction tuning framework to train our model to understand the scene text editing task.
Similar to the instruction tuning technique in the NLP area, where foundation models are taught to follow
task instructions to perform the corresponding task, our goal is to teach our dual-encoder DiffSte model
to accurately map text instructions to the corresponding visual appearance. To achieve this goal, we first
introduce a synthetic dataset using an automatic rendering engine. Each constructed example contains ① a
language instruction that describes the desired target text, ② a masked image indicating where scene text
editing should be performed, and ③ a corresponding ground truth image. We have also included existing
real-world scene text editing datasets in our instruction tuning process to enable DiffSte to generalize to
a wide range of real-world backgrounds and scenarios. In the following, we provide a detailed explanation of
how we generate the synthetic dataset and how we convert the existing dataset to a similar format so it can
be utilized in our instruction tuning pipeline. Once these datasets are appropriately prepared, DiffSte is
trained to minimize the MSE loss between the ground truth image and the generated image conditioned on
the text instruction and the masked image.

Synthetic dataset creation We begin by randomly selecting a few English words or numerical numbers
and pairing each of them with a color and font style. We then utilize a publicly available synthesizing
engine, Synthtiger Yim et al. (2021), to render each text using its corresponding specified style. Afterward,
we apply rotation and perspective transformation to these rendered scene texts Qu et al. (2022) and place
them in non-overlapping locations on a background image selected at random from the SynthText Gupta
et al. (2016) project. After constructing the image, one random word in the image is masked out to create a
masked input, and the corresponding text and style information is utilized to generate task instructions. In
particular, we consider two settings to construct the instructions, which are style-free and style-specific. As
the name suggests, for the former case, the instruction only provides the specific text we want the model to
generate without specifying the style. In this scenario, we ensure that the style of the surrounding scene texts
to the masked one is the same and consistent with the masked ground truth. Here, our model is required
to follow the style of other texts in the surrounding area to generate the target text correctly and naturally.
For the style-specific setting, we consider three different cases, namely generating the scene text with font
specification only, color specification only, and both font and color specification. Similarly, in the first two
partial style instruction cases, the surrounding texts in the masked image always conform to the missing
style, so the model could infer the correct style from the background to recover the ground truth image. On
the other hand, in the last case, the surrounding texts are not necessarily consistent with the ground truth
style of the target text, so the model would have to follow text instructions to generate the correct style.

There are four categories of instructions in total, and we generated these instructions for our synthetic
dataset using a simple fixed rule. For the style-free case, our instruction is created simply by using the rule
Write “Text”, where Text is the ground truth masked word. For the case where the style is specified, we
construct the instruction following the rule Write “Text” in color: Color and font: Font. Furthermore,
for the partial style-missing case, we modify the previous full instruction rule and remove the corresponding
missing information. Although our instructions are created following a very simple rule, we will later show
that the model tuned with these instructions can generalize well to other free-form language instructions.

Real-world dataset utilization Commonly used real-world scene editing datasets such as ArT Chng
et al. (2019), COCOText Gomez et al. (2017), and TextOCR Singh et al. (2021) only provide the bounding
box locations of scene texts in images without text style information. Therefore, we only generate style-free
instructions to pair with real-world images for instruction tuning.

4 Experiments

4.1 Experiment Setup

Datasets As described in Section 3.2, we collect 1.3M examples by combining the synthetic dataset
(Synthetic) and three real-world datasets (ArTChng et al. (2019), COCOTextGomez et al. (2017), and
TextOCR Singh et al. (2021)) for instruction tuning. For thewSynthetic dataset, we randomly pick up
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100 font families from the google fonts library1 and 954 XKCD colors2 for text rendering. We randomly
select 200 images from each dataset for validation and 1000 images for testing. Additionally, we test our
method on another real-world dataset, ICDAR13 Karatzas et al. (2015), to assess the model’s generalization
ability. Different from the training examples described in Section 3.2, the language instruction for each test
example is constructed with a random target text, which is different from the text in the original image.
In this way, we focus on the more realistic text editing task and measure the result quality with human
evaluation. All the images are cropped/resized to 256×256 resolution as model inputs. More details can be
found in Appendix B.

Baselines We compare DiffSte with state-of-the-art GAN-based style-transfer methods and diffusion
models described below. The GAN-based methods include SRNet Wu et al. (2019) and Mostel Kong
et al. (2022a). The training of SRNet requires “parallel” image pairs with different texts appearing at the
same location and background, which is not available for real-world datasets, so we fine-tune the released
model of SRNet only on our synthetic dataset. We use the original model for Mostel as we empirically
find that fine-tuning on our data does not improve its performance. For the diffusion model baselines,
we include pre-trained stable-diffusion-inpainting (SD) and stable-diffusion-2-inpainting (SD2). These two
models are further fine-tuned by instruction tuning in the same way as our method, as described in Sec-
tion 3.2. The resulting models are termed as SD-FT and SD2-FT. More implementation details could be
found in Appendix B.
Evaluation and metrics Our evaluations are conducted under style-free and style-conditional settings.
Style-free generation focuses on the correctness and naturalness of the generated texts, with the language
instruction only describing the target text content. All diffusion-based methods are fed with the text in-
struction and the masked image. On the other hand, as GAN-based models SRNet and Mostel cannot
take text instructions as input, we feed them with the cropped-out text region for editing in the original
image and a rendered text image with the target text. Their outputs are filled into the masked image as
the final generation. Note that the GAN-based methods enjoy extra advantages compared with ours as they
have access to the style of the original text. This makes it easier for them to generate natural-looking images
by simply following the original text style. In contrast, our method has to infer the style of the target text
from other surrounding texts in the masked image for a natural generation.

For the style-conditional generation, we require all methods to generate the target text following a specified
style. In this setting, the text instruction describes the target text with a random color and font style
specified. The diffusion-based methods are fed with the style-specified text instruction and the masked image.
However, the GAN-based style transfer models, SRNet and Mostel, do not support style specification by
texts. Thus, we synthesize a style reference image of a random text using the specified font and color as well
as a rendered image with target text. Both images are fed into GAN-based models as input, and the resulting
output is filled into the masked image as the final generation. Note that the style reference images can be
different in synthetic and real-world testing sets. For the synthetic testing set, the synthesized reference
image contains the same background as the original image. For the real-world testing sets, a pure-colored
background is used as we can not synthesize an image with texts in the specified target style on the same
background as the original image.

We evaluate the effectiveness of our method from three aspects: ① text correctness, ② image naturalness, and
③ style correctness. For ① text correctness, we report the OCR accuracy, which is calculated as the exact
match rate between the target text and the recognized text from the generation by a pre-trained recognition
model Fang et al. (2021). Human evaluation of the text accuracy is also reported, denoted as Cor . For
② image naturalness, we ask the human evaluator to compare the generated images by a certain baseline
and our method DiffSte, and the vote rate gap (vote of baseline minus vote of DiffSte) is reported as
naturalness score Nat. For ③ style correctness, under the style-specific evaluation setting, human evaluators
are presented with a rendered reference image of the target text in the specified style and are asked to vote
between a baseline and our method w.r.t. font correctness and color correctness of the generated images. The
resulting vote gaps are reported as Font and Color , respectively. All human evaluation results are conducted
on 50 randomly selected images for each of the five datasets. More details could be found in Appendix A.

1https://fonts.google.com
2https://xkcd.com/color/rgb/
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Figure 4: Examples of style-free text editing results on four real-world datasets.

4.2 Experiment Results

Style-free generation The quantitative results for style-free generation are shown in Table 1. We observe
that our method DiffSte consistently achieves better text correctness and image naturalness than other
baselines over all datasets. For example, DiffSte improves average OCR accuracy and human-evaluated
text correctness (Cor) by 64.0% and 21.7% compared with the most competitive baseline Mostel. For
human evaluated naturalness (Nat), DiffSte outperforms all other baselines by at least 28% more vote
percentage on average. Besides, the superiority of our method over other fine-tuned diffusion-based methods
SD-FT and SD2-FT have demonstrated the effectiveness of our newly introduced character encoder.

We present the qualitative results in Figure 4 and Appendix D.1. We emphasize the effectiveness of DiffSte
as follows. First, DiffSte generates texts strictly following the given instruction, which is consistent with
the superior performance of DiffSte in terms of text correctness in quantitative evaluation. In comparison,
other diffusion-based baselines are prone to generating wrong spellings, while the GAN-based methods tend
to generate blurry and ambiguous texts and thus get low text correctness. For example, in the ArT dataset
with the target text “difference”, with our method perfectly generating the correct text, SD-FT generates
“DIFEFRERE” while the generation of Mostel is hard to read due to the blur. Second, our method
generates more natural images than other baselines. For example, in the TextOCR dataset with “One” target
text, the “One” generated by DiffSte conforms to the font and color of other texts in the context. By
contrast, GAN-based methods SRNet and Mostel also copy the text style from context and generate red
“One”, but the edited region is incoherent with the background with a clear boundary.

7



Published in Transactions on Machine Learning Research (Feb/2024)

Style-free generation

Method Synthetic ArT COCOText TextOCR ICDAR13 Average
OCR↑ Cor↑ Nat↑ OCR↑ Cor↑ Nat↑ OCR↑ Cor↑ Nat↑ OCR↑ Cor↑ Nat↑ OCR↑ Cor↑ Nat↑ OCR↑ Cor↑ Nat↑

SRNet 50.74 44 -28 30.45 42 -16 26.87 84 -68 31.14 42 -40 30.13 46 -52 33.87 51.6 -40.8
Mostel 71.51 80 -12 60.99 70 -20 24.11 84 -40 46.11 56 -52 52.23 60 -20 50.99 70.0 -28.8

SD 3.12 6 -40 5.39 6 0 12.46 10 -16 8.22 4 -40 4.56 6 -44 6.75 6.4 -28.0
SD2 4.61 8 -32 7.28 16 -20 19.34 14 -36 11.88 14 -30 9.13 8 -48 10.45 12.0 -33.2

SD-FT 29.51 34 -64 32.08 34 -40 51.62 60 -4 48.91 44 -48 25.29 30 -24 37.48 40.4 -36.0
SD2-FT 37.53 46 -40 46.17 44 -48 56.13 50 -32 60.82 56 -24 43.32 46 -32 48.79 48.4 -35.2

Ours 83.79 86 - 83.08 86 - 84.05 88 - 85.48 82 - 81.79 84 - 83.64 85.2 -
Style-conditional generation

SRNet 67.56 54 -32 71.51 64 -48 52.91 84 -36 62.29 60 -24 65.94 64 -12 64.04 65.2 -30.4
Mostel 72.54 74 -16 76.21 80 -44 65.72 80 -40 67.89 72 -20 68.23 76 8 70.12 75.2 -22.4

SD 2.42 4 -28 4.13 6 16 9.69 8 -12 7.91 4 -16 3.81 2 -20 5.59 4.8 -12.0
SD2 4.82 6 -8 7.64 10 -8 18.13 12 -12 12.52 6 4 9.28 6 -4 10.48 8.0 -5.6

SD-FT 23.52 16 -52 26.22 18 -20 47.16 42 -28 43.38 40 -36 22.77 18 -34 32.61 26.8 -34.0
SD2-FT 28.56 32 -56 34.87 24 -36 55.84 60 -40 54.79 50 -48 36.94 48 -36 42.20 42.8 -43.2

Ours 72.39 82 - 74.82 80 - 73.38 84 - 73.67 72 - 79.26 84 - 74.70 80.4 -

Table 1: Quantitative evaluation on five datasets with style-free generation (top) and style-conditional
generation (bottom). Text correctness rate is evaluated by both automatic OCR model (OCR) and human
labelling (Cor). The image naturalness (Nat) is evaluated by human, with the difference of vote percentage
between each baseline and our method reported. A positive Nat value indicates the corresponding baseline
is better than ours. All the numbers are in percentage.

Style-conditional generation We present the quantitative results of style-conditional generation in Ta-
bles 1 and 6. Our key observations are as follows. First, similar to style-free setting, our method achieves the
best average text correctness and image naturalness, with 6.5% and 6.9% improvement in OCR accuracy and
Cor, and 5.6% more votes in Nat. Second, DiffSte achieves the best font and color correctness compared
with other diffusion baselines over all datasets. Different from the diffusion models that take text instructions
for specifying the style, the GAN-based methods like Mostel and SRNet take a reference image of rendered
texts with the specified font and color. This unfair advantage explains why the GAN-based methods achieve
better average color correctness. However, our method DiffSte is still better on font correctness over four
of the five datasets with 13.2% more vote percentage in average.

We present qualitative results in Figure 5 and Appendix D.2. It is shown that our model consistently gen-
erates correct texts that conform to specified text styles. Although GAN-based methods also generate texts
following the specified color, they suffer from poor font correctness. An example could be seen for “survey”
text in ArT dataset. Besides, GAN-based methods cannot capture the orientation of surrounding texts.

Method Synthetic ArT COCOText TextOCR ICDAR13 Average
Font↑ Color↑ Font↑ Color↑ Font↑ Color↑ Font↑ Color↑ Font↑ Color↑ Font↑ Color↑

SRNet -8 0 -16 6 -10 8 4 28 -36 20 -13.2 12.4
Mostel 0 8 -18 -18 -28 -8 -24 14 -46 14 -23.2 2.0

SD -86 -72 -82 -72 -76 -54 -82 -54 -80 -76 -81.2 -65.6
SD2 -86 -70 -84 -68 -62 -48 -76 -64 -70 -68 -75.6 -63.6

SD-FT -74 -36 -76 -44 -66 -34 -70 -38 -60 -38 -69.2 -38.0
SD2-FT -72 -16 -78 -28 -74 -34 -68 -24 -60 -32 -70.4 -26.8

Figure 6: Human evaluation results of font and color correctness
for style-conditional generation. We report the difference of votes
in percentage between each baseline and our method. A positive
value indicates the method is better than ours.

With oblique surrounding texts in
TextOCR dataset over “better” target
text, SRNet and Mostel still tend to
generate horizontal texts, resulting in un-
naturalness. On the other hand, pre-
trained diffusion models SD and SD2
completely ignore the styles specified in
the instruction, and the problem is miti-
gated in SD-FT and SD2-FT after fine-
tuning, demonstrating that our instruc-
tion tuning framework could improve the
style controllability. Despite the im-
provement in style correctness, the fine-
tuned diffusion models still cannot fully capture the specified style compared to our method DiffSte and
struggle with incorrect text spelling, demonstrating the effectiveness of our dual-encoder model architec-
ture. For example, SD2-FT generates “JPG” in Art dataset when the target text is lowercase “jpg”. We
present additional experiment results with an ablation study of the proposed character encoder, instruction
tuning, and data mixture in Appendix C and quantitative comparison with other diffusion models such as
TextDiffuser and SD-XL in Appendix E.
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Figure 5: Examples of style-conditional text editing results. The Rendered row shows the target text and
desired style.
4.3 Zero-shot Style Combination

Input Lancelot Lancelot+italic Lancelot+bold Lancelot+both

Input NovaOval NovaOval+italic NovaOval+bold NovaOval+both

Figure 7: Examples of font extrapolation with our method Diff-
Ste. The last three columns are generated with the text instruc-
tion template Write “Text” in font Font-Format, where the
Format is Bold, Italic and Bold Italic, respectively.

In this section, we show that our method
can create new text styles by composing
basic font attributes in a zero-shot man-
ner benefitting from instruction tuning.
We consider two settings: font extrapo-
lation and font interpolation.

Font extrapolation In the font ex-
trapolation experiment, we require the
model to generate texts in a certain font
style but with an unseen format such as
italic, bold, or both of them. None of
these formats were seen during training
for the given font. We append format
keyword italic, bold to those fonts with

9



Published in Transactions on Machine Learning Research (Feb/2024)

no such format in training data and give the model the extrapolated font name. As shown in Figure 7,
the generated texts in the image appear inclined or bolded when we append the format keyword, showing
that our method can successfully generalize to unseen font variations while maintaining correctness and
naturalness.

Font interpolation In the font interpolation experiment, we require the model to generate texts with a
mix of two certain font styles, which does not correspond to a particular font style in the real world and
was not seen during training. We feed the model with the following instruction template: Write “Text” in
font Font1 and Font2, where the Font1 and Font2 are the names of two fonts seen in model training.
The qualitative results can be seen in Figure 2, where a new font is generated by mixing MoonDance and
PressStart2P. More results are in Appendix D.3.

4.4 Editing with Natural Language Instruction

Input grass cherry sky

Figure 8: Control text color using natural language
instructions with our method DiffSte. The color
is described with words “grass colored”, “add cherry
color to” and “in the color of sky” for the right
three columns, respectively.

Although we only use static text instruction templates
during instruction tuning, we show that our method
still shows good scene text editing ability with natu-
ral language instructions. The qualitative results can
be seen in Figure 8, where we feed the model with in-
structions such as “The word “HOTEL” in the color
of sky” instead of the fixed templated instruction seen
in training. We show that the model has learned the
mapping from instructions to visual text appearances in
the generated image following the specified text style.
This demonstrates that our instruction tuning frame-
work brings the model the generalization ability to un-
seen text instructions, which is consistent with previ-
ous findings in NLP area Sanh et al. (2021); Wei et al.
(2021). The compatibility with natural language in-
structions makes our model easier to use for non-expert users and enables our model to work in vast down-
stream applications like chat robots. More results could be seen in Appendix D.4.

5 Conclusion

In this paper, we present a novel method DiffSte to improve pre-trained diffusion models for scene text
editing with a dual encoder design that overcomes the limitations of existing diffusion models in terms of text
correctness and style control. Our proposed method consists of an instruction encoder for better style control
and a character encoder for improved text legibility. Empirical evaluations on five datasets demonstrate the
superior performance of DiffSte in terms of text correctness, image naturalness, and style controllability.
DiffSte also shows zero-shot generalization ability to unseen text styles and natural language instructions.

6 Broader Impacts

In this paper, we propose a novel method DiffSTE to adapt pre-trained diffusion models for scene text
editing. Our proposed method consists of an instruction encoder for better style control and a character
encoder for improved text legibility. DiffSTE improves text correctness for the pre-trained diffusion model
and further allows users to control the generated text styles. However, we also admit that our method can
be used to forge signatures or spread misinformation, which might have a significant impact on society. In
practice, our method should be appropriately used with careful checks on potential risks. For example, we
can adopt recently proposed diffusion-watermarking methods Zhao et al. (2023); Liu et al. (2023); Wen et al.
(2023) to identify whether certain text images are generated by our model to identify forged signatures.
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A Human Evaluation Details

In this section, we provide a summary of the human evaluations conducted for both style-free and style-
conditional generation settings. As outlined in Section 3, we perform human evaluations on Amazon Mturk3

for both style-free and style-conditional generation settings. In total, we design six human evaluation tasks
to assess the performance of our method from three aspects: ① the accuracy of the generated text in the
image; ② the naturalness of the generated image; ③ the correctness of text style in terms of font and color.

Human evaluation for style-free generation To evaluate style-free image generation, we assess the
generated images from two aspects: ① Cor, text correctness, where evaluators check whether the generated
image matches the exact target text. The user interface is shown in Figure 9. ② Nat, image naturalness,
where evaluators select the more natural and visually coherent image between those generated by our method
and another baseline method. In other words, the chosen image should look more like a natural image, and
the completed missing part should be visually coherent with the surrounding region. The user interface is
shown in Figure 10.

Human evaluation for style-conditional generation To evaluate style-conditional generation, we as-
sess the generated images from three aspects: ① Cor, text correctness, which is the same as the style-free
generation setting. ② Nat, image naturalness, where evaluators select a more natural image between those
generated by our method and other baseline methods. We note that in the style-conditional generation
setting, the specified color in instructions may not be coherent with the surrounding region. Therefore, we
exclude the coherence criterion for image naturalness in this evaluation. The user interface for is depicted in
Figure 11. ③ Font and Color, style correctness, where evaluators compare images generated by our method
and other baseline methods and select a better one based on how similar the generated texts are to a given
reference image in terms of font or color, respectively. The user interfaces are shown in Figure 12 and
Figure 13.

Instructions:

Please read the instructions carefully. Failure to follow the instructions will lead to rejection of your
results.
In this task, you will see an image in which a certain area is highlighted with a red box. Your task is
to determine whether the text’s spelling in this area matches the target text shown above the image. It
is important that the spelling need to be exactly the same as the target text. Specifically, the following
cases are considered incorrect:

• Additional characters, e.g. the generated text is ’apples’ but the target text is ’apple’.
• Missing characters, e.g. the generated text is ’appe’ but the target text is ’apple’.
• Mismatched capitalization, e.g. the generated text is ’Apple’ but the target text is ’apple’.

We provide an example to help you understand the criteria.

In this example, you should choose Yes. It is important that all we care about is the correctness of text
spelling within the highlighted area. Although the text in this region is blurry, it has the correct target
text ‘hosting‘.

Figure 9: Instructions of human evaluation on text correctness.

3https://www.mturk.com
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Instructions:

Please read the instructions carefully. Failure to follow the instructions will lead to the rejection of
your results. In this task, you will be asked to judge and compare the quality of two AI-edited images.
Specifically, you will first see one source image with some parts missing. Then, you will see two candidate
images, where the missing part is completed by two AI algorithms. Your task is to determine which of
the two candidate images is more visually natural and coherent. It is important that we only care about
the visual naturalness and coherence of the completed missing part regardless of anything else, such as
the correctness of the text spelling.
There are two criteria for this task:
• First, the edited image should look like a natural image. It should not contain a lot of artifacts,
distortion, or non-commonsensical scenes. The completed part should not be blurry and there should be
no clear boundary between this completed part and the surrounding region.
• Second, the completed missing part should be visually coherent with the surrounding region. If there
is any other text in the surroundings, the text in the completed region should match the style of these
texts in terms of shape and color.
We provide an example to help you understand the criteria.

Source Candidate 1 Candidate 2

In this example, you should choose Candidate 1 as the better one. It is important that the completed
text in the missing region matches the style of surrounding texts. Candidate 2, however, has a black text,
which does not align well with other red surrounding texts, which does not meet our criteria on coherence.

Figure 10: Instructions of human evaluation based on image naturalness and coherence.
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Instructions:

Please read the instructions carefully. Failure to follow the instructions will lead to rejection of your results.
In this task, you will be asked to judge and compare the quality of two AI-edited images. Specifically,
you will first see one source image with some parts missing. Then, you will see two candidate images,
where the missing part is completed by two AI algorithms. Your task is to determine which of the two
candidate images is more visually natural. It is important that we only care about the visual naturalness
of the completed missing part regardless of anything else, such as the correctness of the text spelling.
There are one criteria for this task:
• The edited image should look like a natural image. It should not contain a lot of artifacts, distortion,
or non-commonsensical scenes. The completed part should not be blurry and there should be no clear
boundary between this completed part and the surrounding region.
We provide an example to help you understand the criteria.

Source Candidate 1 Candidate 2

In this example, you should choose Candidate 1 as the better one. It is important that the completed part
of the image is not blurry and there is no clear boundary between completed part and surrounding image.
Candiate 2, however, has a clear boundary between the completed part and the surrounding region, which
does not meet our creteria on naturalness.

Figure 11: Instructions of human evaluation on image naturalness.

Instructions:

Please read the instructions carefully. Failure to follow the instructions will lead to rejection of your results.
In this task, you will be asked to judge and compare the quality of two AI-edited images. Specifically,
you will first see a reference image with a certain text that specifies the desired font style we want the AI
model to generate. Then, you will see two candidate images, both of which have some parts highlighted
with a red box. Your task is to determine which of the two candidate images appears more similar to
the reference image in terms of font style. More specifically, font style refers to the shape of characters
and whether the text is bold or italic. It is important to note that we only care about the font style of
the text, regardless of anything else, such as the correctness of the text spelling or the color of the text.
There is a "hard-to-tell" option available if you cannot decide which is better, but please try your best to
avoid using this option.
We provide an example to help you understand the criteria.

Reference Candidate 1 Candidate 2

In this example, you should choose Candidate 1 as the better one. It is important that all we care about
is whether the font style of text is simiar to the reference image. You can see that the shape of characters
in Candidate2 is not the same as the reference image, e.g. the chracter O is not similar. Therefore, you
should choose Candidate1 as the better one despite that the text spelling in Candidate 1 is not the same
as the reference image.

Figure 12: Instructions of human evaluation on font correctness.
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Instructions:

Please read the instructions carefully. Failure to follow the instructions will lead to rejection of your results.
In this task, you will be asked to judge and compare the quality of two AI-edited images. Specifically, you
will first see a reference image with a certain text that specifies the color of the text that we want the AI
model to generate. Then, you will see two candidate images, both of which have some parts highlighted
with a red box. Your task is to determine which of the two candidate images appears more similar to
the reference image in terms of the text color. It is important to note that we only care about the color
of the text, regardless of the spelling correctness or font type. There is a "hard-to-tell" option for you to
choose if you cannot decide which is better, but please try your best to avoid using this option.
We provide an example to help you understand the criteria.

Reference Candidate 1 Candidate 2

In this example, you should choose Candidate 2 as the better one. It is important that all we care about
is whether the color of text is simiar to the reference image. Candidate 2 is better since the text in the
highlighted area looks more purple, which is similar to the reference image, despite that the text content
is not the same.

Figure 13: Instructions of human evaluation on color correctness.
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B Implementation Details

B.1 Dataset Details

As mentioned in Section 4.1, we construct the synthetic dataset using a publicly available engine Syn-
thtiger Yim et al. (2021). We randomly selected 100 font families in the google fonts library and 954 named
XKCD colors to render the texts. During the creation process, we first randomly sample several English
words or numerical numbers (1-5) and render them using a random color and font style. Then we apply the
same rotation and perspective transformation to these rendered scene texts and place them on a 256 × 256
background image non-overlappingly. In training time, a random word in the image is masked out and the
model is trained to restore the full image including the text in the masked part. Figure 14 shows examples
of the created synthetic data and the masked input for model training. Besides the synthetic data, we also
include real-world OCR datasets in the training set, where the word in image is masked out for training. In
total, we collect 1.3M training examples with 600K synthetic examples and 700K real-world examples.

Synthetic example Augmentation example

Sy
nt

ht
ic

M
as

ke
d

Figure 14: Example images of synthetic data(first row) and the masked input(second row) we use to fine-tune
the model.

B.2 Model Details

GAN-based methods We implement the GAN-based method, SRNet and Mostel using their publicly
released code. We created additional synthetic examples where different texts of the same style are put at the
same location in the background image to construct paired images for style-transfer training, which is only
used in fine-tuning SRNet. Real-world datasets are not included in training SRNet since it requires paired
images with same background but different texts, which is not given in real-world datasets. For SRNet, we
follow the hyperparameters reported in their paper to fine-tune the released model. For Mostel, fine-tuning
the released model on the created synthetic data does not improve its performance on real-world datasets.
Therefore the released checkpoint is used for comparison.
Diffusion-based methods All diffusion-based methods are built upon diffusers4. For the pre-trained dif-
fusion models, we use stable-diffusion-inpainting5(SD) and stable-diffusion-2-inpainting6(SD2). We further
fine-tune SD and SD2 using our instruction tuning framework, where the resulting models are termed as
SD-FT and SD2-FT. For our method DiffSte, we use SD as the backbone7 and randomly initialize the
character-embedding layer and corresponding cross-attention weights. The dimension of character embed-
ding is 32, and the number of cross-attention heads is 8. We use the same hyperparameters to train SD-FT,
SD2-FT, and our method DiffSte. The batch size is set to 256. We use the AdamW optimizer with a fixed
learning rate 5e − 5 to train the model for 15 epochs. In total, the training has 80k steps, which requires
approximately two days of training time using eight Nvidia-V100 gpus.
Data augmentation In our initial experiment, we observed a strong correlation between the mask shape
and the visual layout of text in the generated image. Specifically, the model tends to duplicate characters
to fill the entire masked region even if there are only a few characters to generate. To mitigate this bias, we
augment the masks to be larger than the text in the original image. Specifically, we extend the mask region

4https://huggingface.co/docs/diffusers
5https://huggingface.co/runwayml/stable-diffusion-inpainting
6stabilityai/stable-diffusion-2-inpainting
7SD2 is not released by the time of our implementation.
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along the direction of the masked word while keeping sure that no other texts are included in the mask.
Examples can be seen on the right of Figure 14.

C Ablation Study

Our method DiffSte improves upon the pre-trained SD model from two aspects: ① the dual-encoder design
with the newly added character encoder; ② the instruction tuning framework that helps model understand
the task of scene text editing. In this section, we study the effectiveness of these two designs. To obtain a
deeper understanding of the effectiveness of synthetic and real data, we also conduct an ablation study on
the data mixture ratio.
Character encoder We evaluate the effectiveness of the character encoder by comparing the pre-traiend
backbone model SD, instruction-tuned SD without character encoder, and our method DiffSte, the
instruction-tuned SD with character encoder. Table 2 shows the quantitative evaluation results on five
datasets, where these three models are termed as SD, +Inst, and +Inst+Char respectively. Although
instruction tuning (+Inst) improves the ability of the pre-trained model SD to generate correct texts with
an average of 30% increase in OCR accuracy, the text correctness is way lower than the +Inst+Char,
which is additionally trained with the character encoder. This demonstrates that the dual-encoder design
could effectively improve the model’s ability to capture the spelling of target text.

Style-free generation

Method Synthetic ArT COCOText TextOCR ICDAR13 Average
OCR↑ Cor↑ OCR↑ Cor↑ OCR↑ Cor↑ OCR↑ Cor↑ OCR↑ Cor↑ OCR↑ Cor↑

SD 3.12 6 5.39 6 12.46 10 8.22 4 4.56 6 6.75 6.4
+Inst 29.51 34 32.08 34 51.62 60 48.91 44 25.29 30 37.48 40.4

+Inst+Char 83.79 86 83.08 86 84.05 88 85.48 82 81.79 84 83.64 85.2
Style-conditional generation

SD 3.12 6 5.39 6 12.46 10 8.22 4 4.56 6 6.75 6.4
+Inst 23.52 16 26.22 18 47.16 42 43.38 40 22.77 18 32.61 26.8

+Inst+Char 72.39 82 74.82 80 73.38 84 73.67 72 79.26 84 74.70 80.4

Table 2: Quantitative evaluation on five datasets with style-free generation (top) and style-conditional
generation (bottom) of the pre-trained backbone model SD, the fine-tuned SD without character encoder
(+Inst) and the fine-tuned model with character encoder, i.e. DiffSte(+Inst+Char). All the numbers
are in percentage.

Instruction tuning We evaluate the effectiveness of the instruction tuning framework by comparing
DiffSte by comparing DiffSte with three other models that share the same backbone and character
encoder but are trained using different instructions. The models evaluated are trained using instructions
without font information, color information, and neither of them, respectively. We denote them as -Font,
-Color, and -Both.

Method Synthetic ArT COCOText TextOCR ICDAR13 Average
Font↑ Color↑ Font↑ Color↑ Font↑ Color↑ Font↑ Color↑ Font↑ Color↑ Font↑ Color↑

DiffSTE - - - - - - - - - - - -
-Font -72 - -64 - -76 - -70 - -68 - -70.0 -

-Color - -54 - -66 - -72 - -84 - -68 - -68.8
-Both -70 -58 -68 -74 -80 -78 -78 -80 -78 -64 -74.8 -70.8

Table 3: Human evaluation results of font and color correctness for no-instruction/partial-instruction tuning.
The difference of votes in percentage between the baseline method and our method is reported. A positive
value indicates the method is better than ours.

To evaluate their ability in understanding style specifications in the instructions, we compare the three
models with DiffSte under the style-conditional generation setting. Similar to Section 4.2, we ask human
evaluators to make a pairwise comparison between images generated by these models and DiffSte, which is
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trained on full instructions with font and color information on 50 randomly picked images for each dataset.
The quantitative results are shown in Table 3. We observe that removing certain style information in the
instructions would lead to a decrease in corresponding style correctness dramatically. For example, without
font instructions, -Font receives 70.0% fewer votes in terms of font correctness, while a 68.8% average drop
is observed for color correctness for -Color. Without both font and color, -Both, descend 74.8% and 70.8%
in terms of font and color correctness, even more than -Font and -Color. This further demonstrates the
effectiveness of our instruction tuning framework in teaching the model to align text instruction with visual
appearances.

Synthetic v.s. Real data mixture ratio To comprehensively study the mixture ratio between synthetic
and real-world data, we train two additional versions of our method. Specifically, we train one model on
synthetic data only and another on real-world text images only. We compare these two trained models to
the original DiffSTE in both style-free and style-conditional settings, as described in the main paper. The
OCR results are presented in Table 4, and the generation examples can be found in Figure 15 and Figure 16.
We highlight the following observations:

Style-free generation

Model ArT COCOText TextOCR ICDAR13 Average
DiffSTE 83.08 84.05 85.48 81.70 83.64

-Real 46.34 64.17 64.83 55.47 57.73
-syn. 52.31 70.31 68.27 62.11 63.25

SD 5.39 12.46 8.22 4.56 7.67
SD2 7.28 19.34 11.88 9.13 11.91
SD-FT 32.08 51.62 48.91 25.29 39.48
SD2-FT 46.17 56.13 60.82 43.32 51.61

Style-cond generation

Model ArT COCOText TextOCR ICDAR13 Average
DiffSTE 74.82 73.38 73.67 79.26 75.33

-real 32.35 45.12 43.28 34.21 38.74
-syn. 44.21 58.93 60.42 54.32 54.47

SD 4.13 9.69 7.91 3.81 6.39
SD2 7.64 18.13 12.52 9.28 11.89
SD-FT 26.22 47.16 43.38 22.77 34.88
SD2-FT 34.87 55.84 54.79 36.94 45.61

Table 4: OCR correctness on real-world datasets with style-
free generation (top) and style-conditional generation (bot-
tom) for three versions of DiffSTE. The correctness is eval-
uated by the automatic OCR model and all numbers are
reported in percentage. -real and -syn. represent a model
trained on real-world text images only and synthetic images
only respectively using our method.

First, all three models achieve significantly
better text correctness compared to the vanilla
stable-diffusion 1/2 model and even the fine-
tuned SD1/2. This demonstrates that our dual
encoder design effectively helps the base diffu-
sion model understand correct word spelling
and generate accurate visual texts.

Second, training on real or synthetic data only
hurts the text’s correctness. The combined
DiffSTE model achieves more than 20% abso-
lute percentage improvement.

Third, training on synthetic images only hurts
the image quality. As can be seen in the
fourth row of Figure 15, the visual texts gen-
erated by the model trained on synthetic data
only do not align well with other surround-
ing texts. This issue arises from the limited
text layouts and styles in the synthetic dataset
we use. Therefore, we include real data in
DiffSTE training to provide the variability
of background scenes, enrich the text styles,
and enable the model to better generalize to
test-time real-world text images.

Finally, We also want to highlight that syn-
thetic data builds the foundation for the edit-
ing ability of DiffSTE. We explicitly con-
struct the data to teach the model to follow editing instructions and infer style from surrounding texts
(see Sec 3.2 in the main paper), which is the main focus of our paper. As can be seen in the fourth row in
Figure 16, the model trained on real data only does not understand the style control instructions, thus the
generated texts are always a plain text style, either matching the surrounding text or the background similar
to style-free generation. The text correctness is also affected as the model never sees style specification
instructions in training (failed generation in row 4 column 4 of Figure 16).
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Figure 15: Examples of style-free text editing results with three versions of DiffSTE. REAL ONLY and SYNTH
ONLY denotes the model trained on real-world text images and synthetic text images only using our method.
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Figure 16: Examples of style-condition text editing results with three versions of DiffSTE. REAL ONLY and
SYNTH ONLY denotes the model trained on real-world text images and synthetic text images only using our
method.
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D Additional Qualitative Results

D.1 Additional Style-free Qualitative Results

We provide additional generated images for editing different texts in the same image by our method DiffSte
in Figure 17. The first row shows the target text to generate, and each column shows the different generated
images on the target text. DiffSte consistently generates correct visual text, and the texts naturally follow
the same text style, i.e. font, and color, with other surrounding texts. The orientation of generated texts
also aligns with other texts properly. In addition to the normally shaped masks shown in Figure 17, DiffSte
is able to generate texts within arbitrarily shaped masks. We provide the qualitative results in Section D.5.

Input “The” “five” “boxing” “wizards” “jump” “quickly”
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Figure 17: Examples of style-free text editing results on four real-world datasets.
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D.2 Additional Style-conditional Qualitative Results

We provide additional examples of editing different texts with specified styles in the same image by our
method DiffSte in Figure 18. The first row shows the target visual text style in the generated image. Our
method DiffSte generate correct texts following the specified text styles consistently. The generated texts
naturally fit the surrounding region with suitable size and orientation. For example, texts in the last row in
Figure 18 are placed in the same orientation with surrounding texts.
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Figure 18: Examples of style-conditional text editing results on four real-world datasets.
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D.3 Additional Qualitative Results with Zero-Shot Style Combination

Font extropolation As mentioned in Section 4.2, our method DiffSte is able to extend seen font style to
unseen formats such as italic, bold and both of them. We provide additional examples for font extrapolation
in Figure 19. Each row shows the input masked image and generated texts using the specified font and the
font with other format combinations. The instruction for font combination is generated in this template
Write “Text” in font Font-Format. As seen in Figure 19, the generated texts are bolded and inclined
following the given format keyword, showing the zero-shot generalizability of DiffSte.

Input Iceberg Iceberg+italic Iceberg+bold Iceberg+both

Input Gluten Gluten+italic Gluten+bold Gluten+both

Input SixCaps SixCaps+italic SixCaps+bold SixCaps+both

Input NovaMono NovaMono+italic NovaMono+bold NovaMono+both

Input Mallanna Mallanna+italic Mallanna+bold Mallanna+both

Figure 19: Examples of font extrapolation with our method DiffSte.
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Font interpolatoin As mentioned in Section 4.2, our method DiffSte is able to create a new font style
by mixing two seen font styles. We provide additional examples for font interpolation in Figure 20. To
generate instructions for mixing font styles, we use the template Write Text in font Font1 and Font2,
where Font1 and Font2 are two font names seen in training. As seen in Figure 20, DiffSte is able to
mix the two font styles by merging the glyphs of the same character in different fonts using a simple natural
language instruction.

Font1-render Font1 Font2-render Font2 Font1 + Font2

Figure 20: Examples of font interpolation with our method DiffSte.
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D.4 Additional Qualitative Results with Natural Language Instructions

We provide additional examples for controlling text color with natural language instructions. In Figure 21,
each row shows examples generated using the following instructions generated by ChatGPT8: ① A mango-
colored word “Text”. ② The word “Text” resembles the color of an eggplant. ③ The word “Text” is
colored in a delicate, ladylike shade of lilac. ④ The color of word “Text” is like a blazing inferno. ⑤ The
color of word “Text” is deep, oceanic, reminiscent of the deep sea. ⑥ The color of word “Text” used is
the fresh, vibrant color of a springtime tree. As seen in Figure 21, DiffSte is able to generalize to unseen
natural language instructions, which shows the effectiveness of our instruction learning framework in helping
the model learn the mapping from natural language instructions to visual text appearances in the generated
images.

Input mango eggplant lilac inferno sea tree

Figure 21: Control text color using different natural language instructions with DiffSte.

8We provide this instruction to ChatGPT: Show me some sentences describing the color of a text similar to this "The text
is in the color of grass" and manually exclude unnecessary details from the generated sentences.
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D.5 Additional Qualitative Results with Arbitrarily-Shaped Mask

We provide additional examples for our method DiffSte editing texts in arbitrarily shaped masks in Fig-
ure 22. As seen in Figure 22, our method is able to generate visually appealing text layouts within highly
curved and lengthy masks, even when the text to generate is short. Notably, in the fourth row of Figure 22,
DiffSte successfully generates the words “The” and “five” in an appropriate layout within the curved mask.
Each character is placed in a suitable orientation based on the geometry of the given mask region. In other
examples, this is also observed for long texts such as “boxing”.

Input “The” “five” “boxing” “wizards” “jump” “quickly”

Figure 22: Generate texts within an arbitrarily shaped mask.
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E More discussions

E.1 Comparison with other diffusion-based text editing model.

We conduct a comparison with two more diffusion-based text editing models, Text-diffuser Chen et al.
(2023b) and SDXL Podell et al. (2023) on our test dataset in both style-free and style-cond settings. The
quantitative results are presented in Table 5, and example generations are listed in Figure 23 and Figure 24.
We highlight the following observations:

Significant improvements over SDXL. Compared to the backbone model we use, Stable-
diffusion-v1-5-inpainting (SD) (865M), SDXL has much more than twice the parameters (2.7B).
Nevertheless, the proposed dual-encoder design and instruction tuning framework can significantly
improve SD’s scene text editing capability. Equipped with our method, the SD/SD2 outper-
forms the much larger model, SDXL, with 70% absolute improvement in text correctness rate.

Style-free generation

Model ArT COCOText TextOCR ICDAR13 Average
DiffSTE 83.08 84.05 85.48 81.70 83.64

TextDiffuser 84.29 84.86 88.20 82.14 84.87
SDXL 5.41 9.74 8.67 6.20 7.51

Style-cond generation

Model ArT COCOText TextOCR ICDAR13 Average
DiffSTE 74.82 73.38 73.67 79.26 75.33

TextDiffuser 72.77 74.34 80.67 75.43 75.80
SDXL 4.83 9.75 6.89 5.13 6.65

Table 5: OCR correctness on real-world datasets with style-free
generation (top) and style-conditional generation (bottom) for
DiffSTE, TextDiffuser and SDXL. The correctness is evalu-
ated by the automatic OCR model, and all numbers are reported
in percentages.

Comparable performance as TextD-
iffuser with less input informa-
tion. Our method achieves state-of-the-
art performance and is comparable to
TextDiffuser. This is impressive, es-
pecially considering TextDiffuser has
an advantage in the input. Particularly,
TextDiffuser first renders a layout im-
age that already contains the ground-
truth content, font, color, and other in-
formation about the scene text to be
added or edited. After that, the diffu-
sion model will take the user prompt and
the layout image for generation. In com-
parison, our method only relies on the
user prompt but still achieves good per-
formance on text correctness. We addi-
tionally discuss the divergence in input
information in point 3 below.

Divergence between TextDiffuser and our method. In our paper, we mainly consider more flexible
scene text editing, where users only need to specify the style information (e.g., color and font) and the content
of texts through prompts. The diffusion model can also infer a style that is coherent with the background
and other parts of the image. In comparison, TextDiffuser focuses on specifying most text information
via the layout image. While achieving better control of the generation, flexibility can sometimes be hurt. For
example, we list two scenarios where the layout image in TextDiffuser cannot accurately and naturally
specify the target style as follows:

• Scene text editing on curved regions or perspective changes: In the first and second column
in Figure 23 and Figure 24, we illustrate examples where the target region is highly curved or
has perspective changes. TextDiffuser cannot provide high-quality and visually appealing text
layouts within such curved regions. This is mainly because TextDiffuser highly depends on the
rendered layout image. Once the layout image for target scene texts cannot be generated perfectly
(which is exactly the case in those examples), the generation quality would be largely decreased. In
comparison, our method provides a more flexible and robust scene text editing for such scenarios
and can generate significantly better images.

• TextDiffuser cannot support style editing. As can be seen in the fourth row of Figure 24,
TextDiffuser cannot understand the style specification instructions and simply conducts style-
free generation by generating texts following the color of other surrounding texts (columns 1, 3, 4).
In comparison, our instruction-tuned DifSTE model generates text faithful to the specified text style
as shown in the third row in Figure 24, which offers users more flexibility to edit the text style.
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Figure 23: Examples of style-free text editing results with DiffSTE, TextDiffuser and SDXL.
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Figure 24: Examples of style-conditional text editing results with DiffSTE, TextDiffuser and SDXL.

E.2 Limitation and Future work

Although DiffSTE generally produces natural scene texts, as evidenced by the human evaluations detailed
in the main paper. Sometimes, the generation results may not be satisfiable. We attribute the unnaturalness
to three main reasons: ① lack of surrounding scene texts, which makes inferring the correct text style very
challenging. It’s evident that when more surrounding texts are present, DiffSTE is better able to generate
natural-looking texts; see examples in columns 1 and 6 of Figure 4. ② low resolution (256×256) training
image in our dataset, which is limited by our computational resources. ③ the synthetic data included in
our dataset, where rendered text is simply placed onto a background image. Enhancing the quality of our
training image dataset is a potential avenue for improving overall image quality. We regard this as a key
area for future work.
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